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Modeling and Reduction of SAR Interferometric
Phase Noise in the Wavelet Domain

Carlos López-Martínez and Xavier Fàbregas

Abstract—This paper addresses the problem of interferometric
phase noise reduction in synthetic aperture radar interferometry.
A new phase noise model in the complex domain is introduced and
validated by using both simulated and real interferograms. This
noise model is also derived in the complex wavelet domain, where
a novel noise reduction algorithm, which is not based on a win-
dowing process and without the necessity of phase unwrapping,
is addressed. The use of the wavelet transform allows to maintain
the spatial resolution in the filtered phase image and prevents to
filter low coherence areas. By using both, simulated as well as real
interferometric phase images, the performance of this algorithm,
in terms of noise reduction, spatial resolution maintenance, and
computational efficiency, is reported and compared with other con-
ventional filtering approaches.

Index Terms—Phase noise modeling, phase noise reduction, SAR
interferometry, wavelet transform.

I. INTRODUCTION

SAR INTERFEROMETRY (InSAR) is an established tech-
nique for the extraction of height information by means of

SAR remote sensing [1], [2]. The height map generation process
is divided in two main steps. First, an interferogram is generated
using a pair of high-resolution complex SAR images of the same
scene, but taken from slightly different locations. The images
can be taken in the same survey (single-pass interferometry) or
in different surveys (repeat-pass interferometry) over the scene.
Afterward, the phase difference between both SAR images is
transformed to height information. InSAR has been success-
fully applied with different sensors: spaceborne, i.e., the Euro-
pean Remote Sensing satellites ERS-1 and ERS-2 and Space-
borne Imaging Radar version C (SIR-C)/Spaceborne Imaging
Radar-C/X-band Synthetic Aperture Radar (X-SAR) missions,
and airborne, i.e., the German E-SAR system. InSAR data have
a wide range of applications as, for instance, digital elevation
model (DEM) generation, surface motion estimation [3], or veg-
etation structure retrieval [4] making use also of polarimetric
SAR information.

The statistical coherence between both SAR images gives in-
formation about SAR images similarity and about the interfer-
ometric phase noise content, in such a way that any effect re-
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ducing coherence will increase phase noise. Coherence reduc-
tion has different sources: due to the SAR system (system noise
or geometric decorrelation for instance) or due to the scatterer
(temporal decorrelation or volume decorrelation). The interfer-
ometric phase is wrapped within the interval , making
necessary an unwrapping process to estimate the absolute phase
[5]. The phase noise hinders this unwrapping process, as it is
one of the causes of the phase residues [6], but it also affects the
quality of the obtained DEM.

Interferometric phase statistics, under the assumption of a
sufficiently large number of scatterers inside the resolution cell,
have been completely characterized [7], [8]. It is also known that
the phase noise, in the real domain, follows an additive noise
model [9]. In this paper, a new complex interferometric phase
noise model, both in the original and in the wavelet domain, is
presented.

Several techniques have been proposed in the literature to re-
duce interferometric phase noise. The first approach, applied to
the complex interferometric signal, is the multilook filter [10],
reducing noise at the expense of spatial resolution. In [9], a
technique applied to the real, as well as to the complex inter-
ferometric phase signals, and based on the local statistics filter
[11], was presented. Furthermore, techniques reducing phase
noise in the Fourier domain have been proposed [12]. The last
two filters reduce noise and maintain, to a certain degree, the
original spatial resolution. All these filters are based on a win-
dowing process of the original signal in order to adapt either,
to the signal or to the noise nonstationarities, or also to both
of them. In [9], the windowing process is more complex, as it
adapts to the signal morphology, but using a reduced set of win-
dows. Consequently, the filter performance depends highly on
the window dimensions. In this paper, and based on the devel-
oped complex phase noise model, a novel noise reduction tech-
nique in the wavelet domain is presented.

In Section II, the interferometric phase noise model in the
complex domain is derived. The validity of the model is demon-
strated using simulated as well as experimental interferograms.
In Section III, a new phase noise filter in the wavelet domain,
based on the developed noise model, is proposed. Section IV
presents the performance of the algorithm by employing simu-
lated and real interferograms and compares it with alternative
algorithms. The conclusions are drawn in Section V.

