
Special Issue

JDMS

Journal of Defense Modeling and

Simulation: Applications,

Methodology, Technology

1–24

� The Author(s) 2020

DOI: 10.1177/1548512919896855

journals.sagepub.com/home/dms

Modeling and Simulation as a Service
infrastructure capabilities for
discovery, composition and execution
of simulation services

Jo Erskine Hannay1 , Tom van den Berg2, Scott Gallant3,

and Kevin Gupton4

Abstract

Modeling and Simulation as a Service (MSaaS) embodies the idea that simulations should be composed quickly for the task

at hand from loosely coupled shared components, simulation services, in a cloud-based environment. These simulations
are then offered, as composed simulation services, to human and technical consumers. Instrumental to this, is functionality

that lets a simulation operator discover and compose simulation services and execute the composition. We describe

this functionality in terms of what we call MSaaS infrastructure capabilities. Following the idea of stepwise refinement, the
discovery and composition of simulation services can be done at design time using implementation-independent infor-

mation about simulation services and at implementation time using implementation-specific information about simulation

services. The execution environment can also be set up at design time and at implementation time. We therefore
describe the MSaaS infrastructure capabilities in terms of how they are used on both implementation-independent and

implementation-specific service information. By doing these elaborations, we intend to gain greater insight into how to

perform simulation service discovery, composition, and execution. We conclude that although much of the required
functionality for a MSaaS infrastructure is available through existing platforms and frameworks, it is necessary to offer

this functionality as services, alongside (composed) simulation services, to fulfill the MSaaS vision.
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1. Introduction

Simulation support to operations, training, and exercises

holds much potential, making it possible to support and

augment operational processes and enhance training with

new aspects and with extended exposure.1 Simulation sup-

port to defense activities is perceived to become progres-

sively more important as multinational forces become

more interconnected.2

However, setting up and executing distributed simula-

tions is a lengthy process with various obstacles depending

on the complexities and characteristics of the systems

involved. The process must often be repeated for each

operation or exercise, as system versions and settings may

have been updated or changed in the meantime.

Connecting systems across networks also presents its own

set of issues. All of these challenges make it necessary to

have skilled technicians in place at each site during a dis-

tributed simulation life cycle, adding to the already com-

plicated logistics and sometimes lengthy planning for

operations and exercises.
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Modeling and Simulation as a Service (MSaaS) – and

the North Atlantic Treaty Organization (NATO) Allied

Framework for MSaaS3,4 in particular – presents a vision

that setting up simulations for operations, exercises, and

training should be rapid and easy. The service concept

embodies reusability by standardization of common func-

tionality, and composability through loose coupling and

standardized service descriptions.

The idea is illustrated in Figure 1, where suppliers share

simulation services in a cloud environment. Simulation

operators use a web-based portal to discover and compose

simulation services into a simulation composition to be

executed. Composed simulations can themselves be offered

as services to be re-used. The cloud environment facilitates

simulation access ‘‘on demand, anywhere.’’ Indeed, cloud-

based simulations and MSaaS are considered ‘‘grand chal-

lenges,’’ entailing new requirements for simulation soft-

ware, and the need for service descriptions, service

discovery, and service composition, in particular.5

The functionality in the portal to discover, compose,

and execute simulations is provided by a collection of

MSaaS infrastructure capabilities, which are divided into

capabilities for data management, composition, and

service management and control (SMC) (Figure 1). The

main line of discussion is an elaboration on what these

MSaaS infrastructure capabilities should be, the purpose

being to understand better the essential mechanisms for

handling simulations in a service-oriented environment.

Our elaboration is grounded in earlier experiences with

MSaaS.

In the MSaaS reference architecture,4 services are cur-

rently referred to as implementation independent. That is,

services are identified by their implementation-

independent service descriptions, and the reference

architecture lists a number of pertinent services that are

particular to modeling and simulation. When

implementation-independent descriptions of services are

standardized and expressed in a machine-readable format,

tools can be built to support some degree of automatic dis-

covery and composition. This supports the MSaaS vision

of rapid simulation deployment and, further, the vision

that simulation operators (Figure 1) may be non-technical

trainers or other operational personnel in the future.

However, to be useful for developers in the world of

service-oriented standards and simulation protocols, where

each of these standards and protocols may be at different

Figure 1. Allied framework for Modeling and Simulation as a Service (MSaaS) with MSaaS portal functionality (discover, compose

execute) and MSaaS infrastructure capabilities for data management, composition, and service management and control.
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levels of implementation-specific abstraction, the MSaaS

reference architecture needs to include corresponding lev-

els of abstraction. Moreover, stepwise refinement princi-

ples, as expressed in the steps from conceptual modeling,

through design, to implementation, further motivate a ser-

vice concept that holds multiple levels of abstraction.

Therefore, when elaborating the MSaaS infrastructure

capabilities, we do so while considering how these cap-

abilities operate on several levels of simulation service

abstraction. This gives a better understanding of the ser-

vice abstraction levels themselves and how infrastructure

capabilities might be used in stepwise refinement through

these levels of abstraction.

MSaaS relies on cloud infrastructures shared between

nations and organizations in NATO and between civilian

infrastructures. This means that simulation services and

their compositions, as well as the infrastructure capabil-

ities, must be realized in software that is at appropriate

levels of cloud application maturity; see, for example, the

Cloud Ready, Cloud Friendly, Cloud Resilient, Cloud

Native categorization of Kratzke.6,7 However, our focus in

this paper is on understanding infrastructure capabilities at

the functional level (the Service Composition and

Application layers in Kratzke’s reference model6).

Identifying the appropriate levels of cloud application

maturity for MSaaS is the next important step and is not

discussed in this text.

Epistemologically, our work here amounts to building

what Gregor8 calls Analysis type theories and Design and

Action type theories. The former consists of conceptuali-

zations of ‘‘what is’’; where, in our case, the ‘‘what is’’ is

not a physical entity, but is itself a conceptual entity;

namely, a reference architecture. The latter type of theory

describes ‘‘how to do’’ things and includes design princi-

ples. Neither type of theory supports predictions expressed

in the theory itself that can be refuted in the traditional

manner. Instead, it can be argued that they imply meta-

predictions by the assumptions that the conceptualizations

and designs are beneficial to various ends.9 That the con-

ceptualization we present is beneficial can be verified ana-

lytically and empirically by how useful practitioners and

researchers find it,10 how well-formed it is in terms of par-

simony,11 how interesting it is,12 and by other quality

aspects of theories.13,14 This verification must be done

over time by other researchers and practitioners, in concert

with researchers who continuously evolve the

conceptualization.15,16

In Section 2, we recapitulate and elaborate on the ser-

vice concept of the MSaaS reference architecture, where

services can be declared – using service descriptions – at

several levels of abstraction, from implementation inde-

pendent to implementation specific. We then introduce the

MSaaS infrastructure capabilities in Section 3, and elabo-

rate on the constituent data, composition, and SMC cap-

abilities in Sections 4–6, respectively, relating to service

abstraction levels. We conclude in Section 7.

2. The service concept of the MSaaS

reference architecture

The concept of service embodies abstraction, loose cou-

pling, reusability, composability, and discovery.17 The

concept underlies old-style ‘‘SOA monolith’’ architecture,

‘‘microservice’’ architecture, and ‘‘nanoservice’’ architec-

ture (or ‘‘serverless architecture’’ for the notion of

Function as a Service6), all of which are relevant for sup-

porting MSaaS and the special demands of simulations

and specialized simulation architectures.

2.1. Roles in service orientation

From service-oriented architecture (SOA), we emphasize

three main roles: the Service Provider, the Service

Consumer, and the Service Registrar; see Figure 2. In this

discussion, these roles are technical, rather than organiza-

tional. A service provider registers a service it wishes to

provide to the community with a registrar. The registrar

deposits the description in a repository and the concrete

information for run-time binding in a registry. The con-

sumer consults the registrar for descriptions from the repo-

sitory to prepare for service consumption, and the

consumer consults the registrar for binding information

from the registry to an appropriate provider.

2.2. Service description and realization

In this discussion, a service consists of the following.

Figure 2. Key roles in service orientation (the service-oriented

architecture triangle adapted from Erl17).
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• A service description for the benefit of consumers

of the service, which consists of the following:

- an interface18 with functional and operational

signatures for syntactic interoperability;19

- a contract18 with elaborations of what the func-

tions and operations declared in the interface do

in terms of functional and operational seman-

tics, for a degree of semantic interoperability,19

as well as a specification of contractual non-

functional requirements;

- a model for simulation services4 of that which is

being simulated in the form of limited informa-

tion (white-box view) on internal workings of

the simulation functionality provided by the

simulation service, necessary for determining

what assumptions in the environment the simu-

lation service uses, for pragmatic

interoperability.19

• A service realization, in the form of either require-

ments or specifications, for the benefit of develo-

pers who will realize the service in executable

implementations for actual consumption at run

time.

2.3. Service abstraction levels

In line with stepwise refinement and detailing,20 we pro-

mote the use of the service concept at various levels of

abstraction. Figure 3 illustrates the idea for the simulation

domain.

2.3.1. Implementation-independent level. At the highest level

of abstraction, a service consists of a simulation

architecture-independent and implementation-independent

service description that can be used for design-time discov-

ery and composition. At this level, service descriptions can

be written using the terms of an ontology. An ontology pro-

vides a structured and machine-readable domain-specific

but implementation-independent vocabulary for describing

the elements of a domain and relationships between them.

Relevant examples include the C2Sim ontology for C2Sim

interoperability21,22 and simulation ontologies such as the

Trajectory Simulation Ontology.23 One can combine ontol-

ogies to obtain the necessary vocabulary.

