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ABSTRACT 

Over the last few decades, a lot of research effort has increasingly been directed 

towards developing vehicle transmissions that accomplish the government imperatives of 

increased vehicle efficiency and lower exhaust (greenhouse gaseous) emissions. These 

exhaust emissions can be regulated or lowered by increasing the fuel economy of a 

vehicle, and CVTs (continuously variable transmissions), indubitably, play a crucial role 

in this plan to improve the fuel economy. A continuously variable transmission is an 

emerging automotive transmission technology that offers a continuum of gear ratios 

between desired limits. A CVT offers numerous advantages over the conventional multi-

step gear transmissions such as lower fuel consumption, higher vehicle efficiency, and 

smooth power flow from the engine to the wheels. However, the potential advantages of a 

CVT have not been realized completely in a mass production vehicle.  

Since the belt- and the chain- type CVTs are the most commonly used CVTs, the 

present research outlines detailed dynamic models that give profound insight into their 

system characteristics, which could be exploited later to meet the goals of greater fuel 

economy and vehicle efficiency. The present research reports a detailed continuous one-

dimensional transient-dynamic model of a metal V-belt CVT that accurately captures the 

various transient dynamic interactions occurring in the system, whereas the dynamics 

characterized by the discrete structure (that cause polygonal excitations) of the chain are 

captured by developing a detailed planar multibody model of a chain CVT. Moreover, 

belt and chain CVTs are friction-limited drives as they rely on the friction characteristic 
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of the contacting components in order to successfully transmit torque. Since the friction 

characteristic of a contact zone between two sliding surfaces may vary in accordance 

with the operating and loading conditions, various mathematical models of friction are 

introduced to understand the influence of friction characteristic on the performance of a 

belt/chain CVT drive. A CVT, like any other dynamical system, is susceptible to 

clearance formation due to continual operation, wear, and fatigue. So, a mathematical 

model of clearance is embedded into the CVT model (i.e. the chain CVT model) to study 

the influence of clearance on its dynamic performance. A considerable effort is dedicated 

towards comprehensive modeling of the slip dynamics and inertial coupling among band 

pack, belt element and the pulleys, and studying their influence on the performance of a 

metal V-belt CVT system. Simple trigonometric functions are also introduced in these 

models to capture the effects of pulley flexibility on the thrust ratio and slip behavior of a 

CVT system. The results discuss the influence of band pack slip, friction characteristic, 

clearance, and pulley flexibility on the dynamic performance, axial force requirements, 

and torque transmitting capacity of a belt/chain CVT drive. The results also illustrate that 

for certain friction (contact) conditions and clearance parameters, it is plausible for a 

CVT system to exhibit quasi-periodic or chaotic behavior, which severely lowers its 

torque carrying capacity and dynamic performance. It is also observed that the slip 

behavior of a CVT system is affected not only by the torque loading conditions, but also 

by the inertial coupling and the nonlinearities existing between the various components. 
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CHAPTER 1  

 

INTRODUCTION  

Over the last few decades, environmental concerns have made it imperative for 

the governments of most nations to impose stringent regulations on the fuel consumption 

and exhaust emissions of vehicles (CAFE standards in the US, ACEA standards in 

Europe, etc.). “The International Energy Agency (IEA) forecasts that greenhouse 

emissions will have grown about 90% by 2030, mainly due to transport and especially 

road transport” (Menegazzi, P., Vangraefschepe, F., “The Future of Hybrid Vehicles,” 

IFP-Panorama 2005 Technical Report). Emissions of carbon dioxide (CO2), the principal 

greenhouse gas produced by the transportation sector, have steadily increased along with 

travel, energy use, and oil imports. “Globally, the transportation sector consumes 75% of 

total world oil imports and contributes about 25% of the world’s greenhouse gases” (Ottis 

et al., [1]). Transportation vehicles, especially passenger cars, account for a large 

percentage of total air-pollutant emissions, as illustrated in Figure 1.1 [2]. Consequently, 

automotive engineers have been progressively researching alternatives to deliver vehicles 

that meet the government imperatives of increased vehicle efficiency and lower 

emissions.  

Vehicle fuel economy plays a crucial role in determining the emission of 

greenhouse gases. In recent years, motor fuels and combustion processes have improved 

and catalytic converters have come into general use. Vehicles today pollute much less 

than thirty years ago. Automakers are also looking into the aspects of implementing new 
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and renewable forms of energy production for propelling a car (e.g. solar power, fuel 

cells, electric power etc.). Advancements in engine design and transmission design are 

also being actively researched to accomplish the goals of increased vehicle efficiency and 

higher fuel economy. 

 

Figure 1.1: Sector-wise contribution to Greenhouse Emissions [2] 

In the current competitive market, both customers and engineers are looking for a 

vehicle technology that can provide them with better performance at low cost. 

Automotive designers and engineers have been researching various transmission designs 

that can yield higher mechanical efficiency with low maintenance cost and low fuel 

consumption. Manual and automatic transmissions offer a finite number of discrete gear 

ratios; however, of late, continuously variable transmissions (CVT) have aroused a great 

deal of interest in the automotive sector due to their potential of lower emissions and 

better performance. A CVT is an emerging automotive transmission technology that 

offers an infinite number of gear ratios between two limits, which consequently allows 

better matching of the engine operating conditions to the variable driving scenarios. A 

CVT allows varying the speed ratio under load condition without the necessity to 

disengage the engine by means of a friction clutch. “The impact of a simple CVT can be 

twofold. Under one control strategy, the engine speed may be fixed and the CVT’s 
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changing radii can create torque multiplications, accelerations, and proper speeds under 

varying conditions.  Another control scenario makes the engine operate at speeds within 

an efficient region, varying throttle position and transmission ratios to handle changing 

conditions.  In either case, the flexibility of the CVT relative to a conventional 

transmission allows the engine to operate more efficiently” (Ottis et al. [1]). Today, many 

vehicle manufacturers are integrating CVTs into the driveline of their vehicles. 

Consequently, vehicles like Ford Fiesta, Ford Escape, Honda Civic HX, Honda Insight, 

Nissan Murano, Nissan Micra, Audi A8, Rover 45, Toyota Prius, etc., are increasingly 

catching attention of the customers and shifting the market trends to propitiate the 

development and use of hybrid vehicles [1, 3].  

 The key advantages of a CVT that interest vehicle manufacturers and customers 

can be summarized as: 

• Higher engine efficiency 

• Higher fuel economy 

• Smooth acceleration without shift shocks 

• Infinite gear ratios with a small number of parts 

• Easy to manufacture and low cost 

• Light and Compact 

However, the ancillary circuitry used for controlling and changing the gear ratios leads to 

energy losses and also adds to the weight of the transmission and the vehicle. 

 The concept behind the working of a CVT dates back to 1950s, when Hub van 

Doorne, co-founder of DAF Company (van Doorne Automobiel Fabriek), introduced the 

Variomatic CVT based on a rubber V-belt design for use in heavy machinery 
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transmissions. The company also developed steel pushing V-belts. During the incipient 

design phases, the steel bands buckled because of high load transfer from the pulley. So, 

the engineers used movable support blocks to prevent the bands from bending. Thus 

came into existence the concept of push-pull torque transfer mechanism in metal V-belts.  

As vehicle technology progressed over the past several decades, transmission 

technology also advanced. The automatic transmission (AT) has nearly replaced the 

manual transmission, as it is more reliable and convenient to use than the latter. However, 

the automatic transmission now faces stiff competition from the continuously variable 

transmission, which offers an infinite range of gear ratios between two limits, higher 

transmitting efficiency, and smoother speed-changing characteristics. These three types 

of transmission are functionally the same but differ in the means of achieving those 

functions. 

 

 

1.1 Manual Transmission 

A basic manual transmission can be said to be a combination of a clutch and a gear set. 

Figure 1.2 [4] depicts a 5-speed transmission gear box of a medium-duty passenger 

vehicle. There are two variations to this type of transmission: synchronized and 

unsynchronized. The unsynchronized transmission is more robust by nature and can 

handle greater loads than the synchronized transmission. However, the operator must 

double-clutch between shifts to match engine and transmission speed manually.  

Manual transmissions in modern passenger cars use synchronizers to eliminate the 

need of double-clutching. Since the output shaft is splined, the collar can readily move 
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under the influence of gear-lever force to contact any one of the gears. A synchronizer 

allows the collar and the gear to make frictional contact before the dog teeth make 

contact. This synchronizes the speeds of the collar and the gear before the teeth start to 

engage. 

 

Figure 1.2: Manual Transmission [4] 

 

 

1.2 Automatic Transmission 

The basic components of an automatic transmission are: a torque converter that usually 

has a lockup clutch to prevent slippage at high speeds, a planetary gear train, and a 

hydraulic system/electro-mechanical controller. The torque converter connects to the 

crankshaft and transmits engine power to the gear train. Hydraulic pressure acting 

through the automatic transmission fluid produces the shift. The torque converter is a 

form of fluid coupling. This is a device that uses fluid and vaned rotors to transmit power 

between the shafts. Most cars sold in the United States since the 1950s have had 

automatic transmissions. Figure 1.3 [5] depicts a layout of an automatic transmission 

along with its components. 

Collar 
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Figure 1.3: Automatic Transmission [5] 

 Automatic transmissions are equipped with feedback controls, which may be 

electronic, hydraulic, or mechanical in nature, that allow for gear selection. The shift 

logic is dependent on many parameters such as engine speed, hydraulic pressure, 

temperature, vehicle acceleration, etc. The transmission controller uses a rule-based 

control strategy to select the gear ratio that best suits the driving conditions. The key 

difference between a manual and an automatic transmission is that the manual 

transmission locks and unlocks different sets of gears to achieve various gear ratios, 

whereas in automatic transmission, the same set of gears yields different gear ratios. This 

is possible because of the combined action of the torque converter and compound 

planetary gear set. However, the multitude of parts, complex design, advanced control 

strategies make automatic transmissions less favorable than its counterpart i.e. the 

continuously variable transmission (CVT). 

 

 

 

Torque converter 

Planetary gear set 
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1.3 Continuously Variable Transmission 

CVT is an emerging automotive transmission technology that offers a continuum of gear 

ratios between high and low extremes. Currently, three technologies coexist in the 

automotive market: belt CVT, toroidal CVT, and chain CVT. Figure 1.4 [6] depicts the 

components and basic configuration of a V-belt CVT. Figure 1.5 [7, 8] illustrates the 

configuration of a chain and a toroidal CVT.  Belt and chain CVTs fall into the category 

of friction-limited CVT drives. The basic configuration of a CVT comprises two variable 

diameter pulleys connected by a power-transmitting device like a belt or chain. One of 

the sheaves on each pulley is movable. The application of an axial force to the pulley 

sheave initiates radial motions in the belt or chain, thereby causing the transmission ratio 

to vary continuously. Hydraulic actuation of pulley sheaves is commonly used in current 

automotive applications. However, centrifugal systems along with high power electronic 

solenoids are also being actively used to actuate the pulley sheaves. 

 

 

Figure 1.4: Pushing V-belt CVT arrangement [6] 
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Figure 1.5: Chain and Toroidal CVTs [7,8] 

Toroidal CVT [8] 

Chain CVT [7] 

 Chain link structure 
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 The belt-type CVT can also be classified further as: push belt and pull belt. 

Torque is transmitted in a push-belt by compression whereas a pull-belt transmits it 

through tension. However, the automakers now commonly use a belt configuration which 

takes advantage of the push-pull effect in tandem. This leads to a high overall efficiency. 

However, losses are still inherent in the transmission due to power absorption by the 

hydraulic system for sheave-actuation and also due to belt slip. The torque capacity of a 

friction-driven CVT (i.e. belt or chain CVT) is limited by the strength of the belt or chain 

and the ability to withstand friction wear between the source and transmission medium. A 

lot of research is being conducted to enhance the efficiency and torque capacities of such 

CVTs. 

 The manufacturing processes for a belt/chain CVT are very cost-effective in 

comparison to the other transmissions. “To manufacture the bands, sheets of high-

fatigue-strength maraging steel are rolled into tubes and cut into loops in a slitting 

operation. These small loops are stretched to size by rolling, whereupon the bands are 

annealed, calibrated, hardened to relieve internal stresses, and then nitrided to harden the 

surface. The high-tolerance elements are fabricated using techniques similar to those used 

to manufacture high-velocity gears or roller bearings. The steel elements are fine-

blanked, hardened, deburred, and profile-shot blasted. Afterwards, they undergo a 

complicated sorting and selection process to match other similarly dimensioned 

elements” (Steven, [9]). 

 In addition to the advancements in belt and chain drive CVTs, significant research 

effort is being directed towards developing alternative designs of CVTs, e.g. spherical 

CVT, electric E-CVT, ball-type CVT, constant power CVT, toroidal CVT, etc [10-13]. 
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Several car manufacturers like Mazda, Ford, and Nissan are keenly exploiting the 

dynamics of a toroidal CVT and its advantages in a vehicle driveline system. Research at 

Mazda showed a 20% improvement in fuel economy with a 3.0 liter engine over a 4-

speed automatic transmission [14]. The toroidal CVT operates by transmitting power 

between the two pulleys by means of metal rollers, which run on a thin film of traction 

fluid against mating metal discs. In a half-toroidal CVT, as depicted in Figure 1.5, a large 

force presses a semicircular disc against the power roller, and the resulting shearing force 

on the squeezed oil film transmits power. Changing the effective radius of the contact 

point enables the gear ratio to change continuously, resulting in step-less gear shifting. A 

toroidal CVT adds to the other advantages of a CVT, such as:  

• Transmit high torque loads due to high performance traction oil and high surface-

pressure material in discs and rollers 

• Higher efficiency due to the absence of complex actuating mechanisms 

• Less noisy as power is transmitted through a rolling contact surface and the shearing 

force of oil 

However, among all the CVTs, the belt- and the chain- type CVTs are the most 

commonly used. The primary reason for this is attributed to their design simplicity and 

lower manufacturing cost. 

Commonly, an extension to CVT design, named as Infinitely Variable 

Transmission (IVT), is integrated into the vehicle driveline as it allows the transmission 

to drive the vehicle forwards as well as backwards. The whole arrangement is also 

referred as CVU, i.e. continuously variable unit. The transmission input from the engine 

is split into two shafts, one connected to the regular CVT and the other connected to an 
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epicyclic gear set. The output from the CVT shaft is connected to another shaft that 

connects to a different set of gear in the epicyclic gearbox. The gear that does not draw 

power from the engine or CVT transfers torque to the transmission output. Owing to the 

split in the input power, this configuration is also known as Power-Split CVT (PS-CVT). 

Figure 1.6 [15] depicts an input- coupled configuration of a CVU patented by Torotrak 

Company. 

 
Figure 1.6: Torotrak IVT System [15] 

 CVT technology is also being used extensively in hybrid-vehicle transmissions. 

Hybrid vehicles allow separate power sources each to operate in regions of optimal 

efficiency, thereby granting the overall system higher efficiency.  Most hybrid-electric 

vehicles fit into one of two fundamental categories: series or parallel.  Essentially, an 

electric motor generates all the torque necessary to propel the automobile in series hybrid 

systems, and in parallel hybrid systems, a combination of an internal combustion engine 

and an electric motor provides the propulsion. Of the two configurations, parallel hybrid 

systems are more common than the series systems. The Honda-Insight and Toyota-Prius 

 Output 

Engine 

/ Input 
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are both charge-sustaining gasoline-electric hybrids [16] which use the parallel 

configuration along with regenerative braking technology to increase fuel economy. Both 

the cars charge their batteries from energy that would otherwise be wasted, using gasoline 

as their sole external source of energy. The Insight is made in both manual transmission 

and CVT versions. It uses the same CVT transmission design as the Honda Civic HX. 

However, the Prius uses an electronically-controlled power-split CVT configuration. It 

provides a three-way connection between the wheels, the gasoline engine and the 

generator/motor by the use of a planetary gear-set. 

 

 

1.4 Closure 

In spite of the several advantages a CVT promises, the complete potential of a CVT, in 

terms of the mass-production and market penetration of CVT-equipped vehicles, has not 

been realized so far. The expected increase in the fuel economy and enhanced drivability 

has not been achieved in many cases. The control logic has not been accurate enough to 

deliver a desired shifting behavior.  However, it is indubitable that CVTs play a crucial 

role in the plan to improve vehicle fuel economy. Since the belt- and the chain- type 

CVTs are the most abundantly used CVTs, the present research aims at developing their 

detailed dynamic models that give insight into their system characteristics. These could 

be later exploited to meet the goals of higher fuel economy and higher vehicle efficiency. 

Moreover, as the belt and chain CVTs are friction-limited drives, their performance is 

significantly influenced by the friction characteristics of their contacting surfaces. 

Friction inherently is a non-smooth nonlinearity, which further makes the CVT a non-
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smooth mechanical system. The proposed research exploits the tools of non-smooth 

mechanical systems to understand the influence of various friction characteristics on the 

behavior of the detailed dynamic models of belt and chain CVTs. To enhance the 

comprehensibility, this dissertation has been organized into the following chapters: 

Chapter 2: It presents an extensive literature review on the work that has been done in 

different areas of CVT such as control systems, design, loss modeling, and dynamics. 

Analysis of the different aspects of a CVT that have been studied by various researchers 

motivates the author and, perhaps, the reader to conduct research in certain unexplored 

areas that can contribute towards better understanding of CVT dynamics. 

Chapter 3: This chapter creates a stepwise understanding of modeling and formulation 

of equations of motion of a CVT system. The reader is introduced to two different CVT 

models: metal V-belt CVT and chain CVT. The metal V-belt model incorporates a 

continuous rigid-body framework for the description of the belt and also accounts for the 

bending of pulley sheaves. Multibody formalism is used to describe the dynamics 

involved in a chain CVT. A suitable clearance model is embedded into the multibody 

model of the chain CVT in order to capture clearance-related dynamics in the system. 

Chapter 4: It discusses the friction phenomenon on a microscopic level and macroscopic 

level. Different models and numerical algorithms are described to capture the 

nonlinearities induced by friction in a system. The influence of different friction models 

on the dynamic response of a system is highlighted through an example of two- degree of 

freedom stick-slip oscillator. 

Chapter 5: It presents the results of the simulation and discusses them in detail. 

Influence of different friction characteristics and clearance parameters on the dynamic 
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performance indicators of a CVT is studied. Slip behavior in a CVT is studied under the 

influence of both loading conditions and inertial effects. Comparisons are illustrated 

among the dynamic performance indicators of the two different types of CVT. The 

similarity in the trends or characteristics with the existing work is noted. The results are 

also explained on the basis of fundamental laws of physics. 

Chapter 6: This is the concluding chapter and discusses the application of the present 

work and future research ideas.  

Appendices at the end of this dissertation outline the computer programs and 

simulation models used to model and understand the dynamics of a CVT system. 



 

CHAPTER 2  

 

LITERATURE REVIEW  

2.1 Previous Work 

Over the past few decades, automotive transmission technology has undergone 

several refinements in order to meet the goals of increased vehicle performance and 

reduced exhaust emissions. One of the most promising technologies introduced in the 

automotive market is the continuously variable transmission (CVT). CVT is a power 

transmission device whose speed ratio can be varied continuously between two finite 

limits. Speed ratio is defined as the ratio of belt pitch radius on the driven pulley to that 

on the driver pulley, or the ratio of driver pulley speed to driven pulley speed. A few 

authors also use the reciprocal definition for speed ratio, i.e. ratio of driven to driver 

pulley speeds. There are many kinds of CVTs, each having their own characteristics, e.g. 

Spherical CVT, E-CVT, Hydrostatic CVT, Toroidal CVT, Power-split CVT, Belt CVT, 

Chain CVT, Ball-type toroidal CVT, etc. However, among all, belt and chain types are 

the most commonly used CVTs in automotive applications. CVT is also a promising 

power-transmission technology for future hybrid vehicles. As mentioned before, several 

car companies like Ford, Toyota, Honda, Audi, etc., have already begun to mass-produce 

vehicles with such types of CVT integrated into their drivelines.  

Extensive research has been conducted on different aspects of a CVT e.g. 

performance, configuration, design, slip behavior, efficiency, vibrations, mechanics, 

stress or fatigue analysis, drivability, etc. The models developed to describe the dynamic 
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interactions in a CVT system vary in their level of complexity, their mode of analysis, 

and their research scope. However, since none of the models reported in the literature, 

barring a few, are able to accurately capture the transient-dynamic interactions occurring 

within a CVT system, it is imperative to develop detailed dynamic models which are 

comprehensive enough to be used for maximizing the potential benefits of a CVT. In 

addition to the many advantages a CVT promises, there are also a number of possible 

inherent parasitic losses associated with CVTs which account for their inefficiency. 

Simner [17] categorized losses within an automotive transmission into the following 

areas: parasitic losses, power proportional losses, inertia losses, configuration losses, and 

control losses. Parasitic losses occur under no-load conditions and are independent of the 

transmitted power. They are mainly speed- and temperature- dependent, e.g. in a manual 

transmission such losses can be due to oil churning, seal effects, bearing drag, etc. 

Further, CVT losses can be attributed to slippage, wedging action, hydraulic pumping of 

sheaves, other sheave actuation mechanisms, thermal effects, flexure effects, lubrication 

effects, fatigue and wear, etc. Akehurst [18] analyzed different loss mechanisms 

prevalent in a CVT, especially those occurring in a metal pushing V-belt CVT.  

Since the current research primarily deals with the dynamic analysis of friction-

limited CVTs i.e. belt and chain CVTs, the literature pertaining to them will be discussed. 

The torque capacity of a belt/chain CVT is limited by the ability of the power-

transmitting device (belt/chain) to withstand the wear caused by friction between the 

various transmission components. Literature pertaining to loss mechanisms, mechanics, 

control, slip behavior, vibrations will be subsequently discussed in detail. For better 
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comprehensibility, the discussion is divided into several sections, where each section 

describes the literature on a particular aspect of CVT. 

 

Belt Mechanics and Belt Slip: 

Many papers have been published over the past two decades to describe the dynamic 

interactions occurring in a belt or chain CVT. The most commonly used power 

transmitting device in a belt-type CVT is either a steel V-belt or a rubber V-belt. A lot of 

work on metal and rubber V-belt is subsequently cited as they are extensively used in 

today’s automobiles. Figure 2.1 [6, 19] depicts the layouts of a rubber V-belt and a metal 

V-belt. 

 

(a)                    (b) 

Figure 2.1: Layout of (a) Metal V-belt [6] and (b) Rubber V-belt [19] 

Belt drives in general do not have total slippage, so Grashof [19] divided the contact zone 

(or the pulley wrap region, α, α′) into sliding (or active) and adhesive (or idle) arcs. 

Figures 2.2 and 2.3 illustrate the geometric configuration, the sliding plane, and the 

simplified kinematic-description of a V-belt CVT. Only the sliding arcs, represented in 

the figure as (β, β′), contribute actively to the torque transmission. In the adhesive arc, the 

belt sticks against the pulley and the belt tension is constant. Gerbert [19] did extensive 
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work in understanding the mechanics of traction belts, especially metal pushing V-belt 

and rubber V-belt. He proposed a set of equations for describing the dynamic interactions 

 

Figure 2.2: CVT Geometric Configuration 

between the belt and the pulley. Since the belt is capable of moving both radially and 

tangentially, variable sliding angle approach was implemented to describe friction 

between the belt and the pulley. Previously, many researchers like Kimmich [20], Gutyar 

[21], Amijima [22], etc., assumed constant sliding angle over the pulley wrap to derive 

the equations of motion of the belt-pulley system. The variable sliding angle approach 

required that the equilibrium, compatibility, and constitutive equations be solved 

simultaneously for predicting the dynamics of a belt-pulley system. Only centripetal 

effects were modeled to account for the influence of belt inertia on system dynamics. 

 
Figure 2.3:  Kinematic description of the belt 
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Gerbert [23] did a thorough analysis to understand the slip behavior of rubber 

belts and developed a unified slip theory for rubber V-belts.  He classified slip according 

to the contributions of creep, compliance, shear deflection, and flexural rigidity. The 

author also discussed the slip due to the poor fit between the belt and the pulley during 

the wedging action. Finite Element Analysis was used to calculate shear deflections in the 

belt and also to determine the stick-slip conditions on the belt. However, the work did not 

account for the influence of belt inertia, loading conditions, and belt radial variations (due 

to axial forces) on the slip behavior. 

Gerbert [24] also studied the influence of flexural rigidity and inertia of a belt, 

especially a rubber V-belt, on the dynamics of a belt-pulley system. However, only 

centripetal effects were modeled to account for the influence of belt inertia. Owing to 

flexure, the belt no longer follows a straight-line motion after exiting the pulleys. As a 

result of the flexural effects, the contact arc becomes smaller than the nominal one, and 

the traction capacity of the drive increases. The author used ordinary beam theory to 

predict the entrance and exit slopes of the belt. The flexural rigidity has tremendous 

influence on the seating and unseating behavior of the belt. Rapid variation of curvature 

may change the direction of frictional forces, which consequently affects the torque 

capacity of the belt-CVT drive. Gerbert [19] also discussed power losses associated with 

flexure, belt compression, and temperature. He simultaneously conducted numerous 

experiments to support his theoretical correlations. Occasionally, it was observed that the 

deflection of the pulley and the compression of the belt were of the same magnitude in a 

metal belt CVT. Gerbert [25] studied the influence of pulley skewness on the mechanics 

of V-belt drives. Deflection of the pulley in the axial direction widens or shortens the 
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groove width, thereby influencing the motion of belt in the pulley groove. The 

displacement of the pulley sheaves can be attributed to the phenomena of local deflection, 

plate deflection, and pulley skewness. The local deflection depends on the local axial 

pressure. Plate theory was used to obtain global deflection of the pulley halves. The 

author used the influence functions derived by Ciavatti et al. [26] for the deformation of a 

transversely loaded annular plate. However, the plate equations and the belt equations 

need to be solved simultaneously in order to obtain the dynamic performance indicators 

of the belt-pulley system. Skewness of the pulley may be caused by clearances in the 

guiding of a movable pulley half. Gerbert [25] ignored the elastic deformations in the belt 

and the pulley, and studied the influence of pulley skewness on the dynamics of a stiff 

belt. V-belt mechanics, like any other mechanical system, is characterized by a set of 

differential equations. The author observed the existence of singular solutions (also 

known as orthogonal points) where the frictional forces are radially directed and all the 

derivatives in the differential equations vanish. The character of a solution at an 

orthogonal point to a great extent determines the character of the solution at other 

locations and other conditions. The author also observed that the axial forces for pulleys 

with small to medium skewness did not differ much from those in the ideal case (i.e. with 

parallel pulley halves). On the other hand, large skewness led to a considerable increase 

in axial force for low to medium torque applications. The author’s conclusions, however, 

were not experimentally supported. 

Sorge [27] introduced the concepts of deformation and elastic wedging to analyze 

the mechanics of rubber V-belts. The author’s focus was to analyze the belt-trajectory. 

The study involved the theoretical problem of tension distribution and radial penetration 
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of a V-belt. Flexure and inertial effects were neglected. The belt deformation was related 

only to the axial forces and the contributions arising from Poisson effects were neglected. 

He incorporated the transverse elasticity of the belt and used force-deformation equations 

to obtain a sliding condition. The author also put considerable effort in obtaining 

approximate closed form solutions to the belt-pulley system. Dolan and Worley [28] 

extended Gerbert’s work [24] to formulate closed form solutions by approximating the 

numerical results of both driven and driven pulleys by suitable mathematical functions. 

