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ABSTRACT

This paper calls attention to important practices in the mo
eling and the simulation of wireless ad hoc networks. W
present three case studies to highlight the importance
following well-established simulation techniques, of care
fully describing experimental study scenarios, and, finall
of understanding assumptions sometimes unstated in
framework of a simulator. The first case addresses t
initial transient problem inherent to mobility and traffic
generation sub-models. We quantitatively demonstrate h
these transients can affect the simulation. Our second c
illustrates the fact that strong scientific contributions ca
only be made via simulation studies when the models us
are unambiguously specified. The example we use are s
ulations with and without a model for the ARP protocol
Finally, our third case discusses the importance of unde
standing the simulation tool and any default values used f
model parameters. The example used relates to the use
the limited interference model.

1 INTRODUCTION

It is widely known that comprehensive models for wireles
ad hoc networks are mathematically intractable. On its ow
each individual layer of the protocol stack may be comple
enough to discourage attempts at mathematical analysis.
teractions between layers in the protocol stack magnify th
complexity. In order to better understand these protoco
many have resorted to an experimental approach with ru
ning networks, which can quickly prove to be cumbersom
and expensive. For these reasons, computer simulation
been the tool of choice to study wireless networks in
scalable, controllable and repeatable environment.
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It is therefore not surprising that computer simulation
has been used to develop much of the knowledge we hav
today in the performance of protocols for wireless net-
works. The vast majority of this body of work has been
developed with the assistance of only a few simulators
namely OPNET, ns-2, and GloMoSim. While these tools
are household names in the wireless networking community
other simulators have been developed to address specifi
research questions or to take the capabilities of the too
in directions not covered by their predecessors. One suc
example is our own SSF-based Simulator for Wireless Ad
Hoc Networks (SWAN) (Liu et al. 2001), developed at
the Institute for Security Technology Studies, at Dartmouth
College. This simulator is being constructed to study the
security exposures of protocols for wireless networks.

In the development of SWAN, we have looked for
starting points in the literature and in existing open source
simulators. While much of what we have found was of
great assistance, not all that we discovered was positive
In what regards model development, there seems to be
long lag between the time when a model is embraced by
the community and the time when that model becomes
well-understood. Recent developments in the analysis o
mobility models serve to corroborate this observation (Yoon
et al. 2003, Bettstetter et al. 2002). Also, concerning the
simulation methodology used in experimental studies in
this community, we have come across evidence of ample
room for improvement. Discounting the eventual cases o
less-than-rigorous analyses of simulation output that end
up published, there are also instances when establishe
simulation techniques are ignored resulting in studies with
compromised credibility. Our goal in this paper is to propose
steps toward averting the crisis of credibility that has been
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building up around simulations of computer networks, a
pointed out by Pawlikowski et al. (2002).

The study presented in this paper results from effor
to validate the models created for SWAN and to establi
our own experimental methodology. In order to constru
consistent and meaningful scenarios for our experiments,
set out to determine parameters values for each sub-mo
in our simulations. Surveying the literature, we discovere
that, while certain parameter settings have been widely us
the reason for their choosing is most often not explained a
their effects not understood. As we attempted to evaluate
motivation for these choices, we have chosen to investig
how they impact our simulations.

Note that although this paper has points in commo
with works such as Takai et al. (2001) and Heideman
et al. (2001), our main goals are quite different. We do n
intend so much to evaluate the effects of detail as to c
attention to the necessity of precisely and completely stati
the simulation scenarios used in any experimental wor
with wireless networks. This is not to say that the resul
presented here don’t shed light into the matter of analyzi
the sensitivity of wireless network simulation models t
their various parameters. We present these results pa
to demonstrate this sensitivity phenomenon. Our resu
illustrate that without the detailed description of experimen
it is unlikely that anyone will be able to successfully replicat
or build upon them.

