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In recent years, modeling and recognizing driver behavior have become crucial to understanding intelligence transport systems,
human-vehicle systems, and intelligent vehicle systems. A wide range of both mathematical identi	cation methods and modeling
methods of driver behavior are presented from the control point of view in this paper based on the driving data, such as the
brake/throttle pedal position and the steering wheel angle, among others. Subsequently, the driver’s characteristics derived from
the driver model are embedded into the advanced driver assistance systems, and the evaluation and veri	cation of vehicle systems
based on the driver model are described.

1. Introduction

Modeling and recognizing human driving behavior have
been of interest to researchers frommany di
erent disciplines
like psychology, physiology, and ergonomics for more than
half a century. Great progress has been made from the
numerous speci	c studies on the various aspects of human
physiology and psychology by capturing biological data.
Drivermodel research has beenmade from the perspective of
vehicle dynamics application [1] and human factors. Output
parameters of driver models are usually steering wheel
angle/torque, acceleration or brake pedal position/pressure,
and the gear shi� position. Driver model can be applied to
(1) vehicle dynamics [1] including vehicle component design,
vehicle dynamics analysis, overall vehicle stability analysis,
and design of onboard controls; (2) intelligent transport
systems (ITS) [2–4] including simulation of tra�c ow based
on the control theorymodels of driver behavior andmodeling
driver’s risk taking behavior (3) driverless vehicle systems
[5, 6]. �is paper aims to present the methods of recognizing
driver’s characteristics or modeling driver’s driving behav-
ior/skill/state from the perspective of driving data in detail,
such as vehicle velocity/acceleration, throttle/brake position,
and lateral acceleration.

It is commonly known that driving a car is a complex
and dynamic task requiring drivers not only tomake accurate
perceptions and cognitions about information pertaining to
the driver’s own driving skill, driver state, vehicle perfor-
mance, and tra�c, but also to process all these information
at a high rate of speed. Hence, Liu and Salvucci [7] have
pointed out that driver models should take into account the
characteristics of both high-level cognitive processing and
low-level operation controlling.

Modeling human driving behavior and recognizing
driver characteristics are necessary to relieve the driver’s
workload and improve the reliability and amenity of active
vehicle safety systems, for example, collision detection and
avoidance systems, and road departure warning systems.
However, these active safety systems were designed based
on an average of driver performance and rarely takes the
individual driver’s characteristics into consideration. �us,
even though average drivers can bene	t from these systems,
individual or special groups of drivers such as novices or
the elderly might not be able to take advantage of them
as effectively. If the characteristics of driver behavior can
be accurately recognized and applied to dynamic vehicle
systems, the vehicle might be personalized and therefore
made intelligent.
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Recognizing driver characteristics is by itself not a simple
task with the other requirements of active vehicle safety and
comfort of vehicle adding to the complexity. Many active
safety systems, such as the automatic braking system (ABS),
lane departure warning system, acceleration slip regulation
(ASR), and various human-friendly vehicle control systems
like adaptive cruise control system, lane-keeping assistant
system, have been invented over the years. Information about
the driver’s driving skill can be used to adapt vehicle control
parameters to facilitate the speci	c driver’s needs in terms
of vehicle performance and active safety [8]. According to
the di
erent objectives set by the various tasks which can
be regarded as these actions performed with the help of
those functions such as steering, speed control, gear shi�ing,
interpreting the road ahead, and navigation, driving skill
can be de	ned in many ways [9, 10]. Di
erent tasks require
di
erent driving skills. To win a race, excellent driving skills
are required. On the other hand, to drive a car from point A
to B, the driver only needs to obey tra�c rules with minimal
skills involved.

Generally speaking, modeling and recognizing the driver
behavior or driving skill/state can be classi	ed into four steps.

(i) Modeling Driver Behavior. �e model structure can be
established and parameters of the driver model can be
identi	ed based on human driving behavior, which might be
classi	ed roughly into three cases: parameter identi	cation,
nonparameter identi	cation, and semiparameter identi	ca-
tion.

(ii) Recognizing the Characteristics of Driver Behavior. A�er
driver model has been determined, the driver behavior or
driver’s driving skill should be characterized. Here, many
driving tasks or situations (such as car following, lane change,
collision avoidance, etc.) are described with numerous math-
ematical methods adopted.

(iii) Evaluating and Verifying Based on the Driver Model.
�e objectives of identi	cation followed by the modeling
of driver behavior are meant to improve the performance
of vehicle dynamics and to design more intelligent driver
systems. �erefore, the e�ciency of the driver model needs
to be evaluated and veri	ed, especially in the 	eld of handling
quality and driver assistance systems.

(iv) Embedding Driver Characteristics into the Advanced
Vehicle Systems. Producing more intelligent vehicle-driver
systems is always the engineer’s ultimate goal during the
design process. Consequently, driver assistance systems that
can timely and accurately detect andpredict the driver’s atten-
tion and seamlessly integrate with the driver’s characteristics
are crucial.

Based on this, the following sections have been arranged
in the order of the aforementioned points.

2. Identification of Driver Model

Human driving behavior is extremely complex and con-
tains the human characteristics of nonlinearity, uncertainty,

randomness, and so forth. Recently, a large number of articles
about modeling driver behavior or recognizing driver model
have been published [11–13] from the control point of view.
Driver modeling is the simpli	cation of the human driver
with logical graphic and equation and so forth and can
represent the basic characteristics of human driver like time
delay and physical characteristics. Generally speaking, the
goal of the driver model is to accurately imitate the driver
while accomplishing some assigned tasks, which include
two basic parts: longitudinal control (e.g., speed) and lateral
control (e.g., steering angle).

�e driver model has uncertainty and nonlinear char-
acteristics, but when it comes to certain driving tasks like
car following, the structures of the driver model can be
determined. According to the certainty and uncertainty of the
driver’s model structure, the identi	cation methods can be
roughly categorized into three aspects from the perspective of
pattern identi	cation: parameter identi	cation, nonparame-
ter identi	cation, and semiparameter identi	cation.

2.1. Parameter Identi�cation. During driving, car-following
behavior is not uncommon. For example, when a driver is
driving a car during rush hour on a highway, the driver may
attempt to adjust the vehicle’s velocity and its distance by a
compromise between the urge to minimize trip duration and
to maximize safety. �erefore, car-following models need to
be developed in order to enhance tra�c safety, and a great
deal of car-following models (i.e., Gazis Herman Rothery
(GHR) model, safety distance or collision avoidance models
(CA), linear (Helly) models, psychophysical or action point
models (AP), and fuzzy logic-based models) are presented
and discussed in detail in [14]. However, the question of how
to recognize the parameters of these driver models from the
perspective of system identi	cation under the condition that
their structures have been established still remains open.

A�er one model structure has been prescribed, that is,
the model can be shown by a function, and the number of
parameters might be 	nite and 	xed, then, the parameter
identi	cation techniques can be used to 	gure out the param-
eters of the model based on the experiment or simulation
data. To address the issue of uncertainty in the driver model
structure, Chen and Ulsoy [15–17] have conducted many
studies in relation to (driver) model uncertainty including
structured uncertainty (e.g., parametric uncertainty) and
unstructured uncertainty (e.g., additive uncertainty due to
unmodeled dynamics). In [16], while considering the uncer-
tainty both within individual driver and across di
erent
drivers, the uncertainty modeling of driver steering control
behavior is addressed, and the driver model is treated as a
black box, wherein the input and output are lateral deviation
from the centerline of the road (�dev) and the steering
wheel angle (�), respectively. Chen and Ulsoy pointed out
that the driver model structure considers the uncertainty
characteristics, but model selection is dependent on the real
driver behavior and the examination of experiment data
[15], thus allowing some unstructured or uncertain aspect of
driver behavior to be replaced by speci	c structuralization
elements [18] as follows.
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(i) Permissibility or Admissibility. It can also be called the
complacency component of driver behavior [15, 19]. One
example is the driver keeping his steering command constant
when the required change in steering angle is small. �is
characteristic is illustrated by Figure 1(a).

(ii) Physical Limitations. Most information collected depends
on the vision, vestibular, tactile, and auditory perceptions
of the driver. However, by reason of human limitations
(Figure 1(b)), the driver might be insensitive to some subtle
changes. For instance, the driver may be unable to perceive
changes in speed when the linear acceleration of the vehicle
is lower than 0.005 g [18].