II. COMPLEX PHASE NOISE MODEL

Interferometric phase is due to the interaction of two complex
SAR images. The statistical behavior of the interferometric
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phase noise depends on this interaction. The interferometric
phase quality is controlled by the amplitude of the correlation
coefficient

(1)

where and are complex SAR images; is the coherence;
and is the corresponding interferometric phase.

The interferometric phase has been completely characterized
in the real domain. Several authors have independently derived,
based on a Gaussian scattering model for distributed scatterers,
the expression of the multilook interferometric phase proba-
bility density function (pdf) [7], [8]

(2)

where ; represents the Gauss hyperge-
ometric function; and is the number of looks. Equation (2)
is symmetric about its mode, which occurs at . This
pdf has been proved to be valid in the interval ,
in which the mean and the standard deviation have problems to
correctly characterize interferometric phase statistics due to its
circular nature [13].

Based on (2), Lee et al. [9] proved that the interferometric
phase noise in the real domain can be characterized by an addi-
tive noise model

(3)

where is the measured phase; is the original phase without
noise; and represents a zero-mean noise depending on and

. The original phase and the noise are assumed to be in-
dependent from each other. To reduce the interferometric phase
noise in the real domain presents the problem of the phase
jumps, i.e., points where the interferometric phase goes from

to . From a statistical point of view, it is necessary to
eliminate these phase jumps, through an unwrapping process, in
order to correctly calculate the statistical parameters. In terms of
noise reduction, as phase jumps represent high-frequency infor-
mation, it is necessary to avoid its filtering in order to correctly
unwrap the interferometric phase. To avoid these problems, the
interferometric phase noise can be reduced in the complex do-
main, where the phase jumps are not present.

Fig. 1. Comparison between N and j�j.

A. Complex Interferometric Phase Noise Model

In the complex domain, the interferometric phase is encoded
as a point in the unitary circle

(4)

In order to derive a noise model for (4), the real part is analyzed.
For the imaginary part, only the final expression is given, as it
can be derived in the same way. Based on (3), can be
written as

(5)
where the original signal has been separated from the noise
contribution . Alternative expressions for and
can be obtained. Substituting and
and making use of (2), the corresponding pdfs for (i.e.,
one-look), can be obtained in (6) and (7) (shown at the bottom
of the page).

The mean values of and , represented by and
respectively, are given by

(8)

(9)

Fig. 1 shows the curve of , where it can be observed that
is monotone increasing with . This property will allow to use

(6)

(7)
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as a new interferometric phase quality parameter, instead
of the coherence . The variances of and are calculated
numerically. Fig. 2 shows the variances of and , referred
as and , respectively, as a function of the coherence. The
noise contributions and can be represented by the addition
of their means plus zero-mean random variables

(10)

(11)

Then, (5) can be rewritten as

(12)

that can be expressed as

(13)

where . Using the same proce-
dure, the expression for the imaginary part is obtained as

(14)

where . The first terms of (13)
and (14) contain the original signal multiplied by the factor

. The second terms, and , as it shall be demonstrated,
can be considered as zero-mean additive noise processes. For
the real part, (13), the variance of has the expression

(15)

where . If the interferometric phase signal is
considered as a random phase, then (15) leads to

(16)

On the contrary, for a constant phase , (16) does not hold.
In this case, as and have similar values, (16) is taken
as an approximation to the actual value. Fig. 2 shows the effect
of this simplification. Using the same procedure, one can prove
that has the same expression as (16) (i.e., ). There-
fore, and can be defined as statistically equal noise terms,
and also independent from the original signal . In this sense,
(13) and (14) define a model for the interferometric phase noise
in the complex domain. Accordingly, noise has a multiplicative
behavior given by as well as an additive one given by the
noise terms and . and the noises and are not in-
dependent, as they depend on . With an increasing of ,
increases, and and decrease.

