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Abstract: Discrete linear quadratic control has been efficiently applied to linear systems as an optimal control. However, a robotic
system is highly nonlinear, heavily coupled and uncertain. To overcome the problem, the robotic system can be modeled as a linear
discrete-time time-varying system in performing repetitive tasks. This modeling motivates us to develop an optimal repetitive control.
The contribution of this paper is twofold. For the first time, it presents discrete linear quadratic repetitive control for electrically driven
robots using the mentioned model. The proposed control approach is based on the voltage control strategy. Second, uncertainty is
effectively compensated by employing a robust time-delay controller. The uncertainty can include parametric uncertainty, unmodeled
dynamics and external disturbances. To highlight its ability in overcoming the uncertainty, the dynamic equation of an articulated
robot is introduced and used for the simulation, modeling and control purposes. Stability analysis verifies the proposed control approach

and simulation results show its effectiveness.
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1 Introduction

Industrial robots perform repetitive tasks in many man-
ufacturing applications. Repetitive control is a promising
control approach to achieve tracking of the periodic tra-
jectories. This kind of control has gained a great deal
of research interest in various forms, such as passivity-
based repetitive COIltI‘Ol[l], nonlinear repetitive Controlm,
time-delay repetitive Controlm, minimum-norm and time-
optimal repetitive control[‘l]7 optimal repetitive controll®
and adaptive repetitive controll®.

Industrial robots meet key structural features to perform
repetitive trajectories in many manufacturing applications.
Therefore, model-based control can be used for tracking
repetitive trajectories if a precise model is available. Some
discrete models, such as the one presented in [7], are too
complex, computationally extensive and impractical in real
time control. On the other hand, simplified discrete mod-
els employed in the digital control® may produce errors.
The discrete linear control methods are degraded due to
using imprecise models. Among the linear discrete repeti-
tive model-based control algorithms for robot manipulators,
i.e., Q-filter, convolution, learning and basis function, the
Q-filter algorithm shows the fastest execution speed, the
lowest computational complexity, and ease of design and
implementation[g]. However, its tracking performance is not
satisfactory.

It has been found that a robotic system can be mod-
eled as a linear discrete-time time-varying system[4]. This
modeling motivates us to efficiently apply the optimal con-
trol to robot manipulators if the uncertainty can be well
compensated. The contribution of this paper is twofold.
First, a discrete linear quadratic repetitive control for elec-
trically driven robots is developed using a linear discrete
time-varying model. The novel control approach is based
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on the voltage control strategy by considering the whole
robotic system including the robot manipulator and its joint
motors. Second, the uncertainty is effectively compensated
by employing a robust time-delay controller.

The majority of the developed control approaches for the
robot manipulators are based on the torque control strat-
egy so far. The torque control approaches may have some
shortcomings. This type of control is nonlinear, coupled and
computationally extensive due to the characteristics of the
robot dynamics. In addition, the dynamics of the robot’s
motors are excluded from the control problem. To remove
these shortcomings, the voltage control strategy has been
developed[lo]
driven robots has been presented in various approaches,
such as fuzzy controll™!l
control!*?!

. So far, robust voltage control for electrically

, tasks-pace control[m], time-delay
, adaptive control[14], repetitive control™ and ro-
bust control by adaptive fuzzy estimation of uncertainty[15].

The rest of this paper is organized as follows. Section
2 introduces the linear discrete-time time-varying model
of the robot manipulator. Section 3 develops the repeti-
tive discrete linear quadratic control including the robust
time-delay controller and the discrete linear quadratic con-
troller. Section 4 presents the stability analysis. Section 5
illustrates the simulation results and presents comparisons.
Finally, Section 6 concludes the paper.