(iii) Transport Time Delay. �ere is a possibility of response
time being di
erent between individuals; for example, aged
drivers might spend more time to brake or steer the wheel
than younger drivers. �e delayed in obtaining the informa-
tion before starting to action can be replaced by Figure 1(c).

In [13], two new mathematical models (i.e., an optimal
controller model and the “look-ahead model”) of driver
behavior in a single-lane car following situations were
developed and identi	ed using the Fletcher-Powell-Davidon
(FPD) algorithm by Burnham et al. in 1974.

In many studies of parameter identi	cation or driver
behavior modeling, the ARM [19–21], NARMAX [15], and
ARMAX [17] methods are usually selected to establish driver
model structures to determine the parameters of the pre-
scribed driver model by using experiment or simulation data.

In [22], to design an ACC controller suitable for driver
behavior characteristics, three drivers’ longitudinal behav-
ior models including linear regression models, state-space
models using subspace-based identi	cation, and behavioral
models are identi	ed and implemented by using the collected
data with the inputs being the space headway and velocity
and its di
erential, the outputs being throttle angle and brake
pressure.

In [23], to develop a driver model of curve driving,
both the driver’s steering control law (Figure 2(a)) and the
vehicle-driver model (Figure 2(b)) are presented, wherein
three parameters are used for characterizing the driver
behaviors, namely, aim point distance ��, response delay ��,
and steering angle W. With the aim of recognizing the
parameters of driver model, two targets are prescribed: (1)
to decrease the lateral deviation between the actual vehicle
position and the driver’s desired path as much as possible,
and (2) to enable the path realized by the driver-vehicle
model to be as similar as possible to the path realized by a
real driver. With the aforementioned targets in mind, two
simulative scenarios have been designed: the double-lane
change maneuver (designed by the Standard No. ISO/TR
3888: 1975) and the driving reaction to wind gust. From the
paper, we know that the driver model can be identi	ed and
this method can be used to research and evaluate the stability
of the driver-vehicle systems, as well as make a combination
between the vehicle dynamics properties and the individual
driver characteristics. Similar to [23], to describe driver
behaviormore accurately and to simplify drivermodels, Saleh

et al. [24] developed a cybernetic drivermodel of lane keeping
from the control point of view by adopting the visual, haptic,
and kinaesthetic perception and neuromuscular dynamics.
�e inputs of the driver model are near/far angles, steering
angle, and steering force feedback, with the output being
steering wheel torque. Subsequently, the driver model can
be presented by the state-space structure using the following
equation with �� being the input delay:

�̇ (	) = 
� (	) + �� (	 − ��) , � (	0) = �0,
� (	) = �� (	) + �� (	) .

(1)

�e newly developed cybernetic drivermodel of lane keeping
is simpler and can be easily embedded into the driver
assistance system.

However, due to the complexity and uncertainty of
driving situations, structures of driver model and targets of
driver’s choice might vary. �us, with the aim of building
a driver model applicable to a wide range of situations,
further research about driver model, advanced mathematical
methods, and advanced control theory could be done. For
example, more nonlinear mathematical models can be used
for characterizing the nonlinear driving behavior.

2.2. Nonparameter Identi�cation. If parts of the driver model
structures are uncertain and unstructured and cannot be
replaced by the abovementioned elements, then these parts
should be treated as a black box and identi	ed by using
the nonparametric system identi	cation techniques, such as
frequency response analysis (FRS) [25], spectral analysis, and
estimating the disturbance spectrum.

In the case of nonparameter identi	cation, the Fourier
Coe�cientMethod (FCM) [8, 26] has been used to recognize
driver behavior and driving skill.

With the purpose of characterizing and recognizing
a driver’s limit-maneuver handling behavior, the discrete
fourier transform coe�cients (DFTC) of steering wheel angle
are treated as the discriminant features in [8], and theN-point
DFTC of steering wheel angle is given as

�� =
�−1
∑
�=0

���(−�(2	�/�)��), � = 0, 1, 2 . . . , � − 1. (2)

In [25], to recognize the parameters of a multiloop car-
following model structure (Figure 3) that has only one direct
forcing function, the driver transfer function can be identi	ed
by using frequency domain identi	cation (FDI) methods.

�(�) and �(�) are relative velocity and acceleration
pedal position, respectively, and can be collected during

the experiment. �e transfer function �
� of a driver’s car-
following behavior can be identi	ed by the spectral analysis
techniques:

�̂
� (�) = − �̂�� (�)�̂�V (�) . (3)

To 	nd a realistic control theoretic visual driver model of
curve driving, the model structure should make the model
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Figure 1: �e structuralization elements of driver characteristics: (a) the permissibility, (b) the limitations, and (c) the transport time delay
[15, 18].
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Figure 2:�e diagram representing driver-vehicle steering control systems: (a) driver’s steering control law, and (b) the vehicle-driver model
[23].

parameters to be identi	ed and estimated as accurately as
possible. In [26], many models were evaluated and simulated
and, if possible, frequency response function was identi	ed
using two system identi	cation methods, namely, FCM and
ARMAX method.

A car-following model was developed and identi	ed
by Wakita et al. [27, 28] using collected driver’s behavior
signals such as the positions of throttle/brake pedal and
vehicle velocity collected via the driving simulator, as well
as two di
erent identi	cation models and features. One
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Figure 3: �e modi	ed driver model suitable for FDI with only one forcing function �(�) [25].

is the stimulus-response model (physical dynamic model)
assuming that individual driver’s personality can be directly
characterized by using model parameters; the other is the
nonparametric model based on the statistical pattern tech-
niques. Comparing the parametric models with the non-
parametric models, the results show that (1) nonparametric
models are better than the parametric models, (2) driver’s
signals (e.g., gas pedal pressure, brake pedal pressure, and
steering angle) are more e�cient than the environment and
vehicle signals (e.g., velocity, acceleration, and engine speed).
�e nonparametric model shows promising result in [28].

Based on Wakita’s conclusions, a nonparametric model
with a Gaussian mixture model (GMM) was developed and
identi	ed by Miyajima et al. [29], based on the cepstral
features of individual driver by using the spectral analysis
of driving signals like gas and brake pedal pressures. In this
model, the GMM is used to characterize the distributions of
features vectors of cepstral coe�cient of each driver with the
expectation maximization algorithm adopted to estimate the
parameters.

It is well known that driving situations (e.g., tra�c factors
and driver state) are not invariable when driving. For this
reason, the driver’s model structures and parameters cannot
be prescribed. To characterize driving behavior in the case of
steady-state and transient car following, a new nonparameter
identi	cation model combining the conditional evolving
theorywith the probabilisticmodel is developed by Filev et al.
[30].

2.3. Semiparameter Identi�cation. Although parameter and
nonparameter identi	cation methods have their own merits
of identifying di
erent systems as well as having their own
operation range. For instance, the formermethodmight have
less stringent input or output requirements, but it needs to
select a set of candidate driver models which require a known
forcing function; however, the latter method suitable for the
nonparameter model and black-box model only takes into
account the relation between input and output, but ignores
the inner state-variables.

To overcome the disadvantages and inherit the merits of
both of them, a concept called semiparameter identi	cation
is proposed in this part. For example, the nonparameter
and parameter identi	cation method are combined together
[25] to realize the objective that using only one forcing
function to recognize the multiloop model. �is method
can be treated as semiparameter identi	cation for the entire
system identi	cation.

�e ow diagram of driver’s model identi	cation includ-
ing parameter identi	cation, nonparameter identi	cations,
and semiparameter identi	cation can be illustrated by
Figure 4.

As seen from the above mentioned cases, any type of
driver behavior can be modeled and identi	ed using the
parameter or/and nonparameter identi	cation techniques,
and most of them are based on the linear invariable and
o�ine model. In [11], a real-time identi	cation method of
driver’s steering manipulation model has been proposed
and validated by using driving simulator experiments and
the actual driving tests. To exploit the vehicle sensors utter
mostly, the yaw rate, the steering angle, and vehicle’s velocity
are used as collected data, because these sensors have already
been installed in a production vehicle.