Hyperbolic and trigonometric forms were introduced to describe the tension distribution 

over the main active arc of contact excluding the seating and unseating regions. The 

authors were able to get results in close agreement to Gerbert’s numerical results; 

however, conformity with the driver pulley system dynamics was not attained. Sorge [29] 

also studied the transient mechanics of rubber V-belt variators in order to understand the 

CVT behavior during speed-ratio shifts. The results obtained were different from those at 

steady state. For moderate shift speed and high angular speed, partial adhesive regions 

appear where the belt winds along spirals of Archimedes. Simple closed-form 

approximations were proposed for the purpose of speeding up the calculations for 

variator operative characteristics. Sorge and Gerbert [30] developed a third order rubber 

V-belt model considering no inertial and flexural effects. They introduced the concept of 

“adhesive-like” contact in V-belt mechanics. They proposed that V-belts do not stick to 

the pulley walls along the pulley wrap, but pass through an idle-like region where sliding 

occurs at extremely low relative velocity. The trajectory is nearly circular in this region 

and tension is almost constant. Sorge [31] also analyzed the mechanics of metal V-belts 

under the influence of pulley bending. The belt was considered rigid for the purpose of 
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model development. The author used virtual displacement approach to get approximation 

to belt trajectories, tension distribution, axial thrust, and slip. The author concludes that 

the influence of pulley deflection is important when the belt trajectory is close to the 

outer radius. The influence decreases near the middle radius and becomes negligible near 

the inner clamped radius. Therefore, he suggested the use of a mixed model at smaller 

radii in order to account for the deformation of both belt and pulley. 

“Robertson and Tawi [32] developed a model to describe the misalignment of the 

belt and pulleys over a range of transmission ratios. They investigated the effects of the 

ratio at which zero misalignment occurred and how this ratio could be optimized to 

reduce maximum misalignment over the transmission ratio range” (adopted from 

Akehurst’s Ph.D. Thesis, [18], with permission). 

Sattler [33] analyzed the mechanics of a metal chain CVT and a V-belt CVT 

considering both longitudinal and transverse stiffness of the chain and belt, misalignment, 

and elastic deformation of the pulleys. The pulley deformation was modeled using finite-

element analysis. The pulley was assumed to deform in two ways, pure axial deformation 

and a skew deformation. The model was also used to study efficiency aspects of belt and 

chain CVTs. 

Micklem et al. [6] developed a model of steel pushing V-belt CVT based on 

elastohydrodynamic (EHD) lubrication theory. The author used EHD theory to model 

friction between various surfaces i.e. between bands, between band and element, between 

element and pulley. However, the author also made certain unrealistic assumptions 

during the course of model development, such as, uniform band tension, uniform loading 

and unloading arcs over the belt/pulley wraps, negligible inertial effects. Speed variation 
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in the belt due to deformation and compressive loads was also neglected. The author also 

discussed the influence of gaps between the belt elements on the slip behavior of CVT. A 

test rig was also designed to make measurements on the transmission. Micklem et al. [6, 

34] proposed a viscous shear model that can predict belt slip with good accuracy over a 

wide range of operating conditions except when the input torque is small. They suggested 

that this discrepancy is due to the redistribution of gaps between the belt elements as they 

enter the driver pulley. The authors also reviewed the work done by Gerbert [35] and 

compared the results from their friction model to the results obtained by the other 

authors. 

“Karam and Play [36] did a discrete analysis of metal V-belt drive. Due to a large 

number of parts, they used a numerical approach to derive global equilibrium equations 

from elemental part equations. The belt equations were derived using quasi-static 

equilibrium analysis. A lot of hypotheses and assumptions were made during the course 

of model development. The belt elements are always assumed to be in compression, and 

the bands and pulleys are assumed to be rigid. They also observed that only part of the 

contact arc contributed to torque transmission. Belt efficiency passes through a maximum 

for a speed ratio of 1. The steel bands aided power transmission at low transmission 

ratios, but acted against power transmission at high ratios. They later included pulley 

deformations in the model and observed an increase in pulley axial forces” (adopted from 

Akehurst’s Ph.D. Thesis, [18], with permission). 

“Asayama et al. [37] developed a theoretical model to describe variations in band 

tension and segment compression force. The authors introduced the existence of relative 

motion between the bands and segments, as they have a different radius of rotation, and 
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used this to predict changes in band tension” (adopted from Akehurst’s Ph.D. Thesis, 

[18], with permission). The results were verified by conducting an experiment and a 

method was devised to develop a relation between belt slip limit and pulley clamping 

force. The equations were developed using the concepts of quasi-static equilibrium. 

Kim and Lee [38] investigated the metal V-belt behavior analytically and 

experimentally. They proposed a speed ratio-torque load-axial force relationship to 

calculate belt slip. They obtained the equations of motion using quasi-static equilibrium 

considerations. They found that the gross slip points depend on the torque transmitting 

capacity of the driven side. Numerical results showed that the belt radial displacement 

increased in the radial inward direction for driven pulley, while that of the driver 

increased slightly and decreased with the increasing torque load. The effects of inertia 

and flexure were neglected and the band tension was assumed to be constant. Radial 

stiffness of belt was incorporated in order to analyze the influence of axial force on radial 

penetration. “Kim et al. [39] performed metal V-belt analysis with the objective of 

calculating pulley clamping forces for specific torque and transmission ratio 

combinations. The authors derived equations for a number of different conditions, like 

low ratio low load, low ratio high load, high ratio cases, and unit transmission ratio. For 

each of these conditions, the authors split the pulley wrap into three distinct regions: 

where the segment compressive force and band tension remain constant, where only the 

band tension changes, and where both tension and compression vary. For each of these 

regions and for each pulley, an axial force requirement is calculated. The total axial force 

at each pulley is then the sum of each of these component parts” (adopted from 

Akehurst’s Ph.D. Thesis, [18], with permission). Kim and Choi [40] again investigated 
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the behavior of a rubber V-belt CVT analytically and experimentally. They found that as 

the torque load increased, the belt radial displacement increased in the radial inward 

direction for the driven pulley while the radial displacement decreased slightly and then 

increased for the driver pulley. Moreover, the relative belt displacement for the driver 

was negligible compared with that of driven. The experimental results were in 

consonance with the theoretical results except for the inlet and exit regions of the pulleys. 

Sun [41] did a performance-based analysis of a metal V-belt CVT. He modeled 

the metal V-belt as a composite of multiple-bands and metal-blocks. The author assumed 

a constant value for the active arc for calculation purposes, and observed the influence of 

ratio change on axial forces. The equations of motion were derived on the assumption of 

quasi-static equilibrium. Flexural effects were neglected and the steel blocks were treated 

as a continuous belt subjected only to compression. The author also assumed that the 

deformation and creep in bands and steel blocks under torque load were the same as those 

without torque load. A computational scheme was devised that adapted the analysis to the 

computation of the metal-belt drive’s performance for any specific drive-schedule. 

Massouros [42] investigated elastic creep velocity of a rubber V-belt analytically 

and experimentally. The belt creep velocity depends not only on the structural 

characteristics of the belt, but also on the operational characteristics of the CVT. It also 

affects the torque transmission capacity of a belt drive. During the power transmission 

with a belt-pulley system, the velocity of the driving side of the belt is larger than the 

driven side. The gradual change of the velocity from the larger value to the lower value 

and inversely, takes place on the pulley wrap arcs by the elastic creep of the belt on the 

pulley. The belt creep takes place towards the moving direction in the driven pulley and 
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opposite to the moving direction in the driving pulley. It was observed that the belt creep 

velocity at each point of the arc of creep is a linear function of transmitted power and 

varies exponentially along the arc of creep. The belt dynamics was modeled using quasi-

static equilibrium concepts. 

Kobayashi et al. [43, 44] focused on the gap distribution between the elements 

and analyzed the mechanism causing microslip in a metal belt CVT. The authors also 

investigated the torque transmitting capacity of a metal V-belt CVT under no load 

conditions on driven pulley. The belt slip was calculated on the basis of mean gap (due to 

the redistribution of gaps among the belt elements). They showed that the slip ratio rises 

to a state of macroslip when the transmitted torque exceeds the slip-limit torque. The slip 

hypothesis made a number of assumptions: the slip was assumed to occur only on the 

pulley where the gaps were present and these elemental gaps were assumed to be 

distributed evenly in the idle sector at the entrance to the loading pulley. The authors 

observed the existence of active and idle arcs during different phases of transmission. 

Figure 2.4 [43] depicts gap redistribution phenomenon among belt elements. Radial 

variations of the belt due to the axial forces were neglected. The equations for calculating  

 
Figure 2.4: Slip mechanism due to gaps in a metal V-belt [43] 
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the forces were obtained from the conditions of quasi-static equilibrium. An experimental 

test-rig was also developed in order to verify the theoretical results. They observed that 

the slip ratio decreased with an increase in the pulley clamping force. They also noted the 

relationship between the slip-limit torque and the driven pulley clamping force at low and 

high pulley ratios. The authors also developed a Finite Element model of the variator 

mechanism to analyze the forces and stresses acting on the CVT components and to 

investigate the effects of belt misalignment on the band tension distribution and the belt 

torque capacity. It was observed that with increased belt misalignment, the maximum 

band tension increased whereas the torque capacity reduced. 

Browne [45] investigated the torque capacity of metal belt CVTs under the 

conditions of quasi-static equilibrium and impending slip. Moreover, since the belt was 

assumed to be under the conditions of gross-slip, all the frictional forces were 

circumferentially directed. Only the inertial effects arising from centripetal acceleration 

were taken into account. It was proposed that the torque transmission capacity was 

limited by the maximum belt tension and the associated fatigue strength of the tension 

members. It was observed that for a given belt design, increasing the width with 

proportional changes in tension capability and mass led to a proportional increase in 

torque capacity. Optimization with respect to belt pitch radius yielded a 1-5 % increase in 

the torque capacity of the CVT system. This could be larger or smaller depending on the 

initial configuration of the drive. 

Bonsen et al. [46] analyzed slip and efficiency in a metal pushing V-belt CVT. 

High clamping force levels reduce the efficiency of CVT. However, high clamping forces 

are necessary to prevent slip between the belt and the pulley. If a small amount of slip is 
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allowed, the clamping force level can be reduced. They investigated the variation of 

transmitted torque with slip. Radial slip was attributed to CVT shifting and spiral running 

of the belt. It was proposed that the amount of radial slip depended on the pulley 

deformation effects, the shifting speed, and the driver angular speed. Tangential slip was 

defined on the basis of redistribution of gap between the belt elements, just as in 

Kobayashi et al. [43]. It was observed that the traction coefficient (a measure of torque 

capacity) of a belt CVT increased with slip in the microslip regime. However, once the 

maximum torque capacity of the CVT was attained, the slip rose dramatically and the 

traction coefficient began to decrease. The friction between the belt and the pulley was 

modeled according to Stribeck’s friction law. The force distributions were obtained using 

Asayama’s [37] model. The authors also concluded that the traction coefficient is largely 

dependent on the CVT ratio and is not much influenced by pulley speed and clamping 

pressure. However, the CVT efficiency depends not only on the clamping pressure but 

also on the CVT ratio. 

Amijima et al. [47] studied the axial force distribution on a block-type CVT 

analytically as well as experimentally. They observed the variation in the axial force 

profile as the belt progressed from the inlet to the exit of a pulley. A block V-belt CVT 

consists of high rigidity blocks and two tension members that fasten the blocks. Figure 

2.5 [47] depicts the belt configuration for a block-type CVT.  

 
Figure 2.5: Belt configuration of a block-type CVT [47] 
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The authors developed a correlation to relate the angular position of the belt on the pulley 

to the sliding angle. The equations of motion were derived using quasi-static equilibrium 

and a relationship was developed to relate the two axial forces to tension, belt material 

properties and groove angle. The experiments yielded that the thrust force profile varies 

over the pulley and is maximum at the exit point. The authors observed that even under 

conditions of zero power transmission, the thrust pressure is not constant through the 

pulley contact arc when an initial tension exists in the belt. The thrust force increased 

with the increase in the transmitted load at any speed ratio. It was noted that usually the 

thrust force on the smaller pulley was higher than that on the larger pulley. 

Sferra et al. [48] developed a unique model of metal V-belt CVT in order to 

simulate its transient behavior. The model includes inertial and pulley deformation 

effects. Discrete and continuous shifting behaviors were simulated in order to compute 

efficiency and power losses due to friction between the belt and the pulley halves. The 

results showed high loss of efficiency during shifting transients. Power losses due to 

other parasitic effects were not included in the model. 

Chung and Sung [49] proposed a theoretical formulation for analyzing the contact 

behavior of a rubber V-belt drive with mono-cord construction. Based on the equilibrium 

equations that included the flexural rigidity of the belt, the coupling between the radial 

and circumferential motions was considered. The analysis was based on the work of 

Gerbert [19]. The tensile stress distribution, the active and idle arcs within the contact 

region, the sliding angle and the effects of bending rigidity on power loss were evaluated 

numerically.  
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Ide and Tanaka [50] experimentally measured the contact force between a metal 

pushing V-belt and the pulley sheave using ultrasonic waves. The relative change in the 

shape of the belt wrapping arc due to changes in the clamping force and transmitted 

torque is detected. The results showed that the shape of the belt wrapping arc is not co-

axial with the pulley axis, and this was attributed to the asymmetrical pulley deformation. 

For low torques on the driver pulley, the contact force distribution exhibited peaks at the 

inlet and outlet of the pulleys. The peak on the outlet was higher, especially on the pulley 

with larger pitch radius. It was proposed that the asymmetrical pulley deformation and 

the self-locking of the belt on the pulley were responsible for the high peak at the pulley 

outlet. The authors also observed that the high peak of the contact force at the pulley 

outlet decreased as the driving torque increased. This was attributed to the increase in the 

belt compressive force and the disappearance of self-locking phenomenon of the belt on 

the pulley. 

Ferrando et al. [51] designed a test bench for a V-belt CVT used in mopeds and 

conducted a series of tests covering the variable conditions of speed, torque, tension, and 

transmission ratio. The authors reviewed several models for computing pulley axial 

forces, as mentioned by Worley [52], Miloiu [19], and Gerbert [24, 53]. They also 

developed empirical models for computing axial forces and compared these models to 

those mentioned in the literature. 

Bullinger and Pfeiffer [54] developed an elastic model of a metal V-belt CVT to 

determine its power transmission characteristics at steady-state. Pulley, shaft, and belt 

deformations were taken into account. The pulleys were modeled as elastic multibody 

system. Both the pulley sets have degrees of freedom associated with both rigid body 
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motion and elastic deformation. The pulley deformation was modeled using Finite 

Element Approximation and Maxwell’s Reciprocal Theorem of Elasticity. The frictional 

constraints were modeled using the theory of unilateral constraints. The belt dynamics 

was specified by separate longitudinal and transverse approaches. The transversal 

dynamics was modeled using Ritz-approach based on B-splines. The longitudinal 

dynamics was described by using Lagrange coordinates. Figure 2.6 [54] depicts the 

multibody model used by the authors to capture the dynamic interactions in a metal V-

belt CVT system. 

 
Figure 2.6: Multibody model of metal V-belt CVT [54] 

Carbone et al. [55] did extensive work on modeling transient dynamics of a metal 

pushing V-belt CVT under shift ratio variations. They ignored longitudinal and 

transversal deformation of the belt. The radial thickness and the bending stiffness of the 

belt were also neglected during the analysis. Coulomb friction was used to model friction 

between the surfaces. Non-dimensional equations were defined to encompass different 

loading scenarios; however, the coupling between radial and tangential motions of the 

belt was not modeled in detail.  The authors put considerable effort to obtain analytical 

solutions to the differential equations that describe the motion of belt over the driver and 
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driven pulley wraps. Carbone et al. [56] also studied the influence of clearance between 

the belt elements on the rapid shifting dynamics of a metal pushing V-belt CVT. The 

band tension and inertial effects were neglected in the analysis. The clearance between 

the elements was modeled as a kinematic strain of the belt. The authors noted that the 

power transmission is assured only if an active arc exists where the elements are pressed 

against each other and where compressive forces arise among the steel elements. The idle 

arc, where the steel elements are separated and no compression exists, does not contribute 

to torque transmission. On the driver pulley, a “shock” section was observed which 

separates the idle arc from the active arc. On the driven pulley, there is no shock section, 

but an “expansion wave” kind of phenomenon occurs as the clearance between the belt 

elements grows on the idle arc. Figure 2.7 [56] depicts the steady-state geometrical 

description of a metal V-belt CVT under the influence of clearance-redistribution. 

 
Figure 2.7: Geometrical description of belt CVT at steady-state [56] 

Carbone et al. [57, 58] developed a one-dimensional continuous model of belt and also 

discussed the effect of band-element interaction on the dynamic behavior of a CVT. 

Flexural and inertial effects were neglected. The authors used two friction models, 

Coulomb friction model and a visco-plastic friction model, to model friction between the 
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belt and pulley. It was noted that the Coulomb friction model is unable to correctly 

predict the shift dynamics of CVT during slow maneuvers (i.e. creep-mode phases), but it 

could predict the limiting traction capacity of the belt drive and the CVT behavior in slip-

mode (rapid shifting) phases. However, a visco-plastic model is able to accurately predict 

CVT behavior in creep-mode phases, and is also able to detect the transition from creep 

mode to slip mode. The authors also proposed simple relations to link shift speed to the 

clamping force ratio, the driver pulley speed, and the load torque. Carbone et al. [59] also 

studied the influence of pulley deformation on the shifting mechanism of a metal V-belt 

CVT. Coulomb friction hypothesis was used to model friction between different surfaces. 

Flexural effects of the belt were neglected, however pulley bending was considered. Only 

the inertial effects arising from centripetal acceleration of the belt were taken into 

account. Moreover, the continuity of the belt drive between the driver and driven pulleys 

was not modeled. The authors predicted that Coulomb friction model was able to 

accurately describe shifting behavior of CVT in creep and slip modes if the model took 

pulley bending effects into account. The authors used Sattler’s [33] work to model pulley 

bending effects. They also suggested the absence of adherent arc between the belt and the 

pulley. Moreover, in steady state, the pressure and tension distributions were unaffected 

by pulley bending and depended only on the force ratio. However, pulley bending played 

a significant role in determining the transient response of the variator. It was shown that 

in creep mode, the rate of change of speed ratio continuously increases as the stiffness of 

the pulley decreases. The model was also able to predict the influence of angular velocity 

of the pulleys on the rate of change of speed ratio. The authors also proposed that during 
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creep-mode phases, the shift speed is almost linearly related to the logarithm of pulley 

clamping force ratio. 

Experiments done by a number of researchers, especially those done by Fujii and 

Kanehara, have shown that both the tensile force in the band pack and the compressive 

force between the belt elements aid in torque transmission. Their work suggested that 

these forces vary non-uniformly over the pulley wrap, which invalidates the assumption 

of constant band tension made by other researchers. “Based on these original 

experimental findings, Fujii and Kanehara produced a number of subsequent publications 

each expanding to a degree on the previous work. Fujii et al. [60] did an experimental 

analysis to obtain clamping forces for different torque levels and angular speeds at a 

constant transmission ratio. The effect of speed on clamping force was found to be much 

more significant than the torque load effects. Fujii et al. [61] discussed experimental 

techniques to measure band tension and element compressive forces. The authors 

observed the existence of active and idle angles on the driving pulley and suggested that 

the magnitude of torque transmission by the bands may be up to 40~45% under some 

operating conditions. The authors also proposed that the band tension distributions are 

due to the speed differences that must exist between the bands and segments. Tension 

distributions are shown to decrease around the smaller of the two pulleys in the direction 

of belt travel” (adopted from Akehurst’s Ph.D. Thesis, [18], with permission). 

Consequently, the band tension impedes torque transfer in high ratio and aids the transfer 

of torque in low ratio. This happens to such an extent that in low ratio, for a range of 

lower torque levels, the whole torque load was observed to be transferred by the band 

tensions alone. In the third part of their paper, Fujii et al. [18, 62] used a number of strain 
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gauged belt elements to measure forces acting in various directions on the belt element. 

The experiments were conducted on a constant transmission ratio CVT at low belt speeds 

and low clamping pressures. Time histories of pulley normal force, belt compressive 

force, transmitting force (i.e. tangential friction force between belt element and pulley), 

radial friction force, element shoulder force, etc. were recorded during the experiment. 

Since it was difficult to measure belt compression in the free span of the CVT system, a 

straight-line fit between the entry and exit conditions on each pulley was assumed. The 

pulley normal force was not evenly distributed about the contact arcs. It was observed 

that the normal force per element was lower on the pulley with the larger wrap angle; 

however, the element normal force exhibited peaks at the entry and exit of the pulleys, an 

observation noted by Ide et al. [50]. The authors also observed the existence of idle and 

active arcs in a belt running at a high transmission ratio. The radial friction force 

restricted the penetration of belt element into the pulley, except at the pulley exits where 

it acted to retain the belt element in the pulley wedge. Fushimi et al. [63] developed a 

numerical model to calculate steady-state force distributions and compared it to the 

results from existing experimental work. The metal V-belt is modeled using a lumped-

parameter approach and consisted of three kinds of springs and two kinds of interfacial 

elements for one block and the ring. Fujii et al. [64] later extended the experimental set-

up used in their fourth paper to record forces in a CVT under the conditions of varying 

transmission ratio. Time histories of various forces acting in a belt-pulley system were 

recorded. However, none of the above-mentioned papers of Fujii et al. included any kind 

of theoretical modeling of a metal V-belt CVT in order to explain the various dynamic 

interactions occurring in the system. Moreover, since the experiment was conducted at 
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low speeds and low pressures, inertial and deformation effects could not be captured in 

detail. However, Fujii and Kanehara co-authored a paper with Kuwabara [65] where they 

proposed an advanced numerical model to analyze power transmitting mechanism in a 

metal pushing V-belt CVT. The forces acting in the system were estimated not only at 

steady states but also during transitional states where the speed ratio was changing. The 

band tension is not assumed to be constant. The model takes into account the various 

dynamic interactions occurring among bands, elements and the pulleys. It was observed 

that bands transmitted negative power under over-drive conditions (i.e. when the pitch 

radius on driven pulley is smaller than the driver pulley radius). So, in order to meet load, 

the blocks transmit power more than the nominal. Much greater thrust was needed to shift 

the speed ratio during transitional state in comparison to the requirements in steady-state. 

The authors also observed that the thrust ratio (ratio of driver axial force to driven axial 

force) slightly increases with increase in coefficient of friction between the belt and the 

pulley. Coulomb friction was used to model friction between all the surfaces. The 

influence of flexure and belt inertia was neglected during the course of model 

development. Figure 2.8 depicts some of the steady-state results from Fujii et al. [65] that 

highlight the combined role of band pack and element forces in successful torque 

transmission. 

 
Figure 2.8: Steady-state Tensile and Compressive Forces in belt CVT [65] 

Tension 

Compression 
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Katsuya et al. [66] also obtained the equations of motion of the belt but they 

assumed the presence of friction only in circumferential direction. Kanehara, Fujii, and 

Oono [67] developed a macroscopic power transmitting model of a metal V-belt CVT at 

steady-state. They introduced mean coefficients of friction between the blocks and the 

pulleys, and between the blocks and the rings (or bands). The analysis was based on 

classical Euler’s theory for conventional V-belts; however, the existence of idle and 

active arcs was taken into consideration. So, the torque transmission of the CVT was 

characterized by means of six mean coefficients of friction. The simulation, in effect, 

focused on changes in ratio and the effect of up-shift and downshift conditions on the 

friction coefficients between the components. Fujii and Kanehara co-authored a paper 

with Fujimura [68, 69] where they used mean coefficients of friction, as in their previous 

work, and shifting gradients to reveal the shifting mechanism of a metal V-belt CVT. 

Shifting gradient is a non-dimensional parameter which was defined as the radial 

increment of a block sitting on a pulley in radial direction per unit block path. The 

experimental results showed that the thrust force and the sliding speed significantly 

influenced the mean coefficients of friction. The authors also observed that the shifting 

gradient was influenced neither by pulley speed nor by torque ratio. Torque ratio is 

defined as the ratio of transmitted torque to the maximum transmittable torque. It was 

observed that the shifting gradient increased with increasing the thrust of a pulley in 

which the belt pitch radius was increasing. It also decreased with increasing thrust of a 

pulley in which belt pitch radius is decreasing. However, the authors did not include the 

influence of belt tensile and compressive forces on the shifting gradient of the variator. 

Fujii and Kanehara later co-authored a paper with Kataoka [70] where they analyzed shift 
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mechanisms of the variator and characterized friction between the blocks and the pulleys. 

The authors concluded that the shifting gradient is governed not only by the elastic 

deformations of the blocks (from the pulley thrusts), but also by the ring tension and 

block compression. The authors developed quasi-static equilibrium equations (neglecting 

detail inertial effects) to estimate target pulley thrusts at steady and transitional states. 

They also modeled the dynamic behavior of a belt block at the entrance of the pulleys. 

The driving and driven pulley thrusts were calculated by considering the forces acting on 

the blocks at the pulley entrance, which agreed with the experimental results at not only 

steady state but also transitional state. The frictional performance of CVT fluids and the 

frictional characteristics between the blocks and a pulley were evaluated by applying the 

mean coefficient of friction as a friction parameter. It was found from the experiments 

that the estimated coefficient of friction of CVT fluids was not constant with respect to 

the operating conditions. It varied due to the relative sliding between the blocks and the 

pulley and due to the normal pressure acting on the V-surface of the block. Miyawaza et 

al. [71] developed a discrete model in order to analyze the power transmitting mechanism 

of a dry hybrid V-belt CVT at both steady and transitional states. Block tilting and pulley 

deformation effects were included in the analysis. The model could consider 

seating/unseating behavior of the belt in the pulley groove, belt deformation, and radial 

penetration in the pulley groove simultaneously. A dry hybrid V-belt consists of a pair of 

tension members and many lateral H-shaped blocks. Blocks are connected to each other 

by tension members. The tension members are inserted into the grooves between two 

arms of the blocks, as shown in Figure 2.9 [71]. Since blocks are subjected to high pulley 

thrust to generate sufficient frictional forces, they have a hybrid structure utilizing a 
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strong core made of aluminum alloy. The belt is modeled using a lumped-parameter 

approach and consists of 5 springs and 1 interface element (which monitors the stick-slip 

transitions between the block and the pulley). 

 
Figure 2.9: A dry hybrid V-belt assembly [71] 

The authors assumed that the block arms do not bend in the analysis and they also 

neglected the influence of inertial effects on the dynamics of the belt-pulley system. The 

authors noted the absence of idle arcs on both driver and driven pulleys even when the 

transmitting torque was low. The coefficient of friction, block tilting, and pulley 

deformation affect the resultant pulley thrust. It was observed that at a speed ratio of 0.5, 

the pulley thrust ratio decreased 20% from the nominal value due to block tilting. 

However, the influence of block tilting on transmitting force and belt tension 

distributions was insignificant. At low speed ratios, a dramatic decrease of pulley thrust 

ratio was found when pulley deformation was considered. The authors also concluded 

that larger the coefficient of friction between belt and pulley, the lesser the pulley thrust 

force required for power transmission. 