To prove the validity of the model, mean-standard deviation
scatter plots have been calculated using simulated as well as real
interferometric phases. As at this point, spatial resolution is not
considered, the original signal is calculated applying
a multilook filter with a 7 7 pixel window [10]. The mean
and the standard deviation of are calculated using 7

7 pixel nonoverlapped windows. First, a simulated interfer-
ometric phase ramp of 1024 1024 pixels, with wide fringes
in order to avoid problems calculating the statistics, has been
employed. Fig. 3(a) shows the mean-standard deviation scatter
plot for the real part of the simulated complex phase with a co-

Fig. 2. Complex interferometric phase noise variances.

herence of 0.7. The dashed lines represent the theoretical rela-
tion between mean and standard deviation of , for those
cases where is equal to 0, 0.5, , and 1. The
plots show that the value is almost independent of the orig-
inal signal value , as stated in (16). The curvature at the
extremes is due to the dependence between and , as both
of them depend on . Fig. 3(b) presents the mean-standard
deviation scatter plot for a simulated constant phase of value

rad, for coherence values between 0.5 and 1. The
white dashed line represents the theoretical mean-standard de-
viation relation of . In this case, the simulated data fit
completely the theoretical curve. Fig. 3(c) represents a 1024
1024 pixel image segment of an X-band interferometric phase of
Mount Etna, Sicily, with 3 3-m spatial resolution, acquired by
the E-SAR system of the German DLR. Fig. 3(d) shows that the
real statistics follow the theoretical relation between the mean
and the standard deviation of . Again, for clarity rea-
sons, the theoretical relation between the mean and the standard
deviation of is plotted with dashed lines for the cases
where is equal to 0.5, 0.9, and 1. Although statistics for
the imaginary part are not presented, they also present the same
agreement with the theoretical model.

B. Complex Wavelet Interferometric Phase Noise Model

The interferometric phase noise model in the complex do-
main, introduced in Section II-A, will now be addressed in the
wavelet domain, as within this domain an efficient use of it can
be performed. The continuous wavelet transform of a function

is defined as the integral on [14]

(17)

where the functions are defined as

(18)

with and . The function is called the mother
wavelet, whereas the family are called wavelets. The
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(a) (b)

(c) (d)

Fig. 3. Mean-standard deviation scatter plots for interferometric phase noise. (a) Scatter plot of cos (� ) for a simulated phase ramp j�j = 0:7. (b) Scatter plot
of cos (� ) for a constant phase � = �=4, with coherences from 0.5 to 1. (c) Interferometric phase of Mount Etna. (d) Scatter plots of Mount Etna phase for
some values of cos (� ).

wavelet transform (WT) defines a two-dimensional (2-D)
transformed domain for one-dimensional (1-D) signals. The
parameter (scale), controlling dilatations of , is related
to frequency information [15]. The parameter (time), con-
trolling shifts of , gives information about time. The Mallat
algorithm [14] proves that a fast discrete wavelet transform
(DWT) can be calculated by using a filter bank based on the
iteration of a cell of filters: the pair , for the DWT process,
and the pair , for the inverse DWT, where .
Each time the cell of filters is iterated, a new wavelet scale is
obtained. Each of the discrete wavelet coefficients contains,
then, information about a particular space–frequency area of
the original signal [16]. Fig. 4 presents a scheme of the process

to calculate the DWT and the inverse DWT for 1-D signals.
The bands , also called residue bands, contain low-frequency
information, as their frequency support is for
the scale . On the contrary, the bands , or wavelet bands,
contain high-frequency information, as their frequency support
is for the scale . The 2-D DWT can be
calculated in a separable way applying the scheme given by
Fig. 4 to each of the spatial dimensions [14]. In this case, the
DWT is composed in each scale by a residue band and
by three wavelet bands , , and .

As the WT is a linear operation, the noise model defined by
(13) and (14) is maintained within the wavelet domain. In this
domain, the noise model expressions can be derived assuming
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Fig. 4. Scheme for fast DWT. (a) DWT. (b) Inverse DWT.

ideal filters for the DWT. This assumption holds if the DWT
is calculated using the Shannon wavelet [17], whose filters re-
sponse are given by

otherwise

otherwise
(19)

where and are the frequency responses of the fil-
ters and , respectively, and represents the filter amplitude.
The necessary and sufficient conditions required for any filter
to synthesize orthogonal wavelets are [14]

(20)

with

(21)