Understandably, many publications reporting the sim
lation of wireless networks do not disclose all the parame
settings for their studies. The media used for scientific co
munications, conference proceedings or journals, does
allow one to dedicate much space to listing parameter valu
The obvious solution, which has been gaining populari
quickly, is to make this kind of information available in a
web page associated with the paper (though it is not obvio
how to make the information persistent). Our work follow
this practice and the detailed descriptions of our expe
ments and result data are available athttp://www.eg.
bucknell.edu/˜perrone/research/ . We hope
that this data can help the users of our simulator to beco
cognizant of the characteristics of our models.

The remainder of this paper is structured as follow
Section 2 discusses the importance of “warming up” mode
to avoid transients in the simulations. Although this is a
age old practice, it is hardly referred to in most experime
tal studies of wireless networks. Next, in Section 3, w
illustrate the importance of a thorough structural descri
tion of the simulation model. The case studied conside
the sensitivity of the simulation to the use of the Addres
Resolution Protocol (ARP) in the protocol stack model o
the wireless node. Section 4 illustrates the dangers of us
a wireless network simulator without fully understandin
its implementation. The case studied showcases the effe
of the radio propagation model on networking metrics. F
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nally, Section 5 presents final thoughts and directions fo
future research.

2 THE INITIAL TRANSIENT PROBLEM

It is surprising that although basic methodology for compute
simulation was established decades ago, many recent stud
still pay little attention to it. The vast majority of papers on
the simulation of wireless networks seems to ignore the fa
that one or more of their sub-models do requirewarm-up
time to avoid transient behavior. In this section we explore
two different ways in which the initial transient problem
manifests itself in the simulation of wireless networks. The
first regards sub-models in the simulation environment tha
“drive” the networking nodes. The second regards directl
the sub-models that compose the simulated networking nod

Our first case study is illustrated by the application of the
random waypoint model(RWM). Although our case study
focuses on RWM, the issues we investigate are relevant
other mobility models as well. We hope that efforts such
as ours will serve to motivate the further analysis of othe
mobility models either through experimental or mathemat
ical means. Next, we present an experimental explorato
analysis of RWM’s sensitivity to a few parameters.

The algorithm behind RWM is very simple and is
based on only three parameters:pause_time, min_speed,
andmax_speed. The time a mobile remains stationary be-
tween spurts of movement is deterministic and specified b
pause_time. All mobiles start out paused and begin to move
at the same time: the end of the initial pause. Each mo
bile then chooses a destination (waypoint) independent
and uniformly, and travels toward it with a speed sam
pled uniformly frommin_speedto max_speed, inclusively.
Upon reaching a waypoint, the mobile pauses again and t
algorithm repeats.

As shown by Yoon et al. (2003), although RWM is the
most popular mobility model in the simulation analysis of
mobile wireless networks, it has significant perils. First, if
min_speedis set to zero or a very small value, the instan-
taneous node speed (a metric that quantifies the aggreg
level of mobility) converges to zero as time advances. Th
consequence is obvious and severe: after a sufficiently lon
time, what is meant to be amobile networkbecomessta-
tionary. Under these conditions, the simulation analysis
of protocols for mobile wireless networks is likely to pro-
duce misleading results. Second, their work also expose
the fact that for RWM, the level of mobility goes through
oscillations before settling down onto a “steady state”.

In general, if the statistics collected in a simulation run
include the initial transient period, it is likely that the results
will exhibit considerable error. This effect, known as the
initial transient problem, is classically mitigated with the
application ofdata deletion: statistics collected during the
transient are discarded and therefore have no influence
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the final results. The application of data deletion hinges
the identification of the instant of time when the transie
has ended (known assettling time). The drawback of this
approach is that compute time is “wasted” in the process
warming up the model since data is being generated onl
be thrown away. When data deletion is used, it is theref
important to attempt to minimize settling time.

In the specific case of mobility models, the first effectiv
measure one can take is to start the simulation with
mobiles positioned in space according to the same probab
distribution that arises in the simulation of each speci
mobility model. As indicated in Camp et al. (2002), fo
RWM, it is counterproductive to initially deploy mobiles
uniformly in the simulation space. Deployment accordin
to a bi-dimensional triangular distribution leads to a bet
approximation of the distribution of mobiles that arise
from RWM. The second effective measure is to choose
sufficiently largemin_speedguaranteeing that RWM will
eventually reach a steady state. The question of what o
measures one should take remains open, however.
investigation exemplifies, through additional experimen
other parameters in the overall model that can affect
settling time for RWM. We refer the reader to Navidi an
Camp (2003) and Bettstetter et al. (2002) for in-dep
mathematical analyses of RWM.