Shieh and Chen [72] developed a rigorous three-dimensional finite element 

procedure to analyze contact phenomena in belt transmission systems. They adopted a 

transformation matrix method (Chen and Yeh [73]) to satisfy geometric conditions on the 



 40

contacting surfaces and also used modified elements with incremental Wilson 

displacement modes (Wilson et al. [74]) to improve the accuracy due to bending at the 

end zones of the contact area of the belt-pulley interface. The influence of friction 

coefficients on the deformation, normal and tangential contact forces was studied in 

detail. Shieh and Chen [75] also studied the influence of angular speed on the frictional 

contact behavior of a rubber V-belt drive system. The authors used the finite element 

formulation from their earlier work to calculate the deformations and contact forces in the 

V-belt drive. However, in this work, an incremental restricted variational principle was 

established with the centrifugal force term to simulate the V-belt drive system operating 

at an angular speed. The authors observed that the normalized tangential and normal 

contact forces decreased as the angular speed increased. This affected the maximum 

transmitted torque endured by the V-belt drive system. The authors also investigated the 

power loss phenomenon by calculating the friction angle (sliding angle) distribution over 

the whole contacting arc of the belt. An increase in the friction angle increased the inward 

radial deformation of the V-belt which accounts for the power loss of the operating V-

belt drive system. 

Srivastava and Haque [76] developed a detailed transient dynamic model of a 

metal pushing V-belt block-type CVT. The goal was to understand the transient behavior 

of a belt element as it traveled from the inlet to the exit of either of the two pulleys. The 

inertial coupling due to the radial and tangential motions of the belt was modeled in 

detail. Flexural effects were neglected and the contact between the belt and the pulley 

was modeled using continuous Coulomb friction theory. It is evident from their work that 

not only the configuration and loading conditions, but also the inertial forces, influence 
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the dynamic performance of a CVT, especially the slip behavior and torque capacity. 

Srivastava et al. [77] also highlighted the significance of providing the CVT with a 

feasible set of initial operating conditions to initiate torque transmission. The authors 

suggested that CVT, being a highly nonlinear system, needs a specific set of operating 

conditions, which can be found using an efficient search mechanism, in order to 

successfully meet load requirements. The authors used Genetic Algorithms (GA) to 

capture this feasible set and also highlighted its efficiency in capturing this set by 

comparing it to the results generated by Design of Experiments (DOE). The optimization 

objective function was suitably chosen to maximize torque transmission capacity of the 

CVT system. Srivastava and Haque [78] developed a metal pushing V-belt CVT model in 

steady-state to study its microslip behavior and define its operating regime. They 

discussed the influence of torques and axial forces on the slip behavior of the belt. Slip is 

based on the redistribution of gaps among the belt elements and the formation of inactive 

arcs, as proposed by Kobayashi et al. [43]. The model is able to predict the maximum 

transmittable torque before the belt undergoes gross slip. The authors also observed that 

even under steady-state conditions, the CVT operates in a definite regime of axial forces 

and torques, which may be different from the operating regime under transient 

conditions. They predicted the minimum axial force necessary to initiate torque 

transmission and also the maximum axial force that the CVT can sustain (based on the 

slip behavior of the belt and not on the effects of stress, wear, or fatigue). The operating 

regimes for axial forces and torques were obtained by running numerous simulations with 

different transmission ratios. 
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Design issues, Losses and Efficiency: 

Hsieh and Yan [79] discussed the efficiency-based design aspects of a CVT. The authors 

worked on differential transmissions and used the concepts of kinematic graph, static 

equilibrium and frictional loss for analyzing the mechanical efficiency of a CVT. They 

also performed optimization of the CVT using design constraints on velocity ratios to 

maximize mechanical efficiency.  

Huang and Hu [80] studied the influence of a CVT on the fuel consumption levels 

of a vehicle. The authors did a design analysis of a CVT with the objectives of maximum 

motor speed and minimum fuel consumption. They devised a computational algorithm 

using surface fitting techniques for engine performance data and simulated annealing 

methods for optimization purposes. The CVT configuration sufficed to their research 

purposes and the necessary equations were developed. 

Several design configurations have also been proposed for a continuously variable 

transmission like a split torque transmission by Hanachi [81], a geared-neutral variable 

transmission by Linzell et al. [82], and a double planetary gear train-CVT by Mucino et 

al. [83].  Hanachi [81] developed a computer-based mathematical model to represent a 

split-torque geared-neutral transmission. The equations of motion were derived using 

Lagrange’s non-holonomic form. His work includes an engine-model, a transmission, a 

differential and a simple vehicle model. Slip inside the continuously variable unit was not 

taken into account; however, clutch slip was modeled using the assumptions of Couette 

flow and hydrodynamic lubrication. 

Mucino et al. [83] proposed a design configuration that provides a power/torque 

split function. The key feature i.e. the power-split phenomenon, allows the CVT to carry 
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larger portion of input power at higher speeds. The authors implemented a simple design 

methodology, used kinematics and transmission ratio limits to design the planetary gear 

set. 

Kluger et al. [84] presented an overview of current manual, automatic, and 

continuously variable transmission efficiencies. The authors also qualitatively discussed 

loss mechanisms in these transmissions and suggested design improvements to enhance 

transmission efficiency. As the belt-type CVTs require pressures of up to 3 MPa, the 

pumping power requirements represent a very large portion of the overall CVT power 

loss. The authors suggested the use of radial ball pump or a radial piston pump for sheave 

actuation in order to reduce pumping losses. The authors also discussed losses in a 

toroidal CVT and attributed those to the normal force generation and reaction, contact 

patch losses, and final drive effects. The authors found that manual transmission is the 

most efficient transmission among all three technologies. However, since the technology 

is quite mature, there is very little room for improvement in terms of efficiency and fuel 

economy. Kluger et al. [85] also discussed the mechanisms, forces, and efficiencies of 

different types of CVT, especially the push belt CVT, the variable diameter elastomer 

belt type CVT, the toroidal CVT, the nutating type CVT, and the epicyclic CVT. The 

amount of power which can be transmitted by a push belt type CVT is dependent on 

either the tensile strength of the bands or the transverse buckling strength of the belt 

elements. The dynamics within the steel bands play a crucial role in determining the 

maximum torque that can be transmitted. The authors suggested that the torque 

transmission is due to both pushing forces in the belt elements and friction forces 

between the elements and the bands. Singh and Nair [86] developed mathematical models 
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of different CVTs by using existing literature and later normalized the information to 

allow comparison of different CVT concepts (toroidal, chain, belt, hydrostatic) on an 

equitable basis. The models were used to compute the efficiencies of individual CVTs at 

selected points covering the entire operating envelope. The authors conclude that the 

rubber belt CVT, in general, is the most efficient among all. The PIV chain CVT is 

inefficient for low torques and traction CVT is less efficient than chain and belt CVTs in 

under-drive ratios. 

 Gerbert [87] also incorporated arc correction factors in V-belt transmission 

design. He used Euler’s equation for calculating the belt tension and introduced new 

factors to the list of existing ISO factors for belt drives with speed ratios different from 

unity. These factors account for the decrease in the torque capacity of a belt drive due to 

the reduction of contact arc at any of the pulleys. 

Micklem et al. [88] also studied the influence of wedging action on the torque 

transmission aspects of a CVT. Their work discussed a semi-empirical model to explain 

the belt torque loss under conditions of no load and loading on the driven pulley. 

Measurements showed that the loss is dependent on the secondary pulley clamping force 

and on the belt configuration. It was shown that in overdrive ratio, the torque loss 

imposed severe limitations on the maximum efficiency of transmission. Experiments 

were conducted on the transmission using a test rig with 1.1-litre petrol engine. The 

results predicted a relationship between the torque loss and the driven clamping force. 

Akehurst [18] did extensive theoretical and experimental work on investigating 

the loss mechanisms associated with an automotive metal V-belt CVT. The author 

developed mathematical models to describe torque loss mechanisms within the belt drive. 
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Radial friction effects were neglected in the analysis except in the entry and exit regions 

of the pulley. The author also assumed that all the bands shared the tension load evenly. 

The main torque loss event is proposed to occur due to bands sliding relative to each 

other and the segment, and segments sliding relative to the pulley. Two further loss 

models were developed to describe losses as the segments travel around the pulley 

contact arc. These losses were due to the measured pulley deflections causing the 

segments to contact the pulley past ideal exit and entry points (wedge loss) and to 

penetrate further into the pulley than the ideal radius of the belt (penetration loss). The 

wedge loss is similar to an earlier empirical model developed by Micklem et al. [88]. 

Tangential belt slip was investigated based on the redistribution of gaps between the belt 

elements, as proposed by Kobayashi et al. [43]. In addition to the torque loss associated 

with the belt, the author studied other parasitic losses involved in the transmission 

system, like, seal and bearing drag losses, pump losses, clutch drag losses, meshing 

losses, churning and windage losses. In steady state, it was observed that the losses in 

high ratio at low speeds are lower than low ratio losses, due in part to the reduced pump 

losses. However, as the speeds increased, the high ratio losses exceeded those in low 

ratio. This was attributed to the increased belt torque losses, and final drive losses. Also, 

it was noted that in both ratios the torque loss increased with output torque loading. 

However, in low ratio conditions, the torque loss under no load conditions was higher 

than when the transmission was lightly loaded. The author also studied the influence of 

temperature on the loss mechanisms of the transmission (especially, the effects of cold 

temperatures). It was shown that the torque loss through the transmission varied 
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significantly with respect to temperature, and with bulk fluid temperatures in excess of 65 

deg. Celsius, the torque loss through the transmission increased rapidly. 

Saito [89] developed a simulation method allowing simultaneous evaluation of the 

dynamic behavior and the stress simulation for estimating the durability of a metal 

pushing V-belt for a CVT system. The influence of pulley stiffness on the dynamic 

behavior of a CVT was taken into account in the analysis. It was found that raising the 

pulley flexural stiffness contributed to the ring impact stress at the pulley entrance and 

exit, which increased the overall stress amplitude. The ratio of movable and fixed pulley 

rigidity had little influence on ring stress amplitude. There were cases, however, when 

changes in misalignment due to rigidity ratio caused ring edge contact to occur. The 

author also concluded that it is necessary to pay careful attention to ring impact stress and 

edge contact when determining pulley specifications that allow belt durability.  

Gerbert [19] identified four major failure modes in rubber V-belts: cord rupture 

due to high torques, cord separation at moderate torques, radial cracks, and abrasion. Of 

these, cord separation mode was the most prevalent. It was attributed to the shear stresses 

occurring in the belt. Radial cracks start at the bottom of the belt and propagate towards 

the cord layer. They were attributed to the compressive stresses in the belt under low-

torque applications. The author also observed that abrasion was more prevalent in drives 

with locked-center distance than in drives with variable center distance. 

Childs et al. [90] did an experimental study on the power transmission efficiency 

of a V-belt, the wedge angle of which did not match its pulley groove. The experiments 

were run on a V-belt drive at a unit speed ratio. Unequal belt tensions in the strands 

between the pulleys, caused by power transmission, gave rise to a fractional angular 
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speed loss. On the other hand, sliding of belt into and out of the pulley grooves and belt 

bending hysteresis gave rise to torque loss. This occurred even when there is no torque 

transmission. The authors developed belt bending theory and ran experiments to observe 

how a belt’s wedge angle changed with radius and material properties. They suggested 

that the Poisson ratio of the belt in the transverse direction should equal 0.25 for the least 

overall belt bending distortion effects. The authors proposed that belts with wedge angle 

smaller than the pulley groove suffered larger losses in comparison to a well-fitting belt. 

It was found that for greatest efficiency the wedge angle of the belt when bent to the pitch 

radius of the pulley should equal the groove wedge angle to within ± 1 degree. Childs et 

al. [91] also studied the influence of small pulley radii on the power transmission losses 

in V-belt drives. At low levels of torque, the fractional speed loss in the active arc region 

is caused by extension of the tension member and radial movement of belt within the 

pulley groove. Moreover, this speed loss is proportional to the transmitted torque.  The 

influence of the radial and circumferential slip on the dynamics of a V-belt drive has 

already been discussed earlier in this chapter. Torque losses in V-belt drives were found 

experimentally to vary little with transmitted torque. They are caused by hysteresis losses 

(flexure of belt) and sliding (wedging of belt into and out of the pulley). Gerbert [19] also 

studied torque loss and related it to belt tension, stiffness, and coefficient of friction (all 

correlations were presented in dimensionless form). However, Childs et al. developed a 

new sliding theory (different from Gerbert’s) to predict torque loss in V-belt drives. The 

authors experimentally observed optimum torques for maximum efficiency. At low 

torques, efficiency was reduced by torque losses which remain constant as torque was 

reduced; at higher torques, greater slip reduced efficiency. At lower tensions, slip reduced 
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the torques that could be transmitted while at higher tensions torque losses became 

excessive. The authors observed that the fractional speed loss was not only dependent on 

the transmitted torque but also on the total belt tension. The fractional speed loss 

increased with the reduced belt tension more on the small- than on the large- radii 

pulleys. Pulley radius also strongly influenced the maximum tension ratio that can be 

supported around a pulley without excessive power loss. It was also suggested that the 

hysteresis torque loss increased with decreasing pulley radius. The torque loss in a belt 

drive was independent of the transmitted torque but was linearly related to the total belt 

tension.  The rate of increase of torque loss with the total belt tension was found to be 

inversely related to the pulley radius. 

Gerbert [19] studied the influence of thermal effects on the performance and the 

life of a rubber V-belt drive by developing a simple heat transfer model based on 

conduction and convection effects. He proposed that heat is generated at the surface of 

the belt due to friction i.e. sliding between the belt and the pulley. Heat is also generated 

inside the belt due to hysteresis. The author suggested that thermal effects due to 

hysteresis significantly influence the life of a belt drive. 

“Abo et al. [92] investigated the rate of heat generation in a metal V-belt CVT 

with respect to the slip speeds between the mating components. They modeled belt slip 

based on the redistribution of gaps among the belt elements, as discussed by Kobayashi et 

al. [43]. Any slip speed between the segments and the bands was assumed to occur only 

on the pulley with the smallest radius. The slip between the neighboring bands in a band 

pack is calculated in a similar way. All the energy loss due to the slipping contacts was 

assumed to be converted into heat energy, since noise and vibration energy are likely to 
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be small. Simulation results indicated that at constant belt speeds belt heat generation is 

greatest when the belt ratio is low. Losses also increase if the input torque is large or the 

belt speed is high. The simulation results were validated using a test rig facility. The heat 

generation measured experimentally, by recording the temperature rise of a known 

volume of lubricant, was assumed to be due to the bearings and the belt mechanism” 

(adopted from Akehurst’s Ph.D. Thesis, [18], with permission).  

A lot of research effort is also being put into investigating the influence of 

different lubricants on the performance of a belt/chain CVT. Lubrication also affects the 

torque loss mechanism due to the associated thermal effects and also modifies contact 

conditions between the belt and the pulley. “Peiffer et al. [93] describe a range of 

methods developed by Shell for testing different blends of CVT fluids to meet desired 

performance characteristics. The CVT fluids also have to perform many tasks in the 

transmission such as, allowing judder free clutch performance, providing good low 

temperature pumping action and starting performance, reducing losses in gears and 

bearings, yielding high pump and variator efficiencies. High pump efficiency requires the 

fluid to have almost constant viscosity-temperature behavior and excellent air release 

properties, so that the pumped volume does not change due to excessive leakage or 

changes in the fluid density. The variator efficiency demands on the fluid are more 

contradictory; a fluid capable of giving high metal to metal friction characteristics allows 

the clamping pressure to be reduced, thus reducing the pump losses, but at the same time 

this may increase the power loss due to friction within the other belt components. A 

number of the fluids tested produced friction vs. slip characteristics that increase with 

sliding speed, a beneficial characteristic in the functioning of the variator” (adopted from 
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Akehurst’s Ph.D. Thesis, [18], with permission). Narita et al. [94] investigated the 

influence of lubricating oil on the torque capacity and the efficiency of a metal V-belt 

CVT. In order to analyze the friction characteristics of each of the contacting parts in the 

CVT, the authors used block-on-disc type friction testing machine. The contact surfaces 

between the block and the pulley was assumed to be under boundary lubrication 

conditions, and the transmission ratio was kept constant. It was found from the 

experiment that the torque capacity of the CVT correlates with the friction coefficient 

under high contact pressure (200 MPa) and relatively high sliding velocity (0.1 m/s) in 

the friction testing machine. The authors also found that the transmission efficiency 

decreased as the load decreased and it also decreased with the torque capacity. At a 

constant speed ratio, when the pulley thrust was higher, the efficiency was lower. Further, 

the efficiency decreased at lower torque ratios. The authors also investigated friction loss 

between the bands and the elements, and between the elements and the pulleys. The 

friction loss between the block and the pulley increased at a high torque ratio (high load) 

due to an increase in the sliding velocity. The friction loss between the block and the 

band at low load was greater than that between the block and the pulley. So, the authors 

suggested that it is necessary to improve the efficiency at low load to reduce the friction 

coefficient at low contact pressure. 

 

Noise and Vibrations: 

Vibration of power transmission belts has been investigated for many years and is still a 

challenging area of research. The problem, to a certain extent, belongs to a class referred 

to as axially moving material vibration. Yue [95] studied the effect of moving contact 
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between the belt and the pulleys on the vibration properties of the belt-drive. Due to the 

flexural rigidity of the belt, the free span of the belt between the pulleys is not a straight 

line. A theory of shape and length of the free span of a non-vibrating flexible belt was 

developed by Gerbert [24]. In a vibrating belt, the contact point moves along the pulley 

wrap, which implies that the length of the free span of the belt between the pulleys is not 

constant but varies with the vibration. This phenomenon is more commonly observed in 

rubber V-belts than in metal belts. The author introduced the concept of initial vibrating 

length. Different pitch radii and vibrating amplitudes affected the vibrating length of the 

belt. Increasing vibrating length led to an increase in the fundamental natural frequency 

of the belt. The author also noted that the cyclic variation of the belt length did not 

behave as a parametric excitation. 

 Kong and Parker [96] modeled the belt as an axially moving beam wrapped on 

fixed pulleys. For the axially moving beam model, the span boundary conditions are 

typically specified as simply supported or clamped, and the beam is assumed to remain 

straight in steady state. However, in real world applications like CVTs, the beam wraps 

around two fixed pulleys. This induces initial curvature in the steady state for non-

vanishing bending stiffness, and the beam-pulley contact points are not on the common 

tangent between the pulleys. The authors proposed two different models to model such 

effects under steady state conditions. The first method assumed that the beam-pulley 

contact points were fixed on the common tangent line between the two pulleys. The 

second method eliminated this restriction. Instead, the contact points were not specified a 

priori but were calculated from a steady-state analysis of the beam in free spans. Bending 

of a moving beam around the bounding pulleys causes a non-trivial steady solution about 
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which the system vibrates. This steady curvature tends to increase the beam natural 

frequencies. The fixed boundary model overestimated the natural frequencies, especially 

for large bending stiffness. For the undetermined boundary model, as the bending 

stiffness increased, some natural frequencies decreased when the bending stiffness was 

small because of increased free span length in this range. For fixed boundary model, 

increasing beam speed increased the curvature, which made the system stiff. For the 

undetermined boundary model, increasing beam speed increased the curvature as well as 

the free span length, which made the system soft.  

Thurman and Mote [97] studied the free, periodic, nonlinear oscillation of an 

axially moving strip. The oscillations were determined by the approximate solution of 

two, coupled, nonlinear, partial differential equations. One equation described the 

longitudinal dynamics, and the other the transversal dynamics. The authors incorporated 

the essence of Lindstedt and Krylov-Bogoliuboff methods to obtain accurate periodic 

solutions efficiently. The authors concluded that the existence of axial transport velocity 

reduced the fundamental period of oscillation and increases the relative importance of 

nonlinear terms in the equations of motion. 

Chung and Sung [98] did an analytical and experimental study on the vibration of 

a rubber V-belt CVT during speed-ratio shifts. The major components were modeled as 

an instantaneous flexible four-bar linkage for analyzing the belt-CVT vibration behavior. 

The free span of axially moving belt was considered as the flexible coupler link, while 

the variable-diameter driving and driven sheaves were modeled as the crank and rocker 

links, respectively. The authors used mixed-variational principle to derive the equations 

of motion of the system. The boundary and initial conditions were determined from the 
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physical configuration of a practical CVT system. The length of the free span of the belt 

was obtained from contact analysis. A parametric study on the natural frequencies of the 

belt was then performed by using assumed-modes method. The authors observed that the 

natural frequencies of both tight- and slack- sides decrease as the CVT accelerates. 

Moreover, in steady state, higher belt tensions led to higher natural frequencies. Also, the 

natural frequency of the belt decreased with increasing transport velocity. 

Leamy and Wasfy [99] developed an explicit time integration finite element 

model to study the effect of belt bending on the dynamic and steady-state responses of 

belt drives. Three-node beam elements based on torsional-spring formulation were used 

to model the belt. The pulleys were assumed to be rigid. Frictional contact between the 

pulleys and the belt was modeled using a penalty formulation with the frictional contact 

governed by a Coulomb-like tri-linear friction law. The authors observed that both belt 

creep and belt tension increased with the belt’s bending stiffness. The bending stiffness 

also increased the tangential friction force and the normal force on the belt near the entry 

and exit sections of the pulley. The belt wrap angle around the pulley decreased as the 

belt bending stiffness increased. The belt natural frequencies increased only slightly with 

the bending stiffness. The authors predicted that the belt wear is expected to increase as 

the belt bending stiffness increases. Leamy et al. [100] also developed belt drive models 

to predict the drive’s dynamic response to harmonic excitation. They put in considerable 

effort to model nonlinear belt response in frictional contact at the belt-pulley interface. 

The authors proposed two different models to solve the problem and identified a single 

dimensionless parameter Ω that governed the dynamic response. The authors suggested 

that a quasi-static model for belt-pulley interaction will remain accurate for belt drive 
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systems for which Ω < 1/3. For Ω > 10, they suggested that the frictional support acts 

effectively as an anechoic termination. 

Moon and Wickert [101-102] developed a model to study radial boundary 

vibrations of misaligned V-belt drives. The authors assumed impending slip conditions 

and neglected inertial effects. The model was used to predict two quantities which 

described the motion of the belt at its boundary with the pulley sheave: the critical 

rotation angle of the sheave and the elevation of the belt across its span. These quantities 

were subsequently related to the frequency and the amplitude of the boundary excitation. 

Both pulley eccentricity and pulley misalignment can excite the motion of the belt on its 

boundary with the sheave. In the case of eccentricity, the excitation observed was usually 

sinusoidal and it occurred with the rotation of the sheave. However, the motion was low 

enough in frequency to generate substantial structural vibration of the belt. Parallel offset 

misalignment, on the other hand, produced a sawtooth-like stick-slip motion at a 

frequency that depended on the critical angle and the operating speed. Periodic bursts of 

vibration and noise resulted, and were associated with fine-scale slippage of the belt in 

the pulley groove.  

Abrate [103] presented a state-of-the-art review on the vibration analysis of power 

transmission belts. Axial, transverse, and torsional vibrations of a power transmission belt 

were discussed. The author discussed the influence of belt tension, transport velocity, 

bending rigidity, support flexibility, pulley and belt imperfections, etc. on the vibration 

characteristics of the belts. The author also discussed the noise transmission phenomenon 

in power transmission belts [104]. 
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Pfeiffer et al. [105] developed simplistic models to analyze self-induced 

vibrations in a pushing V-belt CVT. The free span length of the belt was assumed to be 

constant in the analysis. It was shown that the certain friction characteristics, especially 

those having negative gradient with respect to relative velocity, could induce self-excited 

vibrations in the belt. The friction characteristic and the elasticity of the pulley sheaves 

also determined the working area where vibrations occurred. The authors also observed 

that increasing pulley stiffness decreased belt vibration, but failed to eliminate them 

completely. Figure 2.10 [105] depicts the excitation mechanism proposed by the authors. 

 
Figure 2.10: Self-excitation mechanism in a metal V-belt CVT [105] 

 Imamura et al. [106] experimentally studied the noise reduction in a continuously 

variable transmission. The authors proposed that the main cause of the CVT sound was 

the contact of CVT belt and the pulley. They proposed that the natural frequencies of the 

pulley should be tuned in order to reduce CVT sound. It was also shown that damping 

materials, when attached to the pulleys, reduced CVT noise considerably. 

 

Control:  

The control aspects for achieving a desired gear ratio profile or an actuation force are also 

an inevitable part of CVT research. The development of an optimum CVT control 

strategy is not an easy task owing to two partially opposite features that have to be 
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satisfied: the reduction of fuel consumption and the requirement of appropriate 

drivability. An accurate and fast control of the rate of change of speed ratio is a 

prerequisite for meeting these goals. The advanced control strategy also needs an 

accurate model of the transmission shifting dynamics in order to foresee the actual 

clamping forces needed to change the axial position of the pulleys and the CVT speed 

ratio.  

In order to achieve minimum fuel consumption relative to various levels of 

desired drive torque, both engine speed and engine torque should be controlled 

simultaneously, which requires an integrated engine-transmission control. The purpose of 

the integrated CVT-engine control is to realize the optimal engine operation for minimum 

fuel consumption while also satisfying driver’s demand. For optimal engine operation, 

the engine should be operated on the optimal operating line (OOL). In Figure 2.11 [18, 

107], an OOL for minimum fuel consumption is shown on the engine characteristic map. 

The OOL for the minimum fuel consumption can be obtained from the SFC contours and 

iso-power curves. The optimal engine operation point is defined as the point where the 

optimal engine power curve crosses with the OOL. Minimum fuel consumption can be 

achieved by operating the engine on the optimal operation point by simultaneous TVO 

(throttle valve opening) and CVT ratio control, i.e. an integrated control. 

An engine-CVT integrated control was suggested by Takiyama et al. [108]. The 

authors developed an algorithm to control the vehicle velocity from the difference 

between the desired and actual velocity and the CVT ratio from the difference between 

the desired and actual engine speed. However, they neglected the transient characteristics 

of powertrain, which resulted in poor performance when the vehicle acceleration varied. 



 57

Later, Takiyama [109] modified the control algorithm using decoupling theory and taking 

into account the effects of air-fuel ratio to attain higher fuel economy. 

 
        Figure 2.11: Typical Operating Map of a CVT Vehicle [18] 

Sakaguchi et al. [110] developed an integrated engine-CVT control from the viewpoint of 

minimizing powertrain losses. The authors suggested that in an integrated engine-CVT 

control, it is necessary to consider powertrain losses in order to determine the target 

engine torque. Yasuoka et al. [111] developed an integrated engine-CVT control 

algorithm to obtain the demanded drive torque for optimum fuel economy. The authors 

used the engine torque to compensate for the drive torque response delay caused by the 

CVT response lag. The authors calculated the target torque by assuming that the 

accelerator pedal travel represents the demanded drive torque and used the target gear 

ratio as the CVT ratio. Kim et al. [112] developed an integrated engine-CVT control 

algorithm by considering the powertrain loss and the inertia torque due to the CVT ratio 

change during the transient state. They also proposed some compensation algorithms to 

reduce the effect of the CVT ratio response lag on the drive torque. The authors 
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conducted experiments to conclude that the optimal engine speed compensation 

algorithm gives better engine operation around the OOL, compared to optimal torque 

compensation, while showing nearly the same acceleration response. Kim et al. [113] 

experimentally investigated the response characteristics of a parallel hybrid electric 

vehicle (HEV) CVT and developed a ratio control algorithm integrated into a hydraulic 

control system. Based on the ratio control algorithm, the effect of CVT system dynamics 

on the HEV engine operation is investigated by hardware in the loop simulation. The 

simulation showed that the engine performance could be improved by using closed loop 

control, where variable control gains were used depending on the shift direction and the 

CVT speed ratio by considering nonlinear characteristics of ratio-control hydraulic valves 

and CVT belt-pulley dynamics. In order to maintain a steady-state speed ratio, an optimal 

pulley thrust is required. Decreasing clamping forces in the variator improves the 

efficiency of a CVT; however, it also increases the risk of belt wear due to excessive 

slippage. Bonsen et al. [114, 115] developed a gain-scheduling PI controller to measure 

and control slip in a CVT while minimizing clamping forces and preventing destructive 

belt slip. However, the slip control system was designed for quasi-static ratio control, 

which does not hold in dynamic driving situations. Saito and Lewis [116] developed a 

simulation technique for a metal pushing V-belt CVT with feedback thrust controllers. 

