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Abstract: Discrete linear quadratic control has been efficiently applied to linear systems as an optimal control. However, a robotic

system is highly nonlinear, heavily coupled and uncertain. To overcome the problem, the robotic system can be modeled as a linear

discrete-time time-varying system in performing repetitive tasks. This modeling motivates us to develop an optimal repetitive control.

The contribution of this paper is twofold. For the first time, it presents discrete linear quadratic repetitive control for electrically driven

robots using the mentioned model. The proposed control approach is based on the voltage control strategy. Second, uncertainty is

effectively compensated by employing a robust time-delay controller. The uncertainty can include parametric uncertainty, unmodeled

dynamics and external disturbances. To highlight its ability in overcoming the uncertainty, the dynamic equation of an articulated

robot is introduced and used for the simulation, modeling and control purposes. Stability analysis verifies the proposed control approach

and simulation results show its effectiveness.
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1 Introduction

Industrial robots perform repetitive tasks in many man-

ufacturing applications. Repetitive control is a promising

control approach to achieve tracking of the periodic tra-

jectories. This kind of control has gained a great deal

of research interest in various forms, such as passivity-

based repetitive control[1], nonlinear repetitive control[2],

time-delay repetitive control[3], minimum-norm and time-

optimal repetitive control[4], optimal repetitive control[5]

and adaptive repetitive control[6].

Industrial robots meet key structural features to perform

repetitive trajectories in many manufacturing applications.

Therefore, model-based control can be used for tracking

repetitive trajectories if a precise model is available. Some

discrete models, such as the one presented in [7], are too

complex, computationally extensive and impractical in real

time control. On the other hand, simplified discrete mod-

els employed in the digital control[8] may produce errors.

The discrete linear control methods are degraded due to

using imprecise models. Among the linear discrete repeti-

tive model-based control algorithms for robot manipulators,

i.e., Q-filter, convolution, learning and basis function, the

Q-filter algorithm shows the fastest execution speed, the

lowest computational complexity, and ease of design and

implementation[9]. However, its tracking performance is not

satisfactory.

It has been found that a robotic system can be mod-

eled as a linear discrete-time time-varying system[4]. This

modeling motivates us to efficiently apply the optimal con-

trol to robot manipulators if the uncertainty can be well

compensated. The contribution of this paper is twofold.

First, a discrete linear quadratic repetitive control for elec-

trically driven robots is developed using a linear discrete

time-varying model. The novel control approach is based
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on the voltage control strategy by considering the whole

robotic system including the robot manipulator and its joint

motors. Second, the uncertainty is effectively compensated

by employing a robust time-delay controller.

The majority of the developed control approaches for the

robot manipulators are based on the torque control strat-

egy so far. The torque control approaches may have some

shortcomings. This type of control is nonlinear, coupled and

computationally extensive due to the characteristics of the

robot dynamics. In addition, the dynamics of the robot′s
motors are excluded from the control problem. To remove

these shortcomings, the voltage control strategy has been

developed[10]. So far, robust voltage control for electrically

driven robots has been presented in various approaches,

such as fuzzy control[11], tasks-pace control[12], time-delay

control[13], adaptive control[14], repetitive control[4] and ro-

bust control by adaptive fuzzy estimation of uncertainty[15].

The rest of this paper is organized as follows. Section

2 introduces the linear discrete-time time-varying model

of the robot manipulator. Section 3 develops the repeti-

tive discrete linear quadratic control including the robust

time-delay controller and the discrete linear quadratic con-

troller. Section 4 presents the stability analysis. Section 5

illustrates the simulation results and presents comparisons.

Finally, Section 6 concludes the paper.

2 Modeling

The discrete linear quadratic (DLQ) control of robot

faces a difficulty that a model of robot is highly nonlinear,

heavily coupled and uncertain. However, a robot can be

represented in the form of linear discrete-time time-varying

system[4] as follows. The dynamics of a robotic system

driven by permanent magnet direct current (DC) motors

in continuous time[16] can be expressed as
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RaK−1
m

(
Jmr−1 + rD(q)

)
q̈+

(
RaK−1

m Bmr−1+ RaK−1
m rC(q, q̇) +Kbr

−1) q̇+

RaK−1
m rg(q) + d + ξ = V (1)

where q ∈ Rn is the vector of generalized joint posi-

tions, D(q) is the n × n inertia matrix, C(q, q̇) q̇ ∈ Rn

is the vector of generalized centripetal and Coriolis forces,

and g(q) ∈ Rn is the vector of generalized gravitational

forces. The n × n positive diagonal coefficient matrices

Jm, Bm, r, Km, Kb and Ra are the inertia, damping,

reduction gear ratio, torque constant, back EMF constant,

and resistance of motors, respectively. V ∈ Rn represents

a vector of motor voltages as the input of the robotic sys-

tem. d ∈ Rn stands for the effect of motor inductances and

ξ ∈ Rn presents the external disturbances. This model is

highly nonlinear, heavily coupled, multivariable and uncer-

tain.