Our first experiments used a square arena with 100
of side, a pause time of 60s and 40 mobiles. At this sta
we did not simulate networking at all, only mobility, an
so these experiments took very little time to complete. F
this setting, we produced Figure 1 assigning four values
max_speed. What we show here is not the data collecte
directly, but rather the curves smoothed out by Welch
algorithm of moving averages as described by Law a
Kelton (2000). In these plots we chose a window suf
ciently large to produce smooth curves and, at the sa
time, sufficiently small not to completely remove the wid
oscillations. We see that, for different values ofmax_speed,
the wide oscillations subside at different instants in time
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Figure 1: Random Waypoint with Various Values for Max
imum Speed
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A similar effect is observed in our second set of ex
periments, in which, keeping all of random waypoint’s
parameters constant, we varied only the size of the are
As Figure 2 shows, different dimension values determin
transients of different durations. Intuition indicates tha
in varying the arena size, one also varies the ranges fro
which the destination points are chosen and thus also t
average length of each leg in the trajectory of a mobile
The most important observation that arises from these tw
figures is the fact that settling time changes with scenar
parametersother than RWM’s parameters. Until the ana-
lytical framework has been developed to predict how lon
the transient will last, it is advisable to do an experimenta
assessment of the settling time so that data deletion can
safely applied.
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Figure 2: Random Waypoint with Various Values for Arena
Size

Having observed these transients in a metric that a
sesses the level of node mobility in the model, the ne
point to investigate was, naturally, the impact that thes
transients would have in the networking metrics compute
through simulation. In the experiments that follow in this
section and in the remainder of this paper, unless stat
otherwise, we have used the same set up described bel
In the first 500s of simulation time, networking was dis
abled; for the parameters used in random waypoint, by th
time the transient in instantaneous average node speed
guaranteed to have ended.

Baseline Scenario:
RF propagation: 2-ray ground reflection model, an-

tenna height of 1.5m, transmission power o
15dBm. Each node sees an average of 7 neighbo
so for experiments with varying number of nodes
we vary the arena size accordingly. Signal-to-nois
ratio threshold packet reception. Transmitter powe
of 15dBm.

Mobility: random waypoint model under scenarios tha
generate a stationary network, and also network
with low and high mobility. The respective pa-
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rameters werepause_time=simulation_lengthwith
min_speed=max_speed=0, pause_time=60swith
speed̃ U[1,3], andpause_time=0swith speed̃
U[1,10].

Traffic generation: a variation of constant bit rate
(CBR). Session length is deterministic and equa
to 60s. The interval between sessions is also d
terministic and equal to 20s. A fixed destination
node is chosen uniformly at random for each ses
sion. During each session, a constant bit rate
maintained; with packet size fixed at 512 octets
we vary packet interarrival time to produce traffic
loads of 16kbps, 56kbps, and 300kbps.

Protocol stack: IEEE 802.11b PHY (modem capture
using the message retraining model described b
C.Ware et al. 2001), IEEE 802.11b MAC Dis-
tributed Coordination Function (DCF), Address
Resolution Protocol (ARP), IP, and Ad Hoc On
Demand Distance Vector (AODV) routing.

Arena size: adjusted according to the number of node
in the model so as to maintain an average nod
density of 7 neighbors per node.

Scale: 20, 30, 40, and 50 network nodes.
Number of runs: 10 runs with different values of ran-

dom number generator seeds for each stream us
in the model. For all the metrics we collected, we
estimated intervals of 95% confidence as well a
point estimates for their averages.

We compared estimates of end-to-end delay construct
when we correctly skipped the mobility transient. Compar
ing these observations with the results obtained when t
transient is not skipped, we observed that the point estima
for the average relative error varied from as little as 5% t
as high as 30%. Figure 3 shows the average relative er
that arises in the simulation of a slow-moving network
This plot is produced using only the point estimates from
the confidence intervals and, by itself, it indicates the tren
that the higher the number of nodes, the higher the avera
relative error.