Using (20) and (21), is obtained. For the 1-D DWT,
the total response at the residue bands can be viewed as a cas-
cade of a number of filters with response , each one followed
by subsampling by two. This structure is equivalent to a filter
with an amplitude equal to and a frequency support

, followed by a subsampling by . For the sake
of simplicity, the terrain will be considered as a constant slope.
In this case, therefore, the original signal can be assumed to
be a linear ramp (i.e., , where is the
original signal, and is the spatial coordinate) [18], and (13)
can be expressed as

(22)

Applying the DWT, calculated with the Shannon wavelet, the
wavelet transform of (22) into the residue bands , assuming

, has the expression

(23)

where represents the DWT of the noise term at the scale
. As the noise has zero mean, is also a zero-mean

noise. Assuming the local power spectra of to be equal to

Fig. 5. Effect of the number of wavelet scales in the wavelet coefficients
intensity mean. Intensities are normalized by 2 .

, the variance of (assuming again an ideal
DWT) at any wavelet scale has the expression

(24)

Equation (23) states that for each new wavelet scale , the DWT
increases the original signal component by a factor 2 , without
varying the power’s noise, as the variance of has the same
value as the variance of . The noise model expression of the
imaginary part, within the bands , assuming ,
is

(25)

As within the original domain, the noise terms and are
statistically equal, but also independent from the wavelet scale

.
Using a similar procedure, it can be shown that if the orig-

inal signal is located in a frequency band , i.e.,
, the noise model becomes slightly different. In

this case, the expressions for the transformed real and imagi-
nary parts of the noise model are

(26)

(27)

First addend of (23), (25)–(27) contains information about
the original signal . When the signal is contained in a
frequency range of a band , different from or , or there is
no signal in any band (i.e., ), the noise model for the real
and imaginary parts in the band or has the expressions

(28)

(29)

In this case, the noise terms and have a variance equal to
0.5 (see Fig. 2).
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(a) (b)

Fig. 6. DWT of the interferometric phase image Fig. 3(c). From left to right and from top to bottom a , d , d , and d wavelet bands are shown. (a)
Amplitude. (b) Phase. Amplitude is displayed for better contrast.

The DWT performs a frequency division, locating the signal
in the different frequency bands, or . As there exist spa-

tial resolution inside the bands or , spatial location infor-
mation of the signal , in a particular wavelet scale , can be
obtained also. In this noise model, plays an important role.
For equal to zero, it means that there is only noise in a partic-
ular space-frequency area defined by the corresponding wavelet
coefficient [(28) and (29)]. For values greater than zero, indi-
cates that there is useful signal content in a particular position in
the wavelet domain, but also gives information about the signal
quality in that area. Therefore, allows to locate wavelet co-
efficients containing information about the signal .

SAR interferometric phases are 2-D images. In this case, the
noise model is slightly different. It can be proved that the only
change is that the first addend of the noise model equations are
multiplied by a factor of two instead of 2 each time a wavelet
scale is calculated, thus having a larger signal improvement.
The noise model equations, for a complex interferometric phase
image in the wavelet domain, have the expressions

(30)

(31)

where represents the phase information within the complex
wavelet domain. For low-frequency bands (i.e., ), this phase
is a filtered and downsampled version of the original interfero-
metric phase . For high-frequency bands (i.e., , , and

) is, on the contrary, a filtered, downsampled, and also
frequency-inverted version of the original interferometric phase

.

Equations (30) and (31) define a complex wavelet domain.
Inside this domain, the intensity and the phase information of a
wavelet coefficient have a more important role than the real and
imaginary parts. The wavelet coefficient intensity is the most
important parameter, as it gives information about noise content
and since it can be directly related with the parameter . The
mean of the intensity for a wavelet coefficient has the expression

(32)

When the wavelet coefficient contains only noise (i.e., ),
its value is reduced to

(33)

As (Fig. 1) and (Fig. 2),
for large enough, is negligible compared with

. Hence, (32) can be written as , which is mono-
tone increasing with the coherence (Fig. 1). Fig. 5 shows
(32), normalized by a factor in order to compare the effect
of several wavelet scales. For three wavelet scales, the variances
of the noise terms and are negligible compared with the
factor .

