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Abstract

Computational simulation is an important tool for
predicting the behavior of physical systems. Many
powerful simulation programs exist today. How-
ever, using these programs to reliably analyze a
physical situation requires considerable human ef-
fort and expertise to set up a simulation, deter-
mine whether the output makes sense, and repeat-
edly run the simulation with different inputs until
a satisfactory result is achieved. Automating this
process is not only of considerable practical impor-
tance but also raises significant AI research issues
in the areas of spatial reasoning and modeling of
physics and numerical methods. The application
domain described in this paper is the design of
racing yachts.

Introduction

Computational simulation is an important tool for pre-
dicting the behavior of physical systems. Many pow-
erful simulation programs exist today. However, as
illustrated in Figure 1, using these programs to reli-
ably analyze a physical situation requires considerable
human effort and expertise to

¯ set up the simulation by transforming a description
of the physical situation into a representation the
simulation program can successfully process,

¯ analyze the output of the simulation program to ex-
tract desired information and in particular to

Figure I: Analyzing a physical situation

Figure 2: Stars ~ Stripes, winner of the 1987 America’s
Cup competition

¯ determine whether the output makes sense and how
accurate it is likely to be, and if the output is not
acceptable, to

¯ determine how to change the simulation program’s
input so that it will more reliably predict the behav-
ior of the physical system being analyzed

As a result, these simulation programs typically can’t
be run successfully by inexperienced users. Perhaps
more importantly, these simulation programs can’t be
reliably invoked by other programs. For example, hu-
man designers of complex objects like ships and air-
planes typically run sophisticated simulation programs
to analyze the object’s physical behavior, but an auto-
mated system for designing complex objects could not
easily include such a computational simulation as part
the process it uses to evaluate new designs.

Artificial intelligence techniques seem essential in or-
der to automate the processes of setup, analysis, qual-
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Figure 3: PMARC target environment

ity assurance, and feedback for computational simula-
tion. However, simple application of known AI tech-
nology appears inadequate for the task of automating
these processes. Basic AI research is needed, partic-
ularly in the areas of spatial reasoning and modeling
physics and numerical methods.

Yachts
The Design Associate (DA) [Ellman e~ al. 1992] is an
automated design system for racing yachts like the one
in Figure 2. In the process of designing a yacht, the DA
must repeatedly evaluate candidate yacht designs. A
large number of these evaluations are required, so the
capability to automatically evaluate the performance
of a candidate yacht design without human interven-
tion is crucial for the success of the DA.

Part of the process of evaluating a yacht’s perfor-
mance involves computing the yacht’s effective draft,
which measures the efficiency of its keel. Reliable com-
putation of effective draft requires the use of compu-
tational fluid dynamics. For this purpose we use a
program called PMARC, a product of NASA Ames
Research Center. However, the PMARC target envi-
ronment (Figure 3) is not compatible with automated
use.

The input PMARC requires is a panelization -- a
discretization of a yacht’s surface as a grid of planar
panels. This panelization is normally created from a
CAD/CAM model of the yacht by a human expert
using an interactive gridding program. PMArtC will
produce poor results if applied to an inadequate grid,
and using PMARC often requires several iterations of
a loop in which the human expert looks at PMARC
output, decides it is unacceptable, and uses the inter-
active gridding program to modify the grid to improve
the PMARC output. In order for the Design Associate
to evaluate candidate yacht designs without human in-
tervention, PMARC must be invoked by an automated
intelligent controller which can

¯ Use spatial reasoning to form appropriate grids, etc.
for input to PMAI~C

¯ Use relevant physics and numerical analysis to

- verify the quality of PMARC output
- modify PMARC input to improve output quality

so PMARC can run reliably without the need for a
human expert.

