
Modeling and Refining Heterogeneous Systems With
SystemC-AMS: Application to WSN

Michel Vasilevski∗, Francois Pecheux∗, Nicolas Beilleau∗, Hassan Aboushady∗, Karsten Einwich§
∗University Paris VI, Pierre & Marie Curie LIP6-SoC Laboratory, 75252 Paris, France, § Fraunhofer IIS/EAS, Dresden, Germany

{michel.vasilevski,francois.pecheux,nicolas.beilleau,hassan.aboushady}@lip6.fr, karsten.einwich@eas.iis.fraunhofer.de

Abstract— The paper presents a system-level approach for the modeling
and simulation of a paradigmatic Wireless Sensor Network composed of
two nodes using SystemC-AMS, an open-source C++ extension to the
OSCI SystemC Standard dedicated to the description of heterogeneous
systems containing digital, analog, RF hardware IPs as well as embedded
software. The paper is composed of three parts. The first part details
the modeled WSN (physical sensor, sigma-delta ADC, ATMEGA128 8-
bit microcontroller running the embedded application, QPSK-based 2.4
GHz RF transceiver), presents the corresponding implementation in
SystemC-AMS, and gives an insight on how multi-frequency simulation
is handled in SystemC-AMS. The second part shows how to introduce
several RF designer specifications (noise figure, IIP3, ...) into models and
how to express them in SystemC-AMS. The third part proves that the
combination of C++ and RF baseband equivalent dramatically reduces
simulation time while keeping excellent accuracy and code readability.
The paper concludes on the possibilities offered by this approach in
terms of validation and optimization of heteregeneous systems through
open-source simulation.

I. INTRODUCTION

Needless to say that one of the great challenges of the next decade
is pervasive/wireless computing. In this context, the ability to design
optimal Wireless Sensor Networks is of paramount importance. To
improve their competitiveness, major players in the microelectronics
industry are faced with two antonymic issues : 1- the need to
dramatically reduce the cost and design time of their products like
SoCs or SIPs for economical reasons, 2- the lack of a unified
design environment that can be used efficiently by system designers
to model and simulate state-of-the-art systems (i.e. systems that
encompass several research activity fields and combine on the same
integrated circuit physics, analog and digital electronics, RF/micro-
wave and software application). For the past 20 years, hardware
description languages have been widely used to model and simulate
systems belonging to various engineering fields, from digital and
analog electronics to mechanics, RF and even battery cell chemistry.
EDA industry proposed recently consistent modeling and simulation
frameworks that allow for the description of systems from different
disciplines and for the description of interactions between these
systems. These frameworks use VHDL-AMS [1] [2] [3] [4] and
Verilog-AMS [5] [4] as effective backbones for modeling. However,
when dealing with WSN containing dozens of nodes, and with a
carrier frequency of 2.4 GHz, these frameworks show rapidly their
limits in terms of interoperability and simulation performance. One
possible solution to the modeling and simulation of ”More than
Moore” multiprocessor heterogeneous systems [6] is SystemC-AMS
[7] [8] [9] [10] [11], an extension to the existing library SystemC
[12].

A first experimental version which will be used as a starting point
for standardization has been released [13]. Figure 1, extracted from
the SystemC-AMS documentation, shows the layered architecture
of SystemC-AMS on top of SystemC. This architecture addresses
different modeling domains, their mapping to various Models of
Computation (MoC) and their sound interaction. This way, different