For simulation services, Base Object Models (BOMs),24

when written in the vocabulary of an ontology, can be used

at this level for service descriptions that contain aspects of

interface, contract, and model. BOM entity descriptions

(expressible in Unified Modeling Language (UML) class

diagrams) can be used for interfaces, patterns of interplay

(expressible in UML sequence diagrams) provide the

aspect of contract that describe intended use of functions

and operations, and BOM state machines (expressible as

UML state diagrams) provide a white-box view of the ser-

vice that may express model aspects. When using ontologi-

cal reasoning, further semantic information can be

inferred.25–27

Further, at the implementation-independent level of

abstraction, a service consists of implementation-

independent service realizations in the form of require-

ments specifications that developers should use in further

detailing and refinement and, ultimately, implementation

in concrete software.

2.3.2. Simulation architecture-specific level. At more

implementation-specific levels of abstraction, a service

consists of architecture-dependent service descriptions.

Figure 3. Levels of service abstraction for the simulation domain.

4 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 00(0)



For simulation services, an ontology-based service descrip-

tion might be refined to simulation architecture-dependent

descriptions for architectures such as the High Level

Architecture (HLA),28 Distributed Interactive Simulation

(DIS),29 Test and Training Enabling Architecture

(TENA),30 or for novel simulation architectures based on

edge and fog computing (e.g., SpatialOS; https://improba-

ble.io). Service realizations in the form of requirements

are then refined in terms of these architectures.

2.3.3. Service platform-specific level. Further, or other, levels

of de-abstraction are possible. As one example, service

descriptions may be refined into service platform formats,

such as the Web Services Description Language

(WSDL)31 (interface) and WSDL-S32 and SAWSDL33

(contract) for Big Web Services (WS*)34 that send mes-

sages over the Simple Object Access Protocol (SOAP),35

Web Application Description Language (WADL)36 (inter-

face), and SA-REST (contract) for Representational State

Transfer (REST) style technology,37 or emerging leaner

formats. Service descriptions at this level should accom-

modate both stateful and stateless micro services, larger

stateful SOA structures (SOA monoliths), and anything in

between.

Service realizations in the form of requirements are then

refined in terms of the chosen formats.

2.3.4. Implementation-specific level. At the implementation-

specific level, service realizations take the form of code

written in coding frameworks or in plain old Java and

C++ . Of particular relevance for cloud technology are

virtualization and containerization. Containers package

functionality ready to go, complete with necessary operat-

ing system-level virtualization and other dependencies in

the package. Containers run within the context of a single

operating system whose kernel is shared by all containers,

dispensing with the need for an infrastructure (hypervisor)

for sharing computing resources between multiple virtual

machines running on a host. This enables lightweight

packaging of deployable units of functionality, whether

they be simulation nanoservices, microservices, or SOA

monoliths.38

At this level, there will be descriptions containing tech-

nical details required for containerization or deployment

in virtual machines, such as the required operating system,

libraries, memory, processing, disk, networking, etc.

2.3.5. Significance of levels. In this manner, a single service

declared at an implementation-independent level has

description and realization refinements in various proto-

cols, service platform formats, and, ultimately, in various

coding frameworks. There are related ideas, with tools for

transforming descriptions from one layer to the next.23

To illustrate, some services will be simulation services

‘‘from the top,’’ in that every refinement path goes through

a simulation architecture-specific description, such as a

service with only the two left-most refinement paths in

Figure 3. Other services may have both simulation

architecture-specific refinements and non-simulation archi-

tecture-specific refinements, such as a service with the

three right-most refinement paths in Figure 3. Examples

are terrain analysis services (e.g., for route planning, line

of sight, and vantage point services39), automatic identifi-

cation system (AIS) services,40 and weapons effects ser-

vices, which can have simulation architecture-specific

descriptions – and are, thus, simulation services at this

level of abstraction, as well as non-simulation architec-

ture-specific descriptions for use, for example, in opera-

tions planning in a command and control (C2) system.41

Yet, other services (e.g., weather services and map ser-

vices) would not have any simulation architecture-

dependent service descriptions.

All three elements of a service description (interface,

contract, model) can exist at the various levels of abstrac-

tion. For example, interfaces can be specified without

regards to any programming language, and models range

from conceptual models at the implementation-

independent and simulation architecture-specific levels, to

executable models at the implementation-specific level, in

line with scenario abstraction levels.42

Although there can be any number service abstraction

levels, the MSaaS reference architecture4 defines three

levels of architecture that reflect the different levels of ser-

vice abstraction described above: the reference architec-

ture level (implementation independent), solution/domain

architecture level (simulation architecture specific), and

implementation level (implementation specific).

2.4. Service abstraction and the MSaaS engineering

process

The MSaaS engineering process43 is the MSaaS extension

to the Distributed Simulation Engineering and Execution

Process (DSEEP)44 and its Multi-Architecture Overlay

(DMAO).45 The system under development in this process

is what is called a simulation environment (Figure 4).

A simulation environment consists of a number of

simulation software components that adhere to one or sev-

eral simulation architecture protocols (HLA, DIS, TENA,

or other protocols) in designated enclaves.45 In each

enclave, components are organized in different topolo-

gies;46 for example, an event-based topology (such as the

HLA) and a data-centric simulation topology using a

shared state database (such as SpatialOS). In turn, each

Hannay et al. 5
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topology might adhere to one or several appropriate ser-

vice platform-specific styles.

Simulation components in each enclave relate to an

enclave-specific simulation data exchange model,44 which

specifies what data is shared between components in an

enclave (e.g., a Protocol Data Unit (PDU) set for DIS, a

Federation Object Model (FOM) for HLA, a Logical

Range Object Model (LROM) for TENA). Together, the

enclave-specific simulation data exchange models consti-

tute the simulation data exchange model of the entire

simulation environment.

While the simulation data exchange model gives syn-

tactic interoperability,19 the simulation environment agree-

ments44 specify the intended meaning of exchanged data

and other semantic information.

The various steps of the MSaaS engineering process

require one to work at different levels of abstraction (using

corresponding architecture artifacts47). In the presence of

service descriptions at relevant levels of abstraction, this

can be formulated as follows, referring to Figure 5: at the

conceptual modeling step (Step 2), one defines a composed

simulation service4 by searching, discovering, and com-

posing simulation service descriptions at the highest level

of abstraction, independent of the simulation architecture

or protocol. The simulation service descriptions must hold

sufficient information to determine which services can be

composed to satisfy the conceptual model and conceptual

scenario. During the design step (Step 3), one refines the

composed simulation service to a simulation architecture-

specific design by using simulation architecture-specific

descriptions of the services chosen in the previous stage.

At this abstraction level, simulation services are arranged

in abstract versions of the above-mentioned topologies in

enclaves, using mediation services such as gateways to

connect enclaves or to provide translation and transforma-

tion services within an enclave. During the development

step (Step 4), the composed simulation service is refined

into a simulation environment, implemented by choosing

appropriate code realizations of the chosen services. Note

that a simulation component may implement several ser-

vices, as illustrated in Figure 5, by the large component

implementing two services.

The vision of MSaaS is that the presence of simulation

services with multiabstraction-level descriptions and code

realizations will greatly speed up what presently are rela-

tively time-consuming DSEEP steps. Of course, in the

interim, services might have to be de-abstracted and/or

implemented; in which case, the requirements specifica-

tions of the simulation services are there to help developers

in that process. Even more typically today, services will be

generated bottom-up from code, with the service descrip-

tion reverse-engineered (hopefully). Nevertheless, the

vision is that the end state, after more or less chaotic devel-

opment, has yielded ready-to-use services, as sketched in

Figure 3.

Whenever an appropriate service description or service

implementation does not exist, the MSaaS engineering

Figure 4. Simulation environment.

Figure 5. Simulation service abstraction levels and the Modeling and Simulation as a Service (MSaaS) engineering process.
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process states that actual development of a service must be

undertaken, complete with service descriptions and service

realizations.

2.5. Strict service interpretation

A service is always a packaging of a service description

and one or several service realizations. Conversely, a ser-

vice realization (requirements specification or code) on its

own is never a service.

The dynamic discovery mechanism through the Service

Registrar is essential to the loose coupling of service orien-

tation. Without the discovery mechanism, services must be

known statically, thereby precluding the idea that services

may be created and hosted independently of specific con-

sumers. In fact, it has been argued that service orientation

in practice often does not include the discovery mechan-

ism and only involves the lower part of the SOA trian-

gle.48,49 For example, at the implementation-specific end

of the scale, current practices around popular technologies

associated with service orientation, such as WebSocket,50

Advanced Message Queue Protocol (AMQP),51 JavaScript

Object Notation (JSON),52 REST, etc., usually avoid or

omit service descriptions. It is also common to write

WSDLs when using WS* technology but with no registrar.

Without the discipline of using service descriptions and

service registrars, it is also tempting to revert to tighter

coupling in other areas of the consumer–provider relation-

ship. For the vision of MSaaS to be realized, it is essential

that service registrars are used and that service descriptions

exist in sufficient numbers at appropriate levels of abstrac-

tion. Finally, technologies other than those mentioned

above commonly associated with service orientation can

also be used for writing service descriptions. Thus, the use

of, for example, WS*, REST, etc., is neither sufficient, nor

necessary, for realizing service orientation.

2.6. Simulation as a Service

The notion of a composed simulation service (Section 2.4)

embodies the idea that entire simulations composed as in

Section 2.4 can be exposed as a service. Following Section

2.5, the composed simulation service itself must have a

service description (Section 2). In practice, this may be

done by one or more simulation services exposing certain

functionality through its service description (Figure 6(a)).