The phase of the wavelet coefficients is defined as the
wavelet interferometric phase. Using (30) and (31), the interfer-
ometric wavelet phase can be obtained, for large enough,
as

(34)
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Fig. 7. Noise reduction algorithm flow diagram. Dashed lines represent
iteration.

where represents the argument of a complex quantity. The
resulting phase of the wavelet coefficient contains informa-
tion about the original interferometric phase. For those wavelet
coefficients having equal to zero, its phase contains only
noise

(35)

Fig. 6 presents the amplitude and the phase of the DWT of the
interferometric phase of Mount Etna already shown in Fig. 3(c).
It can be noticed that those wavelet coefficients having high am-
plitude contain information about the original interferometric
phase, whereas those wavelet coefficients with low amplitude
only contain noise in the phase.

The DWT is able to locate the interferometric phase signal in
a space-frequency domain. The noise model developed in this
section [(30) and (31)] shows the intrascale model of wavelet co-
efficients for the real and imaginary parts, i.e., the sort of infor-
mation that each wavelet coefficient gives. In [19], it was shown
that the wavelet coefficients in different scales can be related hi-
erarchically, as they are a function of the same spatial area of
the original image. The topographic signal can be assumed lo-
cally as a narrow-frequency band signal [20] (i.e., linear phase);
then, for all the wavelet coefficients describing the same area,
only those in the frequency scale containing the original signal
will have large intensity values, whereas the coefficients in the
rest of scales, referring to the same area, will contain only noise.
For topographic information, the useful signal is mainly concen-
trated in the frequency range , whereas the range

contains only noise; then, the DWT concentrates
the useful signal in the lower frequency part of the spectra. In
Fig. 6, this effect can be seen; high-frequency fringes are also
concentrated in low-frequency bands. Consequently, the overall

Fig. 8. Wavelet transformation process employed to transform interferometric
complex phase images. Relations between pixels (black boxes) in different
scales are shown.

behavior of the wavelet coefficients can be summarized as fol-
lows.

• The position in the scale dimension gives frequency infor-
mation about the interferometric phase signal.

• The position in the space dimension gives spatial location
about the frequency content.

• The coefficient value gives information in a local space-
frequency area. If the intensity has a high value, i.e., a high
value of , then the phase contains information about to-
pography. These coefficients are defined as signal coeffi-
cients. On the contrary, if the intensity is low, i.e., is
equal to zero, then the phase contains only noise. These
coefficients are defined as noise coefficients.

The interferometric phase noise model in the wavelet domain
[(30) and (31)] have been derived assuming an idealization of
the DWT, employing a Shannon wavelet as a wavelet filter. The
noise model is completely valid when other wavelet filters are
used, due to the fact that all the filters have to fulfill the con-
ditions given by (20) and (21). On the contrary, using the de-
veloped interferometric phase noise model equations, it can be
demonstrated that complex wavelet filters cannot be employed,
as these filters introduce an additional phase term depending
both on the wavelet filter and on the signal .

III. NOISE REDUCTION ALGORITHM

In this section, a new approach to remove interferometric
phase noise in the wavelet complex domain, based on the
noise model introduced in Section II, is presented. As stated,
the DWT multiplies the original signal term by a factor of
two, without altering the noise power, each time a wavelet
scale is performed. This improvement is lost when the IDWT
is applied. The task of the algorithm will be to maintain
this improving factor by avoiding the loss in the inverse
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TABLE I
INTERFEROMETRIC PHASE FILTERS PERFORMANCE COMPARISON. “MSE r.p.” REFERS TO THE mse PERFORMED IN THE REAL PLANE, WHEREAS

“MSE c.p.” REFERS TO THE mse CALCULATED IN THE COMPLEX PLANE

transformation process. As the intensity of the complex wavelet
coefficients can be assumed monotone increasing with , the
algorithm detects the wavelet coefficients containing useful
information and multiplies their real and imaginary parts by
two before inversely transforming a wavelet scale. Therefore,
the phase of the coefficients detected as signal coefficients will
be enhanced in the inverse transformation process compared
with the phase of the noise coefficients.

In a complex number, the phase information is contained
in the relation between real and imaginary parts. Accordingly,
when a complex signal is processed, phase preservation re-
quires real and imaginary parts to be processed in the same
way and by the same amount. As the phase noise is reduced
in the complex plane, no phase unwrapping is required in the
implementation of the algorithm.

