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Abstract: Nowadays, with the rise of sensor technology, the amount of spatial and temporal data
is increasing day by day. Modeling data in a structured way and performing effective and efficient
complex queries has become more essential than ever. Online analytical processing (OLAP), devel-
oped for this purpose, provides appropriate data structures and supports querying multidimensional
numeric and alphanumeric data. However, uncertainty and fuzziness are inherent in the data in
many complex database applications, especially in spatiotemporal database applications. Therefore,
there is always a need to support flexible queries and analyses on uncertain and fuzzy data, due to
the nature of the data in these complex spatiotemporal applications. FSOLAP is a new framework
based on fuzzy logic technologies and spatial online analytical processing (SOLAP). In this study, we
use crisp measures as input for this framework, apply fuzzy operations to obtain the membership
functions and fuzzy classes, and then generate fuzzy association rules. Therefore, FSOLAP does
not need to use predefined sets of fuzzy inputs. This paper presents the method used to model the
FSOLAP and manage various types of complex and fuzzy spatiotemporal queries using the FSOLAP
framework. In this context, we describe how to handle non-spatial and fuzzy spatial queries, as well
as spatiotemporal fuzzy query types. Additionally, while FSOLAP primarily includes historical data
and associated queries and analyses, we also describe how to handle predictive fuzzy spatiotemporal
queries, which typically require an inference mechanism.

Keywords: OLAP; fuzzy SOLAP-based framework; fuzzy spatiotemporal queries; fuzzy spatiotem-
poral predictive query; fuzzy query visualization

1. Introduction

Recently, the amount and variety of data used for analytical purposes have greatly
increased. In order to improve the data to be analyzed, it is necessary to use expertise and
a suitable application for the processing and interpretation of these data. For this purpose,
various methods and applications have been developed to analyze large amounts of data.
One of the most common developed applications is online analytical processing (OLAP) [1].
OLAP enables data analysis and query processes to help in decision-making about the data
source. It is a computational method that allows users to quickly and selectively extract
and query data for analysis from different perspectives. OLAP has emerged because classic
databases cannot be used in decision-making and require expertise in data access. While
traditional databases are concerned with the retention of data and the efficient management
of online transactions, OLAP is concerned with the efficient analytics of online data.

In addition, conventional data mining techniques are insufficient in the area of spa-
tiotemporal database applications because they often require intensive computations and
involve complex differential equations and computational algorithms [2]. However, we
need to perform effective and efficient querying with a colossal amount of spatiotemporal
data. One of the widely used geospatial data mining tools is spatial online analytical pro-
cessing (SOLAP), which enables the exploration of data cubes to extract new information
effectively and efficiently [3]. SOLAP can also be defined as a platform supporting fast
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and easy spatiotemporal querying. It allows data mining following a multidimensional
approach comprised of levels of aggregation.

Researchers working with OLAP mainly use numerical and statistical models [4–6],
which generally use precise values as input and output. Furthermore, SOLAP provides
querying and analysis of numeric and alphanumeric multidimensional data. However,
there is a need to support flexible queries on uncertain and fuzzy data, due to the nature of
complex applications such as meteorological and spatiotemporal applications. Uncertainty
and fuzziness are inherent features of most meteorological applications [7]. That is, spatial
and temporal information and various relationships in these applications frequently involve
uncertainty and fuzziness. For example, in describing a rainy region, the region’s boundary
is a fuzzy concept. Likewise, in estimating a weather event, the need to determine its
position at a particular time, or its time of occurrence at a specific location, gives rise to
fuzzy estimations.

The most common reasons for various types of uncertainties in spatiotemporal appli-
cations are:

• Some spatial information is inherently imprecise or fuzzy. The locations of events,
spatial relationships, and various geometric and topological properties usually involve
multiple forms of uncertainty [7].

• Most natural phenomena have fuzzy boundaries due to the transitional nature of
variation in their aspects (e.g., high humidity and low temperature cause precipitation
at a certain altitude) [8–10].

• Obtaining precise data is tedious and unnecessary most of the time, and we may only
be able to give a range of values within which the exact numbers would fall. For
instance, we may need the number of “cloudy” or “partly cloudy” days for some areas
within a certain period. In this request, the user specifies the cloudiness criteria in
linguistic terms instead of giving numeric degrees of cloudiness (e.g., 2/8 or 7/8) [11].

The use of OLAP is mainly related to querying and analyzing historical data, but we
also need to make predictions based on spatiotemporal data. In this study, we describe how
to handle predictive fuzzy spatiotemporal queries that require an inference mechanism. We
also show that various complex queries, including predictive fuzzy spatiotemporal queries,
are effectively and efficiently handled using our fuzzy spatial OLAP framework. We do
this with the support of the association rules and fuzzy inference system (FIS) components
of the FSOLAP framework. In other words, the FIS component included in the FSOLAP
framework supports fuzzy predictive query types.

Spatial–temporal database applications naturally contain hierarchical data structures.
Spatial data include hierarchical breakdowns such as country–region–city, while tempo-
ral data have hierarchical relationships at levels such as year–month–day. SOLAP was
developed to provide effective and efficient analysis and querying of hierarchical data.
Spatial and temporal information and various associations in spatial–temporal applications
frequently involve uncertainty and fuzziness, which are inherent features of most of these
applications [7] (e.g., in describing a rainy region). In addition, since spatial–temporal ap-
plications are complex, they are challenging to analyze with conventional logic approaches.
Fuzzy logic can be used for situations in which conventional logic technologies are ineffec-
tive, such as applications [2,12–21] and systems [22,23] that mathematical models cannot
precisely describe, those with significant uncertainties or contradictory conditions, and
linguistically controlled applications or systems. The concepts of SOLAP and fuzzy logic
can be combined to benefit from both to provide an effective and efficient platform for
spatiotemporal applications. The aim of this study is to propose a new framework, FSOLAP,
to take advantage of both SOLAP and fuzzy logic to provide analytics and querying of
imprecise spatiotemporal data and to extend the framework with inference ability.

Our study aims to find spatiotemporal patterns in data which have spatiotempo-
ral characteristics, in order to perform data analytics and querying. Researchers [24,25]
typically use synthetic or semi-synthetic data to demonstrate the performance of their
compound models in data science applications. The use of synthetic data makes it im-
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possible to represent the true efficiency and accuracy of the model. Validation of the
FSOLAP framework on a big database under the fuzzy spatial–temporal data model is
vital. However, it is not easy to find real data to study. In our study, thanks to the Turkish
State Meteorological Service, we were able to use a real meteorological dataset containing
spatiotemporal features and measurement attributes as a case study to test our framework
and models. It was shown that a fuzzy approach is suitable for handling spatiotemporal
data. Therefore, we present our approach for dealing with different types of fuzzy spa-
tiotemporal queries using FSOLAP. In this context, the FSOLAP framework is modeled,
and the methods for supporting fuzzy non-spatial, fuzzy spatial, and fuzzy spatiotemporal
query types using FSOLAP are explained. In general, the FSOLAP framework includes
SOLAP, a fuzzy module, a fuzzy knowledge base (FKB), and a fuzzy inference system (FIS),
as explained in Section 2.2. This framework allows us to make efficient and flexible fuzzy
queries and analyses on spatiotemporal data.

The main contribution of this study is the development of FSOLAP as a new fuzzy
SOLAP-based framework, allowing effective and efficient analysis and querying of spa-
tiotemporal data. FSOLAP supports the fuzzy spatiotemporal predictive query, which is a
new query type that has not been proposed before, as well as the complex type of fuzzy
spatial queries present in the literature.