parts of a complex heterogeneous system can be modeled and
simulated within their optimal methodology and solving algorithm.
For system engineering, this approach allows for a higher modeling
efficiency and a faster simulation by an order of magnitude. The
available SystemC-AMS prototype includes two modeling domains.
The first is the multirate synchronous dataflow domain (SDF),
which can be used to describe analog non-conservative (signal-flow)
behaviors. In SDF, the behavior of an analog intellectual property
is defined as a cluster, i.e. a set of interconnected modules with
communicating input and output ports. The second domain is the
conservative description, which can be used for linear electrical
networks (LN MoC). Because the application fields are restricted to
linear dynamics and nonlinear static (an acceptable assumption for
a wide range of communication applications), a very fast equation
solver can be applied. In our application, the multirate SDF domain is
of particular interest, whereby continuous time behavior of a subpart
of an analog block is embedded into the dataflow module processing
method named sig proc(). This method is always activated if enough
samples are available at the module input ports. For synchronous
dataflow, the number of samples read from the input ports and written
to the output ports are known before the simulation starts. This allows
for an optimal static scheduling during elaboration which leads to
very high simulation performance. In SystemC-AMS, the number of
samples is set by attributes. Thus, if the rate attribute of an input
port in a cluster module is set to 2 (using e.g. inp.set rate(2), two
samples will be read per activation, and an output port rate of 3
means 3 samples are written per activation. SystemC-AMS assigns
every sample a timepoint. Usually a constant time distance between
samples is assumed. This sampling time must be assigned at least
to one port of a dataflow cluster (using e.g. port.set T(1.0,SC MS))
and is automatically propagated to all other ports. Multi rate SDF is
especially very well suited for strong oversampled systems.

LN
Modeling

Formalism

LN
Solver

Other
Modeling

Formalism

Other
Solver

Modeling
SDF

Formalism
DE MoCs

(CP, FSM, etc.)

Synchronisation Layer

SystemC Simulation Kernel

Fig. 1. SystemC-AMS layered architecture.

The figure 2 acts as the reference figure through the whole paper.
It presents the peer to peer block diagram of the WSN and enlights
several points of interest.