From the perspective of lateral driving, to control the
parameters of steering and lane-keeping behavior e
ectively,
as well as to distinguish the variations in driving perfor-
mance, in [12], this paper investigates the abilities of two com-
mon driver models. One model is based on the human driver
visual perception with the input being the deviation angles
between vehicle heading and the directions of experimentally
determined preview two-points; the other is based on the
lane-keeping task with adopted the vehicle lateral deviations
and steering wheel angle as input and output, respectively.
�e preview point model and the lateral o
set model can
be denoted by �lat( , !) and �pre( , !), respectively, where�lat( , !) and �pre( , !) can be described as a second-order
rational functions of  and !:

� ( , !) = � ( , !)

 ( , !) = "1 −1 + "2 −2

1 + #1 −1 + #2 −2 . (4)

With identi	cation and validation of the two models,
Hermannstädter and Yang [12] have made 	nal conclusions
that the output error models is superior to the ARXmodel in
simulation, but this method cannot distinguish the induced
driver behavior distinctly. �e author pointed out that there
might be two reasons resulting in this. On one hand, the
second-order model is too simple to correctly describe the
characteristics of driver behavior; on the other hand, the
uncertainty or unstructured factors (e.g., the signal noise and
the nonlinear elements of driver) might make great inuence
on 	delity and accuracy of the driver model. �erefore,
the advanced mathematical methods, such as the stochastic,
nonlinear, and fuzzy theories, should be taken into account
to develop driver model more accurately.
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3. Identification of Driver Behavior and Skill

Lots of vehicle dynamic systems and vehicle control systems
are designed by engineers, and they generally put their
emphasis and interest on the vehicle itself. Recently, high-
performance vehicle cannot meet the needs of customers
who require more human-friendly vehicle. �us, human
driving skill and characteristics need to be embedded into the
vehicle dynamic systems to improve the vehicle’s drivability,
maneuverability, and fuel economy.

Characterizing driver behavior and skill exactly is crucial
to simulating driver behavior and optimizing driver-vehicle-
environment systems. In order to recognize the charac-
teristics of driver behavior and skill, numerous advanced
approaches had been applied, as well as more advanced
information collecting and processing technology have been
introduced into modeling and recognition of driver behavior
and skill. In [31], the computer-aided tools including the
instrumented vehicles (IVs) and driving simulators (DSs).
have been developed.

Humandriving characteristics are presented byMacadam
[18] from the control perspective in terms of human behavior
activities, such as driver distraction, side-tasking, and driver

impairments.�e author pointed out that humans encompass
the characteristics of nonlinearity, time delay, and limitation.
Some physical limitations are presented in the realm of
human factors by Macadam as followed.

(i) Human Time Delay and �reshold Limitations. Humans
can be treated as a nonlinear systemwith time delay and sense
limitations. Time delay consists of dead time resulting from
the information processing in the central nervous system and
the lag due to the nature of the muscular system, which are
di
erent for individual drivers.

(ii) Visual Characteristics. Vision system could not capture the
velocity and position information accurately due to the jump-
like saccadic response of the eyeball.

(iii) Motion In	uences. Due to the inuence of vestibular,
experience and/or skill level may also play a crucial role in
a human-vehicle system.

(iv) Auditory Information. Auditory informationmay bemore
useful under high workload conditions, and in general it can
be treated as redundant information.

(v) Tactile and Haptic Information. Tactile and haptic infor-
mation (e.g., steering wheel torque, the pedals position) con-
veyed through the steering wheel and throttle or acceleration
pedals, but the 	delity of the information has threshold
limitations.

Based on the assumption that a driver remains in control
most of the time, a method to characterize and evaluate the
speci	ed driving skill was developed on the basis of path
tracking driving skill by Erséus [9] in driving simulator tests.
In these tests, four scenarios are designed as follows.

(i) Curved Cone Track Scenario. According to [32–34], we
know that road width and curve radius have great inuence
on driver’s speeds choice that can be treated as driver
characteristics. �e goal of this scenario was to investigate
driver behavior with a focus on the variation of di
erent
driver’s ability to steer the vehicle, that is, path tracking skill.

(ii) Avoidance Maneuver Scenario. �is scenario was used
to evaluate the relationship between driver skill and many
objective vehicle parameters measured in the moving base
simulator at VTI.

(iii) Driver Response Scenario.�is scenario was designed and
evaluated for the investigation of driver-vehicle characteris-
ticswhen following amovable reference line, that is, line jump
scenario.

(iv) Curving Road Scenario. Curving road scenario was de-
signed in order to evaluate objective parameters of driver’s
driving skill when he or she drives on a normal curving road.

Erséus thought that there are some limitations in [9].
(1) �is research just focused on the path tracking driving
skill of drivers holding a Swedish driving license. (2) All the
results are concluded based on the research about behavior
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characteristics of the group, not the individual driver. (3)�e
scenarios designed are too few to demonstrate that whether
tracking driving skill is the same with other driving skills or
not.�us, it is necessary tomake further research about other
types and characteristics of individual/group driver’s driving
skill in the same scenario, but di
erent scenario parameters.

Angkititrakul et al. [35] developed a stochastic driver-
behavior model that can characterize individual driver better
than universal models in both short-term and long-term
predictions by using the observed driving data based on
Gaussian mixture model (GMM). Nevertheless, there are
some disadvantages with the GMM, mass data should be
collected and processed in-time in order to establish indi-
vidual driver models more accurately. �en, to recognize
individual and general driver’s characteristics, Angkititrakul
et al. [36] presented an improved driver-behavior model
which involved both of them, and the patterns of individual
and general driver styles are modeled by using Dirichlet
process mixture model (DPM) and GMM, respectively. �e
result shows that the integrated model can better represent
both observed and unobserved individual driver’s behaviors.

It is commonly known that driving behavior/skill/styles
are inuenced by numerous factors, such as the driver’s
physiology/psychology, driving environment, and tra�c con-
ditions. �e precise-driver model should take these factors
into consideration, but it is not practical to collect and
process so much data in-time. In addition, driver’s model
structures and parameters are uncertain in most common
conditions. �erefore, a stochastic evolving real-time iden-
ti	cation method was introduced in [30], and a new driver
model was developed under the steady-state and transient
car-following situation. �e results show that this driver
model is able to characterize driver’s dynamic behaviors
e
ectively in the uncertain driving situations.

Lin et al. [37] propose key parameters in a dynamic driver
model to characterize driving skill. �e general overview of
[37] is illustrated in Figure 5. In this approach, the driver
model is dynamic so as to mimic human driver outputs, and
using an extensive set of driver model parameters the driver
skill level is categorized into three levels: lower, typical, and
expert. �is model-based approach depends heavily on the
validity and 	delity of the mathematical driver model.

In [8], Zhang et al. compared the utility of various
pattern-recognition algorithms, including multilayer per-
ception arti	cial neural networks (MLP-ANNs), decision
tree, and support vector machines (SVMs), based on the
coe�cients of the discrete Fourier transform (DFT) of the
sensor information (e.g., steeringwheel angle, yaw, and lateral
acceleration) getting from the driving simulator. �e experi-
ment results show that the DFT coe�cients of the steering
wheel angle not only can be applicable to discriminating
the expert drivers from typical or low-skilled drivers, but
also could be used as the discriminant features. Zhang et al.
addressed this problem in their proposed pattern-recognition
approach [8] for driving skill characterization.�is approach
is based on the theory that there are strong correlations
between the driver’s behavior and vehicle response. In this
approach (Figure 6), the driver-modeling step is skipped
and the relationship between driver’s overt behavior and

the driver’s driving skill is directly build. While both of these
proposed an approach for driving skill characterization in
di
erent driving courses based on the driving simulator, it
is hard to explain which course parameters (e.g., the course
curve radius) could characterize driver’s driving skill best.

In [19], a recognition method of steering behavior (e.g.,
lane keeping, lane changing) was presented and a new
arithmeticwas developed to improve the awareness of driving
safety by using sequential labeling method based on boosting
framework. To develop a discrimination model of lane
change behavior recognition algorithm (boosting algorithm),
four features are focused on: velocity, steeringwheeling angle,
moving variance, and moving standard deviation. One main
result of these experiment data is that the threshold values of
lane keeping and lane change behavior are di
erent depend-
ing on the vehicle’s velocity even if the moving standard
deviation of steering wheel angle is the same value.