Multi-body formalisms were used to model the belt, and a modified PI controller was 

used to adjust pulley thrusts until a desired speed ratio was obtained. Some other 

interesting control algorithms proposed in the literature include Setlur et al. [117], Cho et 

al. [118], Pfiffner et al. [119, 120], etc.  
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Chain CVT: 

In addition to the belt CVT, a lot of research effort is being directed towards 

understanding the dynamics and power transmission characteristics of chain CVTs. A 

chain-drive CVT consists of two variable diameter pulley sets connected to each other by 

means of a rocker-pin chain. A rocker-pin chain consists of inner plates, clasp plates, and 

rocker pins, as depicted in Figure 2.12 [7].  

 
Figure 2.12: Chain link configuration [7] 

All plates transmit tractive power, while the clasp plates also orientate the rocker pins 

perpendicular to the direction of motion of chain. Unlike a belt, the contact forces 

between chain and pulley are discretely distributed. This leads to impacts as chain links 

enter and leave the pulley. Hence, excitation mechanisms exist, which are strongly 

connected to polygonal action of chain links. This results in vibrations of the whole 

system, thereby influencing the dynamic behavior of the CVT system. Fawcett [121] did 

an extensive review on the existing literature related to belt and chain drives. The papers 

from different sources were grouped into three sections, as: dynamics of axially moving 

materials, chain-drive dynamics, and belt-drive dynamics. Most of the literature 

discussed by the author was related to the dynamics of roller chain drives, rubber V- and 

flat belts, and toothed belts. In contrast to roller chain drives, CVT chain drives transmit 

power exclusively through frictional forces in the contact zones between the bolts of the 
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chain and the cone sheaves of the pulleys. Every contact has two possible states, sticking 

or slipping, depending on the relatively velocity of the contacting surfaces. The possible 

transitions between them lead to mechanical system with time variant structure. Sauer [7] 

developed a finite-element method (FEM) based, static model for a CVT chain drive with 

elastic pulley-sets and a chain described link by link. The model gives a good theoretical 

description of the torque transfer behavior of CVT chain drives. 

Srnik and Pfeiffer [7, 122-123] studied the dynamic behavior of a chain CVT 

drive for high torque applications. They developed a planar model of chain CVT with 

three-dimensional contact between chain link and pulley. The work dealt with multi-body 

formalisms and finite element modeling.  In order to consider the discrete structure of the 

chain, which causes polygonal action, the chain is modeled link by link. The chain links 

are, thus, modeled as kinematically decoupled rigid bodies, which are interconnected by 

force elements, as proposed by Fritz and Pfeiffer [124]. Each link has three degrees of 

freedom, which is the maximum number of degrees of freedom in a plane. The pulley set 

is modeled as an elastic multibody system. Neglecting its own dynamics, the pair of 

rocker pins was modeled as one single, massless spring acting exclusively perpendicular 

to the plane of the model. The model was run at the conditions of constant driver pulley 

speed and constant driven pulley load torque. The researchers used Coulomb’s friction 

law as well as a time sparing continuous approximation to calculate the contact forces. 

The computational cost was high in order to determine exact contact conditions between 

the links and the pulley, when a discontinuous friction model was used. The authors used 

methods developed by Pfeiffer and Glocker [125] for systems with time variant structure 

to get time histories from the chain CVT model. The simulation results showed the 
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influence of the cone pulley’s deformation on the power transmission. They also show 

the repercussion of polygonal action between the chain links. The results also mention 

about the influence of chain’s pitch on the vibrational behavior of transmission. The 

authors proposed that an unintegrated chain pitch reduced vibration amplitudes but also 

included a wider excitation band. The authors note that the sheave’s deformation has a 

decisive influence on the contact kinematics and kinetics between a chain link and the 

pulley sheave. They also concluded that the efficiency of chain drive with flexible 

sheaves is lower than the one with rigid sheaves. This was attributed to substantially 

higher radial movements of chain link in the pulley groove under the influence of pulley 

flexibility. 

Sedlmayr and Pfeiffer [126-129] studied the spatial dynamics of chain CVT 

drives. The authors modeled the links and the pulleys as elastic bodies and also included 

pulley misalignment effects. Even a small pulley misalignment was observed to yield 

significant tensile forces in the chain.  Therefore, the authors decided to work on a chain 

model which took spatial effects into account. The pulley deformation was modeled 

using static FEM approximation and Reciprocal Theorem of Elasticity. Both pulley sets 

have one rotational, two translational in-plane, and one axial out-of-plane degrees of 

freedom. The pulleys also have other degrees of freedom related to elastic deformation. 

The pulley misalignment is dependent on the speed ratio and the length of chain. In order 

to limit the contact pressure between pins and sheaves the disc curvature radius is chosen 

not to be lower than a lower bound, which was 1.7 m for their model. Each chain link 

represents an elastic body, having three translational rigid body degrees of freedom. The 

links also have a few more degrees of freedom to describe the orientation and 
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deformation of pins. The links are kinematically connected between pairs of rocker pins. 

The elasticity and the translational damping of the joint are taken into account by the link 

force element, whereas the rotational damping and the axial friction between the pair of 

pins are considered in the joint force element. In the link force element each plate is taken 

into account as a spring. The effect of moving contacts relative to the plate spring 

reference points between a rocker pin and an adjoining plate are modeled as an 

exponentially varying contact torque. Edge bearing effects between the ends of the pins 

and the sheaves were observed, owing to the influence of shear, torsional, and bending 

deformations of rocker pins. The authors noted that due to the bending forces, the pulley 

misalignment induced a large gradient of the tensile forces in the spans. On entering the 

pulley, the shape of a pin changed abruptly because of suddenly growing contact forces. 

The authors also suggested that CVT chains without clasp plates are more flexible in 

shear direction and thus have lower tensile forces. The authors suggested that the tensile 

forces of a plate could be reduced by using longer rocker pins and more plates. However, 

this was not a good solution because with the same cross section of the pins, due to pin 

bending, the load splitting on the plates became worse. However, the tensile forces can be 

reduced by changing the design of a plate. Tensile forces were much less for a softer and 

lighter plate. The authors also did a comparative study on the efficiencies of metal V-

belts and chains, and concluded that CVT chain drives have higher efficiencies especially 

with curved pulleys. A comparative study on the dynamics and performance of metal V-

belt CVT and chain CVT was done by Lebrecht et al. [130]. Pausch et al. [131] analyzed 

the nonlinear dynamics of a chain drive CVT applied in an automotive drive train system. 
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Maier and Pfeiffer [132] developed a method to assess noise emission from the 

driveline components of a hybrid vehicle. Multibody models of the entire gearbox, the 

chain CVT, and other driveline components were used. The authors used complex 

nonlinear stiffness functions in the analysis to model excitation mechanisms arising from 

impact and friction in the chain CVT system and toothing forces in the gearbox. A 

method to calculate the A-rated equivalent continuous force level of the bearing forces, 

which is proportional to the sound, was also discussed. Stepanenko and Sankar [133] 

investigated limit cycle behavior induced by clearances in kinematic chains. They 

developed a new dynamic model of nonlinear element with clearance and analyzed its 

influence on the dynamics of power kinematic chains. Tenberge [134] developed a fast 

computational algorithm to compute dynamic indicators of chain CVT from a 

mathematical model which includes deformations, loadings, and other inertial effects at 

constant and variable speed ratios. 

 

 

2.2 Research Objective 

To the best of the author’s knowledge and efforts, of the literature reviewed so far, very 

few research contributions have been made in understanding the influence of belt 

acceleration effects on the performance of a metal V-belt CVT (Srivastava et al. [76-78], 

Pfeiffer et al. [7, 54, 122, 126] , Fujii et al. [60-65]). Most of the models developed in 

literature only dealt with the inertial effects arising from centripetal acceleration. The 

literature review discussed in the previous section reveals the following opportunities of 
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research, which form the research objectives, for better understanding of the dynamic 

interactions in a CVT system: 

• It is imperative to develop models that explore the transient behavior of a CVT 

system in detail as most of the CVTs operate in this mode. Most of the models of 

metal V-belt CVTs existing in the literature are based on steady-state quasi-static 

equilibrium analysis which neglects the influence of inertial effects on a CVT’s 

performance. In addition to neglecting the influence of inertial effects on the 

performance of a CVT, a lot of the existing models neglect the dynamic interactions 

between the band pack and the belt element. It has been reported by some of the 

authors (Fujii et al. [61, 63, 65], Kobayashi et al. [43], Srivastava et al. [76-78], etc.) 

that the bands, under certain conditions, can contribute significantly to the torque 

capacity of a metal V-belt CVT. Moreover, it has been extensively showed in the 

literature that pulley flexibility significantly influences the thrust ratio and torque 

capacity of a CVT system. Hence, a significant opportunity for research lies in the 

development of detail transient-dynamics model of a metal V-belt CVT that 

captures the influence of inertial effects, belt-band interactions, and pulley 

flexibility on its slip behavior and dynamic performance. The transient-dynamics 

model developed by Srivastava et al. [76-77] is further extended in this research to 

incorporate the influence of pulley flexibility and band pack slip on the system 

dynamics.   

• Belt- and chain- type CVTs fall into the class of non-smooth mechanical systems due 

to the presence of friction- and clearance- based nonlinearities. Almost all the models, 

except a few [6, 58, 105, 136], mentioned in the literature use Coulomb friction 
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theory to model friction between the contacting surfaces. The non-smoothness 

imposed by this friction characteristic arises from the discontinuous transitions 

between the stick and slip phases of the motion. However, depending on different 

operating or loading conditions and design configurations, the friction characteristic 

of the contacting surface may vary. For instance, in case of a fully lubricated CVT, 

the friction characteristic of the contacting surface may bear a resemblance to 

Stribeck curve [135] rather than to a continuous Coulomb characteristic. Moreover, 

very high forces in the contact zone may further lead to the conditions of elasto-

plastic-hydrodynamic lubrication, which may yield a different friction characteristic. 

It has also been briefly mentioned in some the papers (Pfeiffer et al. [105], Togai et 

al. [136]) that certain friction characteristics induce self-excited vibrations in the CVT 

system. However, it is not clear whether such phenomenon is an artifact of the 

friction model or the real behavior of the system. It is, thus, necessary to study the 

influence of different friction characteristics on the performance of transient-

dynamic models of belt and chain CVTs. Boundary lubrication and EHD 

lubrication models will be used to study the influence of friction under lubrication on 

the dynamics of belt and chain CVT systems. It is also important to note that although 

an exact knowledge of the friction characteristic in a CVT system can only be 

obtained by conducting experiments on a real production CVT, these mathematical 

models give profound insight into the probable behavior of a CVT system under 

different operating or loading conditions. 

• Clearance is another non-smooth nonlinearity (may be piecewise linear) that has 

significant impact on the torque capacity and efficiency of a CVT system. As 
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mechanical systems wear, clearances between mating surfaces develop that can 

fundamentally change the behavior of the system and also induce unnecessary noise 

and vibrations. A CVT is no exception, and over continual operation it is susceptible 

to form clearances between its components. Moreover, it is quite possible for a CVT 

to have clearances among its various components during the assembly process. These 

clearances influence the dynamic behavior, torque capacity, and life of a CVT. 

Clearance inherently is a non-smooth nonlinearity (may be piecewise linear), which 

makes the CVT system non-smooth too. Significant amount of research [41, 43, 46, 

56, 76-78] has been done on modeling clearance effects through gap redistribution 

theory in a metal V-belt CVT under quasi-static equilibrium conditions. Although 

some intensive research has been done on understanding the dynamics of chain CVTs 

(Pfeiffer et al. [7, 123, 129]), literature on the influence of clearance on the dynamics 

of CVT chains is scarce. So, another objective of this proposed research is to develop 

a detailed multibody model of chain CVT, which incorporates a clearance model 

for studying clearance-related nonlinear effects in a chain CVT system. 

 

 

2.3 Research Contributions 

• As mentioned before, most of the research related to modeling the transient dynamics 

of a metal V-belt CVT ignore the influence of inertial effects on the performance of a 

CVT. Srivastava et al. [76-77] previously developed detailed transient models 

considering the influence of both inertial effects and loading conditions on the slip 

behavior of a metal belt CVT. The transient-dynamics model developed by Srivastava 
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et al. [76-77] is further extended in this research to incorporate the influence of pulley 

flexibility and band-element slip on the dynamic performance of a metal V-belt CVT. 

• Of all the literature surveyed so far and to the best of author’s knowledge, only a few 

[58, 105, 136] have briefly discussed the influence of different friction characteristics 

on the dynamic performance of a CVT. The friction between the belt/chain and the 

pulley is usually modeled using Coulomb friction theory. However, as discussed 

earlier, the friction characteristic of the contact zone between two surfaces may vary 

depending on the loading condition and the design configuration. Since it is 

experimentally cumbersome to measure exact friction characteristics of the contacting 

surfaces in a CVT system, different literature-based mathematical models of friction 

are incorporated in these transient-dynamic CVT models in order to gain an insight 

into the influence of friction on the dynamic performance of a CVT. 

•  Although a lot of research has been done on developing multi-body formalisms for a 

chain CVT, literature related to the influence of clearance between chain links in a 

chain-drive CVT is scarce. Clearances among chain links have significant impact on 

the torque transmission capacity and efficiency of a chain- drive CVT. A clearance-

model is developed and embedded into a planar multibody model of chain CVT in 

order to observe the influence of clearance between chain links on the dynamic 

performance of a chain CVT. 

• A novel comparative analysis, based on the dynamics of stick-slip oscillators, is 

presented as an aid to understand some of the complex nonlinear phenomena in a 

CVT system. 
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• A comparative study based on the dynamic performance and torque transmissibility 

of a chain- and a belt- CVT is also presented. Although the results of the belt and the 

chain CVT models have not been experimentally verified, the trends discussed not 

only are comparable to those existing in the literature, but also are in consonance with 

the physics of the transmission. 

 

 

2.4 Closure 

Continuously variable transmission is an emerging technology as it offers a number of 

advantages over the automatic and manual transmission. A lot of research is available in 

the area of CVTs and new methods are constantly being devised in order to realize the 

full potential of a CVT. However, the recent designs and dynamic analyses of CVTs have 

not been able to foster its cause. It is incumbent on the researchers to explore the 

dynamics in detail in order to attain the proposed advantages of a CVT in a real 

production vehicle. The review of the previous work in this area has fostered the interest 

of author to develop models of some commonly used CVTs, i.e. the chain and belt CVTs, 

which accurately capture the detailed dynamic interactions occurring within the system. 

The detailed dynamic models discussed in this dissertation characterize friction-driven 

CVTs in a broader context by taking into account the effects of various nonlinearities on 

their performance. These models could be later exploited to design efficient controllers, 

identify loss mechanisms in a CVT system, analyze noise and vibration behavior of a 

CVT, characterize its operating regime and torque carrying capacity, optimize CVT to 

maximize vehicle performance and fuel economy, gain insight into CVT dynamics, etc.  



 

CHAPTER 3  

 

MODEL DEVELOPMENT AND FORMULATION OF EQUATIONS  

3.1 Metal V-belt CVT Configuration 

The basic configuration of a metal V-belt CVT consists of two variable diameter 

pulleys connected by a power-transmitting device i.e. a metal V-belt. The pulley centers 

are a fixed distance apart. The pulley on the engine side is called the primary or the driver 

pulley. The other on the final drive (or the wheel side) is the secondary or the driven 

pulley. Since one of the sheaves on each pulley is movable, the application of an axial 

force on the movable pulley sheave allows the belt to move radially in the pulley groove. 

In addition to the radial motion, the belt also moves tangentially around the pulley under 

the influence of an applied torque. The metal V-belt is made of two series of thin steel 

bands holding together thin trapezoidal elements. The elements are connected to each 

other by a system of pegs and holes, a peg in the forward face of an element connected to 

a hole in the rear face of the element in front. Usually, an initial gap exists between the 

elements of the belt as they are not tightly pressed together.  

Torque is transferred from the driver to the driven pulley by the pushing action of 

the elements. As the belt moves, an element is carried forward on the driver pulley due to 

the friction forces generated from the pulley. This forward motion of the element 

generates compressive forces as it pushes on the element ahead of it. On the driven side, 

the belt transfers torque to the driven pulley through friction. Due to the presence of 

friction between the band pack and the elements, the tensile forces in the bands also vary 
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as the belt moves on the driver and driven pulleys. Thus, the operation of such a CVT is 

based on both the pulling and pushing mechanisms of the composite-structured belt. 

Figure 3.1 [6] illustrates the basic arrangement of a metal V-belt CVT. The band pack 

runs over the belt elements, whereas the belt element contacts not only the band pack, but 

also the pulley sheave.  

 

Figure 3.1: Basic Metal V-belt CVT arrangement [6] 

 

 

 

3.2 Transient Model Development for a Metal V-belt CVT 

 

3.2.1 System Consideration 

Unlike flat belts, metal V-belts exhibit a complex dynamic behavior because of their 

ability to move both radially and tangentially in the pulley groove. The belt thus traces a 

noncircular path owing to this bi-directional sliding motion. The belt-CVT model 

presented in this dissertation is exposed to the external conditions of a constant driver 

angular speed, a constant input torque applied to the driver pulley, and a constant load 

torque on the driven pulley. The model starts off from the initial configuration and runs to 
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obtain the various dynamic indicators describing the belt-pulley interactions. The system 

boundary is limited to only the pulleys and the belt.  

 

3.2.2 Assumptions 

The assumptions made in the analysis are: 

• Bending and torsional stiffness of the belt are neglected 

• Continuous Coulomb friction model is used to model friction between a belt element 

and the pulley 

• Pulley misalignment effects are neglected, however, pulley deformations are modeled 

using Sferra’s model [48]. 

• The band pack can only sustain tensile forces, whereas a belt element can only 

undergo compression 

• The belt is considered as an inextensible strip with zero radial thickness and infinite 

axial stiffness 

• The center of mass of an element and the band pack coincide, which implies that the 

radial changes for an element is the same as that for the band pack 

• Arcs subtended by the band pack and the element are equal 

• Elements and bands are treated as a continuous belt 

• Empirical relations to model torque-loss effects are not incorporated in the model 

• The element dimensions are small in comparison to the radii of the pulleys 

• Impending slip conditions exist between the band pack and the element  

• The pressure distribution between the belt element and the pulley is constant over the 

wrap angle 
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• Belt mass density remains constant 

The elastic deformation of the pulley sheave is described on the basis of Sferra’s model 

[48]: simple trigonometric functions are used to describe the varying pulley groove angle 

and the local elastic axial deformations of the pulley sheaves. Figure 3.2 depicts the 

model for pulley deformation.  

                

 
Figure 3.2: Pulley deformation model 

Figure 3.3 depicts the free-body diagrams of a belt segment engaged with the primary 

pulley. The kinematic description involves two coordinate systems; (n, τ) that is attached 

to the belt and describes its path (ρ is the radius of curvature of the path of the belt 

element), and ( zr eee ˆ,ˆ,ˆ θ ) which is a rotating coordinate system attached to the center of 

the pulley i.e. point O. The point labeled C is the center of curvature of the belt path 

which changes with time. ωs is the local sliding angular velocity of the belt element, 

defined later in the section. 
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(a): Kinematic description of the belt 
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(b): Free body diagram of driver band pack 

 

Figure 3.3: Free body diagrams of driver system 
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 (c): Free body diagram of driver belt element 
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(d): Forces on driver pulley sheave 

 

Figure 3.3: Free body diagrams of driver system (contd.) 
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(e): Forces and torques on driver pulley 

 

Figure 3.3: Free body diagrams of driver system (contd.) 

 

3.2.3 Driver System Analysis 

From the kinematic description of the belt (i.e. Figure 3.3 (a)), the following geometrical 

relationships can be derived: 
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The plane ADE in the 3-D view (refer to Figure 3.3 (a)) is the actual sliding plane where 

the belt slides. The belt slides tangentially and also moves radially in the pulley groove. 

The planes ABE and ABC are the rotational plane and the pulley wedging-angle, β, plane 

respectively. The angle βs represents the pulley wedging-angle in the sliding plane of the 

belt. 
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The constraint of inextensibility of the belt implies that the time rate of change of the 

length of any infinitesimal belt element must be zero, i.e. 

0
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Since the rate of change of the angular location and the speed of a belt element may not 

be constant or infinitesimal, its temporal variation can not be neglected in the above 

equation. However, (2) can be further simplified as, 

ϕ
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Taking natural logarithm of both sides of the above equation and differentiating the 

resulting expression with respect to time yields, 
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Since the belt element is inextensible, one finally gets a constraint equation as, 
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For an infinitesimal time step, tangent approximation reduces the abovementioned 

constraint equation as, 
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Also, for an infinitesimal time step, 

θ
ϕ
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&

r

r
≈tan                 (4) 

Incorporating the above approximation into the final equation of (3) results into a 

constraint equation for belt inextensibility, as: 

( ) 0=++ θϕθ &&&&& rr                (5)  

Belt Kinematics: 

Friction between a belt element and the pulley is modeled using continuous Coulomb 

friction theory. In order to accurately predict the magnitude and direction of friction 

force, it is necessary to evaluate the relative velocity between a belt element and the 

pulley. Moreover, it is also necessary to calculate belt acceleration in order to observe the 

influence of inertial effects on the dynamics of a metal V-belt CVT. 

The velocity of an infinitesimal belt element of length δs can be expressed as: 
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Introducing (4) and the coordinate transformation between )ˆ,ˆ( and),( θτ een r , i.e. 
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in the above expression for belt velocity, yields  

θθ erer r ˆˆv && +=                (7) 

So, the relative velocity between a belt element and the pulley can be readily obtained as: 
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The acceleration of a belt element can be obtained from differentiating the velocity of the 

belt element, as: 

( ) ( ) θθθθ errerr
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Since the belt is treated as an inextensible strip, the total length of the belt (refer to Figure 

3.4) must be constant. The constraint of constant belt length can be mathematically 

expressed as: 
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Since the flexural effects of the metal belt are assumed to be negligible, it is reasonable to 

assume that the belt always exits and enters the pulley tangentially. Had this assumption 

been not made, the complexity of the problem would have increased as the wrap angles 

',αα would no longer be known quantities. The constraint equation (10) kinematically 

couples the driver and driven systems to each other. 
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Figure 3.4: Belt-drive geometrical description 

The wrap angles are given by the following relations: 
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Governing Equations of Motion: 

Band pack: 

Summation of forces in the tangential and normal directions (refer to Figure 3.3 (b)) for 

the band pack yields the following equations respectively: 

( )τσµτ .: adsdTdFF ba =−→∑  

( )nadsTddFF bn .: σχ =+−→∑  

Using (1), (6), and (9), for an infinitesimal time step, the above equations for band pack 

can be simplified to obtain: 

( ) ( )[ ]θθϕθθσµτ
&&&&&&&&&& rrrrrTFF ba ++−=−→∑ 2tan: 2

             (12) 

( ) ( )[ ]ϕθθϕθσ
θ
ϕ

ρ
sin2cos

cos
: 2 &&&&&&&

&

&
rrrr

r

FT
F bn ++−−=−→∑        (13) 

 

r 

α 'α  

r'

d

Driver 

Pulley 
Driven 

Pulley 

Belt 



 80

Belt Element: 

Similarly, summation of forces in the tangential and normal directions (refer to Figure 3.3 

(c)) for the belt element yields the following equations respectively: 

{ }
( ) ( )[ ]θθϕθθσ

ψϕβµϕβµτ

&&&&&&&&

&&&

rrrrr

NFQF

e

sba

++−

=+−+−→∑
2tan                                                                       

)sin(cossinsin2:

2
           (14) 

{ }[ ]
( ) ( )[ ]ϕθθϕθσ

ψϕβµϕβ
θ
ϕ

ρ

sin2cos                                                                       

)cos(coscossin2
cos

:

2 &&&&&&&

&&
&

rrrr

NF
r

Q
F

e

sbn

++−−

=+−−+−→∑
    (15) 

It is to be noted in the above equations that the acceleration of the belt element is the 

same as that of the band pack as their center of masses coincide.  

Driver Pulley: 

Neglecting the sheave inertial effects and summing the forces on the movable pulley 

sheave in the axial direction results in the following equation:  
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Summing all the moments acting on the driver pulley yields,  
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ψβµτω
0
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Pulley Deformation Modifications: 

Simple trigonometric functions, in accordance with Sferra’s model [48], are used to 

describe the variations in the pulley groove angle and the axial width of the pulley 

groove. Since the belt has infinite rigidity in the axial direction, the width of belt is 

constant. The following equations describe pulley deformation effects in Figure 3.2: 
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The belt pitch radius on the deformed pulley sheave is given as: 
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The amplitude of the variation in the pulley groove angle, ∆, is always much smaller than 

unity; however, it is not constant during speed-ratio changing phases due to the variations 

in the pulley axial (clamping) forces. Sferra et al. [48] proposed the following 

correlations for the variation ∆ and the center of the pulley wedge expansion θc. 
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Since ∆ << 1 (i.e. |β- β0|<<1), Taylor series expansion of tan β around β0 gives, 
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Using (21) and the approximation of ∆ << 1, the following relation for the belt pitch 

radius on a deformed pulley can be easily deduced: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

+
∆−=

2
sin

2sin

cos1
1

0

0
2 πθθ
β
β

crR           (22) 



 82

Taking natural logarithm on both sides of (19) and differentiating the resulting expression 

with respect to time yields the following relation: 
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Differentiating (18) w.r.t time to get β&  and using the assumption 1|| 0 <<− ββ , one gets, 
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So, equations (22) and (23) give the modified position and velocity of the belt by taking 

into account the pulley deformation effects. 

 

3.2.4 Driven System Analysis 

The dynamic interactions between the belt and the driven pulley are analogous to those 

between the belt and the driver pulley. The belt transfers torque to the driven pulley in 

order to sustain the load torque. Figure 3.5 depicts the free-body diagrams of a belt 

segment engaged with the driven pulley. 
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(a): Free body diagram of driven band pack 

 

Figure 3.5: Free body diagrams of driven system 
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 (b): Free body diagram of driven belt element 
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(c): Forces on driven pulley sheave 

 

Figure 3.5: Free body diagrams of driven system (contd.) 
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(d): Forces and torques on driven pulley 

 

Figure 3.5: Free body diagrams of driven system (contd.) 