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



Delay Delay

Decimator
Filter

Return-to-zero
DAC

2.4 MHz
clock

Decimator
Filter

Return-to-zero
DAC

2.4 MHz
clock

Microcontroller

24 GHz

1 Transmission

24 GHz

1

Channel

AWGN channel

1 : 24 GHz MHz

1 : 24 GHz MHz

Mux

1 : 1.2 MHz

2 : 2.4 MHz

1 : 24 GHz

LNA

1 : 24 GHz

1 : 24 GHz

LNA

1 : 24 GHz

1 : 24 GHz

1 : 24 GHz MHz

1 : 24 GHz

Adder

1

24 GHz

1

24 GHz
LO

1

24 GHz

1

24 GHz
LOMixer I

1

24 GHz

1 : 24 GHz

1 : 24 GHz

1 : 24 GHz

1 : 24 GHz24 GHz

1
Mixer Q

1 : 24 GHz

1 : 24 GHz24 GHz

1
Mixer Q

1 : 24 GHz

1 : 24 GHz MHz

1 : 24 GHz

Adder

1

24 GHz

1

24 GHz
LOMixer I

1

24 GHz

1 : 24 GHz

1 : 24 GHz

Mux

1 : 1.2 MHz

2 : 2.4 MHz

1 : 24 GHz

1 : 24 GHz

20000 : 24 GHz

1 : 1.2 MHz

Sampler I

Integrator I

1 : 24 GHz

1 : 24 GHz

20000 : 24 GHz

1 : 1.2 MHz

Sampler Q

Integrator Q

1

24 GHz

1

24 GHz

Demux

1 : 2.4 MHz

1 : 2.4 MHz

DAC

2 : 2.4 MHz

1 : 1.2 MHz

1 : 1.2 MHz

20000 : 24 GHz

Interpolate I

1 : 1.2 MHz

20000 : 24 GHz

Interpolate Q

SC AMS SDF

Demux

1 : 2.4 MHz

1 : 2.4 MHz

DAC

2 : 2.4 MHz

1 : 1.2 MHz

1 : 1.2 MHz

20000 : 24 GHz

24 GHz

1 Transmission

24 GHz

1

1 : 1.2 MHz

20000 : 24 GHz

SC AMS SDF

1 : 24 GHz

1 : 24 GHz

20000 : 24 GHz

1 : 1.2 MHz

1 : 24 GHz

1 : 24 GHz

20000 : 24 GHz

1 : 1.2 MHz

Channel

AWGN channel

1 : 24 GHz MHz

1 : 24 GHz MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

Sampler/Holder

Downsampler

1 : 133.34 kHz

64 : 8.534 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

10 : 8.534 MHz

Integrator

Quantizer

Integrator

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

Sampler/Holder

Downsampler

1 : 133.34 kHz

64 : 8.534 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

10 : 8.534 MHz

Integrator

Quantizer

Integrator

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

1 : 85.34 MHz

Sensor Sensor

SC AMS GKL

set T(11.72,SC NS) set T(11.72,SC NS)

set T(416.67,SC NS)

Integrator Q

Sampler QSampler I

Integrator IInterpolate I Interpolate Q

Sensor

set T(416.67,SC NS)

Microcontroller

LO

N1 to N2 Transmission channel

N2 to N1 Transmission channel

Mixer I
1

24 GHz

1 : 24 GHz

1 : 24 GHz

1 : 24 GHz

1 : 24 GHz24 GHz

1
Mixer QMixer I

1

24 GHz

1 : 24 GHz

1 : 24 GHz

1 : 24 GHz

1 : 24 GHz24 GHz

1
Mixer Q

SC AMS SDF

ADC

SC
Microcontroller

SC AMS SDF

Receiver

RF

SC AMS SDF

RF

Transmitter

SC AMS SDF

ADC

SC AMS GKL

SC
Microcontroller

SC AMS SDF

SC AMS SDF

Transmitter

RF

RF

Receiver

Sensor

Fig. 2. Peer to peer block diagram of the modeled WSN.



There are three kinds of computation model used in this system,
SystemC event-driven (SC), SystemC-AMS synchronous Dataflow
(SC-AMS-SDF) and SystemC-AMS LN conservative (SC-AMS-
GKL). Several clock domains are also required to simulate the system
appropriately. The figure 2 also shows the representation of the
system as a functional hierarchy of IPs/boxes that can consume
and produce sampled data at specific frequencies and rates. For
instance, the downsampler module of figure 2 has one input and
one output. The input operates at 85.3 MHz and the output at
8.53 MHz. The corresponding rates indicate that 10 samples are
consumed on the input for each sample produced on the output. WSN
communication scheme has been greatly simplified, through the use
of two independent transmission channels in full-duplex.

II. WIRELESS SENSOR NETWORK SYSTEM AND ITS DIRECT

SYSTEMC-AMS IMPLEMENTATION

The modeled WSN system is presented in figure 3. It consists of
two independent nodes N1 and N2 that exchange information through
a noisy 2.4 GHz communication channel. Nodes are totally equivalent
from the hardware and software standpoints.

N1 N2

Binary File

Data memory

Binary File

Data memory

ATMEGA128

RF Transceiver

Sensor

RF Transceiver
ATMEGA128

8 bits microcontroller 8 bits microcontroller

Sensor A/D Conversion

ApplicationApplication

A/D Conversion

Fig. 3. The WSN, consisting of two nodes N1 and N2.

The behavior of the WSN is the following: N1 acquires an analog
measure from its physical sensor and uses an ADC to convert
it into its 8-bits digital equivalent. The N1 ATMEGA128 AVR
microcontroller reads the 8-bits value on its GPIO ports, continuously
executes AVR instructions to serialize the read data, and propagates
the corresponding bitstream on a 1-bit port configured as an output.
The bitstream is emitted by the N1 RF transmitter, and is received
by the N2 RF receiver. In figure 2, it can be seen that the received
bitstream is not propagated to the N2 microcontroller, because no
synchronization protocol has been implemented yet that would allow
the receiving mote to identify the exact beginning of a new frame
transmission. In the same time, the N2 mote performs exactly the
same work and propagates a sensor measure to N1. Simulation results
given below take into account this full duplex behavior.