More specifically, the contributions of this study are as follows. We propose a fuzzy
SOLAP-based complex system (FSOLAP) for analytics on fuzzy spatiotemporal data and
for predictive analysis of various spatiotemporal events, including support for various
querying capabilities, visualization of data, and analysis. The SOLAP server and its multi-
dimensional expression (MDX) query processor is modified to support various flexible and
complex queries. An optimal number of fuzzification clusters is calculated and integrated
into the FSOLAP framework as an automated process. Moreover, fuzzy sets are generated
automatically and used to create fuzzy association rules. The appropriate minsup and
minconf values related to fuzzy association rule generation are also determined. In addition,
an analysis of the performance of the framework is undertaken using a real meteorological
dataset. Average CPU usage, memory usage, and query execution time for running each
query type included in the FSOLAP framework are measured. A pruning method based on
confidence measures that removes complex rules in the generated fuzzy association rule set
to speed up the inference performance is also applied. Additionally, fuzzy association rule
weighting for rule-based pruning is performed on the generated rules. Thus, we derive
accurate inferences from the fuzzy association rules.

The organization of this paper is as follows. Background information, related works,
proposed architecture, and supported query types are given in Section 2. The execution of
queries and experimental results are explained in Section 3. In Section 4, the results of the
study are discussed and compared with those of previous studies. Finally, in Section 5, the
conclusions and future work are presented.

2. Materials and Methods

Here, we first introduce the related work in Section 2.1 and then explain the FSOLAP
framework and its components in Section 2.2. FSOLAP query management is presented
and the structure of the modules explained in Section 2.3. Brief information about the
dataset used to confirm the performance of the framework is given in Section 2.4. Finally,
we present the supported complex and fuzzy queries in Section 2.5.

2.1. Background and Related Works

The increase in spatial data and human limitations in analyzing spatial data in detail
make querying spatial databases crucial for spatiotemporal applications. In recent years,
many studies [2,5,26] have addressed the issue of performing data mining tasks on data
warehouses. Some of them [26,27] are explicitly interested in mining patterns and asso-
ciation rules in data cubes. For instance, Imieli’nski et al. [27] state that OLAP is closely
intertwined with association rules and shares with association rules the goal of finding
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patterns in the data. Data mining techniques such as association rule mining can be used
together with OLAP to extract knowledge from data cubes. Spatial data mining can be
performed in a spatial data cube as well as in a spatial database. For this purpose, J. Han
constructed GeoMiner [4], a spatial OLAP and data mining system prototype. Another
proposed study [26] considers a framework for mining association rules from data cubes
according to a sum-based aggregate measure, which is more general than frequencies
provided by the count measure. The mining process is guided by a meta-rule, is context-
driven by analysis objectives, and exploits aggregate measures to revisit the definitions
of support and confidence. These studies profit from the hierarchical aspect of cube di-
mensions to mine association rules at different levels of granularity, such as spatial and
temporal hierarchies.

Supporting spatial queries is one of the key features in spatial database management
systems, due to the broad range of applications. Providing these types of queries involves
introducing spatial components such as fuzzy topological relations into relational and
object-relational databases. Fuzzy topological relations between fuzzy regions are explained
in [28] and shown in Figure 1b. The formal definitions of the fuzzy topological relations
can be explained as follows.

Let A be a set of attributes under consideration and let a region be a fuzzy subset
defined in two-dimensional space R2 over A. We can define the membership function of
the region as µ : X×Y× A→ [0, 1], where X and Y are the sets of coordinates defining the
region. Each point (x, y) within the region is assigned a membership value for an attribute
a ∈ A. We show a fuzzy region in Figure 1a, which has a core, an indeterminate boundary,
an exterior, and α− cut levels.

Figure 1. (a) Visualization of a simple fuzzy region. (b) Examples of topological relations between
fuzzy regions.

The concept of the α − cut level region is used to approximate the indeterminate
boundaries of a fuzzy region and is defined as follows:

Rα = {(x, y, a)|µR(x, y, a) ≥ α}(0 < α < 1) (1)

The degree of the fuzzy relation is measured by aggregating the α − cut levels of
fuzzy regions. The basic probability assignment m(Rαi), which can be interpreted as the
probability that Rαi is the true representative of R, is defined as in [29,30]:

m(Rαi) = αi − αi+1, 1 ≤ i ≤ n, n ∈ N, 1 = α1 > α2 > . . . > αn > αn+1 = 0 (2)

Assuming that τ(R, S) is the value representing the topological relation between two
fuzzy regions R and S, and τ(Rαi, Rαj) is the value representing the topological relation
between two α − cut level regions Rαi and Sαj, the general relation between two fuzzy
regions can be determined by

τ(R, S) =
n

∑
i=1

m

∑
j=1

m(Rαi)m(Sαj)τ(Rαi, Sαj) (3)
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For example, the overlap relation between two fuzzy regions can be approximated by
using the formula above as follows:

τ(R, S) =
n

∑
i=1

m

∑
j=1

m(Rαi)m(Sαj)τoverlap(Rαi, Sαj) (4)

Since spatial OLAP querying deals with some concepts expressed in verbal language,
fuzziness is frequently involved in spatial OLAP. Hence, the ability to query spatial data
under fuzziness is an essential characteristic of any spatial database. The studies in [25,31]
discuss the directional and topological relationships in fuzzy concepts. Some earlier
works [24,32] provide a basis for fuzzy querying capabilities based on a binary model to
support queries of this nature. Another study [33] considers unary operators for querying
fuzzy multidimensional databases. The study discusses the properties of unary operators
on fuzzy cubes and investigates the combination of several queries to explore the possibility
of the definition of an algebra to manipulate fuzzy cubes. All these studies mainly focus
on modeling basic fuzzy object types and operations, leaving aside the processing of more
advanced queries.

In existing fuzzy OLAP studies [12–15], OLAP mining and fuzzy data mining are
combined to take advantage of the fact that fuzzy set theory treats numeric values more
naturally, increases understanding, and extracts more generalizable rules. Fuzzy OLAP
is performed on fuzzy multidimensional databases. The multidimensional data model of
data warehouses is extended to manage the imperfect and imprecise data (e.g., cold days)
of the real world. These studies typically focus on finding knowledge about fuzzy spatial
data, but more complex queries (e.g., select cold regions) are not considered.

In studies [16,17] on fuzzy spatial querying, neither SOLAP nor MDX query supports
are used, but an extension to the standard Structured Query Language (SQL) is used to
support spatial and temporal data. The authors combine and extend techniques developed
in spatial and fuzzy data mining to deal with the uncertainty of typical spatial data, though
they were not concerned about the performance side of the queries. In another study [18],
fuzzy logic is integrated into spatial databases to help with decision support and OLAP
query processes. In this study, the design of the fuzzy spatial data warehouse methodology
is presented, but the effectiveness and efficiency are not discussed.

In addition, there are studies [19,20] on the nearest-neighbor and range types of queries
in the field of fuzzy spatial queries. These studies consider range and nearest-neighbor
queries in the context of fuzzy objects with indeterminate boundaries. They show that
processing these types of queries in spatial OLAP is essential, but the query types are too
limited. Support for complex spatial query types is still required.

Special structures have been developed for efficient and effective queries on fuzzy
spatiotemporal data [21,34]. In these studies, novel indexes such as R*-tree [35] and X-
tree [36] were used for efficient and effective queries, but there were no queries showing
the benefits of spatial OLAP.

2.2. FSOLAP Framework

The FSOLAP framework provides for fuzzy spatial–temporal data analytics and flexi-
ble and complex querying. The framework includes a multilayered system architecture that
consists of four layers. The layers are data sources, structured data, logic, and presentation
layers (from the bottom to the top). The system architecture of FSOLAP is represented in
Figure 2.
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Figure 2. Multilayer framework architecture of FSOLAP.