The plot in Figure 4 shows the specific case of a 50-nod
network detailing the difference used in the computatio
of relative error for average end-to-end delays. The figu
shows a growing uncertainty in the estimation of end-to-en
delay. It is important to remark that this uncertainty doe
not arise from the mobility transient. End-to-end dela
statistics are collected only for packets that actually arriv
at their destinations. As traffic increases, more packets te
to get dropped along their routes and the number of samp
used to compute end-to-end delays is reduced. Since
width of the interval estimated is inversely proportiona
to the square root of the number of samples, the level
uncertainty grows.
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Figure 3: Effect of Mobility Transient on End-to-End Delay
with Fixed Node Density in Slow-Moving Network
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Figure 4: Detail of the Effect of Mobility Transient in 50-
Node Slow-Moving Network (95% Confidence Intervals)

Looking at end-to-end delay in the same scenario, bu
with a more mobile network, we observed similar results
What was consistent among all the variations we investigate
however, was the fact that the mobility transient had a
pronounced impact on the accuracy of the estimated valu
for this metric. We have also observed that tighter confidenc
intervals are produced for lower traffic loads. This is a direc
consequence of the fact that end-to-end delay can only b
estimated for packets that arrive at their destination. Sinc
the number of packets that are not dropped due to mediu
contention or buffer overflows increases fast with increase
in traffic load, the number of samples for end-to-end dela
is proportionally reduced.

The mobility model transient also showed a marked
effect in the ratio of routing packets to application data
packets sent. The average relative errors observed we
in the same range as those for end-to-end delay. Pack
delivery ratio, on the other hand, wasn’t affected as much
but still exhibited average relative error as high as 10%.
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Next, we turned our attention to the impact of transien
effects due to the start up ofnetwork traffic generation. It
would be natural to expect that if buffer queues in protoc
models are not pre-initialized so as not to start empty, som
kind of transient effect would ensue. To illustrate this poin
we ran the simulation of a stationary network with 20 node
and recorded the evolution of the number of simultaneo
ongoing transmissions in time. Figure 5, which has bee
smoothed out by Welch’s algorithm with window size o
200, shows the first 500 seconds of this time series f
different values of inter-session time.
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Figure 5: Transient of Traffic Model for 20 Nodes

We have observed that in most cases, a small impact
this transient on network metrics such as packet end-to-e
delay, packet delivery ratio (PDR), and the ratio of routin
control packets to data packets. In few cases, such
when we measured the average relative error in the num
of control packets sent by AODV for each application dat
packet sent, this metric rose disproportionately to as much
14%. This observation is sufficient to warrant the suspicio
that for certain parameters in mobility, or for various numbe
of nodes, the transient in traffic has the potential to produ
more substantial adverse effects.

The most practical solution is to instrument the simula
tion to avoid collecting data on networking metrics until on
can be sure that the traffic transient has abated. Fortunat
in all our observations, this transient is on the order of
few tens of simulated seconds. Even if one overestimat
this time for the sake of safety, the length of traffic transien
should be small compared to the average length of mo
simulations. The price paid in terms of the compute tim
used to warm up the networking models will certainly pa
off in the accuracy of the results produced.

We have found it useful in our implementation of SWAN
to postulate that all collected metrics be sub-classed fro
a statistics base class rather than defined as basic d
types such as integer or floating point. This allows us
offer the user a single point to define when data collectio
should start (this time value is defined the description
the simulation scenario). In addition to defining a settlin
f
d

s
r

s

y,

s

t

ta

time for network protocol model transients, the user als
specifies the length of the warm up period for the mobilit
sub-model. Effectively, the collection of statistics begin
at a time computed as the sum of the time to warm up th
mobility model and the time to warm up the networking
models.

3 THE PROTOCOL STACK MODEL

Although common sense dictates that any simulation study
networking protocols should state clearly all the sub-mode
it uses, this practice is not widely embraced. The literatu
has numerous cases which leave room for doubt as to wh
protocols are modeled in the stack of a wireless node.
order for one toreplicateor build uponpublished simulation
studies, it is essential that their readers can unmistakab
identify not only all the sub-models used, but also the value
of any parameters that can affect their behaviors.