2 Modeling

The discrete linear quadratic (DLQ) control of robot
faces a difficulty that a model of robot is highly nonlinear,
heavily coupled and uncertain. However, a robot can be
represented in the form of linear discrete-time time-varying
system!® as follows. The dynamics of a robotic system
driven by permanent magnet direct current (DC) motors
in continuous time*®! can be expressed as
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RoKp' (Jmr ™' +7D(q)) 4+
(RaKp' Brr ™'+ RaK,,'vC(q,4) +Kpr™ ") g+
RoKy'rg(q) +d+E=V (1)

where ¢ € R" is the vector of generalized joint posi-
tions, D(gq) is the n X n inertia matrix, C(q,4)¢ € R"
is the vector of generalized centripetal and Coriolis forces,
and g(¢g) € R™ is the vector of generalized gravitational
forces. The n x n positive diagonal coefficient matrices
Jm, Bm, 7, Kn, Kp and R, are the inertia, damping,
reduction gear ratio, torque constant, back EMF constant,
and resistance of motors, respectively. V € R"™ represents
a vector of motor voltages as the input of the robotic sys-
tem. d € R" stands for the effect of motor inductances and
& € R" presents the external disturbances. This model is
highly nonlinear, heavily coupled, multivariable and uncer-
tain.
Equality (1) can be rewritten as

M(q)§+ N(q,¢)g+W(q)+£=V (2)

where
M(q) = RaK,' (Jmr™ " +1D(q)) (3)
N(q,d4) = (RaK};' B + R K, '7°Clq,4) + Ky) r™" (4)
W(q) = R K,,'rg(q). (5)

Then, it is easy to show that

G=-M""(q)N(q,d9)qd — M~ (q)W(q)—
s+ M @V (). (6)

Using nominal terms in (6), we can obtain that

=—M"'(q)N(q, q)qu o)W (g)+
M~ (q)V(t) + (7)

where M(q), N(q,q4) and W(q) are the nominal terms for
the real terms M(q), N(q, ¢) and W(q), and ¢ is the lumped
uncertainty.

It is assumed that the nominal terms are given with the
same dynamics as the real terms with parametric errors.
One can notice this assumption and propose a nominal
model used for designing the controller. Therefore, the fol-
lowing assumption is made.

Assumption 1. The nominal terms M (q), N(q,q) and
W(q) are given with the same dynamics as the real terms
M(q), N(q,¢) and W(q), respectively. In other words, they
face only the parametric uncertainty.

The lumped uncertainty ¢ is expressed by substituting
(6) into (7) as

NN @)N(a,d) = M~ (@)N(g,d)) 4+
M~ (q)W (q) — 71(q)W(q) - M~ (g)é+
(M~ (q) — M~ (q)) V(1) (8)

The lumped uncertainty ¢ includes the parametric un-
certainty, unmodeled dynamics and external disturbances.

Assume that there exists a Vy(t) which satisfies
Go= — M (qa)N(qa, 4a)da—
M~ (ga)W (qa) + M~ (qa)Va(t) (9)

where qq is the desired trajectory. Thus, V4 (¢) can be cal-
culated from (9) by using the desired trajectory as

Va(t) = M(qa)da + N(qa, 4a)da + W(qa).  (10)
Subtracting (7) from (9) yields
Ga—G= M""(ga)Va(t) = M~ (q)V(t)+

M~
M~ (@)N(g,9)d — M~ (qa) N(qa, da)da+
M (@)W (q) = M~ (q2)W(ga) — ¢ (11)
or
Ga —G=—M""(qa)N(qa, 4a)(da — )+
M~ (ga)(Va(t) = V() + M~ (qa)p  (12)
where uncertainty p is expressed as
p =(M(ga)M " (q)N (g, 4) — N(qa,da))d—
(M(ga)M ™" (q) = DV () = M(ga)p+
M(ga)M ™ (@)W (q) — W (ga) (13)

and I is the identify matrix.
Using (12), the state space equation is given as

X = A(qa, 4a)X + B(qa)u + B(qa)p (14)

where X is the state vector, u the input vector, A(qq, ¢a) is
the state matrix, and B(gq) is a gain matrix. The details
are