The algorithm has been designed to maintain the spatial res-
olution without employing a windowing process, applying, on
the contrary, the DWT to the whole image. In order to perform
a local analysis of the original signal and the noise, the DWT
frequency–space location property is employed [14]. As the al-
gorithm is not based on square windows, there is no loss of res-
olution due to restrictions in the interval of processed frequen-
cies. The main point in order to maintain the spatial resolution
is the way in which the wavelet coefficients are processed. In an
interferometric phase from medium to low coherence, it is dif-
ficult to determine if a phase detail is due to the original signal
or comes from the noise. Then, instead of reducing, or even to
eliminate noise wavelet coefficients, that can lead to a loss of
resolution, the algorithm is based on increasing the importance
of the wavelet signal coefficients. Acting in this way, we avoid
losing possible information about details that may be included
also within noise wavelet coefficients.

A. Algorithm Implementation

In the following, a step-by-step description of the algorithm
used to remove interferometric phase noise in the complex
plane, based on the WT, is provided, whereas a flow diagram
of it is shown in Fig. 7.

Step 1 (DWT): The complex interferometric phase signal (4)
is transformed to the wavelet domain. The wavelet transform is

applied with three wavelet scales, as additive noise effects are
then negligible in the wavelet coefficients intensity. After trans-
forming the complex phase with a two-scale DWT, the signal is
divided in the residue band and the wavelet bands , ,

, , , and . As said before, the bands , ,
and contain only noise, whereas the useful signal is concen-
trated in the rest of the bands, which will be called signal bands
in the following. In order to obtain a constant amplification by a
factor of (with ) for the intensity of those wavelet signal
coefficients within the frequency range , the discrete
wavelet packet transform [21] is employed instead of the DWT.
Therefore, to obtain the third wavelet scale, the wavelet filter
cell is iterated, not only in the band , as the DWT would do,
but also in the bands , , and . Fig. 8 shows a scheme
about how the wavelet transform is applied for a given interfer-
ometric phase signal.

Step 2 (Signal Detection): To detect which wavelet coeffi-
cients in the frequency range contain useful informa-
tion, the parameter , depending on the signal quality, is cal-
culated

(36)

represents the intensity for those wavelet coefficients in the
frequency range , where the useful signal is concen-
trated. is the noise variance in the same spatial area de-
scribed by . This noise variance can be also calculated from
the intensity of wavelet coefficients, but in the frequency range

. In this case, the intensity mean, as only noise is
present, has the value given by (33). The factor multiplying

compensates this value in , according to (32). As coeffi-
cients in the bands , , and have a space relation of
16 to 1 with the wavelet coefficients in the rest of the bands, or
signal bands, (see Fig. 8), can be calculated as one half of
the mean intensity of the 48 coefficients in the noise bands. Due
to the orthogonality properties of the DWT, good estimation of
noise variance is obtained. Now, a 1-to-1 space relation between

and the wavelet signal bands is obtained, making possible
to calculate for each of the 16 signal bands. If a wavelet
coefficient is noise free, equals one. As increases,
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(a) (b)

(c) (d)

Fig. 9. Interferometric phase filtering results with an interferogram representing a cone with a six-pixel fringe period j�j = 0:4. (a) Original noisy image. (b)
WInPF filter. (c) Lee filter. (d) FFT-based filter.

decreases, and decreases too. To detect the wavelet signal
coefficients, a threshold is applied to

Signal coefficient

Noise coefficient (37)

The threshold , which is equal for all the 16 signal bands,
defines up to which coherence level the signal is processed.
Normal values for range from 1 to 5. Lower values can
be used to filter low-coherence areas . Finally, a

mask indicating signal coefficients is generated using (37). In
the mask, those isolated coefficients that are detected as signal
coefficients are removed in order to reduce noise effects in the
mask.

Step 3 (Signal Increase): The real and imaginary parts of
those coefficients detected as signal in the previous step are mul-
tiplied by two. For the noise coefficients the real and imaginary
parts are maintained.