As an example, consider interoperating C2 systems with

simulations for the purpose of simulating operations during

training and exercises53–56 or for wargaming plans.41,57,58

A simulation service offers functionality to give force

structures, and orders and reports structures to the simula-

tion in terms of the Military Scenario Definition Language

(MSDL)59 and the Coalition Battle Management Language

(C-BML),60 and also offers functionality to receive reports

from the simulation.

This notion of Simulation as a Service then means that

the functionality is not tailored to a specific C2 system

and that the functionality is declared in a service descrip-

tion that is discoverable by any potential consumers of that

functionality. The simulation environment as a whole is

the provider of the service, where the service is declared

in the service description(s) of the designated simulation

services that expose the relevant simulation functionality

as a service.

It is also meaningful to speak of Simulation as a Service

even when a simulation is not composed of simulation ser-

vices, but are simply made up of conventional simulation

components. This would be the case if one (or several) of

these components has what amounts to a service descrip-

tion that exposes the simulation as a service in the same

manner as above (Figure 6(b)). We will not discuss this

mode of Simulation as a Service, but focus on composed

simulation services.

3. Modeling and Simulation as a Service

infrastructure capabilities

The MSaaS infrastructure capabilities we present in the

following represent a systematization of concepts from

ongoing deliberations on MSaaS; in particular, from vari-

ous MSaaS architecture work,4,61–64 from MSaaS proto-

type and container-technology studies,38,65–69 and from

work done in the Executable Architecture Systems

Engineering (EASE) research activity.70

Apart from a basis for further conceptual development

in terms of understanding how MSaaS must work in vari-

ous styles of simulation architecture, our suggestions are

intended as a guide for developing a comprehensive infra-

structure for MSaaS. If developed incrementally, viable

parts of the infrastructure can be tested and validated to

guide further increments. These would then be the first

steps in a more concerted research effort.

We now introduce the MSaaS infrastructure capabilities

that give the functionality for discovering and composing

Figure 6. Simulation as a Service. Composed simulation

service (a) and simulation environment exposed as a service (b).
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simulation services and executing the resulting composed

simulation services. These capabilities consist of user-fac-

ing applications and back-end services in the sense of the

NATO Consultation, Command and Control (C3)

Taxonomy,71 both of which are loosely coupled pieces of

functionality (front-end or back-end), as expressed in the

service concept of Section 2.

At present, very few MSaaS infrastructure capabilities

exist as loosely coupled applications and services, even

though a great deal of functionality that can be used to

implement a MSaaS infrastructure does exist in traditional

forms. Therefore, Sections 4–6 will present a selection of

infrastructure functionality that we argue should be offered

as MSaaS infrastructure capabilities in the future.

Figure 7 shows the MSaaS infrastructure capabilities,

and their relationships, that we discuss in the following

sections. MSaaS infrastructure capabilities consist of data

management capabilities, composition capabilities, and

SMC capabilities.

4. Data management

The MSaaS engineering process Steps 2–4 (Figure 5)

entails significant data management activities. MSaaS pre-

sents engineering challenges and opportunities that data

management services can help mitigate. Data management

services, or simply ‘‘data services,’’ contribute to the

enablement and automation of simulation life cycles, the

simplification of simulation engineering and execution,

and the delivery of simulation services to geographically

distributed points of need.

The selection and composition of simulation services

in, for example, Step 2 of the MSaaS engineering process,

requires the availability of different kinds of data, such as

service descriptions at an implementation-independent

level, stakeholder needs and objectives, authoritative refer-

ence information, and a conceptual model and conceptual

scenarios.

4.1. Simulation data management applications

Data management user applications are the front-end user

interfaces that simulation operators (Figure 1) use to

inspect conceptual and executable models (Section 2.3.5),

discover simulation services for composition, and manage

data artifacts generated and maintained throughout the

MSaaS engineering life cycle.

4.1.1. Simulation life cycle data management

application. This user application is for creating and revis-

ing data artifacts through the engineering life cycle,

including the conceptual and executable models for the

composed simulation service (and implementing simula-

tion environment) under development, data models, simu-

lation environment design, and for managing post-

execution data and analyses.

Figure 7. Relationships between Modeling and Simulation as a Service infrastructure capabilities.
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4.1.2. Simulation service discovery application. Existing either

as a stand-alone application or included as part of other

life cycle tools, this user application allows simulation

operators to discover simulation services for composition

at design time. Discovery is based on service descriptions,

which must contain various metadata facets at appropriate

levels of abstraction (Figure 3), including (conceptual)

model entities, properties, and interactions/effects.

4.1.3. Simulation conceptual modeling application. This user

application is for discovering, retrieving, creating, and

managing conceptual and executable model data. This

application must handle behavior and effects representa-

tions (perhaps as UML process, activity, sequence, and

state diagrams) and also the management of all manner of

enumerations, such as equipment types, compositions of

parts, environmental feature types, and miscellaneous ref-

erence category codes (perhaps as UML class diagrams

and ontologies). This application is related to the simula-

tion integration application (Section 5.1.2) via the compo-

sition services, so that the simulation operator can assess

whether the (partial) models in the various simulation ser-

vice description align with the target conceptual and

executable models of the composed simulation service

(and implementing simulation environment) under

development.

4.2. Simulation data management services

What follows is an initial set of data services and interac-

tion patterns that are pertinent for the discovery, composi-

tion, and execution of (composed) simulation services

(Figure 5). These data services are derived from the

MSaaS engineering process and based on lessons learned

in the engineering of several simulation environments.

The data services are organized in two categories, as

follows.

• Data management across the MSaaS engineering

process: To automate and enable the process

depends on managing inputs and outputs of the

MSaaS engineering process steps. In Figure 7, this

service category is shown as Data Management

Services, including Registry/Repository Services.
• Semantic linking of operational (stakeholder) needs

to simulation solutions: To integrate simulation ser-

vices and the data fusion required by simulation ser-

vices depends on the selection and alignment of

simulation services to stakeholder needs and objec-

tives. Semantic knowledge bases can further enable

the MSaaS engineering life cycle data management;

in particular, simulation service composition by

providing domain-specific information that enables

decision making. Semantic knowledge bases relate

entities (e.g., vehicles), composed parts (e.g., sen-

sors, weapons, and functional parts), capabilities,

consumption of resources (e.g., fuel, water, food,

ammunition, and energy), and interactions with

other entities (e.g., trailers pulled by vehicles,

tanks’ ability to damage a building, and vehicle

traction on different terrain). In Figure 7, this ser-

vice category is shown as Semantic Knowledgebase

Services.

Note that these data services operate and provide data

artifacts for all the service abstraction levels of Section

2.3. In particular, the data services must manage the vari-

ous service description components (interface, contract,

and model) (Section 2.2) at relevant levels of abstraction

according to the steps in the MSaaS engineering process.

When doing this, one must also retrieve the corresponding

conceptual and executable scenario and model42 specifica-

tions for the composed simulation service (and implemen-

ted simulation environment) under development.

4.2.1. Data management across the MSaaS engineering

process. Every step of the MSaaS engineering process

highlights opportunities for data management, considering

the inputs and outputs, life cycle-related data stored and

retrieved, and external data (not directly pertinent to the

life cycle) to be referenced. In practical simulation life

cycles (e.g., the multinational Viking exercise life cycle

arranged by the Swedish Armed Forces or simulation-

based operational test planning processes), process steps

are specialized and often less sequential, but similar infor-

mation management activities occur. With particular

regard to the composition of simulation services, the

MSaaS engineering process Steps 2–4 require manage-

ment of conceptual analysis artifacts guiding the selection

of simulation services for composition, as well as the com-

posed simulation service design artifacts:

• discovery – including search, publish/subscribe

notifications based on interest – of (composed)

simulation services by service descriptions (Section

2.2);
• retrieval and delivery of information artifacts essen-

tial to creating composed simulation services (and

implementing simulation environments), such as

conceptual and executable model and scenario

specifications, software libraries, descriptive meta-

data, and initialization/configuration parameters;
• publication of new or modified models and com-

posed simulation services and their implementa-

tions in terms of simulation environment designs,

including version and revision controls.
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Of course, these abstract services are not unique to

MSaaS – they are ubiquitous constructs, frequently stan-

dardized by communities and organizations to facilitate

interoperability. For MSaaS, we seek to apply these ser-

vices to improve simulation data management, facilitate

simulation life cycle automation, and increase the usability

and availability of composed simulation services and their

implementations as simulation environments. To that end,

we highlight the following service patterns as pertinent to

MSaaS.

• Value-added pipelines, including the provenance

trace of information artifacts produced through

each engineering step. Information products – such

as planning documents, scenarios, federation agree-

ments, and simulation-specific environmental/ter-

rain data sets – may be produced in a sequential,

multi-step manner. Further, the steps may be per-

formed in parallel by different stakeholders partici-

pating in the simulation life cycle. Output from one

step becomes input to the next step, and tracking

the trail of inputs and performers (humans and algo-

rithms) can be used to cue subsequent performers

that their inputs are ready, can contribute to the

validity of the simulation, and can indicate the re-

use potential (or not) of an output.
• Version and revision control of information prod-

ucts produced iteratively. Planning documents, sce-

narios, conceptual models, and environment design

are examples of information artifacts that are often

produced iteratively by one or more stakeholders to

a simulation. One might consider version control in

this context as a value-added pipeline that loops

and labels products successively as ‘‘draft,’’ ‘‘in

progress,’’ ‘‘ready for review,’’ or ‘‘final.’’
• Reference data in the simulation life cycle.