At the bottom of the system, there are text files, database tables, and shape files. These
structures contain the pure data which may be gathered from a web service or collected
from a website. Data are migrated to the structured data layer via extract, transform, and
load (ETL) operations from this layer. ETL operations are mainly related to reading files,
preprocessing data, cleaning data, and validating data operations.

The data layer includes semi-structured or structured data such as a relational database,
fuzzified data, and a fuzzy rule set. ETL output data, the fuzzification phase, and fuzzy
association rule generation are handled in this layer. The upper layer is called the logic
layer, and it requests data from the data layer using SQL or JavaScript Object Notation
(JSON) requests. The data layer returns the requested data via SQL tuples, Java Database
Connectivity (JDBC) result sets, or JSON responses. The data layer also provides fuzzy
querying on PostGIS database data supported by the fuzzy logic module.

The logic layer contains systems that provide spatial, non-spatial, temporal, and fuzzy
data mining tools, and a set of fuzzy functions used for fuzzification/defuzzification. It also
includes data analytics and visualization platforms that help in visual pattern detection.
The reporting tools that provide standard reports on the data are integrated into this layer.
The SOLAP server is another central part of this layer that supports SOLAP data cube
operations and multidimensional expression (MDX) querying. We integrated a fuzzy
inference system and a fuzzy logic module for spatial data mining tasks. The fuzzy logic
module was assembled to support fuzzy operations such as membership calculation, fuzzy
clustering, and fuzzy class identification.

The presentation layer is shown at the top of our proposed architecture in Figure 2.
This layer provides a categorized and simplified system structure. We can demonstrate
the data on a map with a cartography viewer. We can also design a new SOLAP cube
with hierarchies and measurements using the SOLAP data cube designer. In addition, the
SOLAP cube data viewer allows querying of the data using user-friendly query interfaces
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for data selection. The data selection corresponds to the process of obtaining a subcube
from the SOLAP cube via an MDX query. The definition of a subcube is as follows.

Let Ds ⊆ D be a non-empty set of p dimensions {D1, D2, . . . , Dp} from data cube
C(p ≤ d). The p-tuple {Θ1, Θ2, . . . , Θp} defines a subcube on C according to Ds i f f ∀i ∈
{1, . . . , p}, Θi 6= ∅, and there exists a unique j such that Θi ⊆ Aij, which can be visualized
as shown in Figure 3.

Figure 3. Subcube from SOLAP data selection.

Data selection does not always involve running a simple MDX query; it includes
complex fuzzy queries based on the requirements of the data analytics. In data analytics,
a hierarchical query is also necessary for certain situations. In this case, it is essential to
use structures that support hierarchical querying. SOLAP enables querying and analysis of
multidimensional numeric and alphanumeric data. However, there is still a need to support
flexible queries on uncertain and fuzzy data due to the nature of complex applications such
as meteorological and other spatiotemporal applications. The framework supports data
analytics with the management of fuzzy spatiotemporal queries. FSOLAP can handle a
variety of complex queries, including fuzzy spatiotemporal queries, which are dealt with
effectively and efficiently using our FSOLAP framework.

2.3. FSOLAP Query Management

This section describes the architecture and query types that support fuzzy spatiotem-
poral queries on spatial OLAP-based structures. In the FSOLAP framework, we typically
achieve query management through two main structures, as shown in Figure 4. One
of these is the data layer, where we prepare, format, and query data. The other is the
query module, which contains the frontend presented to the user for querying and query
management components.

2.3.1. Data Layer

The raw data are structured after ETL operations and inserted into the PostgreSQL
database at the data layer. SOLAP cube metadata are constructed by using the data in the
database via the SOLAP cube designer. Then, for each attribute in SOLAP, the appropriate
number of clusters is specified using X-means clustering [37].

X-means clustering is a variation of K-means clustering that refines cluster assignments
by repeatedly attempting subdivision and keeping the best resulting splits, until some
criterion is reached [37]. Algorithm 1, for X-means clustering, consists mainly of two
operations repeated until completion.
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Algorithm 1 Algorithm of X-means Clustering

Input: given sets of data to be clustered: d1, . . . , dn
Output: K ← number of clusters

1: Improve-Params← run conventional K-means to convergence
2: Improve-Structure← find out if and where new centroids should appear
3: if K > Kmax then
4: stop and report best scoring model found during the search
5: else if K <= Kmax then
6: Go to 1
7: end if
8: return K

The objective function of K-means is as follows:

J =
k

∑
j=1

n

∑
i=1
|| xj

i − cj ||2 (5)

where || xj
i − cj ||2 is a chosen distance measure between a data point xj

i and the cluster
centre cj, which is an indicator of the distance of the n data points from their respective
cluster centres.

The determined number of clusters is used as input when fuzzifying each attribute
with the fuzzy c-means (FCM) clustering algorithm [38,39].

Figure 4. FSOLAP query management.

FCM is based on minimization of the following objective function:

Jm =
N

∑
i=1

C

∑
j=1

uij || xi − cj ||2, 1 ≤ m < ∞ (6)

where m is any real number greater than 1, uij is the degree of membership of xi in the
cluster j, xi is the ith value of d-dimensional measured data, cj is the d-dimension center of
the cluster, and || ∗ || is any norm expressing the similarity between any measured data
point and the center [39]. Fuzzy partitioning is carried out through an iterative optimization
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of the objective function shown above, updating the membership uij and the cluster centers
uj by:

uij =

 1

∑C
k=1 uij(

||xi−cj ||
||xi−ck ||

)
2

m−1 )

 (7)

cj =
∑N

i=1 um
ij · xi

∑N
i=1 um

ij
(8)

This iteration will stop when maxij = |u
(k+1)
ij − u(k)

ij | < δ , where δ is a termination
criterion between 0 and 1, whereas k represents the iteration steps. This procedure con-
verges to a local minimum or a saddle point of Jm [39]. The algorithm is composed of the
following steps:

1. Initialize U = [uij] matrix, U(0)

2. At k-step: calculate the center vectors C(k) = [cj] with U(k)

cj =
∑N

i=1 um
ij · xi

∑N
i=1 um

ij
(9)

3. Update U(k), U(k+1)

uij =

 1

∑C
k=1 uij(

||xi−cj ||
||xi−ck ||

)
2

m−1 )

 (10)

4. If || U(k+1) −U(k) ||< δ then STOP, otherwise return to step 2.

After determining the fuzzy clusters and membership functions, fuzzy association
rules are generated on the fuzzified attributes with the FP-growth algorithm [40]. Associa-
tion finds rules about items that appear together in an event such as a purchase transaction.

The problem of association rule mining is defined as follows. Let I = {i1, i2, · · ·, in}
be a set of n binary attributes called items. Let D = {t1, t2, · · ·, tm} be a set of transactions
called the database. Each transaction in D has a unique transaction ID and contains a subset
of the items in I. A rule is defined as an implication of the form X ⇒ Y, where X, Y ⊆ I.
A rule is defined only between a set and a single item, X ⇒ ij for ij ∈ I. Every rule is
composed of two different sets of items, also known as itemsets, X and Y, where:

• X is called the antecedent or left-hand side (LHS);
• Y is called the consequent or right-hand side (RHS).