Figure 4:Star8 ~ Stripes CAD/CAM surfaces for hull
and keel

Figure 5: Stars ~ Stripes hull-keel intersection

Setting up the simulation
Considerable work has been done on the problem of au-
tomated gridding [Thompson et al. 1985], and many
gridding programs have been developed. These pro-
grams are good at forming grids on surface patches,
which is part of what is needed to run PMARC au-
tomatically. However, these programs are not capa-
ble of finding an appropriate set of patches to grid or
of choosing appropriate input parameters for a grid-
ding algorithm (e.g. how many panels to use to cover 
patch). The programs can’t make these decisions be-
cause they can’t do spatial reasoning or reason about
physics and properties of numerical methods.

Figure 4 illustrates one difficulty the intelligent con-
troller for PMARC must deal with, which is that the
input does not have a unique interpretation as a solid
object. The human user of an interactive gridding pro-
gram must use spatial reasoning in order to realize that
the surfaces given cover half the boat and that the com-
plete boat also must have surfaces on the other half of
the boat and the top. Another difficulty is shown in
Figure 5. A close examination of the place where the
hull and keel meet reveals that the surfaces don’t meet
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Figure 6: ECSG representation for yacht

neatly at their edges but in fact overlap each other.
This overlap is useful because it allows the hull and
keel to be modified independently while still remain-
ing in contact. However, the overlap adds additional
difficulties to the gridding process because the panel-
ization for PMARC must include only the real parts of
the CAD/CAM surfaces, not the fictional parts that
are actually inside the yacht. An interactive gridding
program has no spatial reasoning capability, and thus
must rely on a human user to distinguish the real and
false surfaces.

The first requirement for an intelligent PMAI~C con-
troller is therefore a semantically clear input repre-
sentation. Since standard CAD/CAM representations
like B-spline surfaces appear to do an adequate job of
representing surface details, our solution is to embed
these CAD/CAM surface representations in a seman-
tically clear solid modeling representation, which we
call ECSG (extended Constructive Solid Geometry).
ECSG is an extension of the standard Constructive
Solid Geometry [Requicha 1980] solid modeling repre-
sentation by adding additional operations and prim-
itive shapes. The standard CSG set operations and
rigid motions are supplemented by operations to take
the boundary of solids and surfaces and operations to
fill in the interior of closed surfaces and curves. The
additional primitive shapes allowed are parametric sur-
faces like the B-spline surfaces representing the yacht
shown in earlier figures.

Figure 6 shows an ECSG "tree" for a yacht. The
internal nodes are operations which are applied to the
children of the node. The leaves are primitive shapes.

For example, hull(s,t) is a parametric surface repre-
senting half a hull. When it is reflected about the
yacht’s midplane, the other half of the hull’s surface
is generated. The union of these two surfaces then
gives a surface for the hull which is open at the top.
The boundary of that surface is a closed curve, which
when filled in gives the top of the hull. We take the fill-
in of a closed curve in space to be a minimum-energy
surface like that of the bubble that would form if the
curve were dipped in soapy water. The union of that
with the rest of the hull gives a closed surface, which
may be filled in to give a solid hull shape. The union
of the solid hull and the solid keel gives a solid boat.
PMARC can’t handle water-air boundaries, so instead
we chop the boat off at the water line and then reflect
everything below the surface above it.

As mentioned above, existing automated gridding al-
gorithms are good at forming grids on surface patches,
but they are not capable of finding an appropriate set
of patches to grid. For PMARC, the panelization of
a surface patch is a matrix of adjacent panels. Thus
every row in a patch must have the same number of
panels, and every column in a patch must have the
same number of panels. Whenever two adjacent parts
of the surface require different numbers of panels, they
must be input as separate patches. For example, the
hull and keel would typically be separate patches.

Normally, the selection of patches is done by the
human user of an interactive gridding program. In
order to automate this process, we propose to use a
known technique, streamline-based adaptive gridding,
in a novel way. Streamline-based adaptive gridding
involves running a computational fluid dynamics pro-
gram several times. The grid for each run is con-
structed from the fluid streamlines found in the output
of the previous run. Streamline-based adaptive grid-
ding has been used successfully by other researchers
to form grids for given patches [Chao and Liu 1991].
We propose to use the same technique as a way to rec-
ognize natural patch boundaries by looking for adja-
cent streamlines of different lengths. For example, the
streamline on the keel nearest the hull will be quite
near a streamline on the hull, but the streamline on
the hull will be much longer, suggesting that the two
should be in separate patches.