Equality (1) can be rewritten as

M(q)q̈ + N(q, q̇)q̇ + W (q) + ξ = V (2)

where

M(q) = RaK−1
m (Jmr−1 + rD(q)) (3)

N(q, q̇) =
(
RaK−1

m Bm + RaK−1
m r2C(q, q̇) + Kb

)
r−1 (4)

W (q) = RaK−1
m rg(q). (5)

Then, it is easy to show that

q̈ = −M−1(q)N(q, q̇)q̇ −M−1(q)W (q)−
M−1(q)ξ + M−1(q)V (t). (6)

Using nominal terms in (6), we can obtain that

q̈ = −M̂−1(q)N̂(q, q̇)q̇ − M̂−1(q)Ŵ (q)+

M̂−1(q)V (t) + φ (7)

where M̂(q), N̂(q, q̇) and Ŵ (q) are the nominal terms for

the real terms M(q), N(q, q̇) and W (q), and φ is the lumped

uncertainty.

It is assumed that the nominal terms are given with the

same dynamics as the real terms with parametric errors.

One can notice this assumption and propose a nominal

model used for designing the controller. Therefore, the fol-

lowing assumption is made.

Assumption 1. The nominal terms M̂(q), N̂(q, q̇) and

Ŵ (q) are given with the same dynamics as the real terms

M(q), N(q, q̇) and W (q), respectively. In other words, they

face only the parametric uncertainty.

The lumped uncertainty φ is expressed by substituting

(6) into (7) as

φ =
(
M̂−1(q)N̂(q, q̇)−M−1(q)N(q, q̇)

)
q̇+

M̂−1(q)W (q)−M−1(q)W (q)−M−1(q)ξ+
(
M−1(q)−M−1(q)

)
V (t). (8)

The lumped uncertainty φ includes the parametric un-

certainty, unmodeled dynamics and external disturbances.

Assume that there exists a Vd(t) which satisfies

q̈d = − M̂−1(qd)N(qd, q̇d)q̇d−
M̂−1(qd)W (qd) + M−1(qd)Vd(t) (9)

where qd is the desired trajectory. Thus, Vd(t) can be cal-

culated from (9) by using the desired trajectory as

Vd(t) = M̂(qd)q̈d + N(qd, q̇d)q̇d + W (qd). (10)

Subtracting (7) from (9) yields

q̈d − q̈ = M̂−1(qd)Vd(t)−M−1(q)V (t)+

M̂−1(q)N(q, q̇)q̇ − M̂−1(qd)N(qd, q̇d)q̇d+

M̂−1(q)W (q)− M̂−1(qd)W (qd)− φ (11)

or

q̈d − q̈ = −M̂−1(qd)N(qd, q̇d)(q̇d − q̇)+

M−1(qd)(Vd(t)− V (t)) + M−1(qd)ρ (12)

where uncertainty ρ is expressed as

ρ =(M̂(qd)M−1(q)N̂(q, q̇)−N(qd, q̇d))q̇−
(M̂(qd)M−1(q)− I)V (t)−M(qd)φ+

M̂(qd)M−1(q)Ŵ (q)−W (qd) (13)

and I is the identify matrix.

Using (12), the state space equation is given as

Ẋ = A(qd, q̇d)X + B(qd)u + B(qd)ρ (14)

where X is the state vector, u the input vector, A(qd, q̇d) is

the state matrix, and B(qd) is a gain matrix. The details

are

A(qd, q̇d) =

[
0 I

0 −M̂−1(qd)N(qd, q̇d)

]

X =

[
qd − q

q̇d − q̇

]

B(qd) =

[
0

M̂−1(qd)

]

u = Vd − V. (15)

The proposed model in (14) has an advantage that

A(qd, q̇d) and B(qd) are known in advance. However, this

model includes uncertainty ρ. The proposed model is an

uncertain linear time-variant system with periodical ma-

trices denoted by A(qd, q̇d) and B(qd). In fact, A(qd, q̇d)

and B(qd) are period functions since qd and q̇d are periodic

functions of time due to performing repetitive task.

From (14), one can obtain a linear discrete system us-

ing a sampling period σ, which is a small positive constant.

Substituting kσ into t for k = 1, 2, · · · , and then approxi-

mating Ẋ as Ẋ = X(t+σ)−X(t)
σ

provides a discrete model of

the form

xk+1 = Akxk + Bkuk + Bkρk (16)

where xk = X(kσ), Ak = I + σA(σk), Bk = σB(σk),

uk = u(σk) and ρk denotes the uncertainty. Since Ak and

Bk are available, they can be computed in advance.
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3 Repetitive DLQ control

The DLQ control has been efficiently applied to certain

linear systems as an optimal control. In order to employ the

DLQ control for the robotic system (15), the nonlinearities

and uncertainties must be compensated.