A heuristic approach is applied to generate a proper number of association rules.
First, a different number of rules is generated by parametrically changing the minsup and
minconf values for the FP-growth algorithm. After running FP-growth, the generated
ruleset is tested with test data for making inferences. Then, the accuracy values of the
inferences produced with the test data are calculated. Finally, the proper number of fuzzy
association rules is obtained when no change in the accuracy is calculated according to the
number of rules. However, this ruleset may contain duplicative rules. We need to reduce
the number of rules with confidence-based rule pruning to prevent duplication. We used a
rule-based pruning algorithm [41] that removes the unnecessarily complex rules, as shown
in Algorithm 2.
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Algorithm 2 Algorithm of Fuzzy Association Rule Pruning Based on Confidence

Input: given the sets of several length rules: S1, . . . , SL
L←max length(RL), l = 1, . . . , M
J is an empty set

Output: RB: pruned fuzzy association rule base with reduced number of rules
1: for i = L, . . . , 2 do
2: for all RεSi do
3: for all R′εSi−1 do
4: if size(R′ ∩ R) = i then
5: J ← J ∪ index of R′

6: end if
7: end for
8: if max(FC(RJ)) > FC(R)) − ε then
9: delete R from the rule base RB

10: end if
11: end for
12: end for
13: return RB

The pruning method compares the most comprehensive rules with shorter ones. A
general rule which contains more minor rules is removed from the rule base when the
maximal confidence of a fuzzy association rule (FC) value of the more minor rules is higher
than the FC value of the broad rule minus ε, the correction factor (initially set to 2 percent).
This rule pruning method offers shorter rules in the rule base. Although the pruned rule
base contains fewer rules, the new classifier has the same classification accuracy as the
unpruned rule base.

The fact that pruned rules have different weights during inference is a factor that
affects accuracy. Results produced by association rules that make inferences for the same
attribute in proportion to their weights should be considered. For this reason, a weighting
process for the rules in the association rule set was performed. This study uses an interest
measure called Rule Power Factor (RPF) [42] to give weight to each fuzzy association rule
and to mine the fuzzy association rule between them. The equation of the RPF is as follows:

RFP(X → Y) = support(X ∪Y) ∗ con f idence(X ∪Y) (11)

where support and confidence are defined as follows:

support(X → Y) =
number of tuples containing both X and Y

total number of tuples
(12)

con f idence(X → Y) =
number of tuples containing both X and Y

number of tuples containing X
(13)

2.3.2. Query Module

The query module (QM) is the component which handles query operations. Basically,
it includes a fuzzy module (FM), a fuzzy knowledge base (FKB), a fuzzy inference system
(FIS), a query parser (QPr), a query processor (QPc), and a query interface (QIn), as shown
in Figure 4. User queries are entered into the system via the query interface. The QIn
component receives user queries and sends these queries to the QPr. After the query is
evaluated, the query results are displayed to the user.

There are two user interfaces for querying meteorological phenomena and meteo-
rological data. Before querying meteorological phenomena, it is necessary to determine
the association rules of related phenomena. For this purpose, the rules regarding the
meteorological phenomenon can be defined with the expert rule definition interface shown
in Figure 5.
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Figure 5. Expert rule definition UI.

In this interface, after the type and fuzzy class of a phenomenon are determined, the
fuzzy association rule is produced by selecting the meteorological attribute and fuzzy class
that are the antecedents of the relevant event. These fuzzy association rules are stored in
the FKB and then used in the meteorological phenomenon inquiry interface, as shown in
Figure 6.

Figure 6. Meteorological phenomena query UI.

In addition, meteorological data can be queried by selecting the attribute and the
spatial and temporal criteria using the interface, as shown in Figure 7. The query results
are represented in a list, and the spatial information is shown on a map.
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Figure 7. Meteorological data query UI.

In the meteorological phenomenon inquiry process, the association rules of the relevant
event are selected from the FKB. In the antecedent part of these rules, fuzzy attributes
and classes are determined and used as query criteria. The user can insert the spatial and
temporal conditions into the requirements of the MDX query. Query results are fetched after
executing the built MDX query on the SOLAP server. Again, query results are displayed in
a list, and spatial information is shown on a map. Figure 8 shows how the selected criteria
are used in the interface when building the MDX query.

Figure 8. Sample MDX of meteorological data query.

The QPr component parses and interprets the user query and determines which
elements will process the query. The QPc module works as a subcomponent responsible for
running the query on the related systems and collecting and displaying the results. In other
words, the QPc component plays a coordinating role in query processing. QPc performs
the communication and interactions between the SOLAP, the FIS, and the fuzzy module. It
receives user queries, analyzes them, sends requests to the SOLAP and/or to the FKB/FM,
retrieves the results, and sends them to the query interface.

The fuzzy module is the component that provides crisp-to-fuzzy or fuzzy-to-crisp
transformations using fuzzification and defuzzification operations. In this module, using
the FCM algorithm, fuzzy clustering is performed to generate membership classes and
determine membership values. FCM needs the number of clusters as a parameter. Therefore,
we used X-means clustering to determine the appropriate number of clusters and to cross-
check the cluster with elbow [43] and silhouette [44] methods. In addition, the definitions
of uncertain types, similarity relations, and membership functions are stored in the fuzzy
data map.

The fuzzy knowledge base (FKB) produces and stores fuzzy association rules. After
fuzzifying the meteorological data on SOLAP, the fuzzy association rules are generated
with the FP-growth algorithm and stored in the FKB. The resulting extensive list of rules is
pruned using a confidence-measure-based pruning method [41] for performance improve-
ment. The rules in the FKB are used in the case of inference as input for the FIS.
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The FIS is utilized to support prediction-type queries. While querying, the fuzzy
association rule required for each criterion is requested from the FKB and sent to the FIS. In
addition, the FM provides the fuzzy membership classes and membership values required
for the values in the query as input to the FIS. This interface works as follows. A′ = F(x0),
where x0 is a crisp value defined in the input universe ∪, A0 is a fuzzy set defined in
the same universe, and F is a fuzzifier operator. The FIS is based on the application of
the generalized modus ponens, an extension of the classical modus ponens proposed by
Zadeh, where:

(If X is A then Y is B) ∩ (X is A′)
(Y is B′) (14)

where X and Y are linguistic variables, A and B are fuzzy sets, and B′ is the output fuzzy
set inferred. To achieve this, the system firstly obtains the degree of matching of each rule
by applying a conjunctive operator, and then infers the output fuzzy sets by means of a
fuzzy implication operator. The FIS produces the same number of output fuzzy sets as the
number of rules collected in the FKB.

The SOLAP server acts as a database server for objects and provides an application
that stores measurement results, including spatiotemporal hierarchies, and supports MDX
query types. We used the GeoMondrian SOLAP server [45] in our system. After the ETL
process, the meteorological data are inserted onto the spatial OLAP server. These data are
stored on the spatial OLAP server as spatial, temporal, and measurement-value hierarchies.
The spatial hierarchy has region, city, and station breakdowns. Spatial hierarchy can be
achieved with a foreign key, as in classical relational databases, or with a minimum bounded
rectangle (MBR) structure supporting the spatial structure. The temporal hierarchy is
organized according to year, month, and day divisions. Furthermore, each measurement
result is available in a hierarchical structure in SOLAP.