Governing Equations of Motion: 

It is evident from the free body diagrams of the driven system that except for a few 

equations, the rest of the governing equations of motion of the driven system are identical 

to the equations of driver system. For brevity purposes, only the equations which are 

dissimilar to the driver system equations will be mentioned. 
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The driven system is kinematically coupled to the driver system through the constraint of 

constant belt length i.e. equation (10). The influence of pulley deformation on the driven 

system dynamics can be incorporated in a way similar to the driver pulley deformation 

analysis. The coefficient of friction between the belt element and the pulley surface is 

given by the continuous Coulomb friction theory, i.e. 

)1)((
/|sv| b

bob eaa
−−−+= µµ             (27) 

where, a, b are constants and vs is the slip velocity. It is to be noted that the relative 

velocity as given by equation (10) is not the actual sliding velocity of the belt element. 

Since the belt slides on the sliding plane (refer to Figure 3.3(a)), the actual sliding 

(relative) velocity, vs, between the belt element and the pulley is, in fact, given by, 

ψβββψ costantan,tansecv 22
s =+= sr&  

 

3.2.5 Solution Procedure for the Equations of Motion of the CVT Model 

A CVT allows the engine to run within a constant range of speed where maximum fuel 

economy can be achieved. There are two different ways to analyze the dynamics of a 

CVT: (a) allow a constant axial force on the driver pulley and observe the system 

dynamics under torque loading conditions (Srivastava and Haque [76-77]), and (b) allow 

the driver pulley speed to be constant (say, the one which corresponds to the maximum 

fuel economy) and observe the system dynamics under torque loading conditions. 

There are fourteen primary unknowns (seven each for driver and driven) in the 

CVT model, as: [ ]ωθ ,,,,,, NFQTR . The rest of the unknowns can be obtained using 

these primary unknowns. The analysis presented in the subsequent subsections is based 
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on the loading scenario (b) i.e. constant driver pulley speed with an input torque on driver 

pulley and a load torque on driven pulley. 

It can be observed from the previous section (i.e. section 3.2) that the CVT 

dynamics is governed by a complex system of integro-differential equations along with 

some kinematic constraint equations. However, under certain assumptions, it is possible 

to simplify the model without compromising the dynamics involved in the system. In 

addition to the assumptions mentioned in section 3.2.2, the following assumptions are 

made in the analysis: 

• Uniform pressure distribution, i.e. ⎟
⎠
⎞

⎜
⎝
⎛

θd

dN

r

1
, between the belt and the pulley 

• Assume φ is negligible and ϕ& <<θ&  

It is reasonable to assume φ to be a small quantity as it implies that the rate at which belt 

pitch radius changes is smaller than the rate at which belt traverses around the pulley. 

Moreover, the rate at which the slope angle (φ) changes is perhaps smaller than the rate at 

which the angular position (θ) of the belt element changes. 

DRIVER System Solution Procedure: 

Under the abovementioned assumptions, (16) can be approximated as: 

( )sbz

N
F βµβ

θ
α

sincos +=
&

&
            (28) 

Moreover, since the driver pulley speed, ω, is constant, one gets, 

ψβαµ
θτ

sincos2 sb
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r
N

&
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The following relations can also be derived from (1), 
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The radius of curvature of the belt is the same as the belt pitch radius, which is reasonable 

to assume except at the inlet and exit regions of the pulley. 

Solving the differential equation in (30) yields, 

∫=
1

0

1

t

r

dtc
θ , t1 is the time taken to traverse the entire pulley wrap.         

The above equation implies that the belt traces a complex non-circular trajectory over the 

pulley wrap. However, for an infinitesimal instant of time it can be assumed that the belt 

follows a circular path, as illustrated by the slightly exaggerated path in Figure 3.6. 

 
Figure 3.6: Belt trajectory 

The constraint of constant belt length i.e. equation (10), which relates the driver to the 

driven system, reduces to the following form: 

0'' =+ αα rr &&               (31) 

The driver band pack and element equations reduce to the following forms: 

Belt 

Pulley 

r1 

r2 

Although the belt trajectory is non-circular, the belt position, 

for an infinitesimal instant of time, can be assumed to be 

located by constant radius vectors, as r1 and r2.  
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Driver Band pack: 
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Driver Belt Element: 
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Since the driver pulley speed is a constant, the driver system has only six unknowns. 

Equations (29), (30), (32), (33) can be solved simultaneously to obtain the time histories 

of other unknown driver system parameters. Later appropriate modifications are 

introduced in the form of pulley bending equations in order to take flexural effects into 

account. The driver axial force can be computed from equation (28). Knowing the driver 

system parameters, the driven system solution procedure can be initiated using the 

constraint equation (31).  

DRIVEN System Solution Procedure: 

The following equations along with equation (31) and the pulley bending equations 

describe the dynamic interactions between the belt and the driven pulley: 
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Driven Band pack: 
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Driven Belt Element: 
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Driven Axial Force: 
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N
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Driven pulley speed: 

'
'

'
'sin'cos''2'' α
θ

ψβµτω
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&
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N
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All of the above equations describing driven system can be simultaneously solved to 

obtain the time histories of driven system parameters and the driven pulley axial force. 

 

 

3.3 Transient Model of Metal V-belt CVT: Belt-Band Slip Dynamics 

In addition to the push mechanism, the pulling action in the band pack also contributes 

significantly to the torque transmission mechanism in a metal V-belt CVT. Srivastava et 

al. [76-78], Fujii et al. [61-65], Kobayashi et al. [43-44], under the assumption of 

impending belt-band slip, have already highlighted the significance of tensile force in the 

band pack in determining the maximum torque transmitting capacity of a metal V-belt 

CVT. Although the model presented in the earlier section captures the inertial dynamics 

between a belt element and the pulley in detail, it is unable to take into account the slip 

dynamics arising from the inertial interactions between the band pack and the belt 

element. The band pack was assumed to be always in state of impending slip, as in the 
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case of Euler’s flat-belt theory, and also experienced the same acceleration as the belt 

element. The slip between the band and the belt element may further reduce the torque 

capacity and enhance the losses in the system. The model, subsequently discussed in this 

section, not only takes into account the inertial coupling between belt element and the 

pulley, but also accounts for the slip dynamics between the band pack and the belt 

element. The loading conditions are the same as the previous model, i.e. a constant driver 

angular speed, a constant input torque applied to the driver pulley, and a constant load 

torque on the driven pulley. 

 

3.3.1 Assumptions 

The assumptions made in the analysis are: 

• Bending and torsional stiffness of the belt are neglected 

• Pulley misalignment effects are neglected, however, pulley deformations are modeled 

using Sferra’s model [48]. 

• The band pack can only sustain tensile forces, whereas a belt element can only 

undergo compression 

• Elements and bands are treated as a continuous belt 

• Line contact between the belt and the pulley is parallel to the pulley axis 

• The element and band dimensions are small in comparison to the radii of the pulleys 

• Belt elements and bands are inextensible 

• Belt length is constant 

• Negligible elastic deformations in the belt 

• Belt mass density remains constant 
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Figure 3.7 depicts the free-body diagrams of a belt segment engaged with the driver 

pulley. The kinematic description involves the following coordinate systems; (n, τ) that is 

attached to the belt element and describes its path (ρ is the radius of curvature of the path 

of the belt element), (nb, τb) that is attached to the band pack and describes its path (ρb is 

the radius of curvature of the path of the band pack), and (
zθr e,e,e ˆˆˆ ) and ( zbθbrb e,e,e ˆˆˆ ) 

that are rotating coordinate systems attached to the center of the pulley i.e. point O. The 

points labeled C and D are the instantaneous centers of curvature of the paths of belt 

element and band pack respectively. ωs is the local sliding angular velocity of the belt 

element. 

 
(a) Kinematic description of the belt 

 

Figure 3.7: Free body diagrams of driver system – Band/Belt Slip 
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(b) Free body diagram of driver band pack 

 

 

 
(c) Free body diagram of driver belt element 

 

Figure 3.7: Free body diagrams of driver system – Band/Belt Slip (contd.) 

The free body diagrams for the forces and torques acting on the driver pulley are 

analogous to those depicted in Figure 3.3 (d) and (e). Similar free-body analysis can be 
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done on a belt segment engaged with the driven pulley under the influence of a load 

torque, τl. 

 

3.3.2 Driver System Analysis 

From the kinematic description of the belt (refer to Figure 3.7(a)), the following 

geometrical relationships can be derived: 
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Moreover, the constraint of inextensibility of the belt element and the band pack implies 

that the time rate of change of the length of any infinitesimal piece of the belt element 

and the band must be zero, i.e. 
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Now, for an infinitesimal time step, introducing tangent approximation further reduces 

(40) to, 
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Also, for an infinitesimal time step, 
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Incorporating (42) into (41) yields the following constraint equations for the 

inextensibility of the belt element and the band pack, 
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In addition to these inextensibility constraints, the constraint of constant belt length (31), 

under the assumption of negligible flexural effects in the belt, kinematically couples the 

driver and the driven system dynamics. Moreover, it is necessary to evaluate the relative 

velocity between the band pack and the belt element in order to determine the friction 

force between these two bodies. The relative velocity between the band pack and the belt 

element is given as, 

θrθbrbbbe eeeevvv ˆˆˆˆ θγ &&&& rrrr bb −−+=−=           (44) 

Since the band pack slides on the surface of the element, the relative velocity (and the 

friction force) must act purely in the tangential direction, consequently yielding the 

following constraint equation that couples the band pack dynamics to the motion of the 

belt element, 
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Using (42) and the following coordinate transformations, i.e. 
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in equation (45), the following constraint equation can be obtained, 
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ϕθγξ +−=               (47) 

It is to be noted that equation (47) is a holonomic constraint that couples the band pack 

dynamics to the belt element dynamics. So, using (47), the relative velocity between the 

band pack and the belt element can be further expressed as, 

bbbe τvvv )cossincossin( ϕθϕξγξ &&&& rrrr bb −−+=−=          (48) 

Knowing the velocities of the belt element and the band pack, the following expressions 

for the acceleration of the belt element and the band pack can be readily obtained, 
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It is to be noted that the acceleration of the band pack is not the same as the acceleration 

of belt element, as the band pack is allowed to slip over the belt element, contrary to the 

impending slip conditions mentioned in the previous model. 

In addition to the aforementioned assumptions, the following assumptions are also 

made in the analysis to aid the solution procedure, 

• Uniform pressure distribution (dN/rdθ) between the belt element and the pulley 

• Assume φ, ξ, are negligible and γθξϕ &&&& ,, <<  

It is reasonable to assume φ, ξ to be negligible quantities as it implies that the rate at 

which the belt pitch radius changes is smaller than the rate at which belt traverses the 

pulley wraps. Moreover, it is plausible that the rate at which the slope angles (φ, ξ) 

change is smaller than the rate at which the angular positions of the belt element and band 

(θ, γ) change. 
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Now, summation of forces in the normal and tangential directions, (nb, τb), (refer 

to Figure 3.7(b)) for the driver band pack yields the following equations respectively, 
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Under the assumption of small ξ and ξ& , for an infinitesimal time step, the equations of 

motion for the driver band pack can be simplified to obtain, 
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Similarly, summation of forces in the normal and tangential directions, (n, τ), 

(refer to Figure 3.7(c)) for the driver belt element yields the following equations 

respectively, 
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Under the assumptions of small ξ,ξ& , φ,ϕ& , for an infinitesimal time step, the equations of 

motion for the driver belt element can be simplified to obtain, 
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Equation (51) can be further reduced to the following form by using the holonomic 

constraint equation (47) and the assumption of small slope angles ξ and φ, 
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In addition to the equations for belt element and band pack, summing the forces 

and torques on the driver and driven pulleys yields further equations ((28), (29), (37), 

(38)) for the CVT system. In order to take into account the influence of elastic 

deformations of the pulley sheaves on the thrust ratio and slip behavior of a CVT, 

equations analogous to equations (18)-(23) are introduced in the model. Thus, there are 

eighteen primary unknowns (nine each for driver and driven) in this CVT model, as: 

[R,Rb,θ,γ,T,Q,F,N,ω]. Since the driver pulley speed is maintained as a constant, the driver 

system has only eight unknowns. It is to be noted from the aforementioned equations that 

the motion of a belt element is tightly coupled not only to the motion of the pulley, but 

also to the motion of the band pack. The equations for the driver system can be 

simultaneously solved to obtain the time histories of the eight unknown driver system 

parameters. Later, appropriate modifications are introduced in the form of the pulley 

bending equations to take the flexural effects into account. 

Similar analysis of a belt segment engaged with the driven pulley under load 

torque conditions yields the equations for the driven system dynamics. Knowing the 

driver system parameters, the driven system solution procedure can be initiated using the 

constraint equation (31). The coefficient of friction between the various contacting 

surfaces of this CVT system is governed by the following equation: 
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3.4 Transient Model of a Chain CVT using Multibody Formalisms 

  

3.4.1 Chain CVT Configuration 

A chain CVT consists of two variable-diameter pulleys connected to each other by means 

of a rocker-pin chain. A rocker-pin chain consists of inner plates, clasp plates, and rocker 

pins. All plates transmit tractive power, while the clasp plates also orientate the rocker 

pins perpendicular to the direction of motion of chain. Figure 3.8 [7] depicts the 

components of a chain CVT drive. 

   
Figure 3.8: Components of a chain CVT [7] 

The rocker pins transmit the frictional and normal load between the pulleys and the chain 

on their spherical end faces. They also join the plates and roll on each other on their 

arched inner rocker surface when the chain bends. Moreover, unlike a belt, the contact 

forces between chain and pulley are discretely distributed. This leads to impacts as the 

chain links enter and leave the pulley. Hence, excitation mechanisms exist, which are 

strongly connected to polygonal action of chain links. This results in vibrations of the 

whole system, which influences the dynamic behavior of the system. CVT chain drives 

transmit power exclusively through these frictional forces occurring in the contact zones 

between the bolts of the chain and the conical pulley sheaves. The pulley sheaves also 
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undergo elastic deformation due to high forces in the contact zones. Each contact has two 

possible states: stick or slip, depending on the relative velocity between the chain link 

and the pulley. The possible transitions between them lead to a mechanical system with 

time variant structure. However, the time variance of the system can be eliminated by 

using the continuous Coulomb friction theory to model friction between the link and the 

pulley, as: 

)1)((
/|relv|

0
b

eaa
−−−+= µµ  

The application of such a friction characteristic neglects the effects from stiction in a 

chain CVT model, as the tangential constraints are always active in contact. In order to 

capture the dynamic interactions between the chain link and the pulley realistically, it is 

necessary to model the chain CVT drive as a discrete multibody model. The multi-body 

modeling of chain CVT not only captures the dynamic interactions realistically, but also 

helps in understanding excitation mechanisms associated with the polygonal action of the 

chain links. Had the chain been modeled as a continuous rigid body as done in the case of 

belt-CVT, these excitation mechanisms would never have been captured, thereby eluding 

the real system dynamics. The subsequent sections discuss the various principles of 

multibody dynamics (Pfeiffer and Glocker [125]) that are relevant to the model 

development. 

 

3.4.2 Multibody Formalism: Formulation of Contact Kinematics and Dynamics  

Equations of Motion of Multibody System with Bilateral Holonomic Constraints 

Let us consider a system of rigid or elastic bodies under the influence of forces with a 

few constraint conditions. Some of these constraints may act permanently on the system, 
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which results in a time-independent reduction of the degrees of freedom of the system. 

Such constraints are called bilateral constraints. On the other hand, there can be a few 

unilateral constraints which influence the system depending on the contact conditions, 

consequently, leading to a state-dependent system with varying number of degrees of 

freedom. Such contact conditions arise from collisions, contact or separation, stick-slip 

transitions with respect to Coulomb friction, etc. A typical body, i, in an n-multibody 

system under holonomic bilateral constraints is shown in Figure 3.9 [125]. 

 
Figure 3.9: Bilaterally-constrained multibody system [125] 

In the above figure, O denotes the center of mass of body i with mass m and inertia 

matrix IO , r denotes a position vector of a point on the body from O, vO is the absolute 

velocity of the center of mass of body and Ω is the absolute angular velocity of the body. 

The forces and moments acting on the body are divided into two sets: the subscript ‘A’ 

denotes active forces and moments (i.e. those which produce power), whereas the 

subscript ‘P’ denotes passive forces and moments (i.e. those which produce no power). 

The equations of motion of body i in an n-body system can be written using Newton-

Euler equations, as: 
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The linear and angular momenta (p, L respectively) of each body i can be further 

expressed as, 
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In these equations, a quantity say a~ is a 3x3 skew-symmetric matrix which helps to 

express the cross product a x b by a matrix-vector multiplication ba~ . Also, I represents 

the 3x3 identity matrix. 

The kinematic equations for the body i are: 
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Assuming the system has only f degrees of freedom due to 6n-f bilateral holonomic 

constraints, one can choose a set of f generalized (velocity) coordinatesq& , which describe 

the system uniquely and fulfill each of the constraints. Introducing the concept of 

Jacobian to transform from system coordinates to generalized coordinates yields, 
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In the above equation, JS and JR are the Jacobian of translation of point S of the body and 

the Jacobian of rotation of the body. S can represent any point (O, A, P) on the body i. 
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Moreover, the absolute accelerations of the body i can be expressed in terms of 

generalized coordinates as: 
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where the extraneous terms of absolute acceleration have been collected in ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

R

O

j

j
~

~

. 

Now, the total virtual power of the multibody system can be obtained as: 
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Using equations (55) and (56) and noting the arbitrariness of the selection of generalized 

coordinates, one gets: 
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Selecting index P according to Jourdain principle of lost power i.e. 
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one finally gets the following dynamical equation for the multibody system: 
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Using (54) and (57), equation (61) can be reduced in the following form: 

f
0),qh(q,-q).M(q, ℜ∈=tt &&&            (62) 

where M is a symmetric positive-definite mass matrix and h is a vector containing 

gyroscopic terms and other terms arising from all the active forces and moments. 
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It is quite common to model contact between two touching/neighboring bodies using 

force elements that are governed by some characteristic force laws. Figure 3.10 depicts 

the interconnection between bodies i and j using a force coupling. 

 
Figure 3.10: Force coupling between two bodies 

The line of action of the force due to the coupling is defined by the connection points 

between the two bodies and is formally given by the unit vectors ei or ej (ei = - ej) with 

respect to body i or body j. Let the forces and torques due to the coupling element be 

given by the following laws: 
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It is to be noted that these forces and torques due to the coupling element are active. 

Incorporating these into equation (62) and introducing corresponding Jacobians, one gets, 
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wAi, wRi are unit vectors in the configuration space (i.e. space of generalized coordinates, 

R
f 
) in the direction of the corresponding force or torque laws. 
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Contact Kinematics: 

Equation (64) describes the dynamics of a multibody system with bilateral contacts under 

the influence of active forces, torques, and force couplings. In order to take into account 

various unilateral contacts occurring in the multibody system, it is necessary to 

understand contact kinematics and dynamics so that equation (64) can be modified to 

include all the system constraints. The beginning of contact is indicated by the vanishing 

relative distance between two bodies and the end of contact is dependent on the relative 

acceleration between the same two bodies. Since the chain CVT model presented in this 

research is a discrete planar multibody system, all the contact events are assumed to 

occur in planar sections of the two contacting bodies. Figure 3.11 depicts two separated 

bodies undergoing contact. The contact forces, as shown in the figure, come into 

existence when the relative distance between the two bodies vanishes. The contact forces 

are also equal and opposite, as per Newton’s III law of motion. From the figure, it can be 

noted that for contact to occur: 
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Figure 3.11: Contact configuration 

The solution (s1,s2 i.e. the contour parameters) of the equation (65) generates the 

configuration shown in Figure 3.11 where the normal and tangential vectors of both the 
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t1,Ft1 

C1 
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bodies are antiparallel to each other, and the distance vector rD is perpendicular to both 

the surfaces. The distance gN between the two bodies can be written as: 
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gN is positive for separation and is zero when the two bodies come in contact. For 

vanishing distance gN = 0, the relative velocity of the body-fixed points C1 and C2 in the 

tangential and normal directions are respectively given as: 
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Introducing the respective Jacobians to transform the relative velocities in terms of 

generalized coordinates yields, 
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The relative acceleration of the contacting bodies in normal and tangential directions can 

be easily obtained by deriving (68) with respect to time. 
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It can be noted from these equations that contact between two bodies can be maintained if 

gN and Ng&  are equal to zero all the time. This can be further ensured by allowing 0g N =&& . 

So, a transition from continual contact to separation requires that 0g N >&& . Moreover, 

depending on whether Tg& is zero or not, stick-slip transition times can be determined. So, 

the following conditions can be written for slip or stick phenomenon under contact. 
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Equations of Motion of Multibody System with Multiple-Contact Configurations: 

In order to accommodate unilateral constraints, equation (64) must be modified. 

Referring to Figure 3.11 for a case of contact under Coulomb friction, it is noted that the 

active tangential friction force depends on the passive normal force while sliding; 

however, this force becomes passive under sticking conditions. The contact forces can be 

incorporated in equation (61) by introducing the corresponding Jacobians and Lagrange 

multipliers. So, the equation of motion of a multibody system under the contact 

configuration of Figure 3.11 can be written as: 
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Using (62) and (68), 

0-h-qM TN =− TN λλ ww&&             (72) 

Let us consider a system with nC contact points and introduce the following four index 

sets to describe the kinematical state of each of the contacts: 

IC = {1, 2,..., nC} 

IG = { 0|IC =∈ Nigi } with nG elements 

IN = { 0|IG =∈ Nigi & } with nN elements 

IT = { 0|IN =∈ Tigi & } with nT elements 
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So, if one neglects collision dynamics, equation (72) can be rewritten as, 
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In order to solve equation (73), 2nN additional equations are required. Using Coulomb’s 

friction law, one can express the tangential forces of the sliding contacts (elements of IN \ 

IT ), as, 
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The remaining nN + nT equations are obtained by imposing some conditions on the 

relative accelerations of the bodies in contact. 
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Expressing (73) and (74) in matrix notation, one gets, 
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Equation (75) can be further condensed in matrix form to get: 
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Further, simplification of equation (76) further yields: 
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Equation (77) is a linear system with nN + nT equations and 2(nN + nT) unknowns ( λ,g&& ). 

The system is completely solvable for the following three cases: 

• Case 1: Under the situation of continuous contact and stick for all time t, the relative 

acceleration vector vanishes, thereby, yielding a completely solvable linear system for 

λ. 

• Case 2: Slip without stick phenomenon ( implying nT = 0) 

• Case 3: Slip with stick phenomenon 

For the last two cases, Pfeiffer et al. [125] developed a unique Linear Complementarity 

Problem (LCP) to detect transitions between the following states: contact – slip – stick – 

separation.  

 

3.4.3 Application of Multibody Formalisms: Planar Chain CVT Model 

The theory outlined in the previous section is used to model the various dynamic 

interactions in a chain-drive CVT. It is necessary to model the chain CVT drive as a 

multibody system in order to accurately capture the excitation dynamics and the 

polygonal effects arising from its discrete structure. As illustrated in Figure 3.8, the 

chain-drive CVT consists of two pulleys and a chain. The system is subjected to an input 

torque on the driver pulley and a resisting load torque on the driven pulley. The basic 

assumptions involved in the model development are: 

• The chain links are rigid i.e. they undergo negligible elastic deformations 

• Friction between the pulley and the links are governed by continuous Coulomb 

friction theory 

• Dynamic effects due to out-of-plane or spatial motion of the chain links are neglected 
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• Pulley misalignment effects are neglected; however, pulley flexibility effects are 

incorporated using Sferra’s model [48] (as mentioned in the analysis of belt CVT). 

• The interactions between the rocker pins of neighboring links and between a rocker 

pin and a plate can all be accounted for by modeling the chain link as a planar rigid 

body. 

The modeling of various components of a chain-drive CVT is discussed subsequently. 

Model of chain links: The chain in the CVT is modeled link by link to account for its 

discrete structure. Each chain link represents a rigid body with 3 degrees of freedom in a 

plane (i.e. ),,( θCC yx : 2 translations of the center of mass of the link and 1 rotation about 

an axis passing through the link’s center of mass). Moreover, the chain links are 

kinematically decoupled. The chain links are connected to each other by force elements 

which take into account the elasticity and damping of the links and joints. In case of 

contact between a link and a pulley, additional normal and tangential forces act on the 

bolt of the link and therefore on the link. These contact forces correspond with the 

associated contact forces acting on the pulley. Figure 3.12 depicts the free-body diagram 

of a chain link. The spring in the force element is governed by a non-linear force-

deformation law (kind of hardening spring) in order to take into account the dynamic 

effects due to clearance between the links. The equations of motion of links not in contact 

with the pulley are governed by (54), (57), and (61). The active forces and torques acting 

on the link arise from the forces in the force-element. However, these must be modified 

when the links contact the pulleys. 
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(a) 

 
(b) 

 

Figure 3.12: Free body diagram of a chain link 

The Jacobian matrix between the system coordinates and the configuration (or 

generalized) coordinates of a link at its center of mass can be obtained as, 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100

000

000

000

010

001

,0

0

,

0

q

Ω
q

v

J

J
J

qΩv

C

R

C

C

&

&

&

&

&

&

&

&

&

θθ
C

C

C

C

y

x

y

x

           (78) 

So, equation of motion of a link not in contact with pulley is:  
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Similarly, Jacobian matrices for the link at the points of application of the active force F 

(A, B in the figure) can be obtained through the velocities of the corresponding points of 

the link, i.e., JA can be obtained through an expression for velocity at point A, vA. The 

active forces, F, and the torques acting on the link due to these forces are obtained by 

computing the forces in the springs and dampers of the force-elements connected to that 

particular link. These forces and torques further depend on the position and velocity of 

the end points of the link and its successor. It is to be noted that if (79) is summed for all 

the links in the system, one gets an equation of the same form as (62). Now, 

modifications similar to (73) are introduced in (79) to account for the contact between 

this link and the pulley. So, the equation of motion for all the links under unilateral 

contact conditions can be written as: 
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λN, λT are the normal and the sticking constraint forces of the links that are in contact 

with the pulley and Tig&  is the tangential relative velocity between the link, i, and the 

pulley. WN represents a matrix with coefficients of relative acceleration (in the normal 

direction) between the links and the pulley in the configuration space. WS represents a 

matrix with coefficients of relative acceleration (in the tangential direction) between the 

links and the pulley in the configuration space when the links are slipping on the pulley 

sheave, whereas WT represents a matrix with coefficients of relative acceleration (in the 

tangential direction) between the links and the pulley in the configuration space when the 
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links are sticking to the pulley sheave. It is to be noted that the relative velocity and 

accelerations are computed at the contact points where the links contact the pulley.  

It has been previously stated that the time variance of the model due to contact-

slip-stick-separation transitions can be eliminated by assuming the friction between the 

bolt of the chain link and the pulley to be governed by continuous Coulomb theory. 

Under this theory, the tangential constraints include no stiction as the frictional forces are 

assumed to be vanishingly small for negligible relative velocity between the link and the 

pulley. Figure 3.13 depicts the continuous Coulomb friction model. The model illustrates 

that at low relative velocity between two surfaces, the frictional force is also low. 

However, in reality, zero relative velocity between two surfaces implies a stick situation 

where frictional force can vary from - Nµ  to Nµ (µ  represents the coefficient of friction 

between two surfaces, and N represents the normal force between the same two surfaces). 

This phenomenon relates to the microslip theory.  