1

., _ |0
A(qa,qa) = { 0 —M*(qa)N(qa,da)

x=| "
qa —4q

B(qa) =

0
M~ (qa)
u=Vg—V. (15)

The proposed model in (14) has an advantage that
A(qd,4q) and B(qq) are known in advance. However, this
model includes uncertainty p. The proposed model is an
uncertain linear time-variant system with periodical ma-
trices denoted by A(qd,qdq) and B(gq). In fact, A(qa,dad)
and B(qq) are period functions since g4 and ¢4 are periodic
functions of time due to performing repetitive task.

From (14), one can obtain a linear discrete system us-
ing a sampling period o, which is a small positive constant.
Substituting ko into t for k = 1,2,---, and then approxi-
mating X as X = M provides a discrete model of
the form

ZTrp+1 = Az + Bruk + Brpr (16)

where zx = X(ko), Ay = I + 0A(ok), Br = oB(ok),
ur = u(ok) and pr denotes the uncertainty. Since Ay and
By, are available, they can be computed in advance.
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3 Repetitive DLQ control

The DLQ control has been efficiently applied to certain
linear systems as an optimal control. In order to employ the
DLQ control for the robotic system (15), the nonlinearities
and uncertainties must be compensated.

Some assumptions and conditions are given to design the
robust controller. To make the dynamics of tracking er-
ror well-defined such that the robot can track the desired
trajectory, we make the following assumptions.

Assumption 2. The desired trajectory g4 must be
smooth in the sense that g4 and its derivatives up to a
necessary order are available and all uniformly bounded.

Smoothness of the desired trajectory can be guaranteed
by proper trajectory planning.

As a necessary condition to design a robust controller,
the matching condition must be satisfied: The uncertainty
must enter the system through the same channel as the
control input. Then, the uncertainty is said to satisfy the
matching condition™ or is equivalently said to be matched.
Fortunately, the matching condition is satisfied by the robot
manipulator[lsl. In system (14), the lumped uncertainty p
and the control input w enter the system through the same
channel.

As a necessary condition to design a robust control, the
external disturbance € in (1) must be bounded.

Assumption 3. The external disturbance ¢ is bounded
as

€]l < Ema (17)

where &max is a positive constant.

The voltage of every motor should be limited to protect
the motor against over voltage. For this purpose, every
motor is equipped with a voltage limiter. Therefore, we
introduce Assumption 4.

Assumption 4. The motor voltages are bounded as

VIl € Vinax (18)

where Viax 18 a positive constant.

A two-term control law is proposed to track the repet-
itive trajectory. The first term is the DLQ controller and
the second term is a robust controller.

The system is then presented as

Tht1 = Arxr + Brui,x + Brua,x + Brpk (19)

where u1,, and ua, are the first and second terms of the
control input. Performance of the repetitive control is im-
proved if the lumped uncertainty px is compensated.

3.1 Robust time-delay controller

In order to estimate and compensate the uncertainty,
a robust time-delay controller is used to compensate the
uncertainty. This type of uncertainty estimation was suc-
cessfully used to estimate the uncertainty in the robust
impedance control of a hydraulic suspension system[lg], the
robust control of flexible-joint robots*®!, and minimum-
norm and time-optimal repetitive control.