In [20], Pilutti and Ulsoy presented an online identi	ca-
tion approach of driver state that is a desirable element of
many proposed active safety systems. In this approach, an
ARX model is allowed to describe the relationship between
vehicle lateral position (�) and steering wheel angular posi-
tion (�) based on driving lane-keeping task. In the model, �
and � are the input and output, respectively, with an ARX
structure as the candidate model structure:


 ( ) � (	) = � ( ) � (	 − $�) , (5)

where �(	) is the driver model steering position output (�),
and �(	 − $�) is the delayed driver model input. �en, in [38,
39], the approach was applicable to collecting data from 12
2-h highway driving runs conducted in a full-vehicle driving
simulator. In particular, in [38], the authors pointed out that
there were 	ve aspects of shortages in this approach: model
structure inadequacy, nonlinear e
ects, poor model 	ts,
trends masked by variations in parameters, and alternative
approach.

Driver behavior encompasses the characteristics of dy-
namic, randomness, and nonlinearity, as well as obeying cer-
tain distribution. �e complex mapping from sensory input
to driver’s action output might be strongly nonlinearity in
nature; hence, the traditional control methods like PID con-
trol are unable to simulate human-driver-vehicle system actu-
ally. To overcome this problem and to improve the validity
and	delity of drivermodel,most of stochastic, nonlinear, and
fuzzy theories (e.g., Hidden Markov Model system (HMMs),
Hierarchical Hidden Markov Model (HHMM), autoregres-
sive HMM (AR-HMM), nonlinear regression models, and
the neural networks and fuzzy systems) have been used to
recognize and predict driver behavior (see [40–45]).

Rich in mathematical structure, HMMs are powerful
parametricmodelswhich have been applied extensively in the
area of stochastic signal processing. To overcome (1) dynamic
and/or (2) stochastic of driver model in nature, Pentland and
Andrew [43], Nechyba and Xu [44] propose a driver model
using HMM, and then the 	delity of the driver model is
veri	ed.

Drivers collect information of the vehicle or environment
such as vehicle position, road pro	le, and pedestrians mainly
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Figure 5: Model-based approach for driver skill characterization
[37].

via visual system during driving. Macadam [18] has shown
that vision ranks the top among the primary sensory (vision,
vestibular and kinesthetic, tactile, and auditory) channels
used in driving environment. With the visual information
as a key consideration, Liu and Salvucci [7] described the
application of Markov Dynamic Models (MDMs) in the 	eld
of modeling and prediction of driver behavior based on the
assumption that driver’s visual scanning behavior can be
treated as another source of driver’s state information.

As stated by aforementioned driver characteristics, it is
obvious that driver-vehicle systems have the same charac-
teristics as humans in nature. In recent years, the vehicles
installed active safety systems are not uncommon in mod-
ern car, but most of them are designed by engineers who
rarely take into account the human factor during the design
process. �us, modeling human-vehicle systems allowing for
clarifying the relation between driver and driver assistance
systems can facilitate the operating mode transitions. Kuge
et al. [45] have proposed a recognition method of driver
behavior by adopting HMMs to characterize and detect driv-
ing maneuvers, and then it was applied to the framework of a
driver’s behavior cognitive model. �e authors put emphasis
on information processing models of human drivers with
using them to detect and recognizemodel-basedHMMs.�is
paper demonstrates that (1) HMMs can be used to recognize
the frame of driver model based on driver’s lane change
behavior; (2) an active vehicle safety system embedded with
driver model can be developed. Although HMMs have some
advantages of both recognizing certain driver behavior and
mapping the relation between driver behavior/state/skill and
vehicle responses (e.g., yaw, yaw rate, vehicle velocity, and
acceleration), some questions still remain open as to its
validity of general application in research.

Sekizawa et al. [21] pointed out that stochastic andnonlin-
ear characteristics of the human driver could be expressed as
much as possible by the abovementioned models, but there
are two shortages in them. (1) �e aforementioned models
are o�en too complicated to recognize model parameters

Environment

VehicleDriver

Driver model

Driver model

parameters

Driver skill level

Figure 6: Pattern-recognition approach.

rapidly and accurately, and (2) this, in return, makes it
impossible to understand the physical behavior; it is o�en
found that a driver appropriately switches between certain
simple primitive skills instead of adopting a complex nonlin-
ear control law. To formally address these shortages, in [21],
modeling and recognition of driver behavior were developed
based on a stochastic switched autoregressive exogenous (SS-
ARX) model (Figure 7). �e SS-ARX model is applied to
characterizing driver’s collision avoidance behavior at the
instance when the preceding vehicle is brought to a sudden
halt and the examinee is looking away from the road.

With the aim to simulate driver’s collision avoidance
behavior, three kinds of driving information, such as range
between cars, range rate, and lateral displacement between
cars, are collected, and the output value is also speci	ed
as steering amount. �is experiment result shows that each
driver’s characteristic is unique; in particular, large variations
are observed between driver behaviors with respect to the
lateral displacement between cars and steering pro	les.

Compared to the HMM or neural network model
(NNM), the SS-ARXmodel has some advantages over both of
them. First, the SS-ARX model can provide the information
with extraction of driving primitives, but the HMM cannot.
Second, when it comes to the discrete modes, the SS-ARX
may show unique advantages over the standardHMM.�ird,
NNM can obtain the parameters of driver characteristics;
however, the signi	cance of them is not clear. �erefore
the SS-ARX model can present the part from the control
perspective with the switched controlled mechanism.

Since the piecewise polynomial (PWP) model or piece-
wise linear (PWL) model [46] includes both continuous
behavior given by polynomials and discrete logical condi-
tions, it can be regarded as a class of hybrid dynamical system
(HDS). Amodeling strategy of humandriving behavior based
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Figure 7: �e SS-ARX model (three modes) [21].

on the controller switching model with focus on driver’s
collision avoidance maneuver was presented by Kim et al.
[47, 48]. �is model was expressed by PWP or PWL model,
and the driving data (acceleration, braking, steering, etc.)
are collected by using a three-dimensional driving simulator
(3D-DS) based on CAVE. In this model, the driver’s collision
avoidance maneuvers are divided into four piecewise modes:
the 	rst period of avoidance, the second period of avoidance,
the 	rst period of recovery, and the second period of recov-
ery. Subsequently, the parameters of every piecewise mode
were identi	ed using the mixed integer linear programming
(MILP) techniques.

In [49], Michon held that driver model tasks should
probably best be further classi	ed into three hierarchies of
skill from the driver’s control perspective.

(1) Strategical (Planning) Level. �is level can be treated
as decision-making level from long-term perspective, such
as the choice of trips goals, route, and driving model. For
instance, taking cosiness and fuel-saving into consideration,
drivers will choose to drive on roads in good tra�c condi-
tions.

(2) Tactical (Maneuvering) Level. In this level, the controlled
action patterns, such as obstacle avoidance and overtaking,
should be considered, and this level only takes up a few
seconds.

(3) Operational (Control) Level. �is level is de	ned from
the point of view of control including steering, braking, and
accelerating control. �e automatic action patterns can be
derived from this level.

Based on the three levels, a hybrid dynamical system
(HDS) [50] with two parts (i.e., decisionmaking andmotion-
control) included was proposed and designed by Kiencke
et al. in 1998. �e HDS can be illustrated by Figure 8, which
consists of (continuous) primitive and (discrete) switching
driving operations [51, 52]. Since the HDS was proposed,
most researches of HDS (see, [47, 53–60]) have been made.
In [51], a driving behavior model was developed based on the
HDS, and a piecewise ARX (PWARX) model was established
using driver’s sensory information (e.g., the range between
vehicles, range rate, and time derivative of the area of the back
of the preceding vehicle) and the output of driver behavior,
such as pedal operation. �e parameters appearing in the
primitive (continuous) and switching (discrete) operations
can precisely be identi	ed by using the PWARX model,
allowing for the developed model to be used to design the
advanced driver assistance systems that can switch between
multimodels [53] in the HDS. However, the PWARX model
cannot distinguish the overlapping modes explicitly, which is
the 	rst step to recognize driver model.