 
Figure 3.13: Continuous Coulomb Friction Model  

(e.g.: a = 0.003,b = 0.1, boµ = 0.4) 
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The continuous Coulomb friction theory is able to capture the microslip physics under the 

assumption that low relative velocity leads to low frictional force. This assumption 

relates to the macroslip theory. It shows that the frictional force increases with relative 

velocity until it reaches the saturation limit. Under the assumption of continuous 

Coulomb friction model, the equation (80) for all the links becomes: 
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So, the continuous Coulomb friction theory obviates the determination of exact switching 

conditions (from LCP algorithm [125]) between the stick and slip phases of motion. 

Model of Pulleys: Each pulley is modeled as a rigid body with one degree of freedom i.e. 

the rotational degree of freedom (φ ). A pulley is also loaded with the frictional and 

normal forces between the rocker pins of the links and the pulley and an external 

moment. An input torque is applied to the driver pulley and a load torque on the driven 

pulley. These contact forces arise from unilateral constraints, which may be active or 

passive. The equation of motion of pulley with contact based on continuous Coulomb 

friction is given by a scalar equation as: 

( )

inertia rotationalpulley   theis J

 torquesexternal contains 

)}()({ˆ

where

ˆ

p

P

TiTii

PP

h

gsigng

hJ

&&

&&

µ

φ

−=

+=

S

NpSSpNp

µ

λµWW-

           (82) 

Although elastic deformations of the chain links have been assumed to have a 

negligible effect on the CVT’s performance, the variation of the local groove width 
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caused by the elastic deformation of the pulleys significantly influences the thrust ratio, 

the slip behavior, and the performance of a chain CVT [7, 31, 33, 48, 59, 127]. However, 

since one of the goals of this research was to study the influence of friction characteristic 

on CVT dynamics, a detailed finite-element modeling of pulley sheaves was evaded. 

Hence, instead of a detailed finite-element formulation of pulley sheaves, simple 

trigonometric functions (as outlined by Sferra et al. [48]) are used to describe the varying 

pulley groove angle and the local elastic axial deformations of the pulley sheaves. The 

analysis, which consequently takes pulley flexibility into account, is similar to that 

outlined in the section on metal V-belt CVT model. 

Contact Dynamics Model: 

A chain link contacts a pulley at the ends of a rocker pin. As the plates move, the rocker 

pins of adjacent links also interact with each other. Assuming negligible dynamic 

interaction between a pair of rocker pins, these rocker pins are modeled as a single bolt. 

So, every link is associated with one bolt through which it contacts the pulley sheaves. 

The bolt is represented as a linear massless spring. The contact planes of the bolts are the 

end faces of the springs. The surfaces of the bolt are loaded with the normal and frictional 

contact forces. Figure 3.14 illustrates the free diagram for the interactions between the 

bolt and a pulley. It is necessary to quantify this bolt spring force, Fb, in order to derive 

the contact forces. The bolt spring force is given in accordance with Pfeiffer’s model [6]. 

It depends on the bolt length, lb, and stiffness, Kb, as well as on the local distance between 

the pulley sheaves, z. Since the pulley sheaves also bend, additional axial width variation 

(refer to Figure 3.2) affects the bolt force. So, the bolt force, Fb, is given as: 
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In this figure, Fr and Ft represent the components of the resultant friction force vector Ff 

between a chain link and the pulley, which act in the plane of the pulley sheave, and N is 

the normal force between the link and the pulley, and β is the pulley half-sheave angle. 

Summing the forces in the axial i.e. z-direction, one gets, 

β
β

cos
tan b

r

F
FN +=               (84) 

 
Figure 3.14: Free body diagram for bolt-pulley interactions 

As before, the use of continuous Coulomb friction theory eliminates the stiction 

constraints and hence, the total friction force is given as, 
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It is to be noted that the chain link slips in the plane of the pulley sheave. The slip angle, 

γ, defines the plane in which the friction force acts. It is the angle which the resultant 

friction force vector, Ff, makes with the tangential direction vector on the pulley. So, in 

order to get the friction force vector, it is crucial to keep a track of the relative velocity 

vector between the chain link and the pulley. Inserting (85) into (84) gives the normal 

force (N or λN) in terms of the bolt force, as Fr is just the radial component of the total 
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friction force Ff. The relative acceleration and the relative velocity between the link and 

the pulley can be obtained using contact kinematics as depicted in Figure 3.15. Once the 

normal forces are known, they can substituted in (81) and (82) to get the time histories of 

the generalized coordinates of the system. 

 
Figure 3.15: Contact Kinematics between a link and a pulley 

Model for clearance between links: 

As mentioned before, the chain links are modeled as rigid bodies connected to each other 

by means of force elements i.e. springs and dampers. Due to continual operation, wear or 

fatigue, a chain-drive CVT is susceptible to form clearances between the chain links. 

Moreover, it is quite possible for a chain CVT to have clearances among its various 

components during the assembly process. Link clearance, as depicted in Figure 3.16 (a), 

drastically influence the dynamic behavior of the chain CVT as it affects the transmitted 

torque and also causes early failure of the system owing to high noise and vibrations. 

Figure 3.16 (b) also depicts the force-deformation law in the spring which accounts for 

the clearance (ε) between the chain link elements. It is obvious from the figure that the 

clearance among the links influences the total transmitted force in the chain-drive CVT. 
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As the clearance gap closes, the spring force increases. Moreover, losses can be 

associated with link-clearance as the torque transmitted for such CVTs is less than that 

for a chain CVT with no link-clearance. Clearance can also induce non-desirable or 

perilous nonlinear phenomena in a system, the most common being self-excited 

vibrations. 

          

 
 

    Figure 3.16: Model for clearance between the chain links 

 

 

3.5 Mathematical Modeling of Friction 

Of all the literature surveyed so far, only a few [58, 105, 136] have briefly cited the 

influence of friction characteristics on the dynamics of a metal- and chain- drive CVT. 

Most of the work has been developed using Coulomb friction theory to describe friction 

between the contacting surfaces of a CVT. The friction phenomenon described by this 
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law is inherently discontinuous in nature. It is common engineering practice to introduce 

a smoothening function to represent the set-valued friction law. However, certain 

friction-related phenomena like chaos, limit-cycles, hysteresis, etc., are neither easy to 

detect nor easy to explain on the basis of classical Coulomb-Amonton friction theory. It 

is well-known that the stick-slip transitions in a friction-driven system can induce self-

excited vibrations [105, 136] in the system and influence its dynamic performance. 

Hence, it is useful to introduce several mathematical models that possibly describe 

friction phenomenon in the contacting zone of such CVTs under different loading 

conditions. A real production CVT operating inside a vehicle is a well-lubricated system, 

and, under such circumstances, it is possible that the friction characteristic in the 

contacting zone resembles Stribeck friction [135] rather than Coulomb friction. 

Moreover, since the contact pressures generated over the contact arc are huge, the friction 

characteristic may further deviate to resemble that of elasto-plastic-hydrodynamic 

contact. In addition to the continuous Coulomb friction model (refer to Figure 3.13), 

other friction models, as illustrated in Figure 3.17, were used in this research to 

characterize friction between the belt/chain and the pulley. These models not only capture 

kinetic-friction dynamics, but also capture dynamics related to stiction and lubrication.  

It is evident that governing equations of a chain-drive CVT possess time-varying 

structure due to the possible transitions between stick and slip phases of the contact. 

However, without significant loss of accuracy [7], it is possible to evade this time-

variance in the system by assuming the friction between the bolt of the chain link and the 

pulley to be approximated by a smooth nonlinear function. Although mathematical 

models of friction give an insight into the dynamic behavior of a friction-limited drive 
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under different operating conditions, an exact friction characteristic of a friction-driven 

system can only be obtained by conducting experiments on the system. 

 

(a) Analytical Friction Model: ( )( )|v||v|
0 )1(11 λκµµ −− −+−= efe r  

 

(b) Stribeck Friction model: v2

2

0
v

10 αααµ ++=
⎟
⎠
⎞⎜

⎝
⎛−

v
e  

 

Figure 3.17: Mathematical models for friction 
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3.6 Closure 

The chapter discusses models for two different configurations of a CVT: metal V-belt 

type and chain type. The belt CVT model takes the inertial and pulley flexural effects into 

account, and uses kinematic constraints to link the driver dynamics to the driven 

dynamics. Multibody formalisms are used to capture the discrete structure of the chain-

drive CVT. Continuous Coulomb friction theory is used to model friction between the 

power transmitting device and the pulley. Clearance effects from the chain links are 

modeled using a piecewise-linear force-deformation law in the interconnection elements. 

In addition to the continuous Coulomb friction model, other friction characteristics were 

introduced to model friction between the belt/chain and the pulley in order to understand 

self-excited vibration phenomenon and other associated dynamic effects in such systems. 

Since it is difficult to monitor friction experimentally during the running conditions of a 

complex nonlinear system (e.g. a CVT), these mathematical models of friction give 

insight into the different dynamic maneuvers that a system can exhibit under different 

contact-zone loading conditions. The models of the metal pushing V-belt CVT and the 

chain CVT take into account the effects arising from the belt/chain-pulley inertial 

interactions, belt-band inertial interactions, pulley flexibility, clearance, and contact-zone 

friction characteristics on the performance of a CVT system. These models give profound 

insight into the dynamics of a CVT system, which could be exploited further to design 

efficient controllers and reduce associated losses. 

 



 

CHAPTER 4  

 

DRY FRICTION MODELING AND NON-SMOOTH MECHANICAL SYSTEMS  

4.1 Dry Friction 

Dry friction plays a significant role in the dynamic behavior of a mechanical 

system. It is a nonlinearity which is abundant in nature, machines, and other processes. 

Continuously variable transmissions (CVTs) are friction-limited drives. The torque 

transmitting capacity and the dynamic performance of a CVT are greatly influenced by 

the friction characteristics of the various contacting surfaces. However, the presence of 

dry friction can also induce chaotic phenomena and self-sustained vibrations in the CVT, 

which possibly degrade the system performance [137]. Dry friction, from a tribologist 

point of view, is a resisting force which opposes the relative motion between the 

contacting surfaces of two or more solid bodies. 

 Leonardo da Vinci formulated the earliest laws of friction and stated that the 

friction force is independent of the area of contact and is proportional to the applied 

normal load. The relation between the normal contact force and the tangential friction 

force was later experimentally studied by Amontons. Coulomb considered the influence 

of sliding speed and direction and stated that the friction coefficient is almost 

independent of the sliding velocity; however, the friction force opposes the sliding 

direction. Coulomb’s law can be stated as: 

0),( ≠−= relrelNT vvsignFF µ  
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The bodies stick to each other when the relative velocity between the contacting surfaces 

vanishes. Under the conditions of stick, the friction force adjusts itself accordingly to 

make equilibrium with the externally applied forces. The bodies remain sticking as long 

as equilibrium is ensured. Coulomb also developed the concept of limiting static friction. 

It is only when the externally applied forces exceed the value of the static friction force 

that the bodies begin to slide on each other. So, Coulomb’s law can be reformulated as:  

(Slip)         0),(F

(Stick)          0,

T ≠−=
=≤≤−

relrelNk

relNsTNs

vvsignF

vFFF

µ
µµ

        (1) 

kµ  is the coefficient of friction in the slip phase, which Coulomb referred to as the 

coefficient of kinetic friction, and sµ  is the coefficient of static friction. 

Coulomb’s law is an idealization of the complex physical contact behavior. The 

surfaces of solid bodies which appear macroscopically smooth are in fact rough on a 

microscopic level. On a microscopic level, the surface of each body can be imagined to 

consist of a range of protuberances that is interposed against an inverted range on the 

other contacting surface, as depicted in Figure 4.1 [138]. These protuberances are also 

referred to as surface asperities. True contact between two surfaces occurs only where the 

asperities touch each other.  

 
Figure 4.1: Microscopic friction phenomenon [138] 

The true contact area is therefore much smaller than the apparent area of contact. 

Moreover, the true contact area is proportional to the total normal load. The asperities 
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deform to generate the contact area necessary to take up the total normal load. These 

asperities are also sheared when the contacting surfaces move tangentially over each 

other, consequently giving rise to the friction force. Even when the bodies are 

macroscopically sticking to each other, there is always a microscopic tangential relative 

displacement between the contacting surfaces. This pre-sliding displacement is caused 

due to elasto-plastic deformation of the asperities which continues until the external 

forces overcome the maximum static friction force.  

Lubricant between the surfaces significantly influences the friction characteristics 

of the contacting surfaces [135]. For a small relative velocity, the surfaces slide with 

asperities loosely meshing with each other (even if the surfaces are lubricated). This low-

velocity friction regime is called boundary lubrication. Increasing the relative velocity 

increases the separation between the surfaces and allows partial lubrication which 

diminishes friction. Film thickness is a vital parameter in friction under lubrication. For 

low velocities, the lubricant acts as a surface film and the shear strength of this film 

determines the friction between the surfaces. At higher velocities and low pressures, a 

fluid layer of lubricant builds up on the surface due to hydrodynamic effects. Friction is 

then determined by the shear forces in the fluid layer. These shear forces depend on the 

viscous character of the lubricant as well as on the shear velocity distribution in the fluid 

film. At high velocities and pressures, the lubricant layer builds up under elasto-

hydrodynamic effects. In such contact conditions, the lubricant transforms into an 

amorphous solid phase due to high pressures in the contact zone. The shear forces of this 

solid phase turn out to be practically independent of the shear velocity. The shear strength 

of a solid lubricant film at low velocities is generally higher than the shear forces of the 
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corresponding fluid film built up at higher velocities. As a result, the friction coefficient 

in lubricated systems normally decreases when the velocity increases from zero. The 

decrease of friction due to increasing sliding velocity is referred to as Stribeck effect. 

When the thickness of the film is large enough, which occurs under the conditions of full 

lubrication, to completely separate the bodies in contact, the friction coefficient may 

increase with velocity as the hydrodynamic effects become significant. Figure 4.2 depicts 

a typical Stribeck friction curve [135].  

  
Figure 4.2: Stribeck friction curve 

The friction coefficient is thus dependent on the relative velocity of the contacting 

surfaces. For most practical purposes, Coulomb’s law aptly describes the friction 

characteristic between two contacting surfaces. However, it fails to describe other non-

linear phenomena associated with friction, for instance, chaos and self-excited vibrations. 

Experimental studies have also confirmed the presence of hysteresis in friction-based 

systems, which can be attributed to dissimilar variations in the friction force during 

acceleration and deceleration phases of motion. The hysteresis phenomenon, as depicted 
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by Figure 4.3 [139, 140], can also not be dealt with by the classical Coulomb’s law. The 

hysteresis loop becomes wider as the velocity variations become faster. 

 
Figure 4.3: Hysteresis induced by Friction [139,140] 

Many different models, as illustrated in Figure 4.4 [135, 141], are proposed in 

literature for the mathematical description of dry friction. It is necessary to understand the 

variations in the dynamic performance of a system under the influence of different 

friction characteristics of the contacting surfaces. 

 

 

Figure 4.4: Models of Friction [135] 

(a) Coulomb (b) Coulomb + Viscous (c) Stiction + Coulomb + Viscous (d) Stribeck 
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The discontinuity at the origin, as depicted in Figure 4.4, is unrealistic for the purposes of 

simulation. The common approach to overcome this discontinuity is to approximate the 

stick-phase by some smooth function, as was mentioned in the previous chapter (refer to 

Figures 3.12 and 3.16). Moreover, the signum function can be further approximated as, 

 )(tan
2

)( 1 vvsign D−=
π

              (2) 

The higher the slope parameter (D ), the better is the approximation of the stiction 

phenomenon. Such friction models result in smooth ordinary differential equations for the 

equations of motion of the system. All the standard integration routines can therefore be 

directly applied and the existence and uniqueness of the solution is guaranteed. However, 

there are a few disadvantages associated with such smooth friction models. The smooth 

friction model fails to capture the dynamics of stick phase accurately. The friction force 

is vanishingly small at zero velocity. The model thus allows the body to accelerate even 

though the external forces on the body are less than the peak stiction force. Moreover, the 

steep slope of the approximating non-linear friction model yields a stiff differential 

equation for vanishing relative velocity, which becomes inconvenient from a numerical 

point of view. 

 Friction, as can be noted from equation (1), induces set-valued forced laws for 

describing the dynamics of a friction-driven system. Such dynamical models of system 

with dry friction result in Filippov-type differential equations. Filippov systems form a 

class of non-smooth systems described by differential equations with a discontinuous 

right-hand side. Non-smooth systems exhibit several interesting nonlinear phenomena, 

like grazing bifurcation, discontinuous bifurcation, nonlinear complementarity 

conditions, etc., which possibly are lost when the set-valued friction laws are 
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approximated by smoothening functions. The subsequent sections (Leine and Nijmeijer 

[143]) discuss Filippov systems and the dynamics associated with them. 

 

 

4.2 Filippov Systems and Differential Inclusions 

Filippov [142] analyzed differential equations with discontinuous right-hand side and 

introduced new solution concepts for such equations on the basis of convex-analysis. 

Consider a dynamical system described by a set of ordinary differential equations, as, 

ntttt ℜ∈= )()),(,()( xxfx&               (3) 

where x(t) is a state vector and f(t, x(t)) is the vector field or the right-hand side vector 

describing the time derivative of the state vector. The solution to (3) is guaranteed to exist 

if the vector field is linearly bounded, continuous, and locally Lipschitz. However, if the 

vector-field is discontinuous in x, Filippov’s theory governs the existence and uniqueness 

of solutions. Filippov extended the notion of a solution to (3) by replacing the right-hand 

side f(t, x) by a set-valued function F(t, x) such that F(t, x) = f(t, x) for all x where f is 

continuous. However, at the points of discontinuity, a suitable choice of F(t,x) is 

incorporated. The differential equation in (3) is then replaced by the following 

differential inclusion: 

ntttt ℜ∈∈ )()),(,()( xxFx&               (4) 

So, differential inclusions can be regarded as convexification of discontinuous 

differential equations.  

Filippov stated that an absolute continuous function x(t) : nℜ→],0[ τ  is said to 

be a solution of (3) if for almost all t ],0[ τ∈  it satisfies (4) where F(t, x(t)) is the closed 
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convex hull of the limits of f(t, x(t)). The ‘almost all’ value of t includes all t in the 

interval ],0[ τ  except those with Lebesgue measure 0 (i.e. the points of discontinuity). So, 

the existence of a solution to the differential inclusion (4) is guaranteed if F(t, x(t)) is 

nonempty, bounded, closed, convex, and upper semi-continuous. The differential 

inclusion (4) can be further expressed as [143]: 
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Here, the state space R
n
 is split in two subspaces V- and V+ where the function f(t, x) is 

continuous, smooth, and linearly bounded, and Σ is the switching boundary where the f(t, 

x) is discontinuous. Σ is a hypersurface and is defined by a scalar switching boundary 

function h(x). The state x is in Σ when h(x) = 0, in V- when h(x) < 0, and in V+ when h(x) 

> 0. The switching boundary need not necessarily be smooth, autonomous, and a 

singleton. It is possible for a differential inclusion to have non-unique solutions. Filippov, 

however, also proposed a couple of conditions under which the uniqueness of the solution 

of differential inclusion (5) is guaranteed. 

Theorem [142] : Let a function f(t, x) in a domain D be discontinuous only on a set M of 

measure zero. Let there exist a summable function g(t) such that for almost all points (t,x) 

and (t,y) of the domain D, one has |f(t, x)| ≤ g(t) and for |x-y| < ε, ε > 0, 

(x - y) . ( f(t, x) – f(t, y) )  ≤  g(t) |x-y|
2
  

Then equation (3) has a unique solution in forward time (also referred to as right 

uniqueness) in the domain D. 
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Filippov also derived other uniqueness conditions based on the geometrical 

interpretation of the differential inclusion. The set F(t,x) is a linear segment joining the 

end points of the vectors f- and f+ . Let P be a plane tangent to the hypersurface h(x) at the 

point x on the hypersurface (i.e. the switching boundary). If for t1 < t <  t2, the line 

segment F(t,x) lies on one side of the tangent plane P, the solutions for these t pass from 

one side of the surface to the other. If this line segment intersects the plane P, the 

intersection point is the end point of the vector f
0
(t,x) which determines the velocity of 

the motion along the hypersurface in the x space. So, the function x(t) satisfying 

x)fx
0 ,(t=&  is assumed to be the solution of equation (3). If f

0 ≠ f-and f
0 ≠ f+ , the solution 

obtained is known as the sliding-mode solution. If the whole of the segment with the ends 

f- and f+ lies in the plane P, the velocity of the motion along the hypersurface is not 

determined uniquely. Figure 4.5 [142] illustrates the geometrical interpretation of 

Filippov’s solution concept.  

 

 

 

 

 

Figure 4.5: Geometrical interpretation of Differential Inclusion [142] 

Filippov concluded that the solution of the differential equation (5) with an initial 

condition Σ∈0x  is locally unique in forward time if 
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2. (x)n(x)xfn(xxfn(x 000-0 htt TT ∂∈∀<> + ,0),()&0),() 00 , i.e. attractive sliding 

mode. 

It is to be noted that the hypersurface h(x) need not be smooth, so, it is necessary 

to introduce the concept of generalized differential in the aforementioned conditions for 

defining the normal n(x) to the hypersurface. For smooth switching boundary, one gets 

)()( xx hh ∇=∂ .  

 Although, it is quite common to approximate a discontinuous nonlinearity by a 

smoothing function, the method poses inherent disadvantages. The major disadvantages 

of introducing a smoothing approximation for the nonlinearity are the loss of possible 

limit sets and the occurrence of stiff differential equations. However, the smooth-

approximation model always guarantees the existence and uniqueness of solutions. The 

following example illustrates the loss of limit set when a discontinuous nonlinearity is 

approximated by a smooth function. 

Example [143]: Consider the discontinuous system: 
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The smoothened system can be represented as: 
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The smoothened system in equation (7) does not have an equilibrium position for a ≠ 0. 

However, the original discontinuous system in equation (6) has a set of equilibria 

( 0, 21 =∈ xRx ). Moreover, the smoothened system is quite stiff because of very steep 

slope near the origin. So, it is evident that even though the approximation is 
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mathematically consistent, the true physical characteristics of the system may not be 

captured by the smoothened system. The subsequent sections discuss other methods to 

solve the differential inclusion without any loss of the physical characteristics of the 

system. Nonetheless, the most common engineering practice is to approximate a 

discontinuous nonlinearity in system by a smooth function. 

 

 

4.3 Switch Model of Friction 

Leine et al. [143] developed a numerical technique, i.e. the Switch Model, for integrating 

differential equations with sliding modes without suffering from stiff differential 

equations. They introduced an interval of low relative velocity i.e. |vrel| <  η, known as the 

‘stick band’, which approximates the stick mode. The Switch Model introduces a vector 

field in the stick band such that the state of the system is pushed to the middle of the stick 

band, thereby avoiding numerical instabilities. Let the switching boundary consist of an 

attractive sliding mode, a repulsive sliding mode, and transversal intersections from V- to 

V+ and vice-versa. The Switch model constructs a ‘band’ with a very small thickness 2η 

around Σ, namely the subspace U (attractive) U Q (repulsive) U T- U T+ (transversal), as 

shown in Figure 4.6 [143] (U denotes the union of sets). The subspaces for a smooth 

switching boundary h(x) can be expressed as, 

}00|{

}00|{

}00|{

}00|{

<Λ<ℜ∈=

>Λ>ℜ∈=

<Λ>ℜ∈=

>Λ<ℜ∈=

−+−

−++

−+

−+

fnfnx

fnfnx

fnfnx

fnfnx

TTn

TTn

TTn

TTn

T

T

Q

U

             (8) 



 132

The symbol, Λ, in (8) denotes the intersection of sets. The subspace U ends when the 

vector field in V- or V+ becomes parallel to Σ. In the subspace U the vector field is chosen 

such that the solution is pushed to the middle to the band. This is established by setting 

,1 (x)(x) hh a

−−= τ& where τa is a time constant that determines how fast the solution will be 

attracted towards the switching boundary h(x) = 0. Since the solution is in the sliding 

mode region, one also has, 

−+ −+= ffx )1((t) αα& . 

 
Figure 4.6: Switch Model Approximation [143] 
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The vector field in the transition spaces T- and T+ is f- and f+ . As stated before, for 

forward time, the solution is unique for attractive and transversal intersection modes. 

However, the solution exhibits non-uniqueness for a repulsive sliding mode, Q. So, one 

arbitrarily assigns the vector field in Q to be f+ . Therefore, the pseudo-code for a Switch 

Model can be written as: 

Calculate h(x), f-(t, x), f+(t, x) 

If  |h|>η then 

If  h> η then 

  ++ ∈= Vt)(,(t) xfx&  

 else 

  +− ∈= Vt)(,(t) xfx&  

 end 

else 

 ++ ∈= Tt)(  if,(t) xfx&  

 −− ∈= Tt)(  if,(t) xfx&  

 Ut
ha ∈
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+
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+

−
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 Qt ∈= + )(  if,(t) xfx&  

end 

The Switch Model maintains the continuity of the state vector and yields a set of non-stiff 

ordinary differential equations. The only disadvantage of such a model is the increasingly 

complex logical structure with the increasing number of switching boundaries. The 

Switch Model is therefore practically not feasible for mechanical systems with a large 



 134

number of frictional contacts. However, extensive literature has been published [143-147] 

in the area of finding efficient solutions for multibody systems with a large number of 

unilateral contacts, for instance, Linear Complementarity Problem (LCP), Non-Linear 

Complementarity Problem (NLCP), Augmented Lagrangian Method, etc. Although these 

algorithms are able to aptly capture the transitional dynamics of a multibody system with 

unilateral contacts, they are quite expensive and unwieldy to use. 

 

 

4.4 Friction and Chaos  

Since some of the friction characteristics vary continuously with respect to velocity (as in 

the case of Stribeck friction), friction-driven systems may undergo bifurcations [148, 

149], where the system makes transitions from one limit set to another, thereby exhibiting 

different dynamic behavior. A bifurcation point (with respect to µ) is a solution ( *,µ*
x ) 

of )(x,fx µ=& , where the number of equilibria or (quasi-) periodic solutions changes 

when µ passes *µ . Both smooth and non-smooth characterization of friction-based 

systems are capable of exhibiting bifurcations, however, the dynamics become richer and 

more complex in the non-smooth case. A friction-driven system is also capable of 

undergoing self-excited vibrations and chaotic behavior. Extensive work [150-153] has 

been done on formulating and understanding chaotic behavior of 1- and 2- degree of 

freedom systems subjected to friction constraints and periodic forcing functions. Chaos 

and routes to chaos have been commonly identified in systems which exhibit 

bifurcations. For a system to be classified as chaotic, the phase-space of the system must 

be 3-dimensional or higher and must have the following properties [154]: 
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• Sensitive dependence on initial conditions 

• Topologically mixing 

• Periodic orbits must be dense 

Sensitivity to initial conditions implies that two points in such a system may move along 

vastly different trajectories in their phase space, even if the difference in their initial 

configurations is very small, as depicted in Figure 4.7. As a result of this sensitivity, the 

behavior of systems that exhibit chaos appears to be random, even though the model of 

the system is deterministic.  

 
Figure 4.7: Chaos – Divergence of Orbits from Sensitivity to Initial Conditions 

A system is topologically mixing if it evolves over time so that any given region or open 

set of its phase space eventually overlaps with any other given region. Since the phase 

space is of a finite size, this usually means that the phase space will become thoroughly 

mixed together after a fairly short time. A subset A of a topological space X is called 

dense (in X) if, intuitively, any point in X can be “well-approximated” by points in A. 