A. Sensor

The sensor part, described in figure 4, is quite unrealistic but is
sufficient for our application. The current source and load resistor are
modeled using the conservative view and means offered by SystemC-
AMS.

R = xkΩ

u(t) = xsin(2πft)Vi(t) = sin(2πft)mA

Fig. 4. Simple electrical model of a sensor.

Listing 1 shows how the design of figure 4 can actually be coded
in SystemC-AMS. the sca elec port (line 6) is a conservative port

and the sca elec ref represents the reference node (a node which
has always the absolute voltage of 0V). Like their VHDL-AMS
terminal counterparts, the sca elec ports of different elements can
be connected by wires or nodes which obey the KCL (Kirchoff
Current Law). The constructor SC CTOR (line 17) instanciates the
two SystemC-AMS linear devices (current source and resistor) and
connects them according to figure 4. Because the ADC is described
in the SC-AMS-SDF domain, the conservative across value (voltage)
available at the sensor output is converted into its synchronous
dataflow equivalent through the use of the sca v2sdf SystemC-AMS
primitive.

Listing 1. The sensor conservative subpart.
1 #ifndef WAVE_H
2 #define WAVE_H
3

4 SC_MODULE (wave)
5 {
6 sca_elec_port w1;
7 sca_elec_ref gnd;
8

9 sca_isin *i_sin_1;
10 sca_r *i_r_1;
11

12 void init(double a, double f){
13 i_r_1->value = a*1000;
14 i_sin_1->freq = f;
15 }
16

17 SC_CTOR (wave) {
18 i_sin_1=new sca_isin("i_sin_1");
19 i_sin_1->p(w1); // pos
20 i_sin_1->n(gnd); // neg
21 i_sin_1->ampl=0.001; // magnitude in A
22

23 i_r_1=new sca_r("r1");
24 i_r_1->p(w1);
25 i_r_1->n(gnd);
26 }
27 };
28 #endif

B. A/D converter

To pragmatically experiment the capabilities of the SystemC-
AMS library, the ADC that converts the analog measure coming
from the sensor into its digital equivalent has been implemented
as a second order sigma-delta 1-bit modulator with return-to-zero
feedback [14], and a decimator using a third order FIR2 [15], that can
be parameterized to generate a n-bit word, as shown in the theoretical
figure 5 [16].

1 bit n bit

DAC

Decimator
Integrator Integrator

int1 int2

1a 2a

X(s) Y(z)

1
T

Fig. 5. Second order sigma-delta continuous-time modulator and decimator.

The boxes presented in figure 5 are all SystemC-AMS synchronous
dataflow modules and belong to the ADC cluster of figure 2. For
instance, the int1 integrator module contains a sig proc() function



that reads the two module input values, makes a call to the SystemC-
AMS implementation of the Laplace transform, and writes the result
on the output. The ADC feedback loop operates at 85.3 MHz and
contains a delay block required to feed the second differential inputs
of each integrator with the previous value of a sample. A method
closer to the physical implementation to represent the delay would
be to split this delay between the ADC and the DAC and add them to
their output ports using attributes. Setting the cluster sample duration
time is achieved through the call to the set T() function on one port
of the feedback loop (at the output of the delay block in figure 2). The
cluster sample duration is automatically propagated to each connected
module of the cluster during model elaboration. This propagation
uses the rate attribute (the default is 1) in a way that equation (1)
is always fulfilled. If there are more than one sample time attribute
set in a dataflow cluster, SystemC-AMS checks the consistency and
may end with an error.

out sample time

in sample rate
=

in sample time

out sample rate
(1)

The downsampler module is used to shift from a continuous-time
simulation to a discrete-time simulation by keeping only 1 sample
over 10. This module has been added for simulation purposes. The
decimation filter has to consume 64 samples issued from the previous
blocks before it can produce an 8-bit value, at a 133 KHz frequency.