For the first iteration, we will create an initial set
of "streamlines" either by adapting solutions of sim-
ilar problems or by forming approximate streamlines
based on flow direction and body contours. The imple-
mentation section of this paper describes an algorithm
we have implemented which forms ’such approximate
streamlines.

Quality Assurance

Computational simulations of physical systems can
easily produce poor behavior predictions, or even com-
plete nonsense. The human experts who typically run
these programs nmst use their knowledge to judge the
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Figure 7: Panelization of hull, keel, and wake for Stars ~ Stripes

simulation output and modify the simulation input if
the output is unsatisfactory. Robust automated simu-
lation, which is essential for successful automated de-
sign, requires an intelligent controller which can apply
expert knowledge to check simulation output quality.

Computational simulation of a physical system’s be-
havior involves "executing" a model of the physical
system. This model invariably involves approximations
and simplifying assumptions. There appear to be two
basic causes for "bad" simulations:
¯ The physical situation being analyzed is not com-

patible with the model being used
¯ The physical situation being analyzed is not com-

patible with the way the model is "executed"
If the simplifying assumptions of the model are vio-
lated by the physical situation, then the situation is
not compatible with the model and the simulation will
be unreliable. If the situations is compatible with the
model, though, it still may not be compatible with the
way the model is being used. For example, if the model
is a partial differential equation which adequately cap-
tures the physics of the situation, a bad simulation can
still result if the equation is solved using an inappro-
priate numerical method or too coarse a grid.

PMARC is based on a potential flow model. The
key simplifying assumption behind this model is that
the effects of viscosity are not important in the situa-
tion being considered, and may therefore be neglected.
This assumption tends to hold for streamlined bodies
like a yacht. However, an automated design system
might change the yacht’s shape enough to seriously
impair its streamlining. Thus it is desirable to be able
to test this simplifying assumption. One way to turn
this assumption into an operational test is to look for
predictions by PMARC of excessively high velocities.
High velocities indicate unrealistic flows since viscous
effects would tend to prevent excessive rises in velocity.
Recognition of what velocities are "too high" is best
done with a database of simulation results for similar
situations.

Detection of problems in model execution is also
more feasible with a database of past simulation re-
sults. These problems can be detected by applying
knowledge of either releva41t physics or relevant numer-
ical analysis. For exanlple, physics indicates that the
flow around a body should exhibit "stagnation points’:
when the flow hits the front of a body it has to go
around one side or the other, and where it divides the

c hs ks T~I! miner max cp
14 2 2 2.26864 -0.447619 0.36943
28 4 4 2.15689 -0.797459 0.747343
56 8 8 2.13218 -1.35133 0.958627
112 16 16 2.12021 -2.31862 0.999368

Figure 8: Simulation database entry for S~ars ~ Str/pes

velocity must be zero. Such physics knowledge can be
represented by a set of feature extractors, which exam-
ine a PMARC solution for features resembling stagna-
tion points, and a set of feature evaluators, which judge
whether an expected feature is sufficiently well resolved
by the current grid.

Current Implementation

Our initial goal was to implement a complete work-
ing version of an intelligent PMARC controller which
would be fully integrated with the Design Associate.
We have achieved this goal for a certain subclass of
possible inputs, the set of yachts consisting of a single
hull and single keel with no other appendages.

Our current implementation does not include
streamline-based adaptive gridding. The intelligent
controller presently generates a grid that approximates
the set of streamlines that we expect PMARC to com-
pute. This grid allows PMARC to compute the initial
solution which will be needed as input for streamline-
based adaptive gridding.