Presumably, every step of a simulation life cycle

adds value, but some steps may be manual – requir-

ing human action, decision, or intervention – while

some steps may be automated in part or in whole.

To achieve more automation, supporting services

may utilize external reference data. Supporting ser-

vices may query for and retrieve reference data –

such as military force structures, entity perfor-

mance parameters, terrain data sets, country codes,

or even elements from previous simulations – in

order to prompt users with choices or recommenda-

tions, or even fully automate the step based on

established logic.
• Extraction and transformation. Steps in a simula-

tion life cycle may require extraction of data from

an information artifact or transformation of data

from an information artifact. These common inte-

gration patterns are in many cases readily

automatable; particularly for syntactic transforma-

tion, while semantic transformation can sometimes

involve a semantic knowledge base by way of a ref-

erence data set or a subject matter expert.

4.2.2. Semantic linking of operational need to simulation

solutions. The simulation life cycle depends largely on our

ability to integrate software and data to implement a con-

ceptual model and fulfill the stakeholder objectives. In

addition, our ability to perform these integrations and

alignments depends on the thoughtful, repetitive alignment

of domain concepts to solutions for simulating those

domain concepts. Consider the thousands of entity types,

associated parts and attributes, states and interactions, and

environmental phenomena that constitute complex simula-

tion environments; these elements trace from early objec-

tives, through numerous authoritative data sources, into

conceptual models and scenarios, to be realized by the

composition of simulation services and subsequent execu-

tion and analysis. Simulation data management services

can help to mitigate the subject matter knowledge transfer

shortfalls in complex simulation environment engineering.

Ontological analysis and conceptual modeling are

widely appreciated in the modeling of simulation environ-

ment requirements, but the products of these activities play

a role in automating more of the simulation life cycle. The

following categories stand out as potential knowledge sets

that may be exploited by the simulation life cycle.

• Entity-type catalogs. Entity types, such as vehicles,

aircraft, lifeforms, munitions, and environmental

features, are frequently the fundamental conceptual

building blocks of the simulation environment

design. Entity types involve a wealth of informa-

tion that could be captured in more objective, reu-

sable form rather than the conventional methods of

embedding intrinsic knowledge in software source

code or in simple spreadsheets of enumerations.

Entity types are:

- often defined with numerous identifiers and

aliases, and are defined within multiple

taxonomies;

- often composed of numerous parts, such as

mechanical elements, weapons, sensors, and

other equipment;

- related to many categories of characteristic and

performance data;

- associated with behaviors, states, potential inter-

actions, and observables.

• Named-entity catalogs. Simulation life cycles

within any domain may encounter the same entities

often and can benefit from managing information

about those entities. The country of France, the
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White House, the Grand Canyon, the mayor of

London, the 10th Mountain Division, and Theresa

May are all examples of named entities, about

whom numerous reference data sets may have data

one might need to fuse and integrate for a simula-

tion purpose, or for which a visual or behavior

model might exist. Named entities are often

declared to be of some entity type, as defined in

entity-type catalogs.
• Event and behavior models. Building upon the

entity-type elements described so far, the actions,

events, processes, states, interactions, and other

types of relationships make up more of the concep-

tual model or ontology of a domain. These ele-

ments are often captured in terms of engineering

models for design purposes and captured as infor-

mation exchange models (e.g., HLA FOMs), data

models, or embedded in source code during

implementation.
• Miscellaneous reference data and code lists. Still

more reference data is used during simulation envi-

ronment design, data that can be managed as

knowledge bases and utilized by services enabling

the simulation life cycle. Country codes, language

codes, religion codes, and task lists are some exam-

ples of domain concepts that are essential to char-

acterizing the entities in a conceptual model and to

metadata describing simulation services or data

sets.

All of these knowledge sets play a role in the simulation

life cycle and in enabling the discovery and composition of

simulation services. Accessing and utilizing multiple data

sources is cumbersome and unwieldy unless the various

identifiers, aliases, and taxonomies used by those data

sources are available and sufficiently integrated. The same

can be said of fusing and integrating data from multiple

processes and sources, as part of a simulation life cycle.

Similarly, the functional needs of a composed simulation

service (and implementing simulation environment) under

development, as expressed by entity types and named enti-

ties in the conceptual and executable models and scenarios,

cannot be linked to simulation services, three-dimensional

(3D) visual models, or other available simulation assets for

composition in an automated way, unless the identifier for

real-world entities is relatable to the simulation assets via

metadata. Relevant service patterns for service composi-

tion are as follows.

• Heterogeneous service integration. Not all data

sources, scenario tools, and other data services use

the same identifiers, codes, and definitions for the

force structures, equipment and material, and geos-

patial features; integrating data across data-

producing and -consuming services can be a man-

ual effort unless identifier mappings are managed

and exploited for automation. Knowledge bases of

synonyms, aliases, and identifier mappings can be

used to search multiple heterogeneous external and

internal data stores without the consuming service

(or human user) having to tailor queries to different

schemes. Similarly, misaligned input and output

formats and semantics among data tools and simu-

lation services can be mitigated with knowledge

bases of definitions and mapping.
• Design decisions enabled by domain ontology.

Knowledge about the relationships among data sets

can enable applications to prompt users with smart

defaults or informed options. Relating tasks or

behaviors to relevant simulation services or simula-

tors can simplify the decision making an engineer

or operator must make when composing or employ-

ing simulation services. Common scenarios or past

simulation records can be related to the needs of an

engineer or operator by task performed, operational

environment conditions, military unit type, or

equipment types, for example. Knowledge bases in

the form of ontologies enable relating military unit

types to equipment, to vehicles, to sensors, to weap-

ons, to munitions, and more, for use by simulation

planning tools, simulation environment design

tools, scenario tools, and more.
• Creating composed simulation services using con-

ceptual models as metadata. By annotating simula-

tion services by entity type (e.g., M1A1 tank) and

interaction elements from conceptual models (e.g.,

damage states or hit/kill probability), the effort to

catalog, search for, and assess simulation services

for composition can be further simplified and auto-

mated. Semantic knowledge bases of entity types,

states, and interactions provide the foundational

vocabulary for tagging5 and describing simulation

services in terms of conceptual models.
• Simulation asset management. The management of

other simulation assets can be improved in a similar

manner to that of tagging simulation services by

their conceptual model. Scenarios can be tagged by

purpose, 3D models can be tagged by the entity

type portrayed, renderers (displayed from a sensor),

and renderings (the heat signature of a vehicle

through a non-visual sensor) can all be cataloged by

entity types, behaviors, and observables as defined

by a conceptual model in a knowledge base.

The data services categories above are enablers of

greater automation and availability of simulations through

MSaaS. Integration of simulation planning tools, concep-

tual analysis tools, composition tools, simulation services,
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authoritative data sources, and post-simulation analysis

tools depends on data management and semantic linking

of concepts and services across the simulation life cycle.

5. Composition

Composition occurs at several levels of abstraction; in par-

ticular, in Steps 2–4 of the MSaaS engineering process

(Figure 5). Developing a composed simulation service (or

composition for short) therefore requires an understanding

of the involved simulation services, the functionality each

simulation service provides, and the way the simulation

services interoperate at various levels of abstraction

(Figure 3): implementation-independent, simulation archi-

tecture-specific, and implementation specific. Several

composition services would therefore use service descrip-

tions at these levels of abstraction to determine which

simulation services to use and how to configure them.

When composing at the simulation architecture-specific

level, not only is more detailed model information needed,

but also more technical information related to the simula-

tion architecture itself in order to determine if services will

(technically) fit in the chosen simulation architecture.

When composing at the implementation-specific

level, composition services will rely on implementation-

specific information in simulation service descriptions

that include details about how the simulation service

integrates with other services, such as protocols and

object models, and pragmatic information, such as infor-

mation publication frequencies. This is also information

regarding how services can be configured and executed

and information on the (technical) orchestration of simu-

lation services.

Composition services also need information about the

available computing resources in the MSaaS infrastructure,

whether they be in a cloud environment, local set of ser-

vers, specific local personal computers, or mobile devices.

This information should be provided by the SMC services

(Figure 7). Moreover, compositions may be deployed in

various ways; for example, in terms of stand-alone, single

data center, or multiple data centers.62

Most existing distributed simulation environments

typically require many engineers on call to manage each

simulation component. This takes a great deal of time

and resources and is more susceptible to errors than an

automated process. By using tools to understand techni-

cal, functional, and scenario details about the available

simulation services, the resulting simulation environ-

ment can be deployed, configured, initialized, and exe-

cuted with lesser effort and time. The goal of having

designated composition services is to reduce the time,

errors, and the amount of resources required for compos-

ing simulation services within a simulation life cycle.

5.1. Simulation composition applications

These applications are the front-end user interfaces simula-

tion operators (Figure 1) would use to compose simulation

services.

5.1.1. Simulation supplier applications. This is the interface

used by service suppliers to provide their service and all

the necessary information about that service during com-

position activities. Once simulation suppliers provide the

information about their services, the application should

allow the suppliers or the simulation operators to provide

all the necessary metadata required to compose services

correctly based on the goals for the composed simulation

service (Section 5.1.2). This metadata includes the simula-

tion service descriptions to be used for composition at the

implementation-independent level and for the benefit of

composition services.

The supplier should be able to upload their service

descriptions and service realizations in software in multi-

ple ways as well as provide appropriate registry locations.

Various service realization formats should be permissible

to allow for supplier flexibility: The supplier should be

able to provide (through a link or direct upload) an execu-

table, a container, or virtual machine. In the cases that the

software needs to be compiled once configuration infor-

mation is provided, the supplier should provide a script to

do so rather than relying on the MSaaS components to

manage compilation.