We extended the MDX query and modified the GeoMondrian SOLAP server to support
fuzzy queries. In general, the user asks for the fuzzy spatial or non-spatial objects that
meet the conditions of the predefined rules within a specified time interval, when querying.
The rules can be evaluated by examining the topological relations between fuzzy regions
and fuzzy objects. To support this, the fuzzify_measure and fuzzify_geo methods are
implemented in the MDX query processor of the SOLAP server. The fuzzify_measure
method uses the hierarchy for the non-spatial attributes, while the fuzzify_geo method uses
the hierarchy for the spatial attributes. The spatial hierarchy is used while detecting the
fuzzy relationships such as around, inside, covers, etc., of two different spatial data items
that are related to each other, using the fuzzify_geo method. To develop these methods,
the geomondrian.jar Java library [45], which is used by the GeoMondrian SOLAP server
for querying, was edited. We modified the MondrianServerImpl.java, Query.java, and
Parser.java classes in this Java library by adding fuzzify_measure and fuzzify_geo methods.
The MondrianServerImpl.java class contains keywords such as Filter, Member, Where, etc.,
which are used in the query. The fuzzify_measure and fuzzify_geo methods are inserted
as keywords to this class. The Query.java class parses the MDX query with the help of
the Parser.java class, then determines the query parts and parameters. While parsing the
MDX query in the Parser.java class, fuzzy methods are identified using the keywords
defined in the MondrianServerImpl.java class. The fuzzy module is integrated with its
API while implementing these methods. The parameters of the methods are fuzzified in
the fuzzy module via the API. The query results are fetched by processing the fuzzified
parameter, and the fuzzy criterion is entered into the query with the relevant operator.
While the query processor creates an MDX query, it fuzzifies the parameters that are
associated with fuzzy methods and transforms them into a standard MDX query. In the
query process, attributes are fuzzified via the fuzzy module and made suitable for the MDX
query structure. Similarly, geometric features are fuzzified during queries and handled
using the spatial functions provided with PostGIS.
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The algorithm for implementing queries is given in Algorithm 3, and some sample
queries are defined in Section 2.5.

Algorithm 3 The generic query evaluation algorithm

Input: The user query with set of column members CLN and predicates PR
Output: Set of retrieved/predicted objects RSL

Initialization:
FTp ← {} //fuzzy membership terms
FAR← {} //fuzzy association rules
SPt ← {} //spatial terms
NSPt ← {} //non-spatial terms, measurement
Ds ← {} //SOLAP data cube query result holder
SO ← {} //satisfying-objects

1: Retrieve and Parse (query)
2: if query includes prediction predicate(PR) then
3: Send query to FKB with (CLN, PR)
4: Transfer to FIS with (CLN, PR)
5: FAR← Retrieve fuzzy association rules from FKB with (CLN, PR)
6: FTp ← Retrieve fuzzy memberships from FM with (CLN, PR)
7: SPt ← Defuzzify spatial predicates with (CLN)
8: NSPt ← Defuzzify non-spatial predicates with (PR)
9: Ds ← Query spatial temporal data from SOLAP with (SPt, NSPt)

10: SO ←Make prediction with (FAR, FTp, Ds)
11: return SO
12: else
13: if query is spatial then
14: SPt ← Defuzzify spatial predicates with (CLN)
15: NSPt ← Defuzzify non-spatial predicates with (PR)
16: Ds ← Query spatial temporal data from SOLAP with (SPt, NSPt)
17: SO ← Fuzzify satisfying objects with (Ds)
18: return SO
19: else
20: NSPt ← Defuzzify non-spatial predicates with (PR)
21: Ds ← Query spatial temporal data from SOLAP with (NSPt)
22: SO ← Fuzzify satisfying objects with (Ds)
23: return SO
24: end if
25: end if

2.4. Data Sets

In this study, we utilized a spatiotemporal database including real meteorological mea-
surements that have been observed and collected in Turkey over many years. The spatial
extent of Turkey is 36◦ N to 42◦ N in latitude and from 26◦ E to 45◦ E in longitude. The
meteorological data measurement interval of the study was 1970 to 2017. There are seven
geographical regions in Turkey. These geographical regions are separated according to their
climate, location, flora and fauna, human habitat, agricultural diversities, transportation,
topography, etc. The names of the regions are: Mediterranean, Black Sea, Marmara, Aegean,
Central Anatolia, Eastern Anatolian, and Southeastern Anatolia. There are meteorological
measurement data in our meteorological database from 1161 meteorological observation
stations. These stations were selected from different geographical regions. Sample data
from different meteorological stations are given in Table 1.
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Table 1. Meteorological station samples from station database table.

Station No Station Name City Town Latitude (◦) Longitude (◦) Altitude (m)

17038 Trabzon Trabzon Ortahisar 40.99 39.78 39
17040 Rize Rize Merkez 41.04 40.50 3
17050 Edirne Edirne Merkez 41.67 26.55 51
17064 İstanbul İstanbul Kartal 40.91 29.15 18

Tables in the Meteorological Database

In this study, we used database tables containing ten types of meteorological mea-
surements for our various queries. The types of meteorological measurements were: daily
vapor pressure, daily hours of sunshine, daily maximum speed and direction of the wind,
daily average actual pressure, daily average cloudiness, daily average relative humidity,
daily average speed of the wind, daily average temperature, daily total rainfall—manual
and daily total rainfall—omgi. The database table names of the measurement types and the
details of each measurement are described in Table 2.

Table 2. Database tables and descriptions.

Table Name Description Units

station Station code, names, city, and coordinates latitude, longitude, and altitude
vapor-pressure Daily vapor pressure hectopascal (1 hPa = 100 Pa)
sunshine-hour Daily hours of sunshine hours

speed-direction-wind Daily max speed and direction of the wind meter/second and direction
average-pressure Daily average actual pressure hectopascal (1 hPa = 100 Pa)

cloudiness Daily average cloudiness 8 octa
average-humidity Daily average relative humidity percentage

average-speed-wind Daily average speed of the wind meter per second
average-temperature Daily average temperature celsius
total-rainfall-manual Daily total rainfall—manual kg per meter square

total-rainfall-omgi Daily total rainfall—omgi kg per meter square

These tables contain daily measurements from 1 January 1970 to 1 January 2017. Each
table record consists of a station number, measurement type, measurement date, and
measurement value. Sample data for the daily average speed of the wind are given in
Table 3.

Table 3. Sample data for daily average wind speed table.

Station No Station Name Year Month Day The Daily Average Speed of Wind (m/s)

8541 HASSA 1977 1 1 1.3
8541 HASSA 1977 1 2 1.1
8541 HASSA 1977 1 3 3.1
8541 HASSA 1977 1 4 3.4

2.5. Supported Query Types

After illustrating the architecture of the proposed environment for fuzzy spatiotem-
poral querying, we apply the following procedures to handle the various query types
employing the given components.

2.5.1. Fuzzy Non-Spatial Query

This query type asks for fuzzy data not dealing with spatial attributes. The QM, the
FM, and the SOLAP server components are working in the execution step and the query
flow is given in Figure 9:

1. The QM retrieves the user query, parses it, and sends it to the FM.
2. The QM asks the SOLAP server for data using the query. The objects retrieved by the

QM are sent to the FM component to fuzzify the result.
3. Fuzzified query results are displayed in the QM component.
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Figure 9. Fuzzy non-spatial query flow.

Query 1: Find all the cities at risk of flooding.
The query is expressed in MDX, which is an OLAP query language which provides

a specialized syntax for querying and manipulating the multidimensional data stored in
OLAP cubes [46]. While it is possible to translate some of these queries into traditional SQL,
this would frequently require the synthesis of clumsy SQL expressions, even for elementary
MDX expressions. Furthermore, many OLAP vendors have used MDX, and it has become
the standard for OLAP systems. While it is not an open standard, it is embraced by a wide
range of OLAP vendors. Therefore, we extended MDX with fuzzy operators and wrote the
query specified above in MDX form, using the query parameters shown in Figure 10.

Figure 10. Fuzzy non-spatial query.