Our current automatic gridder uses what we call
"depth-based gridding’. For a deep body with the
same cross-section at every depth, streamlines will al-
ways remain at the same depth. A yacht can be con-
sidered a (major) perturbation of such a body. Our
current implementation forms a grid with grid lines at
constant depth, with some modification of the grid to
follow body contours, thus better approximating actual
streamlines. Figure 7 shows a panelization produced
by our current implementation.

PMAI~C requires as input not only a panelization of
a yacht, but also a panelization of the vortex wake shed
by the yacht. Our intelligent controller constructs this
wake by first running PMARC in a nonlifting orien-
tation without a wake and then using the streamlines
computed in that first PMARC run to form a wake to
use in’subsequent PMARC invocations.
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Figure 9: Plot of simulation data

Simulation quality assurance in our current imple-
mentation makes use of a database of past simulation
results for similar shapes. Figure 8 shows an entry in
this database. The first three columns specify the num-
ber of panels in the direction of flow, on the hull per-
pendicular to the flow, and on the keel perpendicular to
the flow. The next column shows the effective draft (in
meters) computed by PMARC to measure keel perfor-
mance. The last two columns show the minimum and
maximum pressure coefficients computed by PMARC.
A cp value of 1, the highest possible, indicates a stag-
nation point where flow velocity is zero. As discussed
earlier, physics predicts that a stagnation point must
exist, so the maximum computed cp values measures
how well the current grid resolves the stagnation point.
The more negative a cp value is, the higher the corre-
sponding velocity (by Bernoulli’s principle), so very
negative cp values may indicate a poorly streamlined
body which violates PMARC’s potential flow assump-
tion.

The intelligent controller uses the database as fol-
lows:

1. Use database to choose coarsest grid likely to be con-
verging

2. Run PMARC with that grid and next finer grid

3. Check cp extrema for quality assurance violations

4. Extrapolate to estimate fully converged solution

5. Estimate error

The numerical method used by PMARC has a theo-
retical rate of convergence directly proportional to the
panel spacing, and the intelligent controller makes use
of this knowledge to choose an initial grid based on
data in the simulation database. Figure 9 shows a
plot of the simulation data in Figure 8 which indicates
that three of the four grids are converging as predicted,
while the coarsest of the four grids is not fine enough
to be in the region of full convergence. The intelligent

c lhgl slJ, lJ i Imin Im44 Ii II .086 .06 .05 -1.76 .925
58 9 9 .065 .069 .056 -1.47 .955
60 10 8 .063 .065 .058 -1.43 .967
62 10 7 .061 .065 .061 -1.37 .98

Figure 10: Adaptive gridding

PMAI~C controller therefore runs PMARC in a new
situation using the two middle grids in the simulation
database. For each run, it checks that the maximum
computed cp value indicates that the stagnation point
is being resolved as well as might be expected given the
data from past simulations. The controller also checks
that the most negative cp is not much more negative
than would be expected given the database.

The controller then applies knowledge of PMARC’s
theoretical rate of convergence to the two effective
draft computations for the current situation and ex-
trapolates to predict what the effective draft would be
with an infinitely fine grid. (In effect, it draws a line
through the appropriate two grid points in Figure 9
and extends the line to find out where it crosses the
zero panel spacing axis.) The controller then uses the
database to estimate the error in this extrapolation by
comparing an extrapolation based on the two finest
points in the database to one based on the two mid-
dle points. For example, the extrapolated value for
effective draft using the two finest points in Figure 8 is
2.10824 m while the extrapolated value using the two
middle points is 2.10747 m, so the error in extrapola-
tion using the two middle points should be roughly 1
into. Each halving of panel spacing increases the time
to run PMARC by one to two orders of magnitude.