5.1.2. Simulation integration applications. These user applica-

tions allow an integration engineer (a simulation operator

with a more technical focus) to manage simulation ser-

vices and their metadata at various levels of resolution in

service descriptions. The metadata managed here includes

information from all four levels of abstraction (Figure 3).

The integration engineer can manage that metadata within

the context of the organization’s taxonomy and ontologies.

In some cases, new services introduced into the environ-

ment by suppliers may require adjustment to the overarch-

ing taxonomy of capabilities and domain ontologies. For

example, when a higher resolution service is introduced,

the capability that it provides may need more detail within

the appropriate ontology. The integration engineer should

be able to visualize and adjust the operational ontology

and link services to the elements within that ontology.

The integration engineers will also need to verify the

accuracy of all other metadata and be responsible for accu-

racy of the data and how the services are linked within the

overarching MSaaS system.

Finally, the simulation integration engineer user appli-

cation should allow the integration engineer to manage

what simulation operators see (Section 5.1.3), so they can
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navigate through the MSaaS cloud environment to find the

simulation services they require. The level of detail seen

by simulation operators is important to make the system

easy to use. Simulation operators should only see simula-

tion services at a level that makes sense to them and pro-

vides descriptive details about what they can execute at

the level of abstraction the simulation operator is currently

working at. For example, when simulation operators are

trying to find simulation services to provide ground units,

they should not have to work through details about the res-

olution of the armor on those ground units until required

at lower levels of abstraction.

5.1.3. Simulation scenario applications. Determining the con-

crete simulation scenario (in terms of which entities,

events, terrain, etc., are involved) has implications for the

entire simulation environment. In some cases, it may be

appropriate that simulation engineers create and manage

the scenarios and then provide access to them via the simu-

lation operators. In other cases, a simulation operator may

need the ability to set up the scenarios, in which case, these

user applications should provide an easy-to-use scenario

creation/editing interface. Every scenario has engineering-

level decisions to make and these decisions are not trivial,

requiring decisions about computing resources and service

responsibility. For example, there may be areas for high-

resolution versus low-resolution focus within the spatial-

or capability-specific regions. When scenarios will be

managed by simulation operators, then the user interface

for the simulation integration engineers (Section 5.1.2) will

need to include workflow and user interfaces to see the

scenarios, and build out all the low-level functional and

technical details for that scenario to execute prior to the

actual execution.

Note that this discussion deals with handling scenarios,

while the activities of generating scenarios, as described in

the SISO guidelines for scenario generation,42 fall under

what the MSaaS reference architecture4 calls ‘‘Modeling

Services/Applications,’’ which are outside the scope of this

article. For future deliberations, one should keep in mind

that scenarios are tightly coupled to the applications that

generate them, as each application might operate its own

scenario format, data requirements, and modeling capabil-

ities. There is a need for standardized scenario formats. In

the meantime, composition must accommodate several

possible formats.

5.2. Simulation composition services

Simulation composition services are the back-end to the

simulation composition applications. These services must

use service descriptions for available simulation services

to determine which services should be used, and how they

should be configured to provide the appropriate function-

ality and execute the desired simulation. The composition

services then provide the composition to the SMC services

(Section 6) with all the metadata necessary to deploy and

execute the composed simulation service.

Simulation composition services have a formidable job.

They have to use all three elements of service descriptions

at various levels of abstraction (Section 2.3.5) to align the

following cross-cutting interoperability concerns between

simulation services:

The technical interoperability concern refers to syntac-

tic, semantic, and pragmatic interoperability (Section 2.2)

at the implementation-specific level (Figure 3). This

involves the ability for services to communicate over the

network, using a common protocol and Application

Programmers Interface (API), and with the same syntax

(including encoding/decoding of information). This also

includes communication agreements, such as message fre-

quencies, dead-reckoning agreements, network optimiza-

tion strategies, such as Data Distribution Management

(DDM),28 and any details that are specific to the technical

implementation of the simulation environment.

The functional interoperability concern refers to syntac-

tic, semantic, and pragmatic interoperability at the simula-

tion architecture-specific and implementation-independent

levels (Figure 3). This involves assessing that the candi-

date simulation services have the appropriate functional

capabilities; that is, that what they represent within the

simulation environment (the model part of the service

description) aligns well. This concerns ensuring that the

forces being simulated, the fidelity (accuracy), the resolu-

tion (level of detail), and the interactions between those

entities are suitable.

The scenario interoperability concern refers to config-

uring syntactic, semantic and pragmatic interoperability to

a specific scenario for a given simulation life cycle at the

simulation architecture-specific and implementation-

dependent levels. This involves assessing that simulation

services are able to cooperate to represent a specific sce-

nario within the simulation: Simulation services need to be

synchronized on what the simulated entities will be doing

and aligned on the data sets being used for those entities.

Model responsibilities need to be delegated across services

for reasons including scaling, visualization, user interac-

tion (e.g., human players controlling units on specific

workstations), and entity capabilities (i.e., tank modeling

services owning tanks while aviation services own air-

craft). The data sets could also be varied across different

scenarios using different classifications of data, different

performance data of the entities, or automated behaviors.

In order to compose simulation services at the various

abstraction levels, the MSaaS engineering process (Figure

5) must ensure that the chosen simulation services are able

to interoperate together to achieve the desired federated

Hannay et al. 13



capabilities. At the implementation-dependent level, this

boils down to simulation components interoperating in a

simulation environment. In the following we describe the

functionality of composition services according to what

abstraction level of simulation service description they

operate on, taking into account the three cross-cutting

interoperability aspects above. This sheds light on what

information is needed in simulation service descriptions at

the various abstraction levels.

5.2.1. Architecture-agnostic composition services. The simula-

tion service descriptions (Section 2.2) must hold enough

information to determine which services can be com-

posed72 to meet the desired conceptual scenario42 and to

determine if their abstract interfaces, patterns of interac-

tion, and semantics are compatible. For example, a service

providing a sensor capability will be defined in a way to

show its reliance on other data, such as ground truth infor-

mation about entities, which are then provided by a differ-

ent service. These two services can be provisionally

composed based on their service descriptions until further

details are examined. This composition is then further

refined at the simulation architecture-specific level.

5.2.2. Architecture-aware composition services. Composition

services will here need to determine if the services chosen

above can work together at the architecture-specific level,

given architecture-specific information. This metadata

must include the simulation middleware protocols used,

the object models used, and any pragmatic agreements,

such as dead reckoning or interest management. Other

information that is related to the architecture, for example,

communication methods, must be available for the

services.

5.2.3. Implementation-aware composition services.

Implementation-specific composition considers the lowest

level details of the service functionality, including modeling

details, such as the resolution and fidelity details of the enti-

ties and relationships being represented. When two executa-

ble models are integrated, it is important that the interfaces

are appropriate to the desired level of resolution (detail) in

order to avoid data mismatches, translation errors, and poor

assumptions leading to a lack of interoperability. This level

of composition requires details about the service at the lowest

levels. The suppliers are in the best position to provide this

information, but they must also align that information with

the implementation-independent ontology-based description

(Figure 3).

5.2.4. Further architecture and implementation-dependent

metadata. Service descriptions at lower levels of

abstraction must be quite detailed. Necessary deployment

metadata includes all the information required by SMC to

deploy and execute the service. This information includes

the operating system, computing footprint, licensing

details, and security constraints.73 Configuration metadata

includes all the information regarding how a service can

be configured, including both what is being configured

and how those items are being configured. Example con-

figuration mechanisms include environment variables,

command line parameters, configuration file changes, or

even user interface actions, which can be automated with

tools such as Sikuli (http://doc.sikuli.org/).

Both deployment and configuration aspects span across

all simulation components, including middleware (e.g.,

HLA RTI), gateways, management tools, and after action

review (AAR) tools.

The aspects that can be configured span across techni-

cal, functional, and scenario details. There is overlap

across those three areas. The scenario responsibilities of a

service have a direct impact on the technical configuration

requirements of the service. For example, the computa-

tional resources would be higher if the number of entities

represented within the scenario is higher. If a service can

execute at varying levels of resolution, then the computing

footprint could differ depending on the simulation’s func-

tional representation requirements. As the scenario size

changes, the modeling responsibilities of each service

could change, requiring different levels of computing

power and memory. The information is quite often in sets

or ranges. For example, a service could run on multiple

operating systems and could use a range of memory sizes

or processing power, and those details could depend on

the capabilities required or the size of the scenario.

Services do not have to have separate service imple-

mentations for each simulation protocol, operating system,

code platform, etc. Instead, services can have multiple

modes (that need to be configured), including:

• multiple protocols for communication (e.g., HLA,

DIS, TENA, DDS, etc.);
• multiple operating system choices;
• multiple sets of data (force structures, entity repre-

sentation variants, data classification, etc.);
• multiple modes (e.g., representing the entire entity

versus allowing external services to represent por-

tions of an entity;
• multiple user interface options, including running

headless, having a ground truth view, or being a

simulation user station (e.g., virtual interface).

Determining the services required to provide a simula-

tion capability is based on the functional capabilities of

the components and the hierarchy and relationships of the

functionality.
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Breaking down a high-level functional capability into

its lower level atomic parts, and then representing the rela-

tionships between those atomic parts, allows for compo-

nents to be mapped to that functional decomposition, and

then chosen, as the simulation environment goals are iden-

tified in the form of high-level functional capabilities.