Considering (19), the uncertainty pr can be perfectly
compensated if

Byius,, = —Bip- (20)

Since pi, is not known, control law (19) cannot be defined.
Thus, uncertainty px should be estimated. To estimate un-
certainty py, one can obtain from (19) that

Bipr = Tr+1 — AxTr — Bruik — Bruok. (21)

Since x41 is not available in the k-th step, Bipr cannot
be calculated from (21). Using (21) in the previous step,
one can write

Br_1pr—1 =2 — Ap—1Zk—1 — Br—1u1,x—1 — Br_1u2 1.
(22)

The term Bji_1pr—1 can be calculated since all terms in
the right hand side of (22) are known. The estimation of
the uncertainty Bypr as Bi—1pr—1 is the basis of the robust
time-delay control law:

Bruox = —Br—1pk—1. (23)

The time-delay controller can be calculated by substitut-
ing (22) into (23) as

Brug,y = —xk + Ax—12x—1 + Br—1u1,k—1 + Br—1u2,k—1.
(24)
Thus,
1
U2k = (BEB}C) B];FX
(—zk + Ag—1Zk—1 + Br—1u1,k—1 + Br—1u2,x—1) .
(25)

In order to evaluate the estimation of Bypr as Brk—1pk—1,
the following explanation is given. B is a continuous func-
tion as defined in (15). Therefore, By, is roughly the same as
By_1. If the uncertainty is smooth, p; can be well approxi-
mated as pip_1. Otherwise, there is a difference between py,
and pr—1. From (21) and (22), it can be written that

Bypr — Br—1pr—1 =
Thp1 — Tk + Ap1Ti-1 — Apxi+
By_1ui,k—1 — Bruik + Br—1u2,k—1 — Brua,k. (26)

Since the state vector z(t) and state matrix A(t) are con-
tinuous,

Trp+1 — Tk + Ap_1zp-1 — Az =0 (27)
Thus,

Brpr — Br-1pr—1 =~
B_1u1,k—1 + Br—1u2,k—1 — Brui,x — Bruak. (28)
Using u = u1 +uz2, the estimation error can be calculated
by
Bypr — Br—1pk—1 =~ Br—1uk—1 — Brug. (29)

The estimation error is dependent on the control input.
Unless the control input jumps, the value of By_jur—1 —
Byruy, is ignorable.
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The performance of the time-delay controller can be eval-
uated by substituting (20) into system (19).
As a result, the uncertainty is compensated as

Tp+1 = ApTr + Brui,k + Brpr — Br—1pk—1. (30)

According to (29), Bipr — Br—1pk—1 is ignorable unless
the control input jumps. Thus, system (30) can be well
approximated to

Tk+1 = Agxr + Brua k. (31)
3.2 DLQ controller
The DLQ controller is given by
utp = —Kpxg. (32)

The gain matrix K} is calculated by minimizing a given

cost function®” written in the set of real numbers as
N-1
L= 0.590%536]\1 + 0.5 Z <xEQ1:k —l—uEkRul,k) +
k=0
Nex1 (Akz + Brui g — Tr41) (33)

with respect to z, w1,k and g, where A\ is the Lagrange
multiplier, @, S and R are symmetric positive definite ma-
trices. As a result, we have

Ky = [R+ BipiuBr) ™' Bipi Ak (34)
where py, is calculated as

pe=Q+ AzpkflAk_
Appe—1Bi[R + Byipr—1Bi] ' Bipr—14k.  (35)

The final control law is formed by substituting (24) and
(32) into up = w1,k + U2,k 8s

1
up = (BEBk) BF x
(Akp—1zp—1 — (I + B Ki)xr + Br—1u1,6—-1) - (36)

The algorithm starts from k£ = 0 in (35), where p_1 = 0.
Then, K} is calculated from (34). After that, uo is calcu-
lated from (36), in which ¢ is the initial value of state, x_1
is given as x_1 = x¢ and u_; = 0.

4 Stability analysis

Applying the control laws (23) and (32) to system (16)
results in the closed-loop system

Trt1 = (Ax — BrKg)xr + Brpr — Br-1pk—1- (37)

The boundedness of system states ¢ and ¢ can verify the
stability. This proof is presented as follows.