While our current implementation does not include
streamline-based adaptive gridding, we have used it
to experiment with other forms of adaptive grldding.
We are particularly interested in applying knowledge
of the numerical methods and approximations being
used to the problem of choosing appropriate solution
characteristics to use for feedback in adaptive gridding.
PMArtC uses a constant-coefficient approximation of
the potential on each panel, which suggests adapting
the grid to try to minimize the jumps in potential be-
tween panels. Figure 10 shows the results of such a
feedback experiment. The column headings are the
same as in Figure 8 except for jc, j~, and jk which
show the maximum jump in potential in the direction
of flow, on the hull perpendicular to the flow, and on
the keel perpendicular to the flow. The cp values are
not used for feedback, yet they are nevertheless im-
proved by the adaptation process: the maximum cp
value rises, indicating that the stagnation point is be-
ing resolved better, and the minimum cp value becomes
less negative, indicating that artificially high velocities
due to a poor grid are being reduced.
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Related Work
Jambunathan et al.[1991] and Andrews[1988] discuss
the use of expert systems technology to augment more
traditional computational fluid dynamics programs.
Most other artificial intelligence research concerning
reasoning about physical systems has focused on qual-
itative rather than numerical simulation [Weld and de
Kleer 1990]. Exceptions are the work of Gelsey[1990],
Sacks[1991], Yip[1991], and Zhao[1991]; however, they
have focused on numerical simulators for ordinary dif-
ferential equations and have not addressed the issue
of quality assurance. Forbus and Falkenhainer[1990]
discuss the use of qualitative simulation to check the
quality of numerical simulation results; however, the
approach described appears limited to physical situa-
tions modeled by ordinary differential equations.

Conclusion
While the problems of setup, analysis, quality assur-
ance, and feedback for computational simulation are
clearly of considerable practical importance, their so-
lution should also lead to significant insights into some
basic AI problems. Successful computational simula-
tion of complex physical systems appears to require a
combination of spatial reasoning and reasoning about
physics and numerical methods which has so far re-
ceived insufficient attention from AI researchers.
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My principal research interest is the use of artificial
intelligence for automated modeling and simulation of
physical system behavior. I have worked on automat-
ing several aspects of this problem: creation of behav-
ioral models of a physical situation, intelligent control
of computational simulations based on these models,
and analysis of simulation output both to deternfine
whether the output makes physical sense and to pre-
dict a system’s long-term behavior by using carefully
controlled short-term simulations.

My dissertation research had two principal goals:
the automated creation of behavioral models of ma-
chines directly from models of their raw physical struc-
ture, and the automated inductive prediction of a ma-
chine’s long-term behavior. I found and implemented
algorithms which generate behavioral models for me-
chanical devices by first using kinematic analysis to
find state variables and then using dynamics to find
differential equations relating the state variables. The
input for these algorithms is a CAD/CAM solid model
of the geometric structure of a machine, supplemented
with information about masses, spring constants, and
coefficients of friction. I also found and implemented
algorithms for predicting a machine’s long-term be-
havior. These algorithms form hypotheses about a
machine’s future behavior by examining the results of
short, carefully controlled behavioral simulations. The
algorithms test these hypotheses both by using simu-
lated experiments and by checking for certain known
types of hypothesis failures. A successful hypothesis
is a compact symbolic representation of a machine’s
long-term behavior which is generated numerically.

More recently, I’ve been focusing on the particular
problems that arise in trying to embed a computational
simulation within a system whose goal is the auto-
mated design of complex artifacts. In order to evaluate
candidate designs, an automated design system must
be capable of predicting their behavior, typically by
computational simulation. Many powerful simulation
programs exist today. However, using these programs
to reliably analyze a physical situation requires consid-
erable human effort and expertise to set up a simula-
tion, determine whether the output makes sense, and
repeatedly run the simulation with different inputs un-
til a satisfactory result is achieved. I’ve considered tile
automation of this process for two fairly different sort
of physical systems: clockwork mechanisms and ocean

racing yachts. Automating this process is not only of
considerable practical importance but also raises signif-
icant AI research issues in the areas of spatial reasoning
and modeling of physics and numerical methods.
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