Some assumptions and conditions are given to design the

robust controller. To make the dynamics of tracking er-

ror well-defined such that the robot can track the desired

trajectory, we make the following assumptions.

Assumption 2. The desired trajectory qd must be

smooth in the sense that qd and its derivatives up to a

necessary order are available and all uniformly bounded.

Smoothness of the desired trajectory can be guaranteed

by proper trajectory planning.

As a necessary condition to design a robust controller,

the matching condition must be satisfied: The uncertainty

must enter the system through the same channel as the

control input. Then, the uncertainty is said to satisfy the

matching condition[17] or is equivalently said to be matched.

Fortunately, the matching condition is satisfied by the robot

manipulator[18]. In system (14), the lumped uncertainty ρ

and the control input u enter the system through the same

channel.

As a necessary condition to design a robust control, the

external disturbance ξ in (1) must be bounded.

Assumption 3. The external disturbance ξ is bounded

as

‖ξ‖ 6 ξmax (17)

where ξmax is a positive constant.

The voltage of every motor should be limited to protect

the motor against over voltage. For this purpose, every

motor is equipped with a voltage limiter. Therefore, we

introduce Assumption 4.

Assumption 4. The motor voltages are bounded as

‖V ‖ 6 Vmax (18)

where Vmax is a positive constant.

A two-term control law is proposed to track the repet-

itive trajectory. The first term is the DLQ controller and

the second term is a robust controller.

The system is then presented as

xk+1 = Akxk + Bku1,k + Bku2,k + Bkρk (19)

where u1,k and u2,k are the first and second terms of the

control input. Performance of the repetitive control is im-

proved if the lumped uncertainty ρk is compensated.

3.1 Robust time-delay controller

In order to estimate and compensate the uncertainty,

a robust time-delay controller is used to compensate the

uncertainty. This type of uncertainty estimation was suc-

cessfully used to estimate the uncertainty in the robust

impedance control of a hydraulic suspension system[19], the

robust control of flexible-joint robots[13], and minimum-

norm and time-optimal repetitive control[4].

Considering (19), the uncertainty ρk can be perfectly

compensated if

Bku2,k = −Bkρk. (20)

Since ρk is not known, control law (19) cannot be defined.

Thus, uncertainty ρk should be estimated. To estimate un-

certainty ρk, one can obtain from (19) that

Bkρk = xk+1 −Akxk −Bku1,k −Bku2,k. (21)

Since xk+1 is not available in the k-th step, Bkρk cannot

be calculated from (21). Using (21) in the previous step,

one can write

Bk−1ρk−1 = xk −Ak−1xk−1 −Bk−1u1,k−1 −Bk−1u2,k−1.

(22)

The term Bk−1ρk−1 can be calculated since all terms in

the right hand side of (22) are known. The estimation of

the uncertainty Bkρk as Bk−1ρk−1 is the basis of the robust

time-delay control law:

Bku2,k = −Bk−1ρk−1. (23)

The time-delay controller can be calculated by substitut-

ing (22) into (23) as

Bku2,k = −xk + Ak−1xk−1 + Bk−1u1,k−1 + Bk−1u2,k−1.

(24)

Thus,

u2,k =
(
BT

k Bk

)−1

BT
k ×

(−xk + Ak−1xk−1 + Bk−1u1,k−1 + Bk−1u2,k−1) .

(25)

In order to evaluate the estimation of Bkρk as Bk−1ρk−1,

the following explanation is given. B is a continuous func-

tion as defined in (15). Therefore, Bk is roughly the same as

Bk−1. If the uncertainty is smooth, ρk can be well approxi-

mated as ρk−1. Otherwise, there is a difference between ρk

and ρk−1. From (21) and (22), it can be written that

Bkρk −Bk−1ρk−1 =

xk+1 − xk + Ak−1xk−1 −Akxk+

Bk−1u1,k−1 −Bku1,k + Bk−1u2,k−1 −Bku2,k. (26)

Since the state vector x(t) and state matrix A(t) are con-

tinuous,

xk+1 − xk + Ak−1xk−1 −Akxk ≈ 0 (27)

Thus,

Bkρk −Bk−1ρk−1 ≈
Bk−1u1,k−1 + Bk−1u2,k−1 −Bku1,k −Bku2,k. (28)

Using u = u1 +u2, the estimation error can be calculated

by

Bkρk −Bk−1ρk−1 ≈ Bk−1uk−1 −Bkuk. (29)

The estimation error is dependent on the control input.

Unless the control input jumps, the value of Bk−1uk−1 −
Bkuk is ignorable.
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The performance of the time-delay controller can be eval-

uated by substituting (20) into system (19).