Formally, A is dense in X if for any point x in X, any neighborhood of x contains at least a 

point from A. Although extensive literature is available on simple chaotic systems with 1- 

or 2- degrees of freedom, literature on chaotic phenomena in multibody systems is scarce. 
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Although the exact representation of stick-slip dynamics is based on the theory of 

differential inclusions, it is quite common to use smooth functions to approximate the 

friction behavior. The smoothened systems introduce stiff differential equations, and may 

also exhibit some drifting behavior (due to the loss of possible limit sets), yet they play a 

significant role in understanding the stick-slip dynamics of a friction-based system. 

Moreover, bifurcation studies, Poincaré sections, Lyapunov exponents, cell-mapping 

methods, chaotic analysis, etc., may be readily done by incorporating the tools widely 

used for analyzing the nonlinear dynamics of smooth mechanical systems. In essence, 

models of physical reality are smooth or non-smooth depending on the abstraction level 

one chooses to describe a particular system. The subsequently discussed example of a 2- 

degree of freedom (DOF) stick-slip oscillator highlights the influence of different friction 

characteristics on the dynamics of the system.  

 

 

4.5 2-DOF Stick-Slip Oscillator 

Consider two masses lying on a moving belt and connected to each other by means of 

spring and dampers. The belt moves with constant velocity and the friction characteristic 

between the masses and the belt is described by two different mathematical models. 

Figure 4.8 depicts the configuration of the concerned oscillator. Both the masses move 

along the coordinates x1, x2 due to the friction forces F1, F2 existing between them and the 

belt that moves with a constant velocity v. The masses are connected to each other and to 

fixed supports by means of springs and dampers of stiffnesses k1, k2 and damping 

coefficients c1, c2 respectively. 
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Figure 4.8: 2-DOF Stick-Slip Oscillator 

The equations of motion of the system can be written in matrix form, as: 
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The above equation is of the form of FKxxCxM =++ &&& , and can be readily represented 

in the state-space form as: 

[ ] [ ] FM[0B
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It is evident from (10) that a 2-DOF stick-slip oscillator has a 4-dimensional phase-space 

representation and also possesses a discontinuous right-hand side (i.e. the forcing vector). 

Hence, the oscillator represented by (10) falls under the category of non-smooth 

mechanical systems, in particular Filippov systems. The non-smooth system (10) has two 

switching boundaries i.e. vxvx == 21 , && . This non-smooth system can be approximated 

by introducing smoothening functions, as mentioned in equation (2). The smooth 

approximation of the stick-slip oscillator dynamics is given by: 

x1
x2

v

F1 F2

k1 ,c1 k2 ,c2

m2m1

Belt

k1 ,c1
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Using Laplace transform on equation (9), a transfer function matrix can be obtained that 

relates the outputs (x1, x2) to the inputs (friction force). Let u1 and u2 be the inputs that 

represent the friction force between the belt and the masses m1 and m2 respectively. 

Assume for simplicity that m1 = m2 = m. So, the transfer function matrix, G(s), for the 

system is given by the following relationship, 
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Since the inputs are friction forces, which are nonlinear and discontinuous, the stability 

analysis of this stick-slip oscillator is not trivial. However, preliminary investigation on 

the stability analysis can be done using the Theory of Describing Functions [155]. 

Friction forces are described by signum functions, which act as relays. The describing 

function for an ideal relay that describes the friction forces in (9) can be written as: 

amplitudeA
A

mg
AjN =∠= ,0

4
),( 0

π
µω  

Stability analysis of a nonlinear system is based on the possible intersections of the 

transfer function G(jω) and the describing function -1/N [155]. Figure 4.9 illustrates the 
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Nyquist plot for the individual components of the transfer matrix G(jω), and also the 

polar plot for the function -1/N.  

 
Figure 4.9: Nyquist plot of G(jω) and -1/N 

It can be noted from the figure that although the transfer function G11(jω) does not 

intersect with the function –N-1, the cross-transfer function G12(jω) intersects with it. 

Since the given stick-slip oscillator is a double input-double output system, the stability 

of the system from this Nyquist plot analysis is not much discernible (contrary to the case 

of a single input-single output system). Hence, further investigations are inevitably made 

to analyze the stability of this nonlinear stick-slip oscillator.  

 Further, preliminary analysis of the phase portrait and trajectory behavior can be 

done by calculating the divergence of the vector field (i.e. Aq+B) in (10). The divergence 

of this vector field is given as, 

Increasing A 
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The divergence of the vector field essentially represents the compressibility of the phase 

volume. It is evident from (13) that for constant coefficient of friction, as in Coulomb-

Amontons law, the phase volume decreases with time (as the divergence is always 

negative). This implies that the system is dissipative and the system would, most 

probably, reach a stable fixed point. However, it can again be noted from equation (13) 

that the compressibility of phase a volume can also vary depending on the gradient of 

friction characteristic (as in the case of Stribeck friction). Consequently, this allows the 

system to exhibit periodic or chaotic behavior.   

The smoothened oscillator system (11) is examined for different nonlinear 

phenomena under the influence of two different friction characteristics: (a) constant 

coefficient of friction (i.e. the classical Coulomb-Amontons friction model, 0µµ = ), (b) 

Stribeck friction model i.e. ( )( )|v||v|

0
relrel )1(11

a

r

b
efe
−− −+−= µµ . 

The simulation is run for a number of initial conditions i.e. ( 00 xx &, ) and the following 

parameters, (k1, k2) = 25; (c1, c2) = 1; (m1, m2) = 1; v = 3.5; 4
0 10,5.6,25.0 === Drfµ ; a 

= 1; b = 5; g = 9.81. 

Case 1: 0µµ =  

The equilibrium point of the smoothened system is obtained by setting the time 

derivatives of the states in (11) to zero. The equilibrium point for the system defined by 
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the abovementioned parameters is given by ( *

2

*

1 , xx ) = (0.098, 0.098). Linearizing (11) 

about this equilibrium point yields, 

⎭
⎬
⎫

⎩
⎨
⎧

+−
+−

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

+
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

+
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

))1((/ˆ2

))1((/ˆ2
                                                                        

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

0

0

22

220

22

110

2

1

212

221

2

1

212

221

2

1

2

1

vxgm

vxgm

x

x

kkk

kkk

x

x

ccc

ccc

x

x

m

m

D&D

D&D

&

&

&&

&&

πµ
πµ

     (14) 

It is to be noted that (14) describes the dynamics of the system perturbed around the 

equilibrium point. So, )ˆ,ˆ( 21 xx  are the perturbed system variables. Equation (14) can be 

further simplified as, 

                                                                  ) ))1((/2(
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It is evident from (15) that the eigenvalues of the system matrix A (defined in equation 

(10)) depend on a number of system parameters, especially, the set P : = [k, c, µ0, v, D ]. 

The parameters in the set P are varied one at a time and the eigenvalues of the linearized 

system are calculated. It is observed that while varying c from 1 to 50 and keeping other 

parameters constant, the eigenvalues of the linearized system split up at two critical 

values of c i.e. 5.77 and 10. For c ≥ 10, both the masses exhibit overdamped motion and 

the 4 eigenvalues are found to be in the left-hand plane on the real axis. So, the system is 

stable and is attracted towards the equilibrium point. For c ≤ 5.77, both the masses exhibit 

underdamped motion, whereas, for c )10,77.5(∈ , the motion of one of the mass is 

overdamped whereas the other shows underdamped behavior. The system remains 

structurally stable at all times for the variation in the damping coefficient c. Similarly, the 
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system remains structurally stable for µ0 ]75.0,0(∈ , v ℜ⊆−∈ ]10,10[ , and k > 0. 

However, it is important to note that the parameter-space defined by the set P is a 5-

dimensional space (a variation in c could be simultaneously accompanied by variations in 

v, k, etc.). So, it is difficult to conclude that the linearized system is globally structurally 

stable unless stability analyses are done for each and every point of the 5-dimensional 

parameter-space. Figure 4.10 illustrates the dynamics of a system expressed by equation 

(11) for the parameter set P (P: = [k, c, µ0, v,D ] = [25, 1, 0.25, 3.5, 10
4
]) and different sets 

of initial conditions. 

 
(a) Phase portrait for mass m1 

 

Figure 4.10: Dynamic indicators for Case 1 
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(b) Phase portrait for mass m2 

 
(b) Displacement profiles (x1, x2) for various initial conditions 

 

Figure 4.10: Dynamic indicators for Case 1 (contd.) 
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(c) Velocity profiles (v1, v2) for various initial conditions 

 

Figure 4.10: Dynamic indicators for Case 1 (contd.) 

It is evident from the phase trajectories and the time histories of the system that the 

equilibrium point i.e. ( *

2

*

1 , xx ) = (0.098, 0.098) is a stable attractor. No matter whatsoever 

initial conditions the system is exposed to, the system is always driven towards to the 

equilibrium point. It can also be noted that the phase trajectories of the system intersect 

each other for some of the initial conditions. However, these intersections may not 

necessarily be homoclinic or heteroclinic intersections as the phase-space of the 

concerned system is multidimensional. The phase portrait in Figure 4.10 is the projection 

of the time-evolution parameters of the system onto a two-dimensional surface; hence, 

the intersections in the two-dimensional portrait may represent folding or unfolding of the 

trajectory in a multi-dimensional space. Moreover, since (11) has 4-dimensional phase-

space representation, it is likely that the system undergoes chaotic behavior. Hence, it is 
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necessary to conduct further analyses on the system to determine whether the system 

behaves chaotically or not.  

A large number of tools have been developed to identify chaotic behavior in 

dynamical systems [154, 156]. Among such tools, Lyapunov-exponent analysis is one of 

the most powerful diagnostic for chaotic systems, especially in higher dimensions. 

However, other commonly used nonlinear tools like power spectral density plots, 

Poincaré maps, bifurcation diagrams, etc. also give valuable insight into understanding 

the chaotic behavior of a system. Chaos in a deterministic system, as discussed earlier, 

implies a sensitive dependence on initial conditions. This means that if two trajectories 

start close to one another in phase space, they will move exponentially away from each 

other for small times on the average (refer to Figure 4.7). This sensitivity to initial 

conditions can be quantified as, 

|)0(||)(| xetx t δδ λ≈  

where λ is called the Lyapunov exponent.  So, Lyapunov exponents are related to the 

exponentially fast divergence and convergence of nearby orbits in phase space. A system 

with one or more positive exponents is defined to be chaotic. Lyapunov exponents can 

thus also be considered as analogues to the eigenvalues of a linear system since both of 

them govern the system stability to a large extent. However, the trajectories of chaotic 

motion do not escape to infinity, but preserve a recurrence property. Extensive research 

has been done on developing algorithms for computing the Lyapunov exponents of a 

dynamical system. Wolf et al. [157] developed an efficient algorithm for computing 

Lyapunov exponents of an N- dimensional continuous dynamical system. Müller [158] 

developed a generalized algorithm for computing the spectrum of Lyapunov exponents of 
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a nonlinear system with discontinuities. For a 4- dimensional system, the attractor can 

only be non-chaotic if none of the Lyapunov exponents are positive. Figure 4.11 depicts 

the growth of Lyapunov exponents with time for the smoothened system (11) with 

classical Coulomb friction model. 

 
Figure 4.11: Lyapunov Exponent Spectrum for Case 1 

For a number of initial conditions close to the basin of attraction, the following Lyapunov 

exponents were obtained: (-0.49791 -0.56974 -1.4286 -1.5038). Since all the Lyapunov 

exponents are negative, the equilibrium point of the system is asymptotically stable, and 

all the trajectories are attracted towards it. 
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Case 2: ( )( )|v||v|

0
relrel )1(11

a

r

b
efe
−− −+−= µµ  

The friction characteristic, unlike the previous case, varies continuously with the relative 

velocity between the masses and the belt. Moreover, the difference between static and 

kinetic friction is also taken into account in this model through the parameter fr. In 

addition to describing kinetic-friction dynamics, this friction model captures not only the 

effects due to stiction, but also those due to boundary lubrication (Stribeck-like effects). 

The equilibrium point of the smoothened system is obtained by setting the time 

derivatives of the states in (11) to zero. The equilibrium point for the system defined by 

the aforementioned parameters is given by ( *

2

*

1 , xx ) = (0.114, 0.114). Figure 4.12 

illustrates the dynamics of a system with Stribeck-like friction model for different sets of 

initial conditions. 

 
(a) Phase portrait for mass m1  

 

Figure 4.12: Dynamic indicators for Case 2 



 148

 
(b) Phase portrait for mass m2  

 
(c) Displacement profiles (x1, x2) for various initial conditions 

 

Figure 4.12: Dynamic indicators for Case 2 (contd.) 
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(d) Velocity profiles (v1, v2) for various initial conditions 

 

Figure 4.12: Dynamic indicators for Case 2 (contd.) 

Linearizing the smoothened system about the equilibrium point ( *

2

*

1 , xx ) yields the 

following system of equations: 
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The parameter set P: = [k, c, µ0, v, baf r ,,,D ] on which the eigenvalues of the linearized 

system depend belongs to an 8- dimensional space. Similar to Case 1, the parameters in 
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the set P are varied one at a time and the eigenvalues of the linearized system are 

calculated. It is observed that while varying v from -10 to 10 and keeping other 

parameters constant, the eigenvalues of the linearized system exhibit transitions, as 

depicted in Figure 4.13, from the left-hand plane to the right-hand plane for certain values 

of v. This implies that there is a range of values of the belt velocity v ]6.2,81.0[∈  for 

which the system becomes structurally unstable, which was not observed when the 

friction characteristic was treated in the classical Coulomb sense. Such phenomenon is 

known as bifurcation behavior as the qualitative behavior of the system (or its fixed 

points) changes as one of the system parameters is varied. Moreover, within the stable 

region, the system is capable of exhibiting different dynamic behavior depending on the 

value of v. For instance, both the masses exhibit overdamped motion for v ]26.0,26.0[−∈ . 

It can also be noted from Figure 4.13 that the fixed points of the system, for some values 

of v, can be stable or unstable focus, thereby causing the system to undergo damped-

periodic or self-excited motion respectively. The system remains structurally stable for c 

> 0 and k > 0. However, it exhibits bifurcation behavior as µ0 ]75.0,0(∈ . Figure 4.13 also 

depicts the path of the eigenvalues of the linearized system when the coefficient of 

friction µ0 is varied. The system becomes structurally unstable, i.e. the eigenvalues cross 

the left-hand plane, when µ0 ]75.0,62.0[∈ . As mentioned before, it is difficult to assess 

the structural stability of the system globally as the parameter space is 8- dimensional (a 

variation in one of the parameters could be simultaneously accompanied by variations in 

the others.). For instance, the same system is structurally stable for v = 3.5 when µ0 = 

0.25, but is unstable for v = 3.5 when µ0 = 0.62. 
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Figure 4.13: Path of eigenvalues of the linearized system – Case 2 

It can also be observed from the phase portrait and the time histories of the system 

that there is a set of initial conditions for which the system exhibits limit cycle behavior 

and another set for which the trajectories are driven towards the equilibrium point. This is 
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further corroborated by conducting a Lyapunov exponent analysis for some initial 

conditions in the basin of attraction. 

 
Figure 4.14: Lyapunov Exponent Spectrum for Case 2 

The Lyapunov spectrum is plotted, as shown in Figure 4.14, for one such set of initial 

condition that drives the system towards the limit cycle behavior. For a 4- dimensional 

system to exhibit limit cycle behavior, one of the Lyapunov exponents must be zero. The 

Lyapunov exponents for the system with initial conditions: ],,,[ 0

2

0

2

0

1

0

1 vxvx = [0 3 0 6] are 

found to be: (0.001187 -1.2535 -1.5535 -1.6016). Moreover, for another set of initial 

condition, such as ],,,[ 0

2

0

2

0

1

0

1 vxvx = [0 0 0 0], all of the Lyapunov exponents are negative, 

consequently, the system is driven towards the fixed point. It can be noted that the system 

subjected to the aforementioned initial conditions (i.e. ],,,[ 0

2

0

2

0

1

0

1 vxvx = [0 3 0 6]), in fact, 

exhibits mild chaotic behavior instead of a regular periodic motion, as the first Lyapunov 
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exponent is slightly greater than zero. So, the Lyapunov exponent analysis highlights that 

the apparent limit-cycle behavior of system in case 2 is, in fact, not a regular periodic 

motion, as illustrated by Figure 4.12 (c) and (d), but it is a mild chaotic behavior. It is 

clear from this analysis that for a higher dimensional phase-space, time-histories and 

phase-portraits of a system are not the sole factors for analyzing its stability. It is, thus, 

necessary to incorporate other tools from nonlinear and chaotic analysis to characterize a 

system’s stability. 

 

 

4.6 Closure  

Dry friction is an inevitable nonlinear phenomenon present in most mechanical systems. 

It is crucial to study the implications of different friction characteristics on the dynamics 

of a system. The friction phenomenon in most of the systems can be adequately described 

by Coulomb’s law, which is inherently discontinuous in nature. It is a common 

engineering practice to introduce a smoothening function to represent the set-valued 

Coulomb friction law. However, certain friction-related phenomena like chaos, limit-

cycles, hysteresis, etc., are neither easy to detect nor easy to explain on the basis of 

Coulomb friction theory. Since it is difficult to monitor friction experimentally during the 

running conditions of a complex nonlinear system, the mathematical models of friction 

give insight into the different dynamic maneuvers that a system can undergo. Moreover, 

it has been well-documented in literature [159-161] that friction-based systems undergo 

not only self-excited vibrations, but also chaotic vibrations, which might be perilous to 

the system. Moreover, since friction can initiate chaos in a system, a controller based on 
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the basic principles of nonlinear control may not be able to get rid of the chaotic 

behavior. A simple 2- DOF stick-slip oscillator shows a mild chaotic behavior which 

would not have been detected had the friction not been modeled with a negative slope 

with respect to the relative velocity between the contacting surfaces. The stick-slip 

oscillator system, discussed in this chapter, rudimentarily simulates the possible dynamic 

interactions in a CVT system as the belt/chain traverses either of the two pulleys.  



 

CHAPTER 5  

 

RESULTS AND DISCUSSION  

5.1 Introduction  

The previous chapters outlined the development of mathematical models for two 

different types of continuously variable transmissions (CVT): metal V-belt- type and 

chain- type. A detailed transient-dynamic model of a metal pushing V-belt CVT was 

developed taking the inertial effects and pulley flexibility into account. A model of chain 

CVT was also developed using multibody formalisms. Moreover, as discussed in the 

previous chapter, it is incumbent on the designer or the engineer to study the influence of 

different friction characteristics on the dynamic performance of a CVT. The response of a 

CVT also changes considerably under the influence of certain nonlinearities, which may 

be inherent or may arise during its continual operation (e.g. clearance effects).  So, the 

CVT-models were further modified in order to encompass the nonlinear effects induced 

by friction, pulley flexibility, and clearance. 

  The belt-CVT model was developed on the MATLAB / SIMULINK platform, 

whereas the chain-CVT model was developed on the Visual C++ platform. It was 

preferable to develop chain-CVT model in the Visual C++ platform because of the 

discrete multibody nature of chain CVT, which could be readily implemented using 

object-oriented programming approach. The Runge-Kutta method is used to integrate the 

state equations in order to get the time histories of the system states. The computer 

programs used for simulating the dynamics of these CVTs are outlined in the 



 156

Appendices. The results pertaining to these models will be discussed subsequently. The 

results provide valuable insight into the dynamics of a CVT subjected to different loading 

conditions (i.e. axial forces and torques). The models can also be readily exploited to 

observe the influence of different configuration parameters on the performance of the 

system. 

 

 

5.2 Results from Chain CVT Model 

The simulation of a chain-CVT model starts off with an initial condition and a specific 

design configuration and computes different dynamic performance indices i.e. axial 

forces, angular velocities, tension, etc. Moreover, the driver pulley is subjected to a high 

input torque (200 Nm) whereas a low resisting load torque (100 Nm) is applied to the 

driven pulley. The assumptions and the modeling conditions have already been discussed 

in the previous chapter on model development. As mentioned earlier, the smooth 

approximation of the stick-phase in dry-friction phenomenon obviates the use of event-

detection integration methods and linear complementarity problem formulations in a 

chain CVT model, which consequently leads to time-efficient calculations of the dynamic 

performance indices. The chain-CVT model is subjected to various smoothened friction 

characteristics which describe the contact conditions between the chain links and the 

pulleys. Moreover, clearance-induced nonlinearities are also integrated into the model by 

using piecewise stiffness elements between the chain links. The simulation of a chain-

CVT model starts off with an initial condition of rest and a specific design configuration 

and computes different dynamic performance indices i.e. axial forces, angular velocities, 
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tension, etc. The results germane to this model are discussed in the subsequent sections. 

Table 5.1 lists the numerical values of selected parameters used in all the chain CVT 

simulations. 

Table 5.1: Chain CVT simulation parameters and values 

Parameters Values 

Half sheave angle, β0 15 deg 

Mass of chain link, m 0.112 kg 

Moment of inertia of pulley, Jp 2.358 kg-m
2
 

Length of chain link 0.03 m 

Total number of chain links 34 

Bolt stiffness, Kb 200 kN/m 

Coefficient of kinetic friction between 

link and the pulley, oµ  
 

0.25 

 

5.2.1 Influence of different friction characteristics  

The chain CVT model is subjected to the following three different friction characteristics 

that describe the friction, µ, in the contact region between the chain links and the pulley 

sheaves: 

Case 1: Continuous Coulomb friction, )1)((
/|relv|

0
b

eaa
−−−+= µµ  

Case 2: Boundary lubrication- type friction, ( )( )|relv||relv|
0 )1(11

λκµµ −− −+−= efe r  

Case 3: Stribeck- like friction, rel2

2

0
relv

10 vαααµ ++=
⎟
⎠
⎞⎜

⎝
⎛−

v
e  

The coefficient of friction mentioned in Case 1 describes the classical Coulomb-Amonton 

friction law which aptly captures the dynamics associated with kinetic friction and is 

most commonly referenced in literature. However, the coefficient of friction mentioned 

in Cases 2 and 3 is more detailed as it not only captures the dynamics associated with 

kinetic friction, but also captures the dynamics associated with stiction- and Stribeck- 

effects (which are prominent under dry and lubricated contact conditions respectively). 
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The model also takes into account the effects associated with clearance between the chain 

links by using piecewise stiffness elements to model the link interaction forces. Table 5.2 

lists the parameter values that define two different clearance models (refer to Figure 3.16) 

used in the CVT simulation. Moreover, Table 5.3 lists the parameters that define the 

friction characteristics for the abovementioned three cases.  

Table 5.2: Parameter Values for the Clearance Model 

 k1 b1 k2 b2 k3 b3 εmin εmax  

Clearance-I 35 1.2 70 2.4 93 3.0 0.00005 0.0001

Clearance-II 0.001 2.5e-4 1 0.05 93 3.0 0.0003 0.0006
Units of k: kN/m 

Units of b: kNs/m 

Units of ε: m 

 

Table 5.3: Parameter Values for the Friction Characteristics 

 a b µ0 fr κ λ  α0 α1  α2 0v  

Case 1 0.003 0.01 0.25 - - - - - - - 

Case 2 - - 0.25 1.5 100 5 - - - - 

Case 3 - - - - - - 0.25 0.1 0.001 0.8 

 

The driver and driven pulleys have constant radii of rp = 3 in. and r'p = 4.5 in. 

respectively. However, the links traverse around the pulley grooves in different pitch 

radii, thereby, causing a variation in the transmission ratio. Figure 5.1 depicts the time 

histories of the distance of a link from the center of the driver pulley for the three 

different cases. The variation in link distance is computed by tracing the position of a link 

from the center of the driver pulley as the link traverses the different section of the chain 

CVT, i.e. the free-strands, the driver pulley, and the driven pulley. It can be readily 

observed from Figure 5.1 that the chain-link pitch radius on the driver pulley is not the 

same for all the cases. 
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(a) Link Distance variation for Case 1 

 

Figure 5.1: Time history of link distance from the center of driver pulley 

Chain pitch radius on driver pulley 

Driver link pitch radius variation 
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(b) Link Distance variation for Case 2 

 

Figure 5.1: Time history of link distance from the center of driver pulley (contd.) 

Chain pitch radius on driver pulley 
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(c) Link Distance variation for Case 3 

 

Figure 5.1: Time history of link distance from the center of driver pulley (contd.) 

However, the variations in the chain pitch radius on the driver pulley for case 1 are 

similar to those for case 3. As the chain link enters the driver pulley groove, the chain 

pitch radius decreases. This phenomenon can be attributed to the wedging action between 

the link and the pulley. However, as the link traverses the pulley wrap, the chain pitch 

radius increases till the link exits the pulley. This can be attributed to the drop in the 

tensile force of the link as it moves from the entrance to the exit of the driver pulley. It 

can also be noted from the figure that with passage of time, the chain links come in 

contact with the pulley much more rapidly. The large radial path of the links over the 

pulleys can also be attributed to the dynamic effects associated with the flexibility of the 

pulley. So, pulley flexibility allows for greater motion of the links in the pulley sheaves, 

thereby yielding higher dissipative power. It can be noted from the figure that the chain 
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links wedge earlier with the pulleys in case 2 than in cases 1 and 3 owing to the presence 

of a lower resisting load torque (50 Nm) on the driven pulley for case 2. However, with 

passage of time, the chain links travel faster for cases 1 and 3 as depicted in the figure by 

the increasing number of revolutions (or cycles) of the chain for cases 1 and 3. It was 

observed (refer to Figure 5.2) that a chain CVT under the presence of a friction 

characteristic governed by case 2 was unable to sustain a higher load torque of 100 Nm, 

which was contrary to the load carrying capacity predicted by the classical continuous 

Coulomb friction law and Stribeck law (i.e. under cases 1 and 3).  

 
Figure 5.2: Dynamic Performance Indices (Tension and Pulley Speeds) - Case 2 

Moreover, owing to larger normal force generation in case 1, the radial path traversed by 

a chain link in the driver pulley groove is greater in this case than in case 2. A chain link 

contacting the driven pulley also shows complementary behavior in the entry and exit 

phases of its motion. 



 163

Normal Force:  

Figure 5.3 illustrates the time histories of the normal force between a chain link and the 

pulleys. Whenever a chain link comes in contact with the pulley sheave, it exerts a 

normal force on the sheave, which tends to move the pulley sheaves apart. The pulley 

normal force has a nonuniform distribution over the contact arc. The normal force 

increases from the entrance to the exit of the pulley, which is in consonance with the 

observations made by Ide et al. [50] and Pfeiffer et al. [7]. Moreover, the normal force 

between the driver pulley and the chain link is higher than the normal force generated 

between the link and the driven pulley. As the chain link wedges into the pulley groove, a 

significant amount of radial friction force is generated to prevent the inward radial 

motion of the chain link. Since during the wedging the pitch radius of the chain link 

decreases on the driver pulley, the link exerts a large normal force on the pulley in order 

to generate enough torque to compensate for the resisting load on the driven pulley. As 

the chain links traverse the pulley wrap, the tensile force in the links also builds up. Since 

the variations in the pitch radius of the chain on the driven pulley are higher than those 

over a driver pulley, an adequate amount of normal force between the link and the pulley 

generates enough friction torque to meet the resisting load torque. It can also be observed 

from the figure that the normal force generated is lower for case 2 than for cases 1 and 3 

because of the lower load torque requirements on the driven pulley for case 2 as well as 

due to the presence of lubrication-related dynamic effects. 