Proof. According to a proof given by [13], under As-
sumptions 3 and 4, the joint velocities ¢ and joint acceler-
ations ¢ are bounded. It follows from Assumption 2 that
the desired joint positions ¢4, the desired joint velocities
da, and joint accelerations g are bounded. According to
the properties of robot manipulator[lg], the inertia matrix

D(q) and the gravitational forces g(¢q) are bounded. Be-
cause ¢ is bounded, the Coriolis and centripetal term C'(q, ¢)
is bounded™. N(q, ) and W (q) expressed in (3) — (5) are
bounded since Jy,, Bm, 1, Kmn, Kpand R, are constant,
and D(q), C(q,q) and g(g) are bounded. According to As-
sumption 1, M(q), N(q,tj) and W(q) are bounded follows
the boundedness of D(q), C(g,q) and g(q).

The boundedness of ¢, ¢, 44, 4o, M(q), N(q,q), W(q),
M(q), N(q,d), W(q), M(qa), N(qa, 4a) implies that ¢ stated
in (8) and the lumped uncertainty p expressed in (13) are
bounded. Thus,

lloll < pmax (38)

where pmax is a positive scalar.

Since the DLQ controller provides K such that Ay —
BipK} is Hurwitz, system (37) is stable. In addition,
the term Bipr — Br_1pk—1 as an input to system (37)
is bounded. Therefore, the linear system (37) provides a
bounded output xx+1 under the bounded input Brpr —
Br_1pr—1. The boundedness of x means the boundedness
of g4 — q and ¢g — ¢. The boundedness of g4 in Assumption
3 and the boundedness gq — ¢ yields the boundedness of gq.

As a result, the stability is proven due to the bounded-
ness of system states denoted by ¢ and g. O

The control performance is evaluated as follows. Accord-
ing to the reasoning given above, the tracking error g4 — ¢
and its derivative ¢4 — ¢ are bounded. The robust time-
delay controller (24) has a main role in compensating the
uncertainty, thereby improving the control performance. If
the uncertainties and nonlinearities cannot be well com-
pensated, the closed-loop system (37) is subject to a large
uncertainty. The residual uncertainty in the closed-loop
system (37) has been reduced from a large value of By px
to a small value of Bipr — Br—1pr—1 due to using the ro-
bust time-delay control law (24). As a result, the control
performance is well improved by reducing the residual un-
certainty. The residual uncertainty Bypr — Br—1pr—1 will
be very small when the uncertainty is smooth and the sam-
pling time is very short.

5 Simulation results

A symbolic scheme of an articulated robot based on
the Denavit-Hartenberg (DH) representation is shown in
Fig.1. The Denavit-Hartenberg parameters of the artic-
ulated robot are given in Table 1, where parameters 6;,
d;, a; and oy, for i = 1,--- n, are called the joint angle,
link offset, link length and link twist, respectively. Using
the modeling approach presented in [21], we obtain the dy-
namical model of the articulated robot expressed in (1) as
follows.

Matrices Jpm, Bm, 7, Km and R, are 3 X 3 positive diag-
onal coefficient matrices of the inertia, damping, reduction
gear ratio, torque constant, and resistance of motors, re-
spectively. In the diagonal matrices, the i-th component
of the main diagonal shows the i-th motor coefficient. The
details of matrices D(q), C(q,q) and G are given in the
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appendix, where

D11 D12 D13
D(q)= | D21 D22 D23
D31 D32 D33

C11 C12 C13
Clg,g)=| c21 C22 (C23
C31 €32 (33

Joint 2

Link

Joint 1

Fig.1 The symbolic scheme of the articulated robot

Table 1 The Denavit-Hartenberg parameters

Link 0 d

a «
™

1 61 dy =0.28 3 0

2 62 0 az = 0.76 0

3 03 0 a3z = 0.93 0

The dynamical parameters of manipulator are given in
Table 2, in which g = 9.8m/s?, ¢;, i = 1,2,3 denote the

T
joint angles, m; is the i-th link mass, 7 = | = v 2 }

is the center of mass in the i-th frame, and the inertia tensor
of the i-th link in the center of mass frame is given by

Ixx; ITyy; Ixz
L= | ITvy, Iyyi Iyzi |- (40)
Txz, ITyz; Izz;

The motor parameters are given in Table 3 while the
three motors are the same.