As a result, the uncertainty is compensated as

xk+1 = Akxk + Bku1,k + Bkρk −Bk−1ρk−1. (30)

According to (29), Bkρk − Bk−1ρk−1 is ignorable unless

the control input jumps. Thus, system (30) can be well

approximated to

xk+1 = Akxk + Bku1,k. (31)

3.2 DLQ controller

The DLQ controller is given by

u1,k = −Kkxk. (32)

The gain matrix Kk is calculated by minimizing a given

cost function[20] written in the set of real numbers as

L = 0.5xT
NSxN + 0.5

N−1∑

k=0

(
xT

k Qxk +uT
1,kRu1,k

)
+

λT
k+1 (Akxk + Bku1,k − xk+1) (33)

with respect to xk, u1,k and λk, where λk is the Lagrange

multiplier, Q, S and R are symmetric positive definite ma-

trices. As a result, we have

Kk = [R + B∗
kpkBk]−1B∗

kpkAk (34)

where pk is calculated as

pk = Q + A∗kpk−1Ak−
A∗kpk−1Bk[R + B∗

kpk−1Bk]−1B∗
kpk−1Ak. (35)

The final control law is formed by substituting (24) and

(32) into uk = u1,k + u2,k as

uk =
(
BT

k Bk

)−1

BT
k ×

(Ak−1xk−1 − (I + BkKk)xk + Bk−1u1,k−1) . (36)

The algorithm starts from k = 0 in (35), where p−1 = 0.

Then, Kk is calculated from (34). After that, u0 is calcu-

lated from (36), in which x0 is the initial value of state, x−1

is given as x−1 = x0 and u−1 = 0.

4 Stability analysis

Applying the control laws (23) and (32) to system (16)

results in the closed-loop system

xk+1 = (Ak −BkKk)xk + Bkρk −Bk−1ρk−1. (37)

The boundedness of system states q and q̇ can verify the

stability. This proof is presented as follows.

Proof. According to a proof given by [13], under As-

sumptions 3 and 4, the joint velocities q̇ and joint acceler-

ations q̈ are bounded. It follows from Assumption 2 that

the desired joint positions qd, the desired joint velocities

q̇d, and joint accelerations q̈d are bounded. According to

the properties of robot manipulator[18], the inertia matrix

D(q) and the gravitational forces g(q) are bounded. Be-

cause q̇ is bounded, the Coriolis and centripetal term C(q, q̇)

is bounded[18]. N(q, q̇) and W (q) expressed in (3) – (5) are

bounded since Jm, Bm, r, Km, Kb and Ra are constant,

and D(q), C(q, q̇) and g(q) are bounded. According to As-

sumption 1, M̂(q), N̂(q, q̇) and Ŵ (q) are bounded follows

the boundedness of D(q), C(q, q̇) and g(q).

The boundedness of q̇, q̈, q̇d, q̈d, M(q), N(q, q̇), W (q),

M̂(q), N̂(q, q̇), Ŵ (q), M̂(qd), N̂(qd, q̇d) implies that φ stated

in (8) and the lumped uncertainty ρ expressed in (13) are

bounded. Thus,

‖ρ‖ 6 ρmax (38)

where ρmax is a positive scalar.

Since the DLQ controller provides Kk such that Ak −
BkKk is Hurwitz, system (37) is stable. In addition,

the term Bkρk − Bk−1ρk−1 as an input to system (37)

is bounded. Therefore, the linear system (37) provides a

bounded output xk+1 under the bounded input Bkρk −
Bk−1ρk−1. The boundedness of x means the boundedness

of qd− q and q̇d− q̇. The boundedness of qd in Assumption

3 and the boundedness qd − q yields the boundedness of q.

As a result, the stability is proven due to the bounded-

ness of system states denoted by q and q̇. ¤
The control performance is evaluated as follows. Accord-

ing to the reasoning given above, the tracking error qd − q

and its derivative q̇d − q̇ are bounded. The robust time-

delay controller (24) has a main role in compensating the

uncertainty, thereby improving the control performance. If

the uncertainties and nonlinearities cannot be well com-

pensated, the closed-loop system (37) is subject to a large

uncertainty. The residual uncertainty in the closed-loop

system (37) has been reduced from a large value of Bkρk

to a small value of Bkρk − Bk−1ρk−1 due to using the ro-

bust time-delay control law (24). As a result, the control

performance is well improved by reducing the residual un-

certainty. The residual uncertainty Bkρk − Bk−1ρk−1 will

be very small when the uncertainty is smooth and the sam-

pling time is very short.

5 Simulation results

A symbolic scheme of an articulated robot based on

the Denavit-Hartenberg (DH) representation is shown in

Fig. 1. The Denavit-Hartenberg parameters of the artic-

ulated robot are given in Table 1, where parameters θi,

di, ai and αi, for i = 1, · · · , n, are called the joint angle,

link offset, link length and link twist, respectively. Using

the modeling approach presented in [21], we obtain the dy-

namical model of the articulated robot expressed in (1) as

follows.