In the course of the development of our own simulato
for wireless network (SWAN), we have attempted to us
previously published works to verify the correctness of som
of our code. Much to our dismay, we quickly discovered
that this was a hopeless venture. Most of the studies w
found in the literature didn’t completely document thei
experimental scenarios. Invariably, either the value fo
important parameters was discovered to be missing or t
structure of the model was incompletely specified.

In this section we investigate how details in the com
position of the protocol stack, might affect the results of
simulation experiment. The example we have used in th
study is the Address Resolution Protocol (ARP), which a
mentioned in earlier works (Broch et al. 1998, Johnso
1999), produces interactions with non-negligible effects i
the simulation of a wireless network.

ARP works in conjunction with the MAC layer to
constructs mappings from the IP addresses used by hig
protocol layers to the MAC addresses assigned to networki
hardware devices. To accomplish this goal, ARP broadca
queries asking “who has IP addressi?”. The query is replied
by the appropriate node stating that “devicem has address
i”, where m is a MAC address. The replies are kept in
ARP’s own cache; entries in this buffer are removed if no
referenced again after a maximum time. Packets destin
to nodes for which an ARP query is in progress are made
wait in a buffer until the query is resolved. ARP buffers only
one outstanding packet for each IP addressi that is waiting
for a query resolution. If more packets are presented f
this same addressi, they are dropped by ARP.

From this brief description, it is easy to see how ARP
can affect network metrics such PDR and packet end-t
end delay. Since few papers explicitly state whether th
protocol stack for their wireless node models includes AR
we have deemed important to quantify its impact in th
simulation. Intuitively, the interactions of ARP with other
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Figure 6: Effect ofARP on End-to-End Delay in a Stationar
Network

protocols seem significant, but we wanted to have a sen
of how network metrics would be affected.

After simulating our baseline experiments, we remove
ARP from the protocol stack and reran the same experimen
with the modified setup. We compared the networking me
rics estimated in the two scenarios and found evidence th
ARP does indeed affect the operation of the network b
introducing an average relative error in end-to-end dela
as high as 16% for low and medium traffic loads on mobil
networks. As shown in Figure 6, in stationary networks
however, this metric was consistently less than 6%, exce
for medium traffic load with 30 nodes. Further investigat
ing this data point, we discovered that although the poin
estimates used to compute the relative error did indeed e
hibit the difference quantified, the 95% confidence interva
computed were statistically very close. This led us to be
lieve the higher relative error is likely to have arisen from
artifacts in floating point computations.

It is important to note also that the impact of ARP on
packet end-to-end delay is much less pronounced at hi
traffic since the protocol’s cache entries tend to survive long
thus reducing the number of queries for the same IP addre
Very similar conclusions were drawn from the scenari
depicted in Figure 7, which shows the average relative err
in end-to-end delay for a highly mobile network.

The impact of ARP on PDR indicated by our exper
iments was, on the other hand, markedly small. For
stationary network, the worst observation in average rel
tive error was slightly higher than 1%, for high traffic and
50 nodes. This behavior repeated itself for networks wit
low and high mobility, where the average relative error wen
higher to nearly 1.6%. Since the scale of our experimen
in terms of number of nodes was small, we cannot state th
this metric will rise when the network is scaled up. Furthe
experiments are required to evaluate this hypothesis.

A final point we discuss is the effect of the ARP mode
on the simulation execution time. Rather than look directl
e
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Figure 7: Effect of ARP on End-to-End Delay in a Highly-
Mobile Network

at this metric, which is dependent on the architecture of t
computing platform, we chose to observe the difference
the number of events processed with and without ARP. W
observed that the use of this protocol did not necessar
increase the number of events in the simulation. Dependi
on the traffic load and the number of mobile nodes, th
difference in events processed may be slightly higher
slightly lower when compared to the simulation of a mode
without ARP. These effects are due to the fact that in certa
settings, ARP will cause slightly more packets (ARP querie
to be injected on the network, and in other settings, AR
will cause data packets to be dropped. These fluctuations
the number of packets pushed around in a simulation ha
a direct connection with the number of events simulated

The conclusion that can be drawn from evidence pr
duced in this case study is that ARP does indeed have
marked effect in the protocol stack model for a wireles
network. Since the ARP model contributes with only a sma
computational load to the simulation, there is no drawba
to its use other than the small added memory usage to st
the model’s code.