The discrete model of the robotic system is presented by
(19). The DLQ controller is given by (32), (34) and (35).
The robust time-delay controller is expressed by (25). The
proposed control law including the DLQ controller and time
delay controller is given by (36).

The inertia tensor in the centre of mass frame is expressed
as Izy; =0, Ixz; =0, Iyz; =0, z; =0.

Table 2 Dynamical parameters of the articulated robot

i x; Yi m; ITzx; Tyy; Izz;
1 0 —0.22 19 0.34 0.36 0.31
2 —0.51 0 18.18 0.18 1.32 1.31
3 —0.67 0 10.99 0.07 0.92 0.93

Table 3 Parameters of DC servomotors

Motor Ky Im By, T R, Lg

1,2,3 0.26 0.0002 0.001 0.01 1.26 0.001

The desired repetitive trajectory is given by

aa = | cos(0.1mt) cos(0.1xt) cos(0.1mt) @y

where gq is a vector of desired joint angles with a period of
20s

Simulations illustrate the performance of the proposed
control law (36). The desired trajectory given by (41) is
sufficiently smooth and the motors are sufficiently strong
such that the robot can track the desired trajectory. We
run the simulations for two periods to illustrate the repeti-
tive motion.

The uncertainty may include the external disturbances,
unmodeled dynamics, and parametric uncertainty. To con-
sider the parametric uncertainty, all the parameters of the
nominal model used in the control law are given as 95 % of
the real ones in Simulations 1-3. The effect of large para-
metric uncertainty is considered in Simulation 4, in which
the nominal parameters are given as 70 % of the real ones.
The external disturbance is given to the input of each motor
as a random signal with the maximum value 44V and the
minimum value —4 V with a period of 2 s as shown in Fig. 2.
The uncertainty is unknown. However, we have to use an
example of a bounded uncertainty to check the performance
of the control system.

Disturbance (V)
o

|
W

2
k x10*
Fig.2 Random disturbance

The matrices Q and R in (34) and (35) are given by
trail and error method to have a good performance using
Q= 108 x Isxg and R = 10 x Isx3, where I, xn is the n X n
identity matrix.

Simulation 1. The set point control is simulated.
The initial positions of the joint angles are set to
q(0) = { Orad 0.5rad 2rad ]

sition of the desired trajectory is given by g¢q(0) =

while the initial po-
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lrad 1rad 1rad ] The initial error is calculated as

qa(0) — ¢q(0) = [ lrad 0.5rad —1rad } As a practi-
cal regard, the motor voltages are limited to the maximum
value of 40 V to protect the motors from over voltages. The
task is repeated twice in 40s. The norm of tracking errors is
vanished well after 5s and comes under the 5 x 10~% rod at
the end in Fig. 3. The motor voltages are under the permit-
ted value of 40 V and behave well without any problems, as
shown in Fig.4. The jumps on the control efforts confirm
that the control effort can promptly reply to the external
disturbances. As a result, the uncertainties are compen-
sated well.

2
— el
- 82
- C
7 N\ 3
SO
£ |/
5 4
-2
0 1 2 3 4
k x10%
Fig.3 Set point performance
40
=—Motor 1
> == Motor 2
A = ==Motor 3
an
s
ks
-
3
3
=
=20

=0

%10

Fig.4 Control efforts of the proposed control

Simulation 2. The tracking control is simulated. The
initial error is given zero. The tracking error is ignorable
with the maximum value of about e; = 2.7 x 107° rad,
es = 0.5 x 107 °rad and es = 5 x 10" % rad , as shown in
Fig.5. And the control efforts behave well under the per-
mitted value of 40V and promptly reply to the external
disturbances as shown in Fig. 6.