C. ATMEL ATMEGA128 Microcontroller

The ATMEGA128 microcontroller belongs to the ATMEL AVR
devices [17]. It is a RISC microcontroller with 16-bit wide instruc-
tions and a flash program memory of 128 Kbytes. The program
executed by the microcontroller can be written in assembly language
or directly in C. The AVR-GCC C/C++ compiler is freely available
and can generate efficient code for this target device. From the
SystemC viewpoint, the microcontroller is coded as a traditional
Instruction Set Simulator (ISS) that respects the execution times of
each instruction. In particular, the microcontroller SystemC/C++ class
provides a member function that allows to program the flash code
memory with the contents of an Intel HEX file. The AVR binary
code needed to read an 8-bit value from the ADC and to serialize
it takes 18 microcontroller cycles to execute. For that reason, the
microcontroller clock has been set to 2.4 MHz=133 KHz*18. The
bitstream frequency at the microcontroller output is also 2.4 MHz.

D. 2.4 Ghz QPSK RF transceiver

The RF transceiver is responsible for converting the digital bit-
stream into RF information and vice versa. It uses a coherent QPSK
(Quadrature Phase Shift Keying) transmission scheme, as explained
in [18] and shown in figures 6 and 7 with a fc =2.4 GHz carrier
frequency and a fb =2.4 MHz data frequency. AWGN (Additive
White Gaussian Noise) allows to take into account channel noise in
the modeling of the RF communication channel and is necessary
for calculating the fundamental RF characteristic BER (Bit Error
Rate) with respect to SNR (Signal-to-Noise Ratio). With this nearly
ideal modeling, neither the power amplifier (PA) nor the low noise
amplifier (LNA) have been yet inserted in this first release of the
design. Likely, the communication channel is considered as an ideal
gain block with an additive white Gaussian noise (AWGN). For
simulation purpose, a system-C AMS module has been added to the
transmitter to interpolate the bitstream data values as it is depicted
in Figure 2. With a carrier frequency of 2.4 GHz, 10 samples per
period, and data frequency of 2.4 MHz, the output of the upsampler
has been modified to have a rate of 20000.

Encoder Demultiplexer

φ2(t) =
√

2
T

sin(2πfct)

φ1(t) =
√

2
T

cos(2πfct)

antenna

sQ

sI

011010...Binary

Data

−√
Eb,

√
Eb,

√
Eb...

Fig. 6. QPSK RF transmitter.

Binary
Data

011010 . . .

Decision
Device

Multiplexer

1
T

1
T

Decision
Device

threshold = 0

threshold = 0

antenna

φ1(t) =
√

2
T

cos(2πfct)

φ2(t) =
√

2
T

sin(2πfct)

∫ T

0
dt

∫ T

0
dt

Fig. 7. QPSK RF receiver.

E. Simulated platform

The simulated platform contains about 30 files, organized hier-
archically with subdirectories corresponding to subparts. The appli-
cation running on each microcontroller is currently written in AVR
assembly language and converted into a binary file that complies
to the Intel HEX format. During the elaboration of the SystemC-
AMS simulation, the two microcontrollers call their respective init-
FromHEX() function to initialize their flash code RAM. C based
language for embedded application description is compiled with
GNU AVR C Runtime Library. SystemC-AMS trace results can
be displayed with GNU gnuplot and one can notice that all the
tools (SystemC, SystemC-AMS, gnuplot) needed to obtain simulation
results are totally open source.

ADC oversampling rate has been set to 64, and decimator has been
configured to 8 bits. Gain values of Σ∆ feedback loop are specified
from amplitude histogram analysis, and are respectively set to 2 and
7/6.

Simulation times, with respect to Matlab are given in table I.
When possible SystemC-AMS simulations have been compared to
Matlab/simulink, controlling the exact equivalent behaviour and the
same number of samples used. Simulation of communication between
2 motes cannot be performed with Matlab, because of the complexity
of microcontroller modeling. This problem reveals one true advantage
of the SystemC-AMS simulation.

TABLE I
SIMULATION RESULTS.