Step 4 (Inverse DWT): The inverse DWT is applied but only
reducing one wavelet scale.
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(a) (b)

Fig. 10. Filtering result with the WInPF filter for an interferogram representing a pyramid with a ten-pixel fringe period j�j = 0:5.

Step 5 (Signal Mask Growing): To obtain a mask locating
signal coefficients for previous scales (higher frequency scales),
a new mask is derived from the one generated in Step 2. Each
four bands in a scale are derived from a single band in the
previous wavelet scale , where a 1–to–4 space relation is
established between wavelet coefficients. First, the masks of the
four bands at the scale are merged through a logical OR op-
eration. Then, the dimensions of the merged mask are doubled
to fit the scale band dimensions. In this case, if a pixel of
the merged mask is classified as signal, the four pixels referring
to the same spatial area, but in the band of the scale , are
also classified as signal; otherwise they are classified as noise.
This sequence of mask growing allows to obtain a mask locating
useful signals in the original domain.

The sequence of Steps 3–5 are repeated each time a wavelet
scale is inversely transformed. As the wavelet transformation
has been applied with three scales, this sequence has to be re-
peated three times. After the third iteration, a complex signal is
obtained in the original domain.

Step 6 (Phase Calculation): From the complex output of the
algorithm, the phase is calculated, which is the estimation of the
original interferometric phase.

IV. EXPERIMENTAL RESULTS

In this section, the capabilities of the algorithm presented pre-
viously (in terms of noise reduction, spatial resolution main-
tenance, and computational efficiency) are presented. First, a
quantitative comparison with alternative interferometric phase
filters addressed in the literature is reported. Then, the perfor-
mance of the new filter is tested, employing real interferograms
taken with spaceborne as well as airborne SAR systems.

A. Quantitative Analysis

The capability of the proposed filter, called wavelet interfero-
metric phase filter (WInPF) in the following, to reduce noise and
to maintain spatial resolution, even on steep topographic slopes,
is evaluated and compared with other filtering approaches. To
perform such a quantitative comparison, simulated 256 256
pixel interferograms, representing a cone and a pyramid with
one-look phase noise with coherences from 0.9 to 0.4, have been
employed.

The WInPF filter, calculating the DWT with a truncated
Shannon filter and , is compared with the complex
multilook filter [10] (using a 5 5-pixel averaging window),
a filter based on the fast Fourier transform (FFT) [12] (with
a 6 6-pixel FFT window and an exponent of 1), and the
filter presented in [9]. In order to compare the noise reduction
properties, two mean-square errors (mse) have been used. The
mse between the filtered and original interferometric phase
without noise is calculated in the real and in the complex
domain. In the first case, this mse mainly accounts for errors in

phase jump areas, providing information about errors due to
an erroneous filtering of such phase jumps. On the other hand,
the mse is calculated in the complex domain, where phase
jumps are not present. Table I shows the numerical comparison
for a 256 256-pixel simulated interferogram, representing a
cone, with a fringe period of six pixels. The WInPF filter has
the lowest error over all the coherence values. It also presents
the highest residues reduction, ranging from 100% in the case
of , to a reduction of 95% for . Referring to
the execution times, they have been obtained with a computer
based on a 600-MHz Intel Celeron processor equipped with
200 MB random access memory. Due to the facts that the
WInPF filter is not based on a pixel-by-pixel processing and
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(a) (b)

(c) (d)

Fig. 11. Filtering result with the WInPF filter of the interferometric phase shown in Fig. 3(c). (a) Filtered interferometric phase. (b) Difference image. (c) Original
phase residues map. (d) Filtered phase residues map.

that the DWT is calculated with a fast algorithm, low execution
times, allowing to process large images, can be obtained.

Fig. 9 demonstrates the filter performance regarding the re-
covering of close fringes at low coherence values. In this case,
the cone interferogram is employed, but with one-look phase
noise of coherence equal to 0.4. From Fig. 9(b), it is possible
to see that the proposed approach clearly reduces phase noise,
recovering close fringes without introducing any kind of arti-
fact within the filtered image. The use of a cone demonstrates
that the new algorithm is able to process any fringe direction in

the same efficient way. Fig. 9(c) and (d) presents respectively
the filtering results using the filter presented in [9] and the FFT
filter.