5 x10-
S
£
5
o
g
4
g
F
0 1 2 3 4
k X]OJ

Fig.5 Control performance without initial errors

40
— = Motor 1
Z === Motor 2
g 20 === Motor 3
s
°
>
3
2
=
-20 . . .
0 1 2 3 4

Fig.6 Control efforts under zero initial errors

Simulation 3. The effect of the robust time-delay con-
troller in compensating the uncertainty is evaluated in this
simulation. For this purpose, the time-delay controller is
removed. The initial error is given zero to highlight the
accuracy of the tracking response. The tracking errors are
shown in Fig. 7.

0.02— =g
) [ ! Y Z
g ] ) [ _el
ot i 1 ==%
g —=Xa -\ cAad-)—-s
S 0 -\, - L=
2 " 3 - g\
2 N !
5] [\ Ay} )
= k\ kY
J oo
-0.02 *
0 1 2 3 4
k <104

Fig.7 Performance of the DLQ control

The maximum values of tracking errors are about e; =
0.01rad, e2 = 0.03rad and ez = 0.02rad.

Compared to Simulation 2, the tracking errors are highly
increased as the error for joint 2 is 600 times larger than
the one in Simulation 2. The control efforts behave well
under the permitted value of 40V and promptly reply to
the external disturbances as shown in Fig.8. Comparing
Figs. 5 and 7 confirms that the robust time-delay controller
has significantly improved the tracking performance.

20

N K =— Motor 1
Z === Motor 2
z \ —

[y Motor 3
8

)

-

=

S

S

=

Fig.8 Control efforts of DLQ under zero

Simulation 4. The effect of large parametric uncer-
tainty is considered in this simulation. The nominal pa-
rameters are given as 70 % of the real ones.

The set point performance is shown in Fig. 9. The control
performance is similar to Simulation 1. The norm of error
is vanished well after 5s and comes under the 1 x 107° rad
at the end, which is ignorable.
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Errors (rad)
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-2

2 3 4
k x10*

Fig.9 Set point performance in large uncertainty
The tracking performance is shown in Fig. 10. The con-
trol performance is similar to Simulation 2. The tracking

errors are ignorable with the maximum values of about e; =
4x10 %°rad and ez = 2.75x 10" ° rad and e3 = 6 x 107° rad.

x10-

10

Tracking errors (rad)

4
x104

>N

Fig.10 Tracking performance in large uncertainty

The control performance is considered by removing the
time-delay controller. The tracking errors are highly in-
creased with the maximum values of about e; = 0.023 rad,
es = 0.025rad and e3 = 0.027rad, as shown in Fig. 11.
However, the control performance is similar to Simulation
3.

It can be concluded that the control performance in large
parametric errors is similar to the one in small parametric
errors.

Appendix

0.05

Tracking errors (rad)

-0.05

Fig.11 Tracking performance without using the time-delay con-
troller in large uncertainty

6 Conclusions

A novel robust optimal discrete repetitive control has
been developed for electrically driven robot manipulators.
A linear discrete-time and time-varying model has been
used for the robotic system to apply the DLQ. As a re-
sult, an optimal control for a nonlinear system, such as
a robot, is obtained. Then, the model uncertainty is effi-
ciently compensated using a discrete robust time-delay con-
troller. The robust controller estimates and compensates
the uncertainty such that the use of nominal model becomes
efficient. The robust controller has played an important role
to improve the performance of the control system by reduc-
ing the residual uncertainty in the closed-loop system. Sim-
ulation results have shown a dominant role for the robust
controller to provide a high-accuracy tracking performance.
Despite many repetitive control approaches, the proposed
control is able to compensate the non-repetitive errors and
a wide range of uncertainties, including parametric errors,
unmodeled dynamics and external disturbances. The sta-
bility of the control system is proven under the matching
condition and Assumptions 1-3.
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