Configuration Simu. Parameters Matlab SystemC-AMS

OSR=64 1 ms
ADC 8 bits 16*1024 pts 1.60s 0.93s

416.67 µs
2.4 GHz 103 pts

RF carrier freq. for digital part 2m30.74s 54.36s
107 pts

for RF part
2-mote Same
WSN settings 416.67 µs – 3m1.65s

In the RF part, an analysis has been performed to display bit error
rate according to SNR variation, that needed the actual transmission
of 10 Kbits. A theorical BER has been computed from AWGN



characteristics and has been successfully compared to simulation
results. Figure 8 shows the perfect match between simulation and the-
orical results. This analysis has been extended in [16] to transceiver
impairments.

0 1 2 3 4 5 6 7

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

Theory
SystemC−AMS

Fig. 8. Bit error rate for QPSK transmission through an AWGN channel.

III. RF MODEL REFINEMENT IN SYSTEMC-AMS

The quality of the transmission scheme relies on the knowledge of
the RF designer and on the refinement of the main specifications of
the RF modules. Considering the theoretical model of the transceiver
detailed earlier, this section, describes how to take RF specifications
into account and how to express them with SystemC-AMS. The Low
Noise Amplifier is used as an example.

A. LNA RF specifications

Based on the models used in [19] and illustrated in figure 9, the
input parameters of the LNA are identified as the power available
gain, the input and output impedances, the Noise Figure (NF) and
the 3rd order Input Intercept Point (IIP3).

Ri

input
Av

Na

outputRo

Fig. 9. RF block model

In a first step, the thermal noise of the amplifier is added to the
signal. Thermal noise is given by the specified noise figure (NF):

Na = 4KT (NF − 1) (2)

Then the gain and non-linearities are added with a polynomial
representation:

Vout = 0 + A1 ∗ Vin + A3 ∗ V 3
in (3)

where A1 is extracted from the power available gain, input resistance
(Ri) and next block input resistance (Rl) with the following equation:

A1 =

r
GpRl

Ri
(4)

and A3 is derived from the IIP3 parameter:

A3 =
4 ∗ Av

3 ∗ IIP32
(5)

B. SystemC-AMS implementation and simulations results

Considering these designer specifications, the implementation in
SystemC-AMS of the LNA is straightforward:

Listing 2. LNA implementation
1 ...
2 SCA_SDF_MODULE (lna)
3 {
4 sca_sdf_in < double >in;
5 sca_sdf_out < double >out;
6 double gain_power, a1, a3, AIP3, sigma;
7 double rin, *rloadI, *rloadQ;
8

9 void init(sc_time ts, double gain_power_db,
10 double iip3, double nf,double rin,
11 double *rloadI, double *rloadQ){
12 double f = pow(10,nf/10), N0 = 4*(f-1)*K*T*50;
13 double fs = 1/ts.to_seconds();
14 this->sigma=sqrt(N0*fs/2);
15 srand (time(NULL)); //randomize
16 this->rin=rin; this->rloadI=rloadI;
17 this->rloadQ=rloadQ; this->AIP3=undbm(iip3);
18 this->gain_power=pow(10,gain_power_db/10);
19 }
20

21 void sig_proc () {
22 double rload=
23 (*rloadI)*(*rloadQ)/((*rloadI)+(*rloadQ));
24 this->a1 =
25 sqrt(gain_power*rload/rin);
26 this->a3 =
27 a1/(3*pow(AIP3,2)/4);
28 double input = in.read()+sigma*randn();
29 out.write (a1*input-a3*pow(input,3));
30 ...
31 }
32 SCA_CTOR (lna) {}
33 };

The LNA module has SDF input and output ports (line 4 and 5
in the listing) that carry double sample values. The init() function
is called once during model elaboration and computes the RF
coefficients used throughout simulation. The sig proc() function (line
21 to 31) contains the actual behavior of the LNA module. Figure
10 indicates by simulation that the RF refinements are actually taken
into account.