4 THE LIMITED INTERFERENCE MODEL

Our final case study in this paper regards the model f
radio interference in a wireless network simulation. Give
the different ways in which each specific simulator ma
compute radio interference, it is important to know exact
what model drives this computation. The work by Taka
Martin, and Bagrodia (2001) has shown the substant
impact this model has in determining the accuracy of th
simulation’s results.

The assessment of the strength of interference on
wireless node, however, comes at a high price in terms
computation. The total amount of interference on a nod
is the summation of all signals that can be picked up at
location which come from a source other than the send



Perrone, Yuan, and Nicol

s
s
of
ut
of
be

-
g
-

ce
r”
a-
g
re
it
ut

, in
d

or
s

w.
e
er
N

e
ter
d

ive
l-

ion
ed
ac
a-
d
or
ce
nt
w

ds
e
f a
at
t

he
n.
is

l
t
se
en

a
-
ns
er
rs
r

.
r

s
s

t.
n
.
,
n

e

e
of
.

-
he
,
y
ts

k

of information. When the number of nodes in a wireles
network model grows, not only do the number of term
in this summation grow fast, but also does the number
times the summation has to be computed. Clearly, witho
any measure to restrain the increase in the complexity
these computations, the scalability of the simulator can
severely impaired.

A common solution to reduce the computational com
plexity of interference calculations in wireless networkin
models is to limit the propagation range of interfering sig
nals. In practice, this amounts to defining acutoff value
for radio signal propagation. The basic idea is that sin
interference is computed as the summation of all the “othe
signals in a channel, sufficiently small terms in this summ
tion could be discarded without substantially compromisin
the accuracy of the calculation. The crucial question he
lies in determining how faint a signal should be so that
can be discarded from an interference computation witho
inducing substantial errors. This idea has been studied
the context of wireless cellular networks, by Liljenstam an
Ayani (1998) and by Perrone and Nicol (2000). The err
induced by the application of this technique in simulation
of IEEE 802.11b channels hadn’t been quantified until no

If a simulator should offer a cutoff parameter in th
description of the experimental scenario, one should und
stand what consequences a chosen value brings. SWA
our own simulator, offers this modeling option, and thus w
felt compelled to investigate this question. This parame
can be interpreted in two different ways. It can be rea
as the maximum distance between transmitter and rece
that guarantees that the received signal is intelligible. A
ternatively, cutoff can be defined as the highest attenuat
(or path loss) that a signal may suffer and still be receiv
(measured in decibels). We have taken the latter appro
and require the user to enter this value in the configur
tion of the simulation scenario. Using a function provide
by the underlying radio propagation model, the simulat
converts this attenuation value to a distance value. Sin
different radio propagation models determine very differe
attenuations for the same transmitter-receiver separation,
believe this is the most general and practical solution.

Note that the importance of a cutoff parameter exten
beyond just determining the complexity of the interferenc
computation. This parameter is used in the construction o
connectivity graph for the network, which determines wh
radio links exist between nodes. When a node sends ou
radio frame the connectivity graph is inspected to that t
simulator knows to what other nodes deliver the informatio
If the network nodes are mobile, this connectivity graph
updated periodically.

Next, we look at how the limited interference mode
affected network metrics in experiments with two differen
values of maximum path loss: 126dB and 106dB. The
values correspond, respectively, to 2120m and 670m, wh
-
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Figure 8: Impact of the Limited Interference Model on
End-to-End Delay in a Stationary Network

the propagation model is 2-ray ground reflection, antenn
height is 1.5m and transmitter power 15dBm. The experi
ments we report consider a scenario where the dimensio
of the simulation arena are changed according to the numb
of nodes to maintain a constant node density of 7 neighbo
per node. It must be noted that setting the cutoff paramete
to 126dB effectively puts all nodes within radio range of
each other, for the numbers of nodes we’ve considered.