To query the database, we first need to defuzzfy the fuzzy expression part of the
query. The query processor requests the FM to defuzzify the fuzzy expression in the query.
The fuzzy term is defuzzified according to the fuzzy membership function, as shown in
Figure 11. The heavy class in the query has a triangular-shaped membership function
defined by the triple (7.5, 8.5, 9.5) that overlaps the membership function of the overmuch
class in the range [7.5, 8.5]. In this case, the heavy class includes measurements between
8.0 and 9.5. The query processor of the GeoMondrian rearranges the MDX query with the
crisp values after defuzzification and executes it in the SOLAP server. As a result of the
query on the SOLAP server, the results matching the searched criteria contain crisp data.
We again fuzzify the crisp values in the resulting data with the help of the FM. Here, the
fuzzification subcomponent in the FM includes a triangular or trapezoidal membership
function for each measurement result. It generates fuzzy class and membership values as
output, using the crisp value of input from the relevant membership function. Finally, the
results are displayed to the user, including fuzzy terms. For our example, we show the R1
and R4 records in Table 4 as the query result that meets the criteria.
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Figure 11. Rainfall membership classes.

Suppose we execute this query in a relational database. In that case, we need to
thoroughly scan all records, because it is necessary to calculate the rainfall value and find
the queried value by grouping based on the city within the station measurement records.
The cost of scanning all the data and grouping them is critical; the query execution time
is related to the number of records in the database. In the FSOLAP environment, it is not
necessary to access all records for the objects that satisfy the query criteria, due to the help
of the hierarchical structure. The calculation of the measurements of the cities with which
the stations are connected does not imply such a cost. Therefore, the cost of searching
rainy stations is limited to the number of stations registered in the database, and the query
execution time is less than the relational database query execution time.

Table 4. Sample data for rainfall in database.

ID Date City Crisp Val. Fuzzy Val.

R1 19 August 2016 Ankara 8.6 heavy (0.7)
R2 19 August 2016 Konya 4.9 low (0.7)
R3 19 August 2016 Adana 4.1 very-low (0.6)
R4 19 August 2016 Rize 8.8 heavy (0.8)

2.5.2. Fuzzy Spatial Query

Fuzzy spatial queries allow the user to interrogate fuzzy spatial objects and their
relationships. The QM, the FM, and the SOLAP server components are employed to fetch
query results, as shown in Figure 12. The user asks for the objects that have topological
relations with the entities under inquiry.

Figure 12. Fuzzy spatial query flow.

Query 2: Retrieve the appropriate cities for the installation of a solar power plant
A fuzzy rule definition uses linguistic values, as shown below in the FKB regarding

suitable places for solar power plants.

i f c i t y . sunshine_hour i s high and c i t y . p o s i t i o n i s south
then c i t y . solar_power i s

high

Figure 13 shows how we implemented the MDX query with the parameters entered
from the query interface.
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Figure 13. Fuzzy spatial query.

In this query, regions in the south of Turkey with a very high sunshine duration are
considered. The intersection of areas with positionally high sunshine hour and south
fields are taken into account. We explained the operational structure of the fuzzify_measure
method in the previous query. Here, the fuzzify_geo method is also used. This method is
run on the FM and determines the overlap relation between two geometric objects given as
parameters. There are as many accesses in the query process as the number of stations in
the database. On the other hand, the execution time for the relational database query, given
in the following, can be longer due to the averaging of sunshine hour measurements and
joining these with the stations.

SELECT c . name_1 , r . month , r . day , AVG( sunshine_hour )
FROM m e t _ d a t a _ r a i n f a l l r , t r _ c i t y c ,

m e t e o r o l o g i c a l _ s t a t i o n 3 s , t r _ r e g i o n rg
WHERE s . id=r . s t a t i o n _ i d AND s . c i t y _ i d =c . gid

AND rg . id=c . region_id AND c . region_id in ( 5 , 7 )
GROUP BY c . name_1 , r . month , r . day HAVING AVG( sunshine_hour ) >7

In this query, cities with an average daily sunshine duration of more than seven hours
are regarded as having a high sunshine duration. These cities are in the Mediterranean and
Southeastern Anatolia regions in the south of the country.

2.5.3. Fuzzy Spatiotemporal Query

In this type of query, the user asks for the fuzzy spatial objects that meet the conditions
of the predefined rules within a specified time interval. The rules can be evaluated by an
examination of the topological relations between fuzzy regions and fuzzy objects. The
query flow is shown in Figure 14.
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Figure 14. Fuzzy spatiotemporal query flow.

Query 3: Retrieve locations around Ankara that were at high risk of freezing between 7
January 2012 and 14 January 2012.

The FKB contains the following fuzzy rule definition that uses linguistic values regard-
ing freezing events.

i f c i t y . temperature i s cold and c i t y . c loudiness i s c l e a r
then c i t y . f r e e z e _ r i s k i s

high

The query syntax’s implementation in MDX is represented in Figure 15.

Figure 15. Fuzzy spatiotemporal query.

In addition to the previous query, we can make more specific queries using date
attribute conditions. The handling of the fuzzy predicates in the query operation is the
same as for the fuzzy spatial query. For the distance attribute, the membership classes
in the fuzzy data map are NEAR, CLOSE, and AROUND. We create these fuzzy classes
by calculating the paired distances for the geometric data of the stations and applying
fuzzy clustering of these values. However, the date predicate greatly reduces the amount
of data to be retrieved from the database. As we mentioned earlier, this situation, which
requires a full scan of an index-less relational database, is easily handled using the temporal
hierarchy in the SOLAP environment. The execution time of the query depends on the
number of stations in the database. Relational database systems must be fully searched for
temperature and cloudiness between the given dates. In this case, the query execution time
is proportional to the number of records and the number of stations in the database.
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2.5.4. Fuzzy Spatiotemporal Predictive Query

This type of query asks for fuzzy spatial relations and a specified time with inference.
The QM, the FM, the FIS, the FKB, and the SOLAP server components are employed to
fetch query results, and the query flow is shown in Figure 16. The QM retrieves the user
query, parses it, and sends it to the FM for defuzzification. If the QM detects the inference
operand in the query, it sends the conditions to the FKB for inference. When the FKB
receives the request from the QM, it determines the fuzzy association rules and sends them
to the FIS, and the FIS obtains membership classes/functions from the fuzzy data map
subcomponent. The FIS makes predictions with the given parameters and the collected
knowledge, and then it sends the inference back to the QM.

Figure 16. Fuzzy spatiotemporal predictive query flow.

Query 4: Is there a possibility of a windstorm around Izmir during the last week of December?
The FKB contains the following rules for meteorological events that occur depending

on wind speed.

i f s t a t i o n . windspeed i s high then c i t y . storm_occurrence i s
p o s s i b l e

i f s t a t i o n . windspeed i s high and a c t u a l _ p r e s s u r e i s low
then c i t y . storm_occurrence i s high −

p o s s i b l e

Unlike other query types, the antecedent part of the association rules is not used in the
FKB as a criterion when considering predictive queries. Since the purpose here is to predict
the conditions that are the antecedents of the meteorological phenomenon in question, we
do not include these fields in the query. Other fuzzy attributes are used as criteria in the
MDX query. In addition, the spatial and temporal criteria entered into the interface are used
for querying. When the QM detects the PREDICT expression in the query, it recognizes that
the query requires an inference mechanism. The MDX query constructed with the criteria
entered into the meteorological phenomenon query UI is illustrated in Figure 17.

We previously mentioned that the fuzzy association rules which are expert-defined
are stored in the FKB. The fuzzy association rules defined for the relevant phenomenon are
chosen in the meteorological phenomenon inquiry. The antecedent of each rule is used to
look for the fuzzy attribute and membership class found in the consequent part of the fuzzy
association rules. In other words, the rules which include these antecedents in the FKB
are selected as a consequence of the rules in the fuzzy association rules, and this process is
demonstrated in Figure 18.
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Figure 17. Fuzzy spatiotemporal predictive query.