−80 −70 −60 −50 −40 −30 −20 −10 0 10 20
−100

−80

−60

−40

−20

0

20

Input power (dBm)

O
ut

pu
t p

ow
er

 (
dB

m
)

Fundamental 
3rd harmonic

Fig. 10. Simulations results of the LNA illustrating the non-linearities and
the thermal noise implementations.

IV. BASEBAND MODELS IN SYSTEMC-AMS
The standard WSN simulation used so far has naturally shown

that most of the time is spent in the simulation of the RF part, with



exactly 24 billion samples generated for 1 second of simulation time.
To prevent this simulation time to become prohibitive, and hence
to validate and optimize parts of the WSN, a common technique
[20] is to identify an equivalence of the RF signal with its baseband
representation to remove the carrier from the RF signal expression :

x(t) = DC + I1 cos(ωt) + I2 cos(2ωt) + I3 cos(3ωt)

+Q1 sin(ωt) + Q2 sin(2ωt) + Q3 sin(3ωt) (6)

In the baseband equivalent transmission scheme, the only data actu-
ally transmitted over the RF channel are the 7 coefficients of equation
6 that represent signal harmonics and their associated 2nd and 3rd
order distortions, at a rate that is ten thousand times smaller than in
the original simulation.

The shift from scalar representation (double values) to vector
and matrices can be simply done with SystemC-AMS, by taking
advantage of the C++ power.

As shown in listing 3, a class called BB has been defined that
implements the vector, matrix and related operators. With respect to
the original code, the only modification to be done is to template the
sca sdf in and sca sdf out module ports with BB instead of double.

Listing 3. Baseband equivalent implementation
1 class BB{
2 public:
3 double DC,I1,I2,I3,Q1,Q2,Q3,w;
4 ...
5 BB operator* (double x) const{
6 BB z(DC*x,I1*x,I2*x,I3*x,Q1*x,Q2*x,Q3*x,w);
7 return z;
8 }
9 BB operator* (BB x) const{

10 BB z(
11 DC*x.DC+I1*x.I1/2+I2*x.I2/2+I3*x.I3/2
12 +Q1*x.Q1/2+Q2*x.Q2/2+Q3*x.Q3/2,
13 ...
14 +I2*x.Q1/2+I1*x.Q2/2+DC*x.Q3,
15 w);
16 return z;
17 }
18 BB operator+ (BB x) const{
19 BB z(
20 DC+x.DC,
21 I1+x.I1, I2+x.I2, I3+x.I3,
22 Q1+x.Q1, Q2+x.Q2, Q3+x.Q3,
23 w
24 );
25 return z;
26 }
27 };

TABLE II
SIMULATION RESULTS.

SC-AMS classical SC-AMS BB equivalent
Simulation simulation with refinements RF simulation

1000 bits
transmission 1m2.958s 0m0.036s

DC offset
-1e5:5e3:1e5 0m19.916s 0m0.018s
Freq. offset

0:20:1e3 0m24.918s 0m0.022s
Phase mismatch

0: π
360

: π
4

0m44.407s 0m0.031s

The simulation results in table 2 correspond to sections 3 and

4. As expected, simulation time has decreased by several order of
magnitude.

V. CONCLUSION

The paper shows that the system simulation of a complete WSN
that encompasses several domains is actually possible with open-
source tools, with excellent accuracy. Model interoperablity and
performance are obtained through the use of C++, SystemC and
SystemC-AMS, and simulation times (when using state of the art
RF modeling techniques) seem extremely encouraging. The complete
source code is available at [21]. Ongoing research focuses on adding
a real communication protocol to handle the asynchronous reception
of mote data packets.

REFERENCES

[1] P. Nikitin, E. Normark, C. Wakayama, and R. Shi, “VHDL-AMS mod-
eling and simulation of BPSK trandceiver system,” IEEE International
Conference on Circuits and Systems for Communications (ICCSC), June
2004.