Matrices Jm, Bm, r, Km and Ra are 3×3 positive diag-

onal coefficient matrices of the inertia, damping, reduction

gear ratio, torque constant, and resistance of motors, re-

spectively. In the diagonal matrices, the i-th component

of the main diagonal shows the i-th motor coefficient. The

details of matrices D(q), C(q, q̇) and G are given in the
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appendix, where

D(q) =




D11 D12 D13

D21 D22 D23

D31 D32 D33




C(q, q̇) =




C11 C12 C13

C21 C22 C23

C31 C32 C33




G =




G1

G2

G3


 . (39)

Fig. 1 The symbolic scheme of the articulated robot

Table 1 The Denavit-Hartenberg parameters

Link θ d a α

1 θ1 d1 = 0.28
π

2
0

2 θ2 0 a2 = 0.76 0

3 θ3 0 a3 = 0.93 0

The dynamical parameters of manipulator are given in

Table 2, in which g = 9.8m/s2, qi, i = 1, 2, 3 denote the

joint angles, mi is the i-th link mass, ri =
[

xi yi zi

]T

is the center of mass in the i-th frame, and the inertia tensor

of the i-th link in the center of mass frame is given by

Ii =




Ixxi Iyyi Ixzi

Ixyi Iyyi Iyzi

Ixzi Iyzi Izzi


 . (40)

The motor parameters are given in Table 3 while the

three motors are the same.

The discrete model of the robotic system is presented by

(19). The DLQ controller is given by (32), (34) and (35).

The robust time-delay controller is expressed by (25). The

proposed control law including the DLQ controller and time

delay controller is given by (36).

The inertia tensor in the centre of mass frame is expressed

as Ixyi = 0, Ixzi = 0, Iyzi = 0, zi = 0.

Table 2 Dynamical parameters of the articulated robot

i xi yi mi Ixxi Iyyi Izzi

1 0 −0.22 19 0.34 0.36 0.31

2 −0.51 0 18.18 0.18 1.32 1.31

3 −0.67 0 10.99 0.07 0.92 0.93

Table 3 Parameters of DC servomotors

Motor Kb Jm Bm r Ra La

1,2,3 0.26 0.0002 0.001 0.01 1.26 0.001

The desired repetitive trajectory is given by

qd =
[

cos(0.1πt) cos(0.1πt) cos(0.1πt)
]T

(41)

where qd is a vector of desired joint angles with a period of

20 s

Simulations illustrate the performance of the proposed

control law (36). The desired trajectory given by (41) is

sufficiently smooth and the motors are sufficiently strong

such that the robot can track the desired trajectory. We

run the simulations for two periods to illustrate the repeti-

tive motion.

The uncertainty may include the external disturbances,

unmodeled dynamics, and parametric uncertainty. To con-

sider the parametric uncertainty, all the parameters of the

nominal model used in the control law are given as 95% of

the real ones in Simulations 1–3. The effect of large para-

metric uncertainty is considered in Simulation 4, in which

the nominal parameters are given as 70 % of the real ones.

The external disturbance is given to the input of each motor

as a random signal with the maximum value +4 V and the

minimum value −4V with a period of 2 s as shown in Fig. 2.

The uncertainty is unknown. However, we have to use an

example of a bounded uncertainty to check the performance

of the control system.

Fig. 2 Random disturbance

The matrices Q and R in (34) and (35) are given by

trail and error method to have a good performance using

Q = 108× I6×6 and R = 10× I3×3, where In×n is the n×n

identity matrix.

Simulation 1. The set point control is simulated.

The initial positions of the joint angles are set to

q(0) =
[

0 rad 0.5 rad 2 rad
]

while the initial po-

sition of the desired trajectory is given by qd(0) =
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[
1 rad 1 rad 1 rad

]
. The initial error is calculated as

qd(0) − q(0) =
[

1 rad 0.5 rad −1 rad
]
. As a practi-

cal regard, the motor voltages are limited to the maximum

value of 40V to protect the motors from over voltages. The

task is repeated twice in 40 s. The norm of tracking errors is

vanished well after 5 s and comes under the 5× 10−6 rod at

the end in Fig. 3. The motor voltages are under the permit-

ted value of 40V and behave well without any problems, as

shown in Fig. 4. The jumps on the control efforts confirm

that the control effort can promptly reply to the external

disturbances. As a result, the uncertainties are compen-

sated well.

Fig. 3 Set point performance

Fig. 4 Control efforts of the proposed control

Simulation 2. The tracking control is simulated. The

initial error is given zero. The tracking error is ignorable

with the maximum value of about e1 = 2.7 × 10−5 rad,

e2 = 0.5 × 10−5 rad and e3 = 5 × 10−5 rad , as shown in

Fig. 5. And the control efforts behave well under the per-

mitted value of 40V and promptly reply to the external

disturbances as shown in Fig. 6.