In order to test the spatial resolution maintenance properties
of the WInPF filter, a 256 256-pixel interferogram repre-
senting a pyramid with phase noise coherence equal to 0.5 and
a ten-pixel fringe period have been employed. The critical point
is to maintain the pyramid edges. Fig. 10 shows the noisy phase
image and the result obtained after applying the WInPF filter.
The pyramid edges are clearly maintained.
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(a) (b)

Fig. 12. Filtering result with the WInPF filter. (a) Original ERS-1 and ERS-2 interferometric phase over Tarragona, Spain. (b) Filtered interferometric phase.

B. Real Interferograms Processing

To demonstrate the filter’s performance, also two different
experimental interferograms, with different morphologies, have
been filtered.

First, an E-SAR X-band interferometric phase of Mount
Etna [already shown in Fig. 3(c)] has been filtered. This phase
image has been filtered by the WInPF filter using, in this
case, a Daubechies wavelet filter [14] of ten coefficients and

. From Fig. 11(a), one can notice that the algorithm
is able to process, in the same efficient way, areas with smooth
or steep slopes at the same time. Fig. 11(b) shows the difference
between the original and the filtered phases, which has a
mean equal to zero and does not contain any image detail,
demonstrating that the proposed filter preserves the topographic
information. As designed, the algorithm does not process very
low coherence areas, avoiding to create false information. Phase
residues reduction is about 50%, but comparing Fig. 11(c)
with Fig. 11(d), it becomes evident that they have almost been
eliminated from those areas with useful signal.

As a second image, an ERS-1 and ERS-2 C-Band interfer-
ogram of Serra de Cardó in Tarragona, Spain has been pro-
cessed. This one-look interferometric phase has also a 1024

1024-pixel dimension, but with an approximate spatial res-
olution of 30 30 m. Fig. 12(a), from the top to the bottom,
shows the Mediterranean Sea with zero coherence, a flat area,
and a mountainous region with a maximum height of 1200 m,
containing severe geometric distortions. Fig. 12(b) presents the
filtered interferometric phase employing again a Daubechies
wavelet filter of ten coefficients and . Residues re-
duction is about 80% in the filtered image, which are concen-
trated on the sea and the areas with strong topography. From
Fig. 12(b), it is noticeable how the proposed WInPF filter is able
to process areas containing complicated topographic structures.

C. Resolution Maintenance

It is difficult to describe numerically resolution maintenance
capabilities. Fig. 13(a) shows a detailed E-SAR X-band inter-
ferometric phase image of Oberpfaffenhofen, Germany, with 3

3-m spatial resolution. This area is completely flat, so image
details are mainly due to man-made targets—in this case, build-
ings. Fig. 13(b) presents the filtered image using the WInPF
filter. Fig. 13(c) depicts the plot of a cut indicated in Fig. 13(b).
From this graphic, it is possible to see how the algorithm is able
to maintain phase jumps introduced by the buildings without
damaging its shape. Not reducing the value of the wavelet co-
efficients allows not to lose any phase information maintaining
high-frequency details.

V. CONCLUSION

In this paper, a noise model for the interferometric phase
noise in the complex domain is introduced and validated using
simulated and experimental interferometric phase images.
Based on this model, also a novel noise model for the complex
wavelet domain is derived. The availability of this model
allows to implement a new filtering algorithm to reduce SAR
interferometric phase noise in the complex wavelet plane. The
filtering algorithm is not based on a windowing or segmenting
process. On the contrary, the phase image is locally analyzed
in the wavelet domain, and therefore, the filter is character-
ized by good spatial resolution maintenance properties and
computational efficiency, as demonstrated. The algorithm
allows also not to process those areas with very low coherence,
avoiding the introduction of artifacts or false information.
The algorithm’s performance in terms of noise reduction and
fringe preservation is analyzed and demonstrated with different
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(a) (b)

(c)

Fig. 13. Spatial resolution maintenance result. (a) Detailed image of the original interferometric phase. (b) Detailed image of the filtered phase. (c) Image cut of
the white line shown in (b). Dashed line represents the original phase, and the solid line represents the filtered version.

interferometric phase images. A comparison with alternative
approaches is reported.
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