Figure 18. Fuzzy spatiotemporal predictive query execution: step 1.

We create inferences for each row fetched from the MDX query by running the rules
selected from the fuzzy association rule set in the FIS, as shown in Figure 19. The minimum
value is calculated by multiplying the results by the weight value of each association
rule. The same fuzzy class result is determined by taking the maximum value among the
minimum values. If the result value meets the expected criteria, the relevant MDX query
result row is marked as satisfied. The results marked as satisfied are shown on the results
list and the map.
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Figure 19. Fuzzy spatiotemporal predictive query execution: step 2.

A sample inference is given in Figure 20. In this example, consider a current situation
where the relative humidity is 48%, the temperature is +25◦, and the cloudiness is 3/8. We
want to predict the sunshine hours using this information. The relative humidity of 48% is
translated into the linguistic variable value of {0.3, 0.7, 0, 0, 0} which can be interpreted as
“less, normal”. Similarly, linguistic translation can be given as “hot, boiling” for temperature
and “partly sunny, partly cloudy” for cloudiness. After all the input variables have been
converted to linguistic variable values, the fuzzy inference step can identify the rules that
apply to the current situation and can compute the values of the output linguistic variable.
As seen in the figure, the five rules of thumb can be translated into a fuzzy rule base using
these linguistic terms to describe the meteorological prediction. The rules are selected
according to the consequent part. There are three proper rules which have a sunshine hours
consequent and can be used for inference. After the rules are executed, the center of gravity
method is used to calculate the final predicted value.

Figure 20. A sample inference.

3. Experimental Results
3.1. Platform

We achieved reasonable performance of the prototype application in the environment
and with the specifications, technology, and tools specified below.
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• Application development environment: Eclipse IDE 2021-03;
• System: Windows 10 x64, Intel i5-7200U CPU, 16 GB RAM;
• Java: 1.8.0-281, Java HotSpot Client 64-bit Server VM 25.281-b09;
• SOLAP: GeoMondrian 1.0 Server;
• DBMS: PostgreSQL 13.3 64-bit;
• FIS: jFuzzyLogic.jar;
• Data Size: approximately 10 GB data consisting of 1161 stations and 15 M records for

each measurements (15 M × 10 measurement types).

3.2. Performance Results

We measured the average CPU usage, memory usage, and execution time by running
each query type in the fuzzy SOLAP-based framework and the PostgreSQL database. Here,
average CPU usage is the average CPU usage rate measured during querying. Similarly,
average memory usage is the average memory usage measured in megabytes (MB) during
querying. The execution time is the average of the measurements obtained over several
query runs.

First, we addressed some of the high-level factors that affect the query performance
with regard to CPU usage, memory usage, and execution time. Data size directly affects
the performance of the query because the query uses one or more tables with millions
of rows or more. Joins are another factor affecting performance; if the query joins two
tables, increasing the row count of the result set substantially, the query is likely to be slow.
Aggregations also affect performance, as combining multiple rows to produce a result
requires more computation than simply retrieving those rows.

In addition to obtaining this information, we also performed the roll-up function
provided by SOLAP for aggregating with the UNION operator in relational database
queries. In this case, aggregating N dimensions requires N such unions in an SQL query.
Another essential issue to consider in terms of query performance is that of cross-tabulations.
While SOLAP supports such operations naturally, SQL requires an even more complicated
combination of unions and GROUP BY clauses for cross-tabulations. An N-dimensional
cross-tabulation requires a 2N-way union of 2N different GROUP BY operators to build the
underlying representation. In most relational databases, this results in 2N scans of the data
and 2N sorts or hashes.

The CPU usage for the queries was measured over several query runs, and the average
CPU usage for all query types was calculated. The results are given in Table 5.

Table 5. Comparision of average CPU usages between FSOLAP and relational database SQL queries.

FSOLAP Query Ave. CPU Usage (%) Relational Database SQL Query Ave. CPU Usage (%)

Query1 29.2 33.7
Query2 30.3 36.6
Query3 30.1 31.3
Query4 30.9 Not Supported

The average CPU usages of the FSOLAP-based query and the relational database
query are compared in the column chart shown in Figure 21.
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Figure 21. Average CPU usages of FSOLAP and relational database SQL queries.

Similar to the computational power requirement, the measurement results for the
average memory usage are given in Table 6.

Table 6. Comparision of average memory usages between FSOLAP and relational database
SQL queries.

FSOLAP Query Ave. Memory Usage (MB) Relational Database SQL Query
Ave. Memory Usage (MB)

Query1 150 278
Query2 228 330
Query3 115 229
Query4 217 Not Supported

The average memory usages of the queries are represented graphically in Figure 22.
According to this chart, relational database queries consume more memory than FSOLAP-
based queries.

A comparison of the execution times of the queries was used as part of the performance
testing, and the results are shown in Table 7.

Table 7. Comparison of average execution times between FSOLAP and relational database
SQL queries.

FSOLAP Query Ave. Execution Time (ms) Relational Database SQL Query
Ave. Execution Time (ms)

Query1 596,480 1,630,362
Query2 257,054 643,642
Query3 18,314 172,303
Query4 183,717 Not Supported
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Figure 22. Average memory usage of FSOLAP and relational database SQL queries.

We have shown the time spent between starting the query and finishing the query
graphically for each query in Figure 23. The graph shows that relational database queries
have a longer execution time.

Figure 23. Execution times of FSOLAP and relational database SQL queries.

The implementation of Query 1 in the relational database requires the having avg
operation as an aggregation for all cities. This requires a great deal of CPU and memory
resource usage. Along with these, it also causes a long query time. Query 2 requires
having avg as an aggregation along with a spatial search. A spatial data search uses index
matches with the join operand in the query. This query requires more CPU and memory
than other queries, but the query time is comparatively less than Query 1 since the query
has a spatial restriction. Query 3, on the other hand, is better in terms of resource usage as
it possesses additional time restrictions compared to Query 2, but it also takes less query
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time. The aggregation process in the queries involves the CPU usage, the union, and the
join operands, affecting the memory usage. According to the query criteria, the amount of
data in the query process determines the query time. When we evaluate the performance
tests in general, we observe that FSOLAP-based query operations require fewer resources
and less time than relational database queries. While we obtain adequate CPU and memory
usage results, especially in queries containing spatial and temporal criteria, we obtain better
results in terms of execution time. In addition, FSOLAP performs well in prediction-type
queries, which are not supported for relational database queries.

Based on our experimental analysis and considering all the parameters mentioned,
FSOLAP-based querying is preferred over relational database querying, as FSOLAP offers
scalability with low resource usage.

4. Discussion

In this paper, we introduced FSOLAP as a new fuzzy SOLAP-based framework to
compound the advantages of fuzzy and SOLAP concepts and explained how it supports
complex fuzzy spatial queries. We tested the efficiency and effectiveness of FSOLAP in
a meteorological application with spatial and temporal hierarchical data, using fuzzy
spatial and fuzzy spatiotemporal query types. Moreover, we showed that the fuzzy logic
approach is an effective approach for complex applications such as spatiotemporal data
with fuzzy spatial queries containing fuzzy terms. In addition, we explained how we
handled fuzzy spatiotemporal predictive queries using the inference capability, which has
not been previously discussed in the literature. We integrated these queries into FSOLAP
with the use of an FIS. It was shown that FSOLAP handles queries effectively and efficiently
using fewer resources compared to a relational database system, based on average CPU
usage, average memory usage, and average execution time for each type of query. While
SOLAP handles hierarchical data naturally, SQL does so with the union operator, which
requires high CPU and memory usage as the test results showed. Similarly, SOLAP handles
the operation performed by SQL using the group by statement with its core functionality. In
extensive performance tests, complex queries structurally containing a group by statement
have been shown to require less CPU and memory usage in FSOLAP compared to SQL
queries. The average CPU and memory usage of queries during execution is proportionally
similar, but the query execution time does not have the same trend. This is because the
criteria for query types are determined by the amount of data the query retrieves and
processes. As the number of restrictions in query types increased, query execution time
decreased inversely.