When a simulation user identifies the functional capabil-

ities required, they should not be presented with low level

considerations unless they choose to. The user will most

likely want to focus on high-level capabilities, such as pick-

ing the force structure, the terrain location, and some high-

level actions. There may be many choices for which com-

ponents can be used, each with their own advantages and

disadvantages. The user may care about some of the func-

tional and scenario options of the services. This implies that

a composition service needs to provide a user interface

based on the functional selection of services, including any

options that the user may want to select, including data,

model pedigree, modeling resolution of certain aspects of

the simulation, and other details. In that case, the available

component choices should be available to be displayed to

the user based on the metadata available.

The composition services have the role of providing

service metadata to the SMC services to set up and manage

the composed simulation service. The information required

by the SMC includes all the details required to understand

service capabilities, requirements, and execution details.

The descriptive elements for service metadata include

the following.

• Repository location: Where to find the service

application (virtual machine, container, executable,

and/or configuration files).
• Version of the service: Multiple versions could

exist within the repository, and each could be used

at different times depending on the concern (techni-

cal, functional, or scenario).
• Dependencies: There are many dependencies a ser-

vice could have, including operating system,

libraries, network configuration (e.g., ports open),

and anything required to be in place for the service

to execute properly.
• Execution initiation information: How to start the

service, including parameters such as environment

variables, the command line parameter, or a script

that handles all of the above-mentioned configura-

tion items, such as the following.

- Scenario configuration: Force structure, model-

ing responsibilities, and anything else that

denotes the service’s responsibility during the

simulation and what it should execute regarding

the scenario.

- Technical configuration: The scale of the ser-

vice’s responsibilities could differ between sce-

narios. The protocols that the service uses may

differ across simulations that use different

architectures. Any technical information that the

service requires to run could differ across simu-

lations and must be configured accordingly.

• Tags and/or labels for features and capabilities of

the service to be used to find the appropriate service

for each simulation.
• Data artifact information: Data generated and

logged/stored from each simulation should be

retrievable after the simulation. The data could be

in any form (e.g., database file, set of files, data-

base located locally or distributed, graphics created,

etc.). The composition service should record what

data will be generated (metadata), the data type

(file, set of files, etc.), its location, and in some

cases a script to execute to obtain data.
• Streaming mechanism: Services may include a gra-

phical display that needs to be streamed to users

during the simulation, or recorded for viewing after

the simulation. Streaming of the display can be

done generically from a virtual machine configura-

tion using a streaming program, such as VideoLAN

Streaming Solution (https://www.videolan.org/vlc/

streaming.html) or Apache Guacamole (https://gua-

camole.apache.org/).

Service implementations within a distributed simula-

tion environment should not be limited to one type of

software executable. A service implementation can be a

binary executable with accompanying configuration

files, a container image that needs to be deployed to a

container orchestration environment such as Kubernetes

(https://kubernetes.io/), or a virtual machine that needs

to be delivered to and executed within a hypervisor or

virtual machine monitor. The service implementation

details across this range of execution variations will

need to be accounted for in the metadata provided to

the SMC. Obviously, simplifications can be made when

using one type of software executable, such as

containers.

The SMC will be responsible for the deployment, con-

figuration, execution, monitoring, and management of the

services using the application details captured within the

composition services. As a part of the systems engineering

and design of a simulation environment, it should be

decided which execution types (virtual machines, contain-

ers, binaries, etc.) can be included and therefore need to

be accounted for within the composition services.
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6. Service management and control

The NATO C3 Taxonomy defines SMC as a collection of

capabilities to coherently manage components in a feder-

ated service-enabled information technology infrastruc-

ture. In this definition, SMC concerns policies, human

processes, and procedures, as well as computer and infor-

mation systems (CIS) capabilities to manage components.

This is in line with IT Service Management (ITSM), a

term used for frameworks such as COBIT (Control

Objectives for Information and related Technology) and

ITIL (Information Technology Infrastructure Library).

For MSaaS, the policy and procedure side of SMC is to

some extent addressed by the MSaaS Governance Policies,74

the MSaaS Operational Concept,75 and the MSaaS engineer-

ing process.43 Our focus here is on CIS capabilities.

In the following, we elaborate on SMC to manage simu-

lation services and composed simulation services in a

MSaaS infrastructure. The focus will be on the Execute

capabilities of the MSaaS portal (Figure 1); that is, the

means to start and stop composed simulation services

(compositions), to monitor compositions, and to test if

compositions function as required. The capabilities are

described at an implementation-independent level as SMC

Applications and SMC Services, and several concrete

examples of such services are provided.

6.1. Simulation SMC user applications

Simulation SMC user applications are the front-end user

interface of the Simulation Operators (Figure 1) to the

back-end SMC Services. The main SMC capabilities pro-

vided are Simulation Service Test Management and

Simulation SMC; recall Figure 7.

6.1.1. Simulation Service Test Management user applications.

These user applications enable the simulation operator to

ensure that the various (simulation) services function prop-

erly; that is, with compliance to agreed service interfaces

and contracts. The correct functioning of a (composed)

simulation service is tested before it is entered in the ser-

vice registry, but testing typically occurs throughout the

service lifetime; for example, for particular training exer-

cises. Service testing can be performed at various steps of

the MSaaS engineering process (Figure 5) and correspond-

ing levels of service abstraction (Figure 3).

At the implementation-independent level, (composed)

simulation services can be tested using, for example, a

framework that provides methods, techniques, and tool

support for verifying composability at a syntactic and

semantic level of simulation interoperability.72 That frame-

work includes a verification process for model composition

and uses BOMs with several semantic extensions.

At the simulation architecture-specific level there are

several applications available for testing. Examples of such

applications are the NATO Integration Verification and

Certification Tool (IVCT; https://www.mscoe.org/nato-hla-

certification-ivct/) and the Joint Exercise Control Suite

(JECS; JECS is a trademark of Knight Federal Solutions).

The NATO IVCT is an application to test the interoperabil-

ity capabilities of HLA simulation components and to sup-

port the integration of distributed simulations. The

application consists of several software components,

including a web-based front-end with several back-end

components (i.e., test services; see Section 6.2.4), such as a

test case execution engine and a set of executable test cases

for (NATO Education and Training Network) NETN FOM

modules.76 The test case engine provides an API for inject-

ing additional test cases. The tool is open source and was

provided to NATO as an Initial Operational Capability

(IOC) for HLA certification in 2017. JECS supports the

testing of, among other things, Joint Live Virtual and

Constructive (JLVC) training events. JECS includes sev-

eral tools, such as the Joint Simulation Protocol Analyzer

(JSPA), Joint Master Enumeration Manager (JMEM), and

Joint Analysis Workstation (JAWS). JSPA manages data

flows among simulation components to support trouble

shooting during exercise test and execution. JMEM checks

the platform names, weapon effects, and sensor codes (i.e.,

entity-type values) used by the simulation components to

support consistent communication exchanges among the

various components. JAWS provides a replay of interac-

tions among simulation components.

To enable a greater degree of automated service testing,

simulation services need to be consistently described

(Section 2.2), preferably in a machine-readable format. For

example, the BOM format24 mentioned earlier caters for

several aspects of service descriptions; in particular, patterns

of interplay with other simulation services. The information

in the BOM is input to the construction of test models for

testing simulation services at a simulation architecture-

specific level.77 Although the construction of test models is,

in practice, a largely manual step, more automation may be

possible in the future through model-based testing tools.

We describe Simulation Service Test Management user

applications as a separate capability, and current imple-

mentations are often applications dedicated to particular

simulation technology. However, our vision is that these

applications should become more integrated with the

MSaaS portal and the simulation SMC user applications,

described in the next section.

6.1.2. Simulation SMC user applications. These user applica-

tions enable the simulation operator to view available

composed simulation services (i.e., compositions) that

meet certain objectives; to select an appropriate
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composition for execution; to reserve resources for the exe-

cution of a composition; to provide input parameters and

start a selected composition; and to monitor, manage, and

control previously started compositions. Each composition

may be implemented with different simulation technologies

and use different simulation architecture topologies.

When the simulation operator determines the composi-

tion he wants to execute, some follow-up choices should

be presented to inform the application of when and how

the composition should be deployed and executed. The

simulation operator should be able to schedule the execu-

tion for any time he chooses, albeit there could be some

resource contention issues. When resources are reserved,

they should become unavailable for other users, and that

information should be displayed to the simulation opera-

tor. Other information that a simulation operator should be

able to provide is a description for other users to see for

the purposes of re-use, privacy information (who should

have access to the composition and resulting data), and

use case/organization-specific information. For example,

when used for training, the user application may provide

information on unit availability and a workflow for sce-

nario generation/changes.

These applications provide, among other things, func-

tionality to start and stop (composed) simulation services,

discover available services, provide reports on service and

resource usage, provide dashboards and statistics charts,

manage exceptions, and manage service metadata. The

applications interact with the underlying technical services

to provision (virtualized) resources and to obtain the

required performance data, services metadata, composition

data, and so on. In a large part, this category of application

exposes to simulation operators the service execution

capability of the envisioned MSaaS portal.

It has already been noted38 that when using container

technology, the required functionality for simulation SMC

user applications can largely be provided by current con-

tainer orchestration environments, such as Kubernetes.

Kubernetes is an open source product for automating the

deployment, scaling, and management of containerized

applications: in our case, (composed) simulation services.

The Kubernetes user interface is a web-based front-end for

back-end SMC functionality. The Simulation Service Test

Management user applications described above may be

deployed using the same container orchestration environ-

ment used for the regular (composed) simulation services.