Fig. 5 Control performance without initial errors

Fig. 6 Control efforts under zero initial errors

Simulation 3. The effect of the robust time-delay con-

troller in compensating the uncertainty is evaluated in this

simulation. For this purpose, the time-delay controller is

removed. The initial error is given zero to highlight the

accuracy of the tracking response. The tracking errors are

shown in Fig. 7.

Fig. 7 Performance of the DLQ control

The maximum values of tracking errors are about e1 =

0.01 rad, e2 = 0.03 rad and e3 = 0.02 rad.

Compared to Simulation 2, the tracking errors are highly

increased as the error for joint 2 is 600 times larger than

the one in Simulation 2. The control efforts behave well

under the permitted value of 40V and promptly reply to

the external disturbances as shown in Fig. 8. Comparing

Figs. 5 and 7 confirms that the robust time-delay controller

has significantly improved the tracking performance.

Fig. 8 Control efforts of DLQ under zero

Simulation 4. The effect of large parametric uncer-

tainty is considered in this simulation. The nominal pa-

rameters are given as 70 % of the real ones.

The set point performance is shown in Fig. 9. The control

performance is similar to Simulation 1. The norm of error

is vanished well after 5 s and comes under the 1× 10−5 rad

at the end, which is ignorable.
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Fig. 9 Set point performance in large uncertainty

The tracking performance is shown in Fig. 10. The con-

trol performance is similar to Simulation 2. The tracking

errors are ignorable with the maximum values of about e1 =

4×10−5 rad and e2 = 2.75×10−5 rad and e3 = 6×10−5 rad.

Fig. 10 Tracking performance in large uncertainty

The control performance is considered by removing the

time-delay controller. The tracking errors are highly in-

creased with the maximum values of about e1 = 0.023 rad,

e2 = 0.025 rad and e3 = 0.027 rad, as shown in Fig. 11.

However, the control performance is similar to Simulation

3.

It can be concluded that the control performance in large

parametric errors is similar to the one in small parametric

errors.

Fig. 11 Tracking performance without using the time-delay con-

troller in large uncertainty

6 Conclusions

A novel robust optimal discrete repetitive control has

been developed for electrically driven robot manipulators.

A linear discrete-time and time-varying model has been

used for the robotic system to apply the DLQ. As a re-

sult, an optimal control for a nonlinear system, such as

a robot, is obtained. Then, the model uncertainty is effi-

ciently compensated using a discrete robust time-delay con-

troller. The robust controller estimates and compensates

the uncertainty such that the use of nominal model becomes

efficient. The robust controller has played an important role

to improve the performance of the control system by reduc-

ing the residual uncertainty in the closed-loop system. Sim-

ulation results have shown a dominant role for the robust

controller to provide a high-accuracy tracking performance.

Despite many repetitive control approaches, the proposed

control is able to compensate the non-repetitive errors and

a wide range of uncertainties, including parametric errors,

unmodeled dynamics and external disturbances. The sta-

bility of the control system is proven under the matching

condition and Assumptions 1–3.

Appendix

D11 = m3a3x3 − 0.5Ixx2 cos(2q2) + Ixy2 sin(2q2) + 0.5m3a
2
2 cos(2q2) + 0.5m3x

2
3 cos(2q3 + 2q2) + Iyy1 + 0.5Iyy2 cos(2q2)−

m3a3y3 sin(2q3 + 2q2) + m3a3x3 cos(2q3 + 2q2) + 0.5Ixx3 + 0.5m3a
2
3 cos(2q3 + 2q2) + m3a3a2 cos(2q2 + q3)−

m3a2y3 sin(2q2 + q3)−m3x3y3 sin(2q3 + 2q2)−m3a2y3 sin(q3) + m3 cos(q3)a3a2 + m3a2x3 cos(q3) + 0.5m2x
2
2+

m3a2x3 cos(2q2 + q3) + 0.5Iyy3 cos(2q3 + 2q2)− 0.5m3y
2
3 cos(2q3 + 2q2)− 0.5Ixx3 cos(2q3 + 2q2) + 0.5m2y

2
2 + 0.5m3y

2
3+

0.5Iyy2 + Ixy3 sin(2q3 + 2q2) + 0.5Ixx2 + m2z
2
2 + m1z

2
1 + m1x

2
1 + m2a2x2 + 0.5m3a

2
3 + m3z

2
3 + 0.5Iyy3 + 0.5m3x

2
3 + 0.5m2a

2
2+

0.5m3a
2
2 + 0.5m2x

2
2 cos(2q2)− 0.5m2y

2
2 cos(2q2) + 0.5m2a

2
2 cos(2q2) + m2a2x2 cos(2q2)−m2a2y2 sin(2q2)−m2x2y2 sin(2q2),

D12 = Iyz3 cos(q3 + q2) + Ixz3 sin(q3 + q2)−m3z3a3 sin(q3 + q2)−m3z3 sin(q3 + q2)x3 + sin(q2)Ixz2+

cos(q2)Iyz2 −m3z3 cos(q3 + q2)y3 −m2z2 cos(q2)y2 −m2z2 sin(q2)x2 −m2z2 sin(q2)a2 −m3z3 sin(q2)a2,