To address the issue mentioned in [51], Okuda et al.
[61] have proposed a probability-weighted ARX (PrWARX)
model, wherein the probabilistic weighting was given a
crucial consideration. �e di
erence between PWARX and
PrWARX is that the deterministic partition in the PWARX
model is replaced by so�max function:

%� = ��� ⋅��
∑��=1 ��� ⋅��

, '� = 0, (6)

where '�, * = 1, 2 . . . , -−1 is used to represent the probabilistic
partition between regions corresponding to each mode. By
introducing the probability-weighted concept, the decision
entropy can be de	ned and applied to describe the vagueness
in the switching operation, as well as being used as a
veri	cation index of the model.

In [62], an approach to recognize driver’s driving manip-
ulation skill is presented based on the HDS model. Di
er-
ent from the previous ones, HDS is treated as a hinging
hyperplane autoregressive exogenous (HHARX) model in
which each continuous submodel deals with its related
manipulation model, and meanwhile, discrete model can
switch between all submodels. �en, the parameters of HDS
were identi	ed by using a mixed-integer linear programming
(MILP)method. Lastly, the identi	cationmodel is embedded
into a microcontroller to design an automatic driving system
[63] with real-time image collection and processing.

Generally speaking, driving can be considered as a
dynamic behavior, and the parameters of driver model might
change with driving conditions and driver’s psychologi-
cal/physiological state. Hsiao [64] thought that the previous
methods, such as ARX, ARMAX, and HMM, are mostly
based on the linear time invariant (LTI) system, which can
only be an approximation of driver behavior for a short
time. �erefore, the LTI system may not recognize the time-
variant parameters precisely. In response to this issue, a
time-varying system identi	cationmethod (i.e., time-varying
ARX) has been developed by Tesheng Hsiao using maximum
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a posteriori estimation, and the model can be described as in
the following equation:

� (�) = −
��∑
�=1

#� (�) � (� − *) +
��∑
�=0

"� (�) � (� − / − $�) + 3 (�) ,
(7)

where �(�) and �(�) are output and input sequences, respec-
tively, 3(�) is the process noise, and #�(�), "�(�) are the system
parameters required to be identi	ed.

HDS can clearly describe driver model or driving task,
and one of its crucial issues is how to recognize the distinct
state of driving operation from driver behavior and to
determine the number of the state. In [51], the hierarchical
clustering method was applicable to estimating the number
of state, and then a stochastic piecewise a�ne (PWA) model
was developed by Okamoto et al. [52].

4. Evaluation and Verification Based on
Driver Model

�is section addresses the evaluation and veri	cation of vehi-
cle handling qualities and advanced driver assistance systems
based on the driver model from the control perspective.

4.1. Handling Qualities Evaluation. �e concept of handling
quality is 	rst explained via the 	eld of aerospace engineering
[65] and is later applied to land vehicle design and evaluation.
Harper [65] discusses the assessment of handling quality
characteristics since handling quality deals with more than
one element. Accordingly, an airplane and its pilot were
represented in order to assess handling quality. In the case
of driving a car, the car and its driver are incorporated into
the system in the same manner. �erefore, when evaluat-
ing the handling quality, the driver should be taken into
consideration. Conventionally, handling quality evaluation
can be classi	ed into objective handling quality evaluation
and subjective handling quality evaluation which is made by
observing the dynamic characteristics of the automobile and
driver, respectively. A subjectivemethod based on the driver’s

comments can be used to evaluate the handling quality
in a relatively precise way, but this method requires many
actual driving tests that include every design parameter. Fur-
thermore, these evaluations might di
er between di
erent
test drivers. Especially while evaluating each driver’s limit-
maneuver handling behavior, this is very dangerous for the
test-takers.

Since the 1990s, researchers began studying driver steer-
ing dynamics models that could replace test drivers. In
[66], a control theoretic model of driver steering dynam-
ics is developed and demonstrated to be able to produce
driver/vehicle steering responses and compares favorably
with those obtained from driver simulations. Using the
theoretical model of driver steering dynamics, engineers who
may not be experts in manual control are enabled to evaluate
handling or maneuverability.

Driving style, behavior, and skill might vary for di
erent
drivers causing evaluation criteria to be diverse and in turn
sharply reduce con	dence of the handling quality indexes.
�erefore, it is imperative to de	ne driver characteristics as
a criterion for handling objective evaluation. Reference [67]
states that a parametric driver model for ISO lane change
simulation was developed using the decreasing parameters
dispersion method by Carlol et al.

Similar to [67], while making a subjective evaluation of
handling quality, a multiloop structure of closed-loop driver-
vehicle systems including a multi-input driver model was
developed by Horiuchi et al. [68]. In this driver model, the
inputs are the lateral position error �� and the yaw angle 4,
with output being the steering angle �. To characterize driver
dynamics accurately, the three essential factors of time lag
�−��/(�1- + 1), predictive action (��- + 1), and proportional
action 6 have been taken into consideration. �e driver
model can be described by the following equation:

� = �� [6� (���-) + 1] − 9[6� (���- + 1) �−��
�1- + 1] . (8)

Subsequently, an analytical approach to subjectively rate
handling quality of actively controlled vehicles is discussed
and applied to the evaluation of the handling quality of four-
wheel steering vehicles. Here, the three principle factors of
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the objective function, that is, the task performance <1, the
driver’s mental workload <2, and his or her physical workload<3, are considered. �e results show that this method not
only can be applicable to the prediction of the subjective
evaluation of handling quality, but is also able to characterize
driver-vehicle systems.

By analyzing the driver’s characteristics and incorporat-
ing them into the closed-loop road-vehicle-driver test system
(Figure 9), a cost function of the handling quality that can
be used to estimate the handling quality analytically from
the vehicle’s dynamics is constructed [69]. �ree crucial
characteristics of driver handling are obtained with the
driver-in-the-loop systembyMiura et al. and are (1) the driver
model’s response to the yaw rate has a strong connection
with the evaluation of handling quality, (2) di
erent road
conditions such as road radius and pro	le, could result in the
drivers having di
erent frequency responses, and (3) there are
no notable di
erences in how each driver operates between
driver and vehicle dynamics even though automobile dynam-
ics are di
erent. Based on the aforementioned characteristics,
a benchmark driver model has been built and is applied
to the handling quality rates in the absence of the driving
experiment.

�is approach uses two driver models (i.e., transfer
function, �1(-), �2(-)) to represent the human control with
the inputs �� and �� and the outputs ��1 and ��2. In Figure 9,�1(-) and �2(-) are the steering responses to the lateral
displacement� and yaw rate >, respectively. Correspondingly,
��, �� are the deviations between the reference value and the
actual value; %(-) is the transfer function of a simple four-
wheel nonlinear passenger automobile model applied as a
vehicle model.

Because drivers can adapt themselves to the handling
characteristics of the vehicle during a drivingmaneuver, their
steering behavior reects the vehicle’s handling characteris-
tics and plays an important role in the evaluation of handling
quality. In [70], an approach to evaluate vehicle-handling
quality based on steering characteristics is presented; wherein
the steering characteristics were identi	ed by a simple driver
model using the relationship between the time histories of
steering behavior and vehicle motion during lane change.
�e study presented a closed-loop driver-vehicle system
(Figure 10), with�(-) and%(-) representing the driver model
and the vehicle model correspondingly. A resulting transfer
function of steering angle to lateral position error during
a lane change is used as the driver model �(-) with the
deviation of lateral displacement Δ� = �0 − � as the input
and the steering angle �ℎ as the output and can be described
as

�(-) = �ℎ 1 + �ℎ-
1 + �ℎ- , (9)

where the driver steering parameters �ℎ, �ℎ, and �ℎ are
steady-state gain, the derivative term of di
erential control,
and the time constant of the 	rst-order lag, respectively.

4.2. Evaluation and Veri�cation of Driver Assistance Systems.
Similar to the evaluation of handling quality, it is necessary
to evaluate and verify the DAS with the human driver in

the closed loop. Reference [71] presents two newly developed
driver models, which are applied to evaluating the impact of
ACC vehicles on tra�c ow and the e
ect of a vehicle stability
control (VSC) systemon possible vehicle roll prevention.One
of driver models is the modi	ed Gipps model which is used
for evaluating the ACC, whereas the othermodel is applied to
the evaluation of active safety systems based on the adaptive
plant inversion concept. In its accompanying paper [72], a
longitudinal human driver model (i.e., the modi	ed Gipps
model) used for performance evaluation of the ACC system
on highway tra�c from the microscopic and macroscopic
tra�c perspective was developed and simulated by Lee and
Peng.