For example, the NATO IVCT is available in the form of

Docker (https://www.docker.com/) container images and

can be deployed in such a container orchestration environ-

ment, thereby becoming part of the MSaaS portal together

with the simulation services. In this way, a (composed)

simulation service can be tested in the same environment

as where it is used. Compositions can be started and

stopped via a dashboard; for example, Monocular (https://

github.com/helm/monocular); see Figure 8, where each

icon on the dashboard represents a composition in the

form of a Kubernetes Helm Chart (https://helm.sh/), stored

in a (Git) repository.

6.2. Simulation SMC services

Simulation SMC services are the back-end services of the

front-end simulation SMC applications (Figure 7). We dis-

tinguish between SMC services that need to be aware of

the simulation architecture of a particular composition, and

services that function regardless of the selected simulation

architecture. We start with architecture-agnostic services.

6.2.1. Architecture-agnostic simulation monitoring, metering,

and logging services. In terms of Section 2.3 applied to

infrastructure services, the implementation-independent

service descriptions of these services do not need a simula-

tion architecture-dependent refinement and do not follow

the path of implementation-specificity of simulation ser-

vices. However, they would have other architecture- or

implementation-specific service description refinements

on their path to implementations. We use three terms to

characterize this kind of service, as follows.

• Monitoring. Monitoring services monitor service

communication based on service calls and message

exchanges to identify performance issues and deter-

mine current availability. Examples are the rate at

which DIS entity state PDUs are exchanged, the

occurrence of specific events, such as weapon fire

and munition detonation events in an entity-level

engagement simulation, or events that indicate

simulation execution state changes.
• Metering. Metering services measure levels of

resource utilization by individual simulation ser-

vices, such as the number of HLA-RTI calls and

callbacks, number of DIS messages received or

sent, number of get/set operations on a simulation

state database, number of simulation entities man-

aged/owned by a service, etc. The measured values

can be used to determine if sufficient resources are

allocated to run the service.
• Logging. Logging services provide functionality for

capturing, filtering, and writing the data collected

through monitoring and metering. The resulting

logs can be used for auditing purposes, trouble-

shooting, performance optimizations, etc. The data

should be combined with metrics from core ser-

vices,71 such as memory and CPU usage.

Often, these capabilities are mixed and service imple-

mentations may provide several or all of the services; see
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Table 1 for examples. Most of these tools provide both

containerized and non-containerized installation options

for different platforms, and are suitable for use in a

MSaaS infrastructure. Figure 9 shows an example of a

Prometheus and Grafana (https://prometheus.io/docs/

visualization/grafana/) dashboard for Kubernetes cluster

monitoring. Via this dashboard the whole cluster, nodes,

or individual services can be monitored (e.g., memory

Figure 8. Kubernetes search and discovery user interface for Helm Chart repositories.

Table 1. Potential implementations of some monitoring, metering, and logging services.

Monitoring Datadog https://hub.docker.com/r/datadog/agent
Monitoring Graphite https://github.com/graphite-project/graphite-web
Monitoring Scout https://scoutapp.com
Monitoring Prometheus https://hub.docker.com/u/prom
Monitoring Grafana https://hub.docker.com/u/grafana
Monitoring EFK = Elasticsearch + FluentBit + Kibana https://docs.fluentd.org/v/0.12/articles/docker-logging-efk-compose
Monitoring ELK = Elasticsearch + Logstash + Kibana https://hub.docker.com/r/sebp/elk
Monitoring Graylog https://hub.docker.com/r/graylog/graylog
Monitoring Grafana https://hub.docker.com/r/grafana/grafana
Metering Collectd https://collectd.org
Metering Telegraf https://hub.docker.com/_/telegraf
Metering cAdvisor https://github.com/google/cadvisor
Metering Influxdb https://hub.docker.com/_/influxdb
Metering Sensu https://sensu.io
Metering Sematext https://sematext.com
Logging Syslog (standard Linux tool)
Logging Fluentd https://hub.docker.com/r/fluent/fluentd
Logging Filebeat https://hub.docker.com/r/elastic/filebeat
Logging Fluent-bit https://hub.docker.com/r/fluent/fluent-bit
Logging Metricbeat https://hub.docker.com/r/elastic/metricbeat
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usage, disk space usage, network usage). This is an exam-

ple of an architecture-agnostic service, since it is not

aware of the simulation architecture used in the composi-

tions that run in the cluster. For more information about

what is happening inside a composition we need simula-

tion architecture-aware SMC services.

6.2.2. Architecture-aware simulation monitoring, metering, and

logging services. These services mimic the similarly named

architecture-agnostic services, but are aware of the simula-

tion architecture used in a composition in order to collect

simulation data from the composition. Architecture aware-

ness is achieved through the provisioning of specific adap-

ters that can hook into a composition and collect the data.

Examples of simulation architecture-aware logging ser-

vices are HLA or DIS data recording services. Also, sev-

eral of the tools listed in Table 1 provide the possibility to

add simulation architecture-specific adapters.

In some instances, the monitoring, metering, and log-

ging services may be part of the composition itself. This

entails that the service description abstraction levels of

these simulation SMC services follow the service descrip-

tion abstraction levels of the composed simulation services

on which they operate. Following Section 2.3 also for

infrastructure services, the simulation SMC services would

have service descriptions at the implementation-agnostic

level, but since they need to be simulation architecture

aware, they would also have simulation architecture-

dependent descriptions.

6.2.3. Architecture-aware simulation control services. These

services provide the capability to control the simulation

execution state of a (composed) simulation service.

Similar to the monitoring, metering, and logging services,

the simulation control services may be simulation

architecture-aware and possibly part of the simulation

composition, rather than an architecture-independent SMC

service in the MSaaS infrastructure. Simulation control

services also provide the capability to orchestrate the

initiation and termination of the simulation services within

a composition. A few examples of simulation control ser-

vices can be found in the literature.70,78–80

6.2.4. Architecture-aware simulation test services. These ser-

vices are the back-end technical services of the Simulation

Service Test Management User Applications (Figure 7).

These services are simulation architecture-aware, and they

test if compositions comply with agreed service interfaces

and contracts. Monitoring, metering, and logging services

may be needed to assist the test services in collecting data;

for example, metrics on HLA-RTI interface usage.

Simulation control services can also be used to orchestrate

the initiation and termination of test services.

In case of the NATO IVCT, the test services are pro-

vided by a single back-end (containerized) component, the

IVCT Test Case Runner. The IVCT Test Case Runner

executes the configured test cases against the system under

test. In the context of MSaaS, this can be a non-cloud-

based simulation component or environment, or a

Figure 9. Kubernetes cluster, node, and service monitoring using Prometheus and Grafana.
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(composed) simulation service located in the MSaaS infra-

structure. Test cases are packaged in Docker container

images and provided to the Test Case Runner for execu-

tion. The Test Case Runner is operated via a web-based

front-end (Section 6.1.1).

6.2.5. Provisioning services. Provisioning services manage

the instantiation, run-time management, and disposal of

dynamically scalable and virtualized infrastructure

resources. Provisioning services use the results of the com-

position services to create the declared resources as

defined in the composition description. To do this, the

description of a composition must contain sufficient tech-

nical information for the provisioning and deployment of

resources (see Section 5 for more information). In the

example of a container orchestration environment such as

Kubernetes or Docker, the virtualized infrastructure

resources are containers, overlay networks, and data

volumes, and the provisioning information is provided as

a Helm Chart in Kubernetes or Docker Compose file in

Docker. Provisioning services are simulation architecture

agnostic.

6.2.6. Service discovery services. These services provide

information about (composed) simulation services cur-

rently executing, and information about composed simula-

tion services available for execution in the MSaaS

infrastructure. This deals with run-time discovery as

opposed to design-time discovery (Section 4.1.2). To con-

tinue the example with Kubernetes, the status of executing

compositions can be inspected via the Kubernetes

Dashboard, and available compositions can be queried via

Monocular, a web-based application that enables the

search and discovery of Helm Charts from multiple Helm

Chart repositories. These services are simulation architec-

ture agnostic.

6.2.7. Other applications and services relevant to SMC. The

sections above elaborated on a number of simulation SMC

applications and services relevant to MSaaS. A MSaaS

infrastructure will generally rely on further non-simula-

tion-particular capabilities to those discussed here.

Examples would be storage services, database services,

infrastructure providing services, many of which are at the

level of Infrastructure as a Service (IaaS) and Platform as

a Service (PaaS).

7. Final remarks

Earlier discussions81 have remarked that the notion of

‘‘reference architecture’’ should be reserved for blueprint

architectures that contain more detail than what is perhaps

commonly the case for many so-called reference architec-

tures. The efforts in the preceding discussion should con-

tribute to making the MSaaS reference architecture4 more

specific and useful to developers, service providers, and

service consumers than it is in its current form, which is

more in the form of an overarching architecture.81

By elaborating on the essential MSaaS infrastructure

capabilities, that is, simulation data management capabil-

ities, simulation composition capabilities, and simulation

SMC capabilities, we hope to shed light on how simula-

tion services and composed simulation services can be dis-

covered, composed, and executed in practice, using

implementation-independent simulation service descrip-

tions at design time and implementation-specific service

description at implementation time.

The functionality needed for the MSaaS infrastructure

is, in many cases, provided by existing platforms and fra-

meworks. However, as the elaborations on MSaaS infra-

structure capabilities in this article indicate, it is necessary

to offer that functionality as services to fulfill the MSaaS

vision and to provide the MSaaS portal functionality on

various platforms. Infrastructure functionality as services

entails that one uses the same principles of service descrip-

tion abstraction levels as we put forth for simulation

services.