[2] J. Ravatin, J. Oudinot, S. Scotti, A. Le-clercq, and J. Lebrun, “Full
transceiver circuit simulation using VHDL-AMS,” Microwave Engineer-
ing, May 2002.

[3] E.Christen and K. Bakalar, “VHDL-AMS a hardware description lan-
guage for analog and mixed-signal applications,” IEEE Trans. on Circuits
and Systems, part I, Vol. 46 Issue: 10, pp. 1263-1272, Oct. 1999.

[4] F. Pecheux, C. Lallement, and A. .Vachoux, “VHDL-AMS and Verilog-
AMS as Alternative Hardware Description Languages for Efficient Mod-
eling of Multi-Discipline Systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems(TCAD), Feb. 2005.

[5] P. Frey and D. O’Riordan, “Verilog-AMS: Mixed-signal simulation and
cross domain connect modules,” Proc. 2000 IEEE/ACM International
Workshop on Behavioral Modeling and Simulation (BMAS), 2000, pp.
103 108.

[6] P. Schwarz, “Physically Oriented Modeling of Heterogeneous Systems,”
3rd IMACS Symposium of Mathematical Modelling (MATHMOD), Wien,
2-4 Feb. 2000, pp. 309-318 (vol1).

[7] A. Vachoux, C. Grimm, and K. Einwich, “Towards Analog and Mixed-
Signal SOC Design with SystemC-AMS,” IEEE International Workshop
on Electronic Design, Test and Applications (DELTA), Jan. 2004.

[8] E. Markert, M. Dienel, G. Herrmann, D. Müller, and U. Heinkel,
“Modeling of a new 2D Acceleration Sensor Array using SystemC-
AMS,” Internationnal MEMS Conference (IMEMS), May 2006.

[9] A. Vachoux, C. Grimm, and K. Einwich, “Analog and Mixed Signal
Modelling with SystemC-AMS,” IEEE International Symposium on
Circuits and Systems (ISCAS), May 2003.

[10] E. Markert, G. Herrmann, and D. Müller, “System model of an inertial
navigation system using SystemC-AMS,” Forum on specification and
Design Languages (FDL), Sept. 2005.

[11] “SystemC-AMS 0.15,” Oct. 2006, http://www.systemc-
ams.org/documents/systemc-ams-0-15.pdf.

[12] “SystemC,” http://www.systemc.org.
[13] “SystemC-AMS,” http://www.systemc-ams.org.
[14] H. Aboushady, F. Montaudon, F. Paillardet, and M. M. Louerat, “A

5mW, 100kHz Bandwidth, Current-Mode Continuous-Time Sigma-Delta
Modulator with 84dB Dynamic Range,” IEEE European Solid-State
Circuits Conference (ESSCIRC) Florence,Italy, 2002.

[15] H. Aboushady, Y. Dumonteix, M. Louerat, and H. Mehrez, “Effi-
cient Polyphase Decomposition of Comb Decimation Filters in Sigma-
Delta Analog-to-Digital Converters,” IEEE Trandactions on Circuits and
Systems-II (TCASII), Oct. 2001.

[16] M. Vasilevski, F. Pecheux, H. Aboushady, and L. de Lamarre, “Modeling
Heterogeneous Systems Using SystemC-AMS, Case Study: A Wireless
Sensor Network Node,” IEEE International Behavioral Modeling and
Simulation Conference (BMAS), Sept. 2007.

[17] “ATmega128 Datasheet,” Oct. 2006,
http://www.atmel.com/dyn/resources/prod%5Fdocuments/doc2467.pdf.

[18] simon haykin, communication systems, 3rd ed. Wiley.
[19] D. Leenaerts, J. van der Tang, and C. Vaucher, Circuit design for RF

transceivers. Kluwer Academic Publishers.
[20] D. G.-W. Yee, “A design methodology for highly-integrated low-power

receivers for wireless communications,” Ph.D. dissertation, University
of California, Berkeley, 2001.

[21] “SystemC-AMS WSN examples,” http://www-asim.lip6.fr/systemc-ams.