Related studies on fuzzy SOLAP-based data mining and querying were investigated
with regard to whether they have the following concepts or features: fuzziness, OLAP,
SOLAP, data mining, inference, temporal querying, fuzzy querying, fuzzy spatial querying,
fuzzy predictive querying, high visualization, easy use and performance evaluation. A
system known as a fuzzy storage assignment system (FSAS) that provides fuzziness, OLAP,
data mining, inference, and fuzzy querying based on fuzzy OLAP was proposed in the
study by Lam et al. [15]. Their study was aimed at increasing the availability of decision
support data and converting human knowledge into a system for tackling the storage
location assignment problem. In another study, David et al. [18] researched fuzzy spatial
data warehouses. They proposed a model that supports fuzziness, OLAP, SOLAP, data
mining, inference, fuzzy querying, and fuzzy spatial querying. Their work represented a
part of the Intelligent Geographical Project (IGP), which integrated fuzzy logic with spatial
databases to help in the decision support and OLAP querying processes. Boutkhoum
and Hanine [13] also developed software for complex decision-making problems. The
software implementation was an integrated decision-making prototype based on an OLAP
system and multicriteria analysis (MCA) to generate a hybrid analysis process dealing with
complex multicriteria decision-making situations. Their proposal included fuzziness, OLAP,
data mining, inference, temporal querying, and fuzzy querying. Ladner et al. [17] studied
the use of fuzzy set approaches in spatial data mining to integrate their GIDB geospatial
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system. They presented an approach to discovering association rules for fuzzy spatial data
where they were interested in correlations of spatially related data such as directional or
geometric relationships of soil types. They combined and extended techniques developed
in spatial and fuzzy data mining to deal with the uncertainty found in typical spatial data,
supporting fuzziness, data mining, inference, fuzzy querying, and fuzzy spatial querying.
FSOLAP and some related approaches in the literature are compared according to their
concepts and characteristics in Table 8.

Table 8. Comparision of FSOLAP and existing approaches.

FSAS [15] IGP [18] OLAP MCA [13] GIDB [17] FSOLAP

Fuzziness X X X X X
OLAP X X X X
SOLAP X X X
Data Mining X X X X X
Inference X X X X X
Temporal Querying X X
Fuzzy Querying X X X X X
Fuzzy Spatial Querying X X X
Fuzzy Predictive Querying X
High Visualization X X
Performance Evaluation X
Easy to Use X X

Although the FSOLAP framework brings together the strengths of fuzzy and SOLAP
concepts for spatiotemporal applications and offers effective and efficient querying, it
has difficulty in defining the expert rules in the representative application domain. As
shown in the example queries, the expert-defined rules that the queries refer to must
be defined in the system by domain experts. This situation makes it difficult for naïve
users to use the framework without the help of a domain expert. Moreover, although
FSOLAP provides some visualization, this functionality needs improvement as it is a
spatiotemporal application. Future studies aimed at making the framework easy to use can
be applied in this context. The realization of these studies would also make it possible to use
this framework of analysis and inference in different fields such as agriculture, maritime
transport, and others. For example, in the field of agriculture, a future study may develop
an early warning system that can alert farmers by mapping the risk of frost.

5. Conclusions

This study proposed a framework based on fuzzy SOLAP (FSOLAP) to analyze fuzzy
spatiotemporal data and make predictive analyses of various spatiotemporal events. To
achieve this, fuzzy and SOLAP were harmonized to take advantage of the strengths of these
two concepts. Moreover, an inference capability was added to the framework to support the
predictive type of queries. In summary, some modifications of the SOLAP server and MDX
queries were implemented, fuzzification operations were performed, association rules were
generated, and pruning and weighting rules were applied to assemble the framework. Then,
the performance of the framework was represented by non-spatial, spatial, spatiotemporal,
and predictive fuzzy complex queries. We used a case study of a real database involving
meteorological objects with specific spatial and temporal attributes. This study showed that
the use of fuzzy concepts and SOLAP for spatiotemporal applications was effective and
efficient, which was confirmed by both the implementation of query types and performance
tests. Features provided by FSOLAP were compared with features in related works, and
FSOLAP was shown to have a much broader functionality than the approaches used in
similar studies in the literature. Making the framework easy to use for naïve users and
enabling it to be utilized in other fields are suggested as avenues for future studies.

The main objective of this paper was to describe a generic fuzzy querying approach
to process complex and flexible queries using the FSOLAP framework. We also aimed to
manage uncertainty in spatiotemporal database applications when querying the database.
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A real-life database that involves meteorological objects with certain spatial and temporal
attributes was used as a case study. The proposed mechanism was implemented and
several implementation issues that arose when querying the database were discussed.

This study used meteorological aspects and geographic data as spatiotemporal objects.
Furthermore, the inference system in the fuzzy SOLAP environment integrated the model
with a fuzzy inference system for allowing prediction over spatiotemporal data. As a result,
a fuzzy spatiotemporal predictive query could be executed by using the framework.

Modeling and querying spatiotemporal data requires further research in future studies.
The model and method presented in this study could be adjusted and/or extended to other
fields of application such as agriculture, environment, etc. We implemented some of
the fuzzy methods needed in this study, but the set of fuzzy methods should be further
extended to different areas. This study implemented a generic fuzzy querying approach
to process complex and fuzzy queries using our FSOLAP framework. In this context, the
framework supports non-spatial and fuzzy spatial queries as well as fuzzy spatiotemporal
query types. The processing of fuzzy aggregation queries and the corresponding algorithms
may be studied in future work to explain the involvement of fuzzy spatial hierarchical
relationships among members in the computation of the aggregation of numerical measures.
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27. Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data—SIGMOD 93, Washington, DC, USA, 26–28 May 1993;
pp. 207–216.

28. Schneider, M. A Design of Topological Predicates for Complex Crisp and Fuzzy Regions. In Proceedings of the 20 th International
Conference on Conceptual Modeling, Yokohama, Japan, 27–30 November 2001; pp. 103–116.

29. Tang, X.; Fang, Y.; Kainz, W. Fuzzy Topological Relations Between Fuzzy Spatial Objects. In Fuzzy Systems and Knowledge Discovery
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; pp. 324–333.

30. Zhan, F.B.; Lin, H. Overlay of Two Simple Polygons with Indeterminate Boundaries. Trans. GIS 2003, 7, 67–81. [CrossRef]
31. Winter, S. Topological Relations between Discrete Regions. In Proceedings of the Fourth Symposium on Large Spatial Databases

SSD’95, Portland, ME, USA, 6–9 August 1995; pp. 310–327.
32. Cobb, M.A. Modeling Spatial Relationships within a Fuzzy Framework. J. Am. Soc. Inf. Sci. 1998, 49, 253–266. [CrossRef]
33. Laurent, A. Querying Fuzzy Multidimensional Databases: Unary Operators and their Properties. Int. J. Uncertain. Fuzziness

Knowl.-Based Syst. 2003, 11, 31–45. [CrossRef]
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