We also found that MSaaS infrastructure services in

some instances are simulation services and become part of

a composed simulation service. Then, these infrastructure

services would have the same service description abstrac-

tion levels that (composed) simulation services have.

However, in other instances, MSaaS infrastructure services

are supporting services that do not adhere to simulation

architecture. In the latter case, they would have a different

service description abstraction structure from that of simu-

lation services. Further, such infrastructure services might

not need to be designed to be composed rapidly and read-

ily to the same extent as simulation services. Indeed, it

may not even be necessary to formulate that functionality

in terms of services. However, to conform with other fra-

meworks, such as the NATO C3 Taxonomy, the MSaaS

reference architecture does formulate this more stable

functionality as services. Understanding the distinction

between these different types of infrastructure service

should help to prioritize what infrastructure functionality

to provide as services first.

Future work will elaborate further on MSaaS infrastruc-

ture capabilities. In particular, it is essential to understand

how infrastructure services differ in content and roles, as

expressed in topologies for different simulation architec-

tures. Indeed, the contents and roles of MSaaS infrastruc-

ture services might to some degree define the various

simulation architectures. This is especially interesting

when investigating newer edge and fog architectures

applied to simulations.
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23. Durak U, Oğuztüzün H, Köksal Algin C, et al. Towards

interoperable and composable trajectory simulations: an

ontology-based approach. J Simulat 2011; 5: 217–229.

24. SISO-STD-003:2006. Standard for Base Object Model

(BOM) template specification.

25. Mojtahed V, Svee EO and Zdravkovic J. Semantic enhance-

ments when designing a BOM-based conceptual model repo-

sitory. In: Proceedings of the 2010 international simulation

multi-conference, Ottawa, Canada, 12–14 July 2010.

Simulation Interoperability Standards Organization.

26. Mojtahed V, Andersson B, Kabilan V, et al. BOM++ , a

semantically enriched BOM. In: Proceedings of the 2008

spring simulation interoperability workshop (SIW) (08S-

SIW-050), Orlando, FL: Simulation Interoperability

Standards Organization.

27. Moradi F, Ayani R, Mokarizadeh S, et al. A rule-based

approach to syntactic and semantic composition of BOMs.

In: Proceedings of the 11th IEEE international symposium

on distributed simulation and real-time applications (DS-RT

2007), Chania, Greece, 22–26 October 2007, pp.145–155.

Chania, Greece: IEEE Computer Society.

28. 1516:2010. IEEE standard for Modeling and Simulation

(M&S) High Level Architecture (HLA).

Hannay et al. 21

https://orcid.org/0000-0002-8657-7593
https://orcid.org/0000-0002-8657-7593


29. 1278.2:2015. IEEE standard for Distributed Interactive

Simulation (DIS) – communication services and profiles.

30. Test Resource and Management Center. TENA the test and

training enabling architecture – architecture reference docu-

ment, Version 2002, 2002.

31. World Wide Web Consortium. Web Services Description

Language (WSDL) version 2.0 Part 1: core language, 2007.

32. World Wide Web Consortium. Web Services Semantics

(WSDL-S) version 1.0, 2005.

33. World Wide Web Consortium. Semantic annotations for

WSDL and XML schema, 2007.

34. World Wide Web Consortium. Web services architecture –

W3C working group note, 2004.

35. World Wide Web Consortium. SOAP version 1.2 Part 1:

messaging framework (2nd ed.), 2007.

36. World Wide Web Consortium. Web Application Description

Language (WADL) submission, 2009.

37. Fielding RT and Taylor RN. Principled design of the

modern web architecture. ACM Trans Internet Technol

2002; 2: 115–150.

38. van den Berg TW and Cramp A. Container orchestration

environments for M&S. In: Proceedings of the 2018 winter

simulation innovation workshop, 18W-SIW-006, Orlando,

FL, 21–26 January 2018. Orlando, FL: Simulation

Interoperability Standards Organization.

39. Tolt G, Hedström J, Bruvoll S, et al. Multi-aspect path plan-

ning for enhanced ground combat simulation. In: 2017 IEEE

symposium series on computational intelligence (SSCI),

Honolulu, HI, 27 November–1 December 2017, pp.1–8

Honolulu, HI: IEEE.

40. de Reus N, van den Berg TW, Janssen H, et al. Lessons

learned from leveraging Simulation as a Service in Viking18.

In: Proceedings of the interservice/industry training, simula-

tion, and education conference (I/ITSEC) 2018, Orlando, FL,

26–30 November 2018, Paper No. 865889. Orlando, FL:

National Training and Simulation Association.

41. Bruvoll S, Hannay JE, Svendsen GK, et al. Simulation-sup-

ported wargaming for analysis of plans. In: Proceedings of

the NATO modelling and simulation group symposium on

M&S support to operational tasks including war gaming,

logistics, cyber defence (STO-MP-MSG-133), Munich,

October 2015, Paper No. 12. NATO Science and Technology

Organization.

42. SISO-GUIDE-006:2018. Guideline on scenario development

for simulation environments.

43. NATO Science and Technology Organization. MSaaS refer-

ence architecture: volume 3—MSaaS engineering process.

Technical Report STO-TR-MSG-136-Part-VI, 2018.

44. 1730:2010. IEEE recommended practice for Distributed

Simulation Engineering and Execution Process (DSEEP).

45. 1730.1:2013. IEEE recommended practice for distributed

simulation engineering and execution process Multi-

Architecture Overlay (DMAO).

46. van Steen M and Tanenbaum AS. Distributed systems.

Createspace Independent Publishing Platform, 2017.

47. van den Berg TW and Luz R. Simulation environment archi-

tecture development using the DoDAF. In: Proceedings of the

2015 fall simulation innovation workshop, (15F-SIW-019),

Orlando, FL, 31 August–4 September 2015. Orlando, FL:

Simulation Interoperability Standards Organization.

48. Michlmayr A, Rosenberg F, Platzer C, et al. Towards reco-

vering the broken SOA triangle—a software engineering per-

spective. In: Proceedings of the 2nd international workshop

on service oriented software engineering (IW-SOSWE’07),

Dubrovnik, Croatia, 3 September 2007, pp.22–28. New

York: ACM.

49. Michlmayr A, Rosenberg F, Leitner P, et al. End-to-end sup-

port for QoS-aware service selection, binding, and mediation

in VRESCo. IEEE Trans Serv Comput 2010; 3: 193–205.

50. Fette I and Melnikov A. The WebSocket Protocol—Internet

Engineering Task Force (IETF) request for comments: 6455,

2011.

51. Organization for the Advancement of Structured Information

Standards. Advanced Message Queuing Protocol (AMQP)

version 1.0, 2012.

52. ECMA-404:2013. The JSON Data Interchange Format.

53. Pullen JM, Corner D, Brook A, et al. MSDL and C-BML

working together for NATO MSG-085. In: Proceedings of

the 2012 spring simulation interoperability workshop (SIW),

12S-SIW-045, Orlando, FL, 18–26 March 2012. Orlando,

FL: Simulation Interoperability Standards Organization.

54. Allen GW and Schroeder L. Utilization of Service Oriented

Architecture (SOA)-based commercial standards to address

Live, Virtual, Constructive (LVC) interoperability chal-

lenges. In: Proceedings of the interservice/industry training,

simulation, and education conference (I/ITSEC) 2011.

Orlando, FL, 3–6 December 2011. National Training and

Simulation Association.

55. Coolahan JE and Allen GW. LVC Architecture Roadmap

Implementation—results of the first two years. In:

Proceedings of the 2011 fall simulation interoperability

workshop (SIW), 11F-SIW-025, Orlando, FL, 19–23

September 2011. Simulation Interoperability Standards

Organization.

56. Allen GW, Lutz R and Richbourg R. Live, virtual, construc-

tive, architecture roadmap implementation and net-centric

environment implications. ITEA J 2010; 31: 355–364.

57. Asprusten M and Hannay JE. Simulation-supported wargam-

ing using M&S as a Service (MSaaS). In: Proceedings of the

NATO Modelling and Simulation Group symposium on

multi-national pooling and sharing of simulation resources

under the M&S as a Service paradigm (STO-MP-MSG-159),

Ottawa, Canada, 11–12 October 2018, Paper No. 14. NATO

Science and Technology Organization.

58. Cxayırcı E and Özcxakır L. Modeling and simulation support to

the defense planning process. J Defens Model Simulat Appl

Meth Technol. Epub ahead of print 7 November 2016. DOI:

10.1177/1548512916675433.

59. SISO-STD-007:2008. Standard for Military Scenario

Definition Language (MSDL), 2008.

60. SISO-STD-011:2014. Standard for Coalition Battle

Management Language (C-BML) phase 1, Version 1.0,

2014.

61. Ford K, Lloyd J and Smith N. NATO aligned UK Approach

to Modelling and Simulation as a Service. In: Proceedings

of the NATO Modelling and Simulation Group symposium

22 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 00(0)



on M&S technologies and standards for enabling alliance

interoperability and pervasive M&S applications (STO-MP-

MSG-149), Lisbon, Portugal, 19–20 October 2017, Paper

No. 4. NATO Science and Technology Organization.

62. Cxayırcı E. Modeling and simulation as a cloud service: a sur-

vey. In: Proceedings of the 2013 IEEE winter simulation

conference, Washington, DC, 8–11 December 2013, p.389–

400. IEEE.

63. Cxayırcı E and Rong C. Intercloud for simulation federations.

In: 2011 international conference on high performance

computing & simulation, Istanbul, Turkey, 4–8 July 2011,

pp. 397–404. IEEE.

64. Cxayırcı E, Karapinar H and Özcxakır L. Joint military space
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