D13 = Iyz3 cos(q3 + q2) + Ixz3 sin(q3 + q2)−m3z3a3 sin(q3 + q2)−m3z3 sin(q3 + q2)x3 −m3z3 cos(q3 + q2)y3,

D22 = Izz2 + 2m3a3x3 + m2x
2
2 + m2y

2
2 + m3y

2
3 + Izz3 − 2m3a2y3 sin(q3) + 2m3 cos(q3)a3a2 + 2m2a2x2+

m3a
2
3 + m3x

2
3 + 2m3a2x3 cos(q3) + m2a

2
2 + m3a

2
2,

D23 = 2m3a3x3 + m3y
2
3 + Izz3 −m3a2y3 sin(q3) + m3 cos(q3)a3a2 + m3a

2
3 + m3x

2
3 + m3a2x3 cos(q3),

D33 = 2m3a3x3 + m3y
2
3 + Izz3 + m3a

2
3 + m3x

2
3, D21 = D12, D31 = D13, D32 = D23,

C11 =




−m2a2x2 sin(2q2)−m2a2y2 cos(2q2)−m2x2y2 cos(2q2)−m3a3y3 cos(2q3 + 2q2)−
m3a2x3 sin(2q2 + q3)−m3x3y3 cos(2q2 + 2q3)−m3a3x3 sin(2q2 + 2q3)−m3a2y3 cos(2q2 + q3)−
m3a3a2 sin(2q2 + q3) + 0.5Ixx3 sin(2q2 + 2q3)− 0.5Iyy2 sin(2q2) + Ixy2 cos(2q2) + Ixy3 cos(2q2 + 2q3)−
0.5m3a2

2 sin(2q2) + 0.5m2y2
2 sin(2q2)− 0.5m2a2

2 sin(2q2)− 0.5m2x2
2 sin(2q2)− 0.5m3a2

3 sin(2q3 + 2q2)+

0.5m3y2
3 sin(2q2 + 2q3)− 0.5m3x2

3 sin(2q3 + 2q2)− 0.5Iyy3 sin(2q3 + 2q2) + 0.5Ixx2 sin(2q2)




q̇2+
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−0.5m3a2y3 cos(q3)− 0.5m3a2x3 sin(q3)−m3a3y3 cos(2q2 + 2q3)− 0.5m3a2x3 sin(2q2 + q3)−
m3x3y3 cos(2q2 + 2q3)−m3a3x3 sin(2q2 + 2q3)− 0.5m3a2y3 cos(2q2 + q3)− 0.5m3a3a2 sin(2q2 + q3)−
0.5m3 sin(q3)a3a2 + 0.5Ixx3 sin(2q2 + 2q3) + Ixy3 cos(2q2 + 2q3)− 0.5m3a2

3 sin(2q2 + 2q3)+

0.5m3y2
3 sin(2q2 + 2q3)− 0.5m3x2

3 sin(2q2 + 2q3)− 0.5Iyy3 sin(2q2 + 2q3)


 q̇3,

C12 =




−m2a2x2 sin(2q2)−m2a2y2 cos(2q2)−m2x2y2 cos(2q2)−m3a3y3 cos(2q3 + 2q2)−
m3a2x3 sin(2q2 + q3)−m3x3y3 cos(2q2 + 2q3)−m3a3x3 sin(2q2 + 2q3)−m3a2y3 cos(2q2 + q3)−
m3a3a2 sin(2q2 + q3) + 0.5Ixx3 sin(2q2 + 2q3)− 0.5Iyy2 sin(2q2) + Ixy2 cos(2q2) + Ixy3 cos(2q2 + 2q3)−
0.5m3a2

2 sin(2q2) + 0.5m2y2
2 sin(2q2)− 0.5m2a2

2 sin(2q2)− 0.5m2x2
2 sin(2q2)− 0.5m3a2

3 sin(2q3 + 2q2)+

0.5m3y2
3 sin(2q2 + 2q3)− 0.5m3x2

3 sin(2q3 + 2q2)− 0.5Iyy3 sin(2q3 + 2q2) + 0.5Ixx2 sin(2q2)




q̇1+

(
−m2z2 cos(q2)x2 −m3z3a3 cos(q3 + q2)−m3z3 cos(q3 + q2)x3 + m3z3 sin(q3 + q2)y3 − Iyz3 sin(q3 + q2)+