�e majority of DASs can release drivers from some
secondary tasks during driving and improve on safety, com-
fort, and performance. Notwithstanding, the driver might be
confused, annoyed, and distracted, if he or she is sensitive
to the monitoring and the excessive detection or frequent
warning of DASs. For this reason, a driver model used to
evaluate DSAs that can precisely mimic human driving is
required so as to consider mistakes committed by human
drivers. To achieve this, in [73, 74], an errorable driver model
(Figure 11) was developed to evaluate both the collisionwarn-
ing and collision avoidance algorithms. �e errorable driver
model can generate both nominal (error-free) and devious
(with error) behavior like in humans. �ree common driver
mistakes, namely, human perceptual limitations, distractions,
and time delay were considered in establishing this errorable
driver model.

Numerous driver models can be applied to the vehicle
design process and to the evaluation or veri	cation of active
safety systems. Most of them are designed with the average
(general) or atypical driver in mind and thus are unable to
represent individual characteristics. �is is illustrated by the
fact that the DASs assessed by the universal driver model
and its results show that the DASs are suited most for the
common driver, but not the individual. In the case of an
anxious and impulsive driver, the DASs might give warnings
too frequently resulting in the driver getting bored with
the DASs and accordingly decrease his or her situational
awareness, comfort, and safety and ultimately increase the
driver’s workload. Hence, a driver model that can e
ectively
characterize individual driving behavior, skill, and styles
should be further developed and applied to the evaluation
and veri	cation of active safety systems.

5. The Advanced Vehicle System Embedded
with Driver Characteristics

�e ideas previously discussed show that recognizing the
characteristics of driver’s driving behavior/skill/state are vital
to the drivers’ safety, vehicle design, fuel e�ciency, and
vehicle ergonomics. Driving is a complex task which should
be executed with several nonlinear subsystems such as the
human driver, surrounding vehicles, driving environment,
and electronic control systems. It is widely known that a
normal/experienced driver can adapt to di
erent vehicle
systems and/or driving environments in a short period of
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time by adjusting his or her nerve (neuromuscular) units.�e
human driver can develop an optimal route by taking into
account long or short periods and change the throttle/brake
position and steering wheel angle according to the collected
real-time information and instantaneously adjust the vehicle’s
position or velocity and decrease the deviation between
reality and expectation. In other words, a�er perceiving and
processing the driving situation, the driver can select process
control rules suitable for the situation that allow him or her
to manipulate the vehicle’s controls in a manner that satis	es
the driver’s control objectives even in di
erent scenarios.

Most research on how drivers adjust various dynamic
vehicle systems to adapt with their driving environments was
conducted from the standpoint of psychology andphysiology.
To lighten the workload of drivers and in turn reduce the
occurrences of tra�c accidents, the idea of assisting drivers
on the road was proposed for which the various driver assis-
tance systems were subsequently developed. Even though the
DAS can alleviate the driver’s workload, there is still a chance
of it having a negative e
ect on the driver-vehicle systems
due to the disharmony or adverse interactions between the
driver and the assistance systems under certain conditions;
in conventional car systems, most of the DASs are electronic
control systems with invariant design parameters. As it is not
hard to imagine a novice driver bene	tting more from the
early intervention of a power-assisted steering system than an
experienced driver [8], the intelligent driving assistance sys-
tem (IDAS) or the advanced driver assistance system (ADAS)
was developed. In the IDAS or ADAS, driver characteristics
are embedded into both the longitudinal control and lateral
control. In [75], Fancher et al. researched on driver-vehicle
coordination before proposing the human-centered vehicle

system concept which has resulted in many similar theories
and models following soon a�er.

5.1. Longitudinal Control Based on Driver Characteristics.
With the rapid development of vehicle and tra�c technol-
ogy, car following has become the most prominent driving
task, especially while driving on highways or urban roads
during rush hour, with the aim of maintaining a safe and
comfortable car-following state for the purposes ofmitigating
the workload of drivers, reducing the occurrences of tra�c
accidents, and increasing tra�c ow rate. Several DASs have
been developed based on driver characteristics from the
control perspective such as the adaptive cruise control (ACC),
stop and go (S&G), and forward collision warning/avoidance
(FCW/FCA).

Vadeby [76] has studied relative collision safety models
together with driver characteristics for ten years. �e change
in consumer demand is reected in the main design objec-
tives shi�ing from power and performance to safety, comfort,
and intelligence. Accordingly, researchers have focused more
on human characteristics and designed “human-centered”
automation or operations that account for the driver’s
expectations and automation goals. Despite being a sound
theory, it is still di�cult to describe driving behavior to
arrive at a unique optimal multiattribute method for solving
problems including designing a “human-centered” controller
with these multiple attributes in mind. To address the issue,
Goodrich and Boer [77] developed a systematic method that
uses a multiattribute breakdown of human and automation
goals which has been subsequently applied to the design of
human-centered collision and accident avoidance systems
(CAAS).

Similar to [78], the human-centeredDASs includingACC
and FCW were also presented by Fancher et al. [75]. To
be human centered, DASs need to take vehicle dynamics
into account and match them with the driver’s physio-
logical, psychological, and other attributes. Various aspects
of human-centered DASs were also discussed, namely, the
looming e
ect, ruler-based and skill-based behavior, the
utilization of desired dynamics in controlling the driving
process, and braking rules or collision-warning rulers. A�er
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Figure 11: �e diagram of the errorable driver model [73, 74].

which, the collected 	eld-test data and on-road data were
used to evaluate and verify the human-centered DASs. �is
paper makes great progress in explaining when and why a
driver makes a braking action. �e author also points out
that answering the following basic questions about braking
might facilitate the development of human-centered DASs.
(1) When should braking occur or not occur? (2) What is the
control objective when driving? (3) How do drivers do it?

In [78, 80], to develop and verify a new automatic
advanced vehicle system integrated with human driver
characteristics, an instrumented vehicle test bed called the
Laboratory for Intelligent and Safe Automobiles-Q45 (LISA-
Q) was designed, a�er which, a collaborative approach for
developing human-centered DAS (e.g., ACC) was proposed
by McCall et al.

�ough longitudinal control systems (ACC, FCW, etc.)
can be designed with driver characteristics taken into
account, some issues still exist. For example, owing to the
	nite number of techniques and the incompatibility of sub-
systems, excessive, inaccurate, or contradictory information
might be transmitted, causing advanced vehicle systems to
disturb, distract, or even overwhelm the driver. In [81], Zheng
and McDonald raised the question on whether “drivers’
expectations can bematched”.�ey rightly pointed out that at
present, no existing ACC system can deal with the full range
of complex tra�c situations in practice and that humans
should act only as a “monitor” in ACC equipped driver-
vehicle systems. When a driver’s expectations are breached,
for instance, he or she will make interferential actions
between his or her intentions and the ACC’s capability. �e
best DAS system is not the one most capable of following
tra�c but the system that considers both comfort and safety
characteristics the most. In order to improve the compati-
bility between ACC performance and driver’s expectations,
a large number of situations have been tested by changing
variables systematically such as the parameters of the ACC
algorithms, tra�c scenarios, and time-headway settings. �e
results reveal that an appropriate ACC setting capable of
meeting a driver’s expectations can be found and that the
ACC setting most adept in a range of tra�c conditions may
not necessarily be the most user-friendly.

Road conditions such as road pro	le and road fric-
tion coe�cient might have great inuence on the driver’s
characteristics and the driver-vehicle systems. To deal with
the problem of rear-end crashes of moving and parked
vehicles, Nakaoka et al. [82] conducted further research
on forward collision warning systems (FCWs) that took
into account road conditions (dry and wet) and individual
driver characteristics. Time to collision (TTC) is usually used
to evaluate the severity of a forward collision as the host
vehicle approaches another vehicle from the front and can be
calculated by

TTC = �
 − ��
�
 − �� , (10)

where �
 and �� are the positions and �
 and �� are the

velocities of the leading and host vehicles, respectively. �e
formula states that the TTC is related to both the host and
leading vehicles; therefore, using it to characterize individual
drivers may be unreasonable. In [82], the timing of a driver’s
braking reaction time is used as a proxy for hazardous level
instead of the traditional TTC.