 164

 
(a) Normal Force variation for Case 1 

 
(b) Normal Force variation for Case 2 

 

Figure 5.3. Time history of Pulley Normal Force 

Driver

Driven

Driver

Driven
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(c) Normal Force variation for Case 3 

 

Figure 5.3: Time history of Pulley Normal Force (contd.) 

It can be also be noted from Figure 5.3 that with passage of time, the links come in 

contact with the pulleys faster for case 1 and case 3 than for case 2. So, the losses due to 

clearance and vibration are more prominent in the system with boundary lubrication- like 

friction than in other systems, as is evident from a noisy wedging action in the driven 

pulley (refer to Figure 5.3 (b)). Moreover, as mentioned before, the load sustaining 

capacity of such a system is also lower than the system with friction characteristics 

defined by cases 1 and 3. 

Friction Force: 

Since one of the pulley sheaves is movable, the chain link is capable of exhibiting both 

tangential and radial motions when it traverses the pulley wrap angle. Consequently, a 

friction force is generated in the sliding plane that opposes the relative velocity between 

Driver

Driven 
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the chain link and the pulley. Knowing the sliding direction and the sheave angle, the 

friction force in the sliding plane can be readily decomposed into radial and tangential 

components. Figure 5.4 illustrates the time histories of radial and tangential friction force 

components for all the three cases. It can be noted from the figure that the time histories 

of friction forces for case 1 and case 3 are similar to each other. As the chain link wedges 

into the pulley, it tends to move radially inwards in the pulley groove. This leads to the 

development of a high radial friction force at the entrance of the pulley. Moreover, it is 

apparent from Figure 5.4 that the variation in the radial friction force is similar to the 

variation in the normal force between the pulley and the link. The slight difference in the 

variations can be attributed to the dependence of radial friction force on a velocity-

dependent friction coefficient between the link and the pulley. The radial friction force 

drops as the link exits the pulley. In fact, the friction force acts to retain the link within 

the pulley. On the other hand, the tangential friction force acts as the transmitting force 

and causes the variations in the tensile force in the chain links. It can be observed from 

Figure 5.4 that the tangential friction force between the driver pulley and the link is in 

anti-phase to the tangential friction phase between the driven pulley and the link. This 

relationship, in fact, aptly describes the energy transfer interactions between the chain 

link and the pulleys. It is to be noted that the transmitting force in case 2 is higher than in 

cases 1 and 3. Since the chain links traverse greater radial path in these cases than in case 

2, the transmitting force required to overcome the resisting load torque is not high enough 

for cases 1 and 3. It is to be noted from the time histories of normal force and friction 

force that the chain CVT system exhibit greater wedging losses in case 2 owing to noisy 

entrance and exit dynamics over the pulley wraps. So, in addition to the 
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Figure 5.4: Time histories of Friction Force 

Tangential Friction: Case 2 Radial Friction: Case 2

Radial Friction: Case 3

Radial Friction: Case 1 Tangential Friction: Case 1 

Tangential Friction: Case 3 
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losses due to clearance between the links, further transmission losses are registered as the 

links wedge in and out of the pulleys. 

Tensile Force: 

Figure 5.5 illustrates the time history of the tensile force in the chain links for all the three 

cases. It can be observed that the chain tensile force decreases over the driver pulley wrap 

and increases over the driven pulley wrap as the chain links move from the inlet to the 

exit of the pulleys. Moreover, the free span of the chain undergoes vibrations, 

consequently, enhancing the transmission losses. With the passage of time, the tension in 

the chain links also increases. This can be attributed to the increase in the stiffness 

between the links as the joint clearance closes with time.  

 
(a) Link Tension – Case 1 

 

Figure 5.5: Time history of Link Tensile Force 

Driven 

Driver
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(b) Link Tension – Case 2 

 
(b) Link Tension – Case 3 

 

Figure 5.5: Time history of Link Tensile Force (contd.) 



 170

It can also be noted from the figure that the link tension exhibits significant variations as 

the link passes through the entry and exit regions of the pulleys for a CVT system with 

friction described by case 2. This not only degrades the system performance, but also 

induces chaoticity in the system, which might be difficult to control. Moreover, since the 

transmitting force required to meet the load torque is higher for case 2, the tensile force in 

the chain links with friction described by case 2 is higher is in comparison to the tensile 

force generated in the other two cases. It is plausible from the plots that a CVT system 

with continuous Coulomb friction characteristic is able to transmit torque much more 

smoothly than CVT systems with friction characteristics described by cases 2 and 3. 

Pulley speed: 

The pulleys are subjected to the torque loading conditions. An input torque is applied to 

the driver pulley, whereas the driven pulley is subjected to an opposing load torque. The 

links and the pulleys start off from a zero initial velocity configuration. Figure 5.6 depicts 

the time histories of pulley speeds for all the three cases. It is obvious from the plots that 

for each case, the system is able to successfully meet the load torque. It can also be 

inferred from the plots that the CVT system entails greater losses in case 2 than in cases 1 

and 3, as in spite of a low load torque of 50 Nm, it is not able to generate enough friction 

torque to rev up the driven pulley. However, there is a greater difference between the 

driver and driven pulley speeds for cases 1 and 3 than for case 2. This can be attributed to 

the greater radial penetration of chain links in the pulley groove under the friction 

characteristic described by cases 1 and 3. Consequently, the friction torque on the driver 

pulley decreases (thereby, increasing the driver pulley speed), whereas it increases on the 

driven pulley (thereby, increasingly opposing the load torque on the driven pulley). It is 



 171

plausible from the plots that the system runs most efficiently under the friction 

characteristic defined by case 3. 

 
(a) Case 1 - Pulley speeds 

 
(b) Case 2 – Pulley speeds 

 

Figure 5.6: Time histories of Pulley Speed 

Driver 

Driven 
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(c) Case 3 – Pulley speed 

  

Figure 5.6: Time histories of Pulley Speed (contd.) 

Pulley Axial Force: 

As the link moves around the pulleys, it exerts a force in the axial direction on the pulley 

sheave. The link moves radially inwards and outwards within the pulley groove, which 

causes variations in the transmission ratio. The axial force directed along the pulley shaft 

axis is computed from the bolt force of the chain, as discussed in the previous chapters. 

Figure 5.7 illustrates the time histories of the axial forces on the driver and driven pulleys 

for all the three cases. Among all the three cases, the system generates the maximum 

amount of axial force under the influence of Stribeck- friction characteristic (i.e. Case 3). 

Consequently, the range of variation in the transmission ratio is the maximum for case 3. 

It can be noted from the figure that the system is unable to generate more axial force after 

some time for case 2. The pulley sheaves, in fact, begin to experience medium-amplitude 

high-frequency oscillations which degrade the system performance.  
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Figure 5.7: Time histories of pulley axial force 

Case 1: Driver Axial Force Case 1: Driven Axial Force 

Case 2: Driver Axial Force 

Case 3: Driver Axial Force Case 3: Driven Axial Force 

Case 2: Driven Axial Force 
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5.2.2 Influence of clearance between chain links 

The response of a CVT changes considerably under the influence of clearance between 

the chain links, which may be inherent or may arise during its continual operation. As 

discussed previously, clearance-induced nonlinearities are taken into account through the 

piecewise stiffness elements between the chain links. The two significant parameters in 

the clearance model that drastically influence the system dynamics are: (k, b) and ε. The 

results presented in the previous section were obtained under the influence of different 

friction characteristics and clearance-I (refer to Table 5.2) model parameters. In order to 

understand the impact of clearance on system dynamics, clearance-II model parameters 

are now introduced in the chain CVT model. As can be noted from Table 5.2, clearance-

II model parameters manifest system dynamics under high clearance. It was observed that 

in spite of increasing the clearance parameter (as in clearance-II, refer to Table 5.2), ε, the 

dynamic performance indices did not exhibit significant deviations from the previous 

case of lower clearance parameter. This could be attributed to the high stiffness of the 

interconnecting force elements between the chain links. Even though the links are able to 

generate sufficient forces to meet the load torque, the pulley sheaves undergo chattering 

due to high-frequency chaotic or quasi-periodic oscillations, which are perilous to the 

CVT system. It was observed that as the slope parameters of the clearance-model were 

increased, such high frequency chattering phenomena were circumvented, the 

transmission efficiency increased, and torque transmissibility also enhanced (Srivastava 

et al. [162]). It was also observed that under certain simulation conditions, a clearance-

model with lower slope parameters and higher ε (say, εmin being more than two 

millimeters) drastically lowers the torque capacity and performance of the CVT system, 
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as illustrated by some of the dynamic performance indices in Figure 5.8. So, owing to 

higher clearance effects, the same CVT system under the influence of continuous 

Coulomb friction characteristic has a torque carrying capacity lower than it had earlier. 

Thus, it is the combined nonlinear effect of friction and clearance that influences the 

torque transmitting capacity of a chain CVT system. 

 
Figure 5.8: Dynamic performance indices under clearance (high ε, low k1, b1) – Case 1 

 

Driven Pulley Speed vs. Time Tensile Force vs. Time 

Chatter 

Driver Pulley Axial Force vs. Time 
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5.3 Results from Belt CVT model 

The simulation of a belt-CVT model starts off with an initial condition and a specific 

design configuration. The initial operating conditions required for the model, to 

successfully transmit torque, are: belt pretension and precompression at the inlet of the 

pulleys. In addition to these operating conditions, the model is also subjected to torque 

loading conditions. The driver pulley is subjected to a high input torque (200 Nm), 

whereas a low resisting load torque (100 Nm) is applied on the driven pulley. Moreover, 

the driver pulley speed is maintained constant (2000 rpm) throughout the simulation. The 

program uses these data to calculate the time histories of forces, displacements, 

velocities, slip, and etc. that describe the dynamic interactions between the belt and the 

pulleys. The belt CVT model was developed on the MATLAB/SIMULINK platform. The 

time-histories of the system states were obtained by integrating the state equations using 

the Runge-Kutta algorithm. The simulation tracks a belt element from the inlet to the exit 

of the pulley and records the various dynamic performance indicators. It stops as soon as 

the belt element moves past the exit of either of the two pulleys.  

            So, the CVT model, subjected to initial operating conditions and loading 

conditions, records the dynamic interactions between the belt element and the pulleys as 

the belt element completes one cycle (i.e., from the inlet to the exit of the pulley). In 

reality, the operating conditions at the driven pulley inlet are known as soon as the 

operating conditions at the driver pulley inlet are specified. This can be attributed to the 

continuity of the belt and the dynamics in the free section of the belt. Since this model 

captures the dynamic interactions for one cycle, the inertial dynamics in the free section 

of the belt have been ignored. However, the coupling between the driver and the driven 
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pulley systems still exists through the constraint of constant belt length. Owing to the 

absence of belt dynamics in the free-section, it is necessary to specify operating 

conditions at the inlet of the driven pulley. It is extremely cumbersome for the user to 

make a knowledgeable guess of the operating regime. Without real world experiments, it 

is difficult to estimate the operating values consistent with the behavior of a real 

production CVT.  

 
Figure 5.9: Flowchart for Transient belt-CVT model 



 178

Srivastava et al. [76-77] highlighted the significance of using Genetic Algorithms (GA) 

in a transient dynamic CVT model for estimating operating conditions necessary for 

successful torque transmission. Figure 5.9 depicts the flowchart of transient dynamic 

model of a belt CVT. The algorithm flow begins with the driver analysis and uses the 

constraint of constant belt length and pulley-bending effects to proceed with the driven 

analysis. The simulation stops as soon as a belt element goes past the exit of either of the 

pulleys. Table 5.4 lists the numerical values of selected parameters used in all belt CVT 

simulations. 

Table 5.4. Simulation parameters and values for belt CVT model 

Parameters Values 

Half sheave angle, β0 15 deg 

Linear Band pack density, σb 1.5 kg/m 

Linear Element density, σe 2 kg/m 

Starting transmission ratio, r/r' 0.0118 / 0.0177  (m/m) 

Coefficient of kinetic friction between 

band pack and element, µa or µao 

 

0.25 

Coefficient of kinetic friction  

between element and pulley, µbo 

 

0.25 

Center distance, d 0.5 m 

 

5.3.1 Influence of different friction characteristics 

The belt CVT model is subjected to the following friction characteristics that describe the 

friction in the contact region between a belt element and the pulley surfaces: 

Case 1: Continuous Coulomb friction, )1)((
/|sv| b

bob eaa
−−−+= µµ  

Case 2: Boundary lubrication- type friction, ( )( )|sv||sv|
)1(11

λκµµ −− −+−= efe rbob  

It is to be noted that vs is the actual slip velocity of the belt element in the sliding plane of 

the pulley sheave (refer to Figure 3.3 (a)). The driver pulley runs at a constant speed 

(2000 rpm) and is subjected to a high input torque, whereas an opposing load torque is 
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applied on the driven pulley. The dynamics in a belt CVT seem to be more complex in 

nature in comparison to the chain CVT because of the presence of both band pack-

element and element-pulley interactions. The belt CVT can transmit torque not only by 

the push action of the steel elements, but also by the pull action of the bands. It is a 

combined push-pull mechanism that decides the maximum torque transmitting capacity 

[41, 61, 76-78] of a metal V-belt CVT.  

Radial Variations  

Figure 5.10 illustrates the time histories of the belt pitch radii on the driver and driven 

pulleys for both the cases. The belt element, while traversing the pulley wrap, accelerates 

under the influence of radial and tangential forces. Consequently, the relative velocity 

between a belt element and the pulley varies over the pulley wrap. Figure 5.11 depicts the 

relative velocity diagram where the components of the relative velocity vector in the 

radial and tangential directions are plotted with respect to each other. It is plausible from 

the plots that the friction characteristic of the contact zone between the belt element and 

pulley plays a significant role in the variation of the transmission ratio in a CVT system. 

It is to be noted from Figure 5.11 that there are certain transition points (a, b, and c for 

case 1) in the system (marked by thick black lines in the figure) where the relative 

velocity between the belt element and the pulley is either completely radial or completely 

tangential. For instance, the belt element moves radially at the transition point a, whereas 

at transition points b and c, the belt does not undergo any relative radial motion. 

Moreover, at the transition point a, the belt element only moves tangentially with the 

same speed as that of the pulley. It can also be noted from the plots the variations in the 

belt pitch radii are in consonance with the constraint of constant belt length. It is apparent 
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from the relative-velocity diagrams that the belt element follows a complex noncircular 

path over the pulley wraps. 

 
Figure 5.10: Time histories of Belt Pitch Radius 

 
Figure 5.11: Relative Velocity Diagrams 

Pulley sheave angle: 

As the belt elements traverse the pulley wrap, they exert forces on the pulley sheave in 

the axial direction. Since these forces can be considerably high under transient 

conditions, the pulley sheaves experience bending torques, which further leads to 

(a)  Case 1 (b)  Case 2 

a 

b 

c 

a

b 

c 

(a) Case 1 (b) Case 2 
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variations in the pulley sheave angle. Moreover, since the belt pitch radii and the forces 

on the driver and the driven pulleys differ from each other, the pulleys undergo 

asymmetrical pulley deformation. Figure 5.12 illustrates the time histories of pulley half-

sheave angle for both the cases.  

 
Figure 5.12: Time histories of pulley half-sheave angle 

It can be observed from the figure that the continuous Coulomb friction model predicts 

greater bending of pulley sheaves than the boundary lubrication- like friction model. This 

can be attributed to the reduction in the force transfer due to greater lubrication (Stribeck-

related) effects in the contact zone of the belt element and the pulley. As the belt element 

wedges into the pulley groove, it tends to move the pulley sheaves apart. This allows the 

belt element to slide radially inwards into the pulley groove. However, since the driver 

pulley runs at a constant speed at all times, the pulley exerts a large normal force which, 

on the contrary, increases the belt pitch radius. This is inevitable as the belt needs to 

generate a large enough opposing friction torque on the driver pulley to overcome the 

acceleration effects arising from the constant input torque. At the onset of the motion, the 

(a)  Case 1 (b)  Case 2 

Center of wedge expansion 
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belt slips relative to the pulley; however, it soon begins to catch up with the driver pulley 

speed (as noted by transitions b and c in Figure 5.11). It is during this phase of motion 

that the belt element crosses the center of wedge expansion and the pulley sheave angle 

starts to increase, as can be observed in the figure. 

Belt Compressive Force: 

 
Figure 5.13: Time histories of belt compressive force 

As the belt moves around the pulleys, the steel elements push against each other in order 

to generate compressive forces. The pushing mechanism of belt elements plays a 

significant factor in the torque transmission characteristic of a metal V-belt CVT. Figure 

5.13 illustrate the time histories of the compressive force that is generated in the belt due 

to the push action of the steel elements. For both the cases, as the belt element wedges 

into the driver pulley, the compressive force decreases as the elements begin to move at a 

larger pitch radius in order to maintain constant driver pulley speed. However, as the belt 

element passes through the center of pulley-wedge expansion (where the sheave angle is 

minimum), the compressive force tends to build up. This can be attributed to a decrease 

in the belt pitch radius on the driver pulley as less compressive force is now required to 

(a)  Case 1 (b) Case 2 Inactive Arc
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overcome the resisting load torque. On the contrary, the belt compressive force on the 

driven pulley wrap decreases from the inlet to the exit of the pulley. It can also be noted 

from the figure that there are certain regions of the driven pulley wrap which do not 

contribute effectively to the torque transmission. Such regions are called inactive or idle 

arcs where the belt compressive force is negligible. The inactive arcs need not necessarily 

form at the exit of the driven pulley. They can also form at the inlet of the driven pulley, 

as observed by Srivastava and Haque [76-77]. Since the belt compressive force does not 

exhibit strict monotonicity (as seen for driver pulley in Case 1) over the pulley wrap, the 

gaps between the elements begin to redistribute themselves. The redistribution of gaps 

among the steel elements leads to microslip phenomena in the belt [41, 43, 76-78], which 

contribute to the transmission losses. The gaps among the belt elements exist due to 

manufacturing or assembly defects. They can also arise with time due to wear and fatigue 

of the elements due to continual operation of a CVT. The compressive force profiles 

seemingly do not differ much from each other. However, it is to be noted that the losses 

in the CVT system with continuous Coulomb friction is more in comparison to the CVT 

system in case 2. In addition to the push mechanism, the pulling action in the band pack 

also contributes to the torque transmission. Srivastava et al. [78], Fujii et al. [61-62, 65], 

Kobayashi et al. [43], have highlighted the significance of tensile force in the band pack 

in determining the maximum torque transmitting capacity of a metal V-belt CVT under 

steady-state conditions. Moreover, it is the combined effect of the tensile force in the 

band pack and the compressive force in the elements that determines the redistribution of 

inter-element gaps in the belt, which consequently influences the belt slip and the pulley 

axial force. 
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Pulley Speed: 

Figure 5.14 illustrates the time histories of the angular speeds of the driver and driven 

pulleys for both the cases. The driver pulley speed, as seen from the plots, remains 

constant at all times. In addition to the pulley speeds, Figure 5.14 depicts the angular 

speed with which a belt element traverses the driver and the driven pulley wraps. It can 

be observed that the angular speed of a belt element traversing the driver pulley decreases  

 
(a) Case 1 

 

Figure 5.14: Time histories of pulley and belt speeds 
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(b) Case 2 

Figure 5.14: Time histories of pulley and belt speeds (contd.) 

at the onset of the motion because of a higher frictional torque that prevents the driver 

pulley from accelerating. As the belt element gathers momentum, higher forces are 

generated in the belt, which overcome the load torque. Moreover, after having crossed the 

center of pulley-wedge expansion, the belt element moves at a lower pitch radius, which 

lowers the frictional torque on the belt element. This phenomenon, consequently, leads to 

an increase in the angular speed of the driver belt element. The belt element traversing 

the driven pulley wrap undergoes a complementary phenomenon. It can be observed the 

CVT system is able to meet the load torque successfully over a cycle as the driven pulley 

rotates in the forward direction. However, since the driven pulley speed decreases with 

time, the speed of the final drive is also reduced. In order to ensure that the CVT system 

meets load requirements at all times, the dynamics in the free-section of the belt needs to 

be modeled and the initial operating conditions need to be changed continuously with 
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time. It can also be observed from the plots that the angular speeds of the belt elements 

are higher for case 2 than for case 1. This can be attributed to higher losses encountered 

by the belt in case 1 in comparison to Case 2.  

It is quite a common practice, as cited in most of the literature, to neglect the 

influence of inertial effects on the performance of a metal belt CVT. However, Srivastava 

et al. [76-77], Pfeiffer et al. [7, 122, 126], Fujii et al. [63-65] have developed detailed 

transient dynamic models of CVTs which highlight the role of inertial effects on the 

performance of a CVT system. Figure 5.15 depicts the time history of belt acceleration as 

a belt element moves around driver and driven pulleys for Case 1. In addition to the plots 

of total belt acceleration, the figure also includes time histories of belt acceleration 

arising from centripetal effects at steady-state.  

 
Figure 5.15: Time histories of belt acceleration – Case 1 

It has been commonly assumed in the CVT models mentioned in most of the literature 

that the belt element only experiences centripetal acceleration. However, as can be noted 
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from Figure 5.15, the total belt acceleration is much different from the belt centripetal 

acceleration. The belt centripetal acceleration, as shown in the figure, over the driver and 

driven pulley wraps is computed by assuming the driver and driven pulley speeds to be 

unaffected by the inertial interactions between the belt and the pulley as the belt moves 

within the pulley sheaves. The inertial effects arising from a model based on centripetal 

acceleration are not able to realistically capture the dynamic interactions that possibly 

take place at the onset of the motion. Since acceleration directly influences the forces and 

vice-versa, it is necessary to predict the total belt acceleration which in turn governs the 

control strategies for pulley axial forces and belt slip. 

Pulley Axial Force: 

 
Figure 5.16: Time histories of pulley axial forces 

Figure 5.16 illustrate the time histories of the axial forces on the driver and the driven 

pulleys. It can be observed from the figure that higher axial forces need to be applied to 

the pulley sheaves at the onset of the belt motion. Moreover, the axial force requirement 

required for the system under case 1 is more than that for system in Case 2. This is 

inevitable as the belt slips more in the radial and tangential directions for the system in 

(a)  Case 1 (b) Case 2 
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Case 1 than it does for the system in Case 2. It can also be noted from the figure that the 

axial forces required for varying the transmission ratio and meeting the load torque are 

higher for a metal V-belt CVT than for a chain CVT.  

 

5.3.2 Influence of band pack slip 

Most of the metal-belt CVT models mentioned in the literature ignore the influence of 

dynamic interactions between the band pack and the belt element. However, Srivastava et 

al. [76-78], Fujii et al. [60-65], Kobayashi et al. [43-44] had previously reported the 

influence of band pack tensile force on the torque capacity and slip behavior of the CVT 

system. These models were either based on steady-state experiments or quasi-static 

equilibrium conditions with impending slip conditions between the band and the belt 

element. The present belt CVT model, as described in section 3.3 of chapter 3, allows the 

band to slip relative to the belt element and, hence, is able to capture the influence of slip 

dynamics due to the inertial coupling between the band and the element on the 

performance of a belt-CVT system. The results discussed in this section are for the same 

loading conditions as mentioned before and the friction characteristic between different 

contacting surfaces is governed by Case 2 (i.e. boundary lubrication- type friction). 

 The performance of a CVT is highly dependent on the wedging action of the belt 

element in the pulley sheaves. The belt element, while traversing the pulley wrap, 

accelerates under the influence of radial and tangential forces. Owing to this wedging 

action, there exists a time lag between the element motion and the pulley motion. 

Consequently, the relative velocity between the belt element and the pulley builds up. 

Since the bands are allowed to slip on the surface of the belt elements, the relative 
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velocity between the band pack and the belt element also begins to vary with time. Figure 

5.17 illustrates the time history of the belt pitch radius on the driver and driven pulleys. 

The figure not only depicts variations in the pitch radius of a belt element, but also 

illustrates variations in the radial motion of the band pack. It is to be noted from the plot 

that the variations in the belt pitch radius are in consonance with the constraint of 

constant belt length. Figure 5.18 depicts the relative velocity diagram where the 

components of the relative velocity vector in the radial and tangential directions are 

plotted with respect to each other. 

 
Figure 5.17: Time histories of Belt and Band Pitch Radius – Case 2 
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Figure 5.18: Relative velocity diagram for the belt element – Case 2 

Figure 5.19 illustrates the time history of the relative velocity between the element and 

the band pack on the driver and driven pulleys. The relative velocity between the element 

and the band and between the element and the pulley depends not only on the radial and 

angular motions of the belt, but also on the angular motion of the pulley. It is apparent 

from these relative-velocity diagrams that the belt element follows a complex noncircular 

path over the pulley wraps. It can also be noted that these relative velocity diagrams 

feature certain transition points (extrema or crossing points) where the relative velocity is 

either maximum or minimum or completely radial (asserting the observations made by 

Carbone et al. [55], Gerbert [24]). For instance, in Figure 5.18, a belt element engaged 

with the driven pulley moves radially at the transition point f. Moreover, at the transition 

point f, the belt element moves with the same speed as that of the driven pulley. 

f 

g 

h 

g 

h 
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Similarly, labels g and h in the figure signify time transitions where the radial velocity of 

the belt element reaches maximum and minimum respectively. 

 
Figure 5.19: Time history of relative velocity between the band pack and the belt element 

– Case 2 

 

Contrary to the results from the previous model (refer to Figure 5.11, conditions of 

impending slip between the band pack and the belt element), it is interesting to note that 

the transition points where the relative velocity between the belt element and the pulley is 

completely tangential disappear in this case. It can also be observed from Figure 5.19 that 

for most of the time, band pack travels faster than the belt element as the belt moves 

around the pulleys (asserting the observations made by Micklem et al. [6] and Sun [41]). 

However, there also exists a small time transition (2-4 ms in the plot) when the relative 

velocity between the band pack and the belt element becomes negligible, thereby 

inducing stiction-related dynamics on the driven pulley. The friction force between the 

driven band pack and the driven belt element, being continuously dependent on the 

relative velocity, also lowers during this time transition. Since the belt is constantly under 
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the influence of torque loading conditions, the relative velocity soon begins to grow due 

to the effects of belt acceleration. Thus, the presence of a constant load torque on the 

driven pulley creates a shock section at the element-band interface that enables the 

motion to be resumed in the slip mode. This shock section divides the pulley wrap into 

regions of active and inactive arcs where the inactive arc, in this case, represents that 

region of the pulley wrap where the band pack tensile force remains almost constant or 

varies at a quasi-static rate. Figure 5.20 illustrates the time history of the band pack 

tensile force over the driven pulley wrap. It can be noted from the plot that the band pack 

tensile force exhibits quasi-static variations over the region of inactive arc that spans a 

period of 4 ms. 

 
Figure 5.20: Time history of tensile force in driven band pack – Case 2 

Moreover, it is interesting to note that the inactive arcs, i.e. those regions of the pulley 

wrap that do not contribute significantly to the torque transmission, for the band pack and 

the belt element differ from each other (discussed subsequently). This implies that the 

losses that the transmission encounters due to band and element motion can occur in 

Inactive arc 
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different phases as the belt traverses the pulley wraps. It is also to be noted that this shock 

section at the element-band interface is a newly observed phenomenon in the driven 

system dynamics, whereas Srivastava et al. [76-77], Carbone et al. [56], etc., previously 

reported shock