Figure 8 shows the impact on end-to-end delay in a
stationary network varying the number of nodes up to 50
The relative errors computed compare the two settings fo
the cutoff parameters assuming that a cutoff of 126dB i
nearly the same as having no cutoff at all. This plot show
that at low traffic, the error incurred with the cutoff model
is small, but it increases with the number of nodes. As
traffic increases, the error becomes much more significan
For medium traffic, that is, 56kbps per node, the spread i
relative error for different numbers of nodes is the highest
With traffic at its highest rate of 300kbps, this spread for 30
40, and 50 nodes diminishes. This surprising observatio
has lead us to look at the statistics more carefully.

In Figure 9 we arbitrarily chose to isolate the curve
for 40 nodes showing 95% confidence intervals on the
difference between measures of end-to-end delay for th
two cutoff settings. The first point to observe is that the
width of the confidence interval increases with traffic load.
Since this plot corresponds to end-to-end delay, the sam
argument made earlier regarding the reduced number
samples for this metric as traffic increases applies here
It should also be observed that the difference in end-to
end delay estimates becomes negative as a result of t
reduction of the interference range. With cutoff at 106dB
the simulation yields less contention for the medium thereb
reducing packet end-to-end delay. Clearly, these resul
motivate continuing this investigation. It would be especially
important to develop a feature in the experimental framewor
to drive the simulation to continue until enough samples
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Figure 9: Detail on End-to-End Delay Interval Estimation
for 40-Node Stationary Network

of a metric have been taken to yield narrower confidenc
intervals.

We have observed similar curves for end-to-end dela
and also PDR for other mobility scenarios with the limited
interference method and have concluded that the erro
introduced by the application of the limited interference
model in ad hoc networks are comparable to what wa
previously reported for cellular networks. Considering tha
the statistical difference in the results is acceptable, th
use of the limited interference model is justified by the
substantial reduction in the number of events process
in the simulation. Our experiments have shown that th
difference can represent savings of as much as 55% in t
number of events processed and can substantially enha
the scalability of the model.

5 CONCLUSIONS

The results presented in this paper should motivate effo
in thorough descriptions of the simulation scenarios used
studies of wireless networks. Our investigation has reiterat
the importance of detail in these simulation models.

Countless experimental studies already published ca
not be replicated because they do not fully report the cond
tions in which they were carried out. We have shown that
is not enough to simply collect data. One should mind th
possible existence of transients in sub-models, determi
when it is safe to collect data, and state the value of settlin
time used for data deletion. We have also shown that
is important to present detailed statistics so that corre
conclusions can be drawn.

We are currently extending in breadth and in depth th
investigation reported in this paper. First, we are attemptin
to better explain the observations made in our experimen
through investigating other network metrics in these simu
lations. Second, we acknowledge that the level of detail
other sub-models may impact both accuracy and simulati
e
e

-

scalability (in terms of run time and memory occupation)
Finally, the need for a sensitivity analysis of sub-models to
their various parameters has become evident.

In this work, we have simulated a very large number o
possible scenarios. Generating experimental scenarios th
were meaningful and consistent across different sub-mode
required expertise and knowledge in wireless network mod
eling. This instilled in us the concern that a user with les
expertise would find daunting the task of determining the
scenario for his or her experiments. This situation is espe
cially troublesome when the number of parameters in th
simulator is large. It would be helpful to devise tools and
methodologies based on knowledge collected from exper
to guide the user through the combinations in paramete
space to the desired settings. We are currently starting a
investigation in this problem area.

We end this paper with a word of caution to the user
of currently available simulators for wireless networks who
use them as experimental testbeds for their research. O
should be aware of what model parameters have defau
values hidden within the simulator. First, these default
may not set the exact scenario the experimenter has
mind. Second, for the sake of disseminating details of
study and for the sake of reproducibility, when publishing a
study, the values for these parameters should be made cle
A study which simply states that for a certain simulator, the
default parameters have been used does not provide all t
information it should.
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