Most driver behavior models applied to the automobile
are limited to the single driving task, such as lane keeping and
car following. In [79], in order to integrate individual driver
characteristics into driver assistance, the state transition fea-
ture for individuals are taken into account, more speci	cally,
the 	ve categories involved in longitudinal driving situations
of car following, braking, free following, decelerating, and
stopping. Longitudinal vehicle dynamics driving data such
as acceleration and braking was collected. By classifying the
longitudinal driving situations into 	ve parts and adopting
the boosting sequential labeling method, the framework
for driver-vehicle-environment (Figure 12) can be modeled
allowing for the characterization of the driver state, followed
by the design of advanced and personalized driver assistance
systems.

Reference [83] describes a longitudinal driver model
designed to embed individual driver characteristics into an
advanced driver assistance system that is mainly applied to
simulating throttle and braking operations. In this driver
model, a genericmodel is developed based on the driving data
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Figure 12: State ow diagram of the driver model with longitudinal driver-vehicle dynamics [79].

(e.g., the longitudinal velocity, acceleration, throttle/braking
pedal pressure, and relative distance/velocity) collected under
real tra�c conditions. Time headway (THW) and time to
collision (TTC)were then selected to analyze the longitudinal
driving behavior. Subsequently, the parameters of the driver
model were determined and identi	ed in-time by using
the recursive least-square (RLS) self-learning algorithm with
a forgetting factor. Finally, an advanced automatic control
systems (Figure 13) embedded with driver characteristics was
designed and veri	ed.

5.2. Lateral Control Based on Driver Characteristics. �is
subsection discusses lateral control systems based on driver
characteristics.When the host vehicle is executing a following
or tracking task on the straight way, the longitudinal control
can be treated as the primary action to ensure that the
distance between the host vehicle and the leading vehicle is
safe enough. However, lateral control should be given great
consideration in the following scenarios.

(1) �e First Case Is Curve Driving. Before driving onto a
curved road from a straight path or from one curved path
to another, the driver usually decreases the vehicle’s velocity
before steering the wheel to track the curve road.

(2) �e Second Is Lane Change. For instance, when a driver
wants to overtake on the highway, lateral control is a vital for
guaranteeing the host vehicle’s safety in tra�c ow.

(3) �e �ird Situation Is the Avoidance of Collisions. If the
leading vehicle makes abrupt stop or if a person suddenly
appears in front of a fast moving vehicle, the driver will
most likely initiate some form of action to prevent a collision
from happening, be it quickly steering the vehicle away or
slamming on the brakes.

As seen from the abovementioned cases, steering wheel
control is crucial for keeping the driver safe. In order to
improve road tracking performance and relieve a driver’s
workload, the electric power steering (EPS) embedded
with driver’s characteristics has been designed. In [84, 85],

the steering assistance systems (Figure 14) for driver char-
acteristics are presented with two controllers (guidance and
steering) designed based on the gain scheduled control
theory by Fujiwara and Adachi.

In the steering assistance systems, Δ� depicts driver
characteristics. �e steering wheel angle !� and the vehicle’s
steering torque �� are considered as the characteristics of a
driver’s operation.

Driving an automobile can be considered as a closed-loop
control task executed by the human driver [1]. By modeling
and recognizing driver behavior based on driving data, the
characteristics of human driving behavior/skill/state can be
used for the advanced controller design of vehicle dynamics
systems embedded with the driver’s characteristics [79, 83–
85].However, humandriving behavior encompasses the char-
acteristics of randomness and uncertainty; hence, traditional
feedback control systems based on driver characteristics
may not completely represent the driver-vehicle system. To
accurately simulate the driver-vehicle systems as well as aid
in the development of more advanced driver-vehicle control
systems, other methods of advanced controller design might
be adopted, such as the robust static output feedback control
(SOF) [86],�∞ step tracking control [87], robust�∞ sliding-
mode control (SMC) [88], and the networked predictive
control [89].

When driving from one curve onto another especially
at high speeds, the vehicle might reach its handling limit
and could lead to a rollover accident. With vehicle stability
control as a key consideration, an intelligent personal minder
(IPM) system (Figure 15) has been developed [90]. �is
vehicle control system contains an IPM system that is able to
provide timely and clear advisory information to the driver.
When certain parameter values of the vehicle are close to the
vehicle’s handling limit or the de	ning relative handling limit
margin ℎenv = min{ℎOS, ℎUS, ℎTCS, ℎABS, ℎSSRA}, the IPM will
provide a timely warning to the driver, where ℎOS and ℎUS
are vehicle’s yaw handling limit margin during oversteer and
understeer situation respectively, ℎTCS and ℎABS are the ABS
and tracking handling limitmargins, respectively, andℎSSRA is
the vehicle’s sideslip handling limit margin. According to the
ℎenv, a driver’s adaptive styles in handling the vehicle under
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various driving conditions can be characterized in real-time
with the control parameters adjusted correspondingly to the
di
erent driving styles; notwithstanding, this method should
only be applied to long term rather than short term advisory.
As driving skills can be used as a short term reference for
adjusting the parameters of the DAS or ESC, it needs to be
de	ned.

Similar to [91], for the purpose of improving the elec-
tronic system’s intelligence and exibility thus allowing it
to better recognize the driver’s expectations or intentions,
three modes to characterize the driver’s behavior or styles
(aggressive and cautious behavior) were discussed based on
the driver-in-the-loop system (Figure 16) established by Filev
et al. [91].

(i) Characterizing Unstructured Driver Behavior. From the
long-term perspective, longitudinal vehicle control might be
primarily a
ected by the driver’s behavior or driving styles,
but not the vehicle dynamics response. It is usually con-
ditionally applied to the unconstrained driver by detecting
the brake pedal position or the rate change followed by
making the corresponding adjustments to the variables of
the vehicle; this is positive to the vehicle’s fuel e�ciency
and acceleration performance. Statistical mathematics and
probability theory are usually adopted in the process of
characterizing unstructured driver behavior.

(ii) Characterizing Semistructured Driver Behavior. In this
method, part signals of the electronic control systems can be

used as the feedback information with the driving task being
constrained, for example, car following, double lane change,
and collision avoidance. �e fuzzy control theory might be
used in the course of recognizing driver behavior.

(iii) Characterizing Structured Driver Behavior. In order to
fully utilize the vehicle’s dynamic feedback information from
the control theory point of view, the driving task should
be described in more detail with the driver treated as a
controller in the driver-in-the-loop system. To elaborate, the
demanded safety distance between the host vehicle and the
leading vehicle, the relative velocity of vehicles, and the TTC
for car following might be used as the controller inputs.
Since the driver models are structured under some 	xed
driving conditions, the classical control theory methods can
be applied to themodeling or recognition driver behavior and
skills.

Although numerousmathematicalmethods and concepts
can be used to establish drivermodel to seamlessly coordinate
driver and the electronic control system (ESC, DAS, ACC,
IPM, etc.), further research needs to be made as there are still
some issues le� unaddressed.

(1) A Systemwith LowerOrder andHigher Accuracy. To design
more intelligent and human-friendly vehicle’s dynamic sys-
tems embedded with driver characteristics, driver mod-
el structures with greater accuracy but at the same time
minimalistic and capable of both high-level cognitive pro-
cessing and low-level operative control should be developed.
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(2) Tra�c Factors Should Be Considered. �e various research
studies we have discussed in this paper were only of human-
vehicle interaction/cooperation and did not consider driving
environment.When a driver is driving, the driver, the vehicle,
and tra�c factors can be treated as a closed-loop system, in
which the tra�c factors (e.g., weather condition, pedestrian
behavior, the tra�c light, and road conditions) have great
inuence on a driver’s behavior. �erefore, we recommend
that the relationships of vehicle to vehicle (V2V), vehicle to
infrastructure (V2I), and vehicle to the external environment
(V2E) to also be explored and studied further.

(3) Seamless Coordination between Vehicle and Driver Char-
acteristics. �e intelligence, reliability, and comfort provided
by the seamless coordination between vehicle and driver
characteristics can be improved on by introducing advanced
mathematical methods, control theories, and system iden-
ti	cation methods into the modeling and recognition of
driver behavior and skills. Even though the concepts of
“human-centered” and “driver-aware” vehicle systems have
been proposed, the advanced ESC might impede on the
driver’s expectations and control due to inaccurate system
identi	cation as well as the inuence of unstructured uncer-
tainty models (e.g., additional uncertainty due to unmodeled
dynamics).