Ixz3 cos(q3 + q2) + m2z2 sin(q2)y2 −m3z3 cos(q2)a2 + cos(q2)Ixz2 − sin(q2)Iyz2 −m2z2 cos(q2)a2

)
q̇2+

(−m3z3a3 cos(q3 + q2)−m3z3 cos(q3 + q2)x3 + m3z3 sin(q3 + q2)y3 − Iyz3 sin(q3 + q2) + Ixz3 cos(q3 + q2)) q̇3,

C13 =




−0.5m3a2y3 cos(q3)− 0.5m3a2x3 sin(q3)−m3a3y3 cos(2q3 + 2q2)− 0.5m3a2x3 sin(2q2 + q3)−
m3x3y3 cos(2q3 + 2q2)−m3a3x3 sin(2q3 + 2q2)− 0.5m3a2y3 cos(2q2 + q3)− 0.5m3a3a2 sin(2q2 + q3)−
0.5m3 sin(q3)a3a2 + 0.5Ixx3 sin(2q3 + 2q2) + Ixy3 cos(2q3 + 2q2)− 0.5m3a2

3 sin(2q3 + 2q2)+

0.5m3y2
3 sin(2q3 + 2q2)− 0.5m3x2

3 sin(2q3 + 2q2)− 0.5Iyy3 sin(2q3 + 2q2)


 q̇1+

(−m3z3a3 cos(q3 + q2)−m3z3 cos(q3 + q2)x3 + m3z3 sin(q3 + q2)y3 − Iyz3 sin(q3 + q2) + Ixz3 cos(q3 + q2)) q̇2+

(−m3z3a3 cos(q3 + q2)−m3z3 cos(q3 + q2)x3 + m3z3 sin(q3 + q2)y3 − Iyz3 sin(q3 + q2) + Ixz3 cos(q3 + q2)) q̇3,

C21 =




m2a2x2 sin(2q2) + m2a2y2 cos(2q2) + m2x2y2 cos(2q2) + m3a3y3 cos(2q2 + 2q3)+

m3a2x3 sin(2q2 + q3) + m3x3y3 cos(2q2 + 2q3) + m3a3x3 sin(2q2 + 2q3) + m3a2y3 cos(2q2 + q3)+

m3a3a2 sin(2q2 + q3)− 0.5Ixx3 sin(2q2 + 2q3) + 0.5Iyy2 sin(2q2)− Ixy2 cos(2q2)− Ixy3 cos(2q2 + 2q3)+

0.5m3a2
2 sin(2q2)− 0.5m2y2

2 sin(2q2) + 0.5m2a2
2 sin(2q2) + 0.5m2x2

2 sin(2q2) + 0.5m3a2
3 sin(2q3 + 2q2)−

0.5m3y2
3 sin(2q3 + 2q2) + 0.5m3x2

3 sin(2q3 + 2q2) + 0.5Iyy3 sin(2q3 + 2q2)− 0.5Ixx2 sin(2q2)




q̇1,

C22 = (−m3 sin(q3)a3a2 −m3a2y3 cos(q3)−m3a2x3 sin(q3)) q̇3,

C23 = (−m3 sin(q3)a3a2 −m3a2y3 cos(q3)−m3a2x3 sin(q3)) q̇2 + (−m3 sin(q3)a3a2 −m3a2y3 cos(q3)−m3a2x3 sin(q3)) q̇3,

C31 =




0.5m3a2y3 cos(q3) + 0.5m3a2x3 sin(q3) + m3a3y3 cos(2q3 + 2q2) + 0.5m3a2x3 sin(2q2 + q3)+

m3x3y3 cos(2q3 + 2q2) + m3a3x3 sin(2q3 + 2q2) + 0.5m3a2y3 cos(2q2 + q3) + 0.5m3a3a2 sin(2q2 + q3)+

0.5m3 sin(q3)a3a2 − 0.5Ixx3 sin(2q3 + 2q2)− Ixy3 cos(2q3 + 2q2) + 0.5m3a2
3 sin(2q3 + 2q2)−

0.5m3y2
3 sin(2q3 + 2q2) + 0.5m3x2

3 sin(2q3 + 2q2) + 0.5Iyy3 sin(2q3 + 2q2)


 q̇1,

C32 = (m3 sin(q3)a3a2 + m3a2y3 cos(q3) + m3a2x3 sin(q3)) q̇2,

C33 = 0,

G1 = 0,

G2 = g

(
m2 cos(q2)a2 + m2 cos(q2)x2 −m2 sin(q2)y2 + m3a3 cos(q3 + q2) + m3 cos(q2)a2+

m3 cos(q3 + q2)x3 −m3 sin(q3 + q2)y3

)
,

G3 = gm3 (a3 cos(q3 + q2) + cos(q3 + q2)x3 − sin(q3 + q2)y3) .
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