6. Conclusions

�e reviewed articles reveal a wide range of mathematical
methods of modeling and recognition of driver charac-
teristics which can be used to improve vehicle’s dynamics
performance, decrease driver’s workload, and develop more
intelligent driver assistance systems. Modeling and recog-
nition of driver behavior/skill/state have great important
signi	cance in many 	elds, such as active safety systems,
intelligence transport systems, and smart car systems. Most
of the researches proposed in this paper have their focus on
driver assistance systems and active safety systems, and their
goals can be classi	ed roughly as follows: (1) to put driver
model in simulators with aim to evaluate and verify driver
assistance systems; (2) to put driver model in simulators
in order to recognize driver’s driving behavior/skill/state in
certain task (e.g., lane change, collision avoidance, and haste
braking); (3) to be concern on about whether the human
driver can 	t to the vehicle systems or not by modeling and
analyzing driver behavior; (4) to characterize driver’s driving
skill/state/styles with driver model.

�is paper shows that numerous driver models have
been developed from di
erent perspectives by using various
identi	cation methods, and the characteristic parameters
of driver’s driving behavior/skill/state are not the same for
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di
erent driving tasks and situations. Some methods may
seem to bemore e�cient than others for certain driving tasks
and situations described in this paper, but these methods
might be not the best for other driving tasks. �erefore,
some issues still exist, for example, which parameters and
driving situations aremore sensitive to driver’s driving behav-
ior/skill/state, that is, how to characterize the human driver
more exactly, easily, and quickly?Hence, further researchmay
be conducted as in the following aspects.

(1) �e driver model which can accurately describe all
the individual driver’s behaviors for di
erent driving
tasks and situations should be developed.

(2) �e advanced mathematical methods which can pre-
cisely and quickly characterize driver behavior and
skill may be introduced and developed.

(3) �e advanced control theory should be seamlessly
coordinated with driver characteristics.

In addition, driver’s psychological and physiological fac-
tors which are rarely discussed in this paper are crucial to
driver models; hence, more and more researchers may show
interests in modeling and recognition of driver behavior in
the future.
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Spain, 2012.

[37] W. C. Lin, Y.-K. Chin, B. S. Repa, M. Lu, R. L. Nisonger, and C.-
G. Liang, “Characterisation of driving skill level using driving
simulator tests,” International Journal of Vehicle Autonomous
Systems, vol. 5, no. 3-4, pp. 219–229, 2007.

[38] T. Pilutti and A. Galip Ulsoy, “Identi	cation of driver state for
lane-keeping tasks,” IEEE Transactions on Systems, Man, and
Cybernetics A, vol. 29, no. 5, pp. 486–502, 1999.

[39] T. Pilutti and A. G. Ulsoy, “Identi	cation of driver state for
lane-keeping tasks: experimental results,” in Proceedings of the
American Control Conference, pp. 3370–3374, June 1997.

[40] K. Abe, H. Miyatake, and K. Oguri, “A study on switching AR-
HMM driving behavior model depending on driver’s states,” in

Proceedings of the 10th International IEEE Conference on Intel-
ligent Transportation Systems (ITSC ’07), pp. 806–811, October
2007.

[41] P. Boyraz, M. Acar, and D. Kerr, “Signal modelling and Hidden
Markov models for driving manoeuvre recognition and driver
fault diagnosis in an urban road scenario,” in Proceedings of the
IEEE Intelligent Vehicles Symposium (IV ’07), pp. 987–992, June
2007.

[42] A. Sathyanarayana, P. Boyraz, and J. H. L. Hansen, “Driver
behavior analysis and route recognition by hidden Markov
models,” in Proceedings of the IEEE International Conference
on Vehicular Electronics and Safety (ICVES ’08), pp. 276–281,
September 2008.

[43] A. Pentland and L. Andrew, “Modeling and prediction of
human behavior,” Neural Computation, vol. 11, no. 1, pp. 229–
242, 1999.

[44] M. C. Nechyba and Y. Xu, “On the 	delity of human skill mod-
els,” in Proceedings of the 13th IEEE International Conference on
Robotics and Automation, pp. 2688–2693, April 1996.

[45] N. Kuge, T. Yamamura, O. Shimoyama, and A. Liu, “A driver
behavior recognition method based on a driver model frame-
work,” SAE Technical Paper Series 2000-01-0349, 2000.

[46] J.-H. Kim, S. Okuma, Y.-W. Kim, D.-H. Hwang, M.-H. Kim,
andD.-H. Kim, “Modeling of human driving behavior based on
piecewise linearmodel,” in Proceedings of the IEEE International
Symposium on Industrial Electronics (ISIE ’05), pp. 25–30,
Dubrovnik, Croatia, June 2005.

[47] J.-H. Kim, S. Hayakawa, T. Suzuki et al., “Modeling of driver’s
collision avoidance maneuver based on controller switching
model,” IEEE Transactions on Systems, Man, and Cybernetics B,
vol. 35, no. 6, pp. 1131–1143, 2005.

[48] J.-H. Kim, S. Hayakawa, T. Suzuki et al., “Modeling of driver’s
collision avoidance behavior based on piecewise linear model,”
in Proceedings of the 43rd IEEE Conference on Decision and
Control (CDC ’04), pp. 2310–2315, December 2004.

[49] J. A.Michon, “A critical view of driver behaviormodels: what do
we know,what shouldwe do?” inBehavior andTra�c Safety, pp.
485–520, 1985.

[50] U. Kiencke, R. Majjad, and H. KoKrner, “Design of a hybrid
driver model,” SAE Paper 980017, International Congress and
Exposition, Detroit, Mich, USA, 1998.

[51] T. Akita, T. Suzuki, S. Hayakawa, and S. Inagaki, “Analysis and
synthesis of driving behavior based on mode segmentation,”
in Proceedings of the International Conference on Control,
Automation and Systems (ICCAS ’08), pp. 2884–2889, Seoul,
Republic of Korea, October 2008.

[52] M.Okamoto, S. Otani, Y. Kaitani, andK.Uchida, “Identi	cation
of driver operations with extraction of driving primitives,” in
Proceedings of the 20th IEEE International Conference onControl
Applications (CCA ’11), pp. 338–344, September 2011.

[53] Y. Fujiwara, T. Fujihira, O. S. Ishiwa, and S. Adachi, “Control
design of driver support system using multiple driver models,”
in Proceedings of the SICE Annual Conference, pp. 2773–2778,
Hokkaido Institute of Tecnology, Sapporo, Japan, August 2004.

[54] U. Kiencke, R. Majjad, and S. Kramer, “Modeling and perfor-
mance analysis of a hybrid driver model,” Control Engineering
Practice, vol. 7, no. 8, pp. 985–991, 1999.

[55] B. Song, D. Delorme, and J. VanderWerf, “Cognitive and hybrid
model of human driver,” in Proceedings of the IEEE Intelligent
Vehicles Symposium, pp. 1–6, Dearborn, Mich, USA, October
2000.



Mathematical Problems in Engineering 19

[56] T. Suzuki, S. Yamada, S. Hayakawa, N. Tsuchida, T. Tsuda,
and H. Fujinami, “Modeling of drivers collision avoidance
behavior based on hybrid systemmodel: an approach with data
clustering,” in Proceedings of the International Conference on
Systems, Man and Cybernetics, pp. 3817–3822, October 2005.

[57] T. Akita, S. Inagaki, T. Suzuki, S. Hayakawa, and N. Tsuchida,
“Analysis of vehicle following behavior of human driver based
on hybrid dynamical system model,” in Proceedings of the
16th IEEE International Conference on Control Applications, pp.
1233–1238, Singapore, October 2007.

[58] T. Akita, S. Inagaki, T. Suzuki, S. Hayakawa, and N. Tsuchida,
“Hybrid system modeling of human driver in the vehicle
following task,” in Proceedings of the SICE Annual Conference
(SICE ’07), pp. 1122–1127, Kagawa University, September 2007.

[59] A. Kurt, J. L. Yester, Y. Mochizuki, and Ü. Özgüner, “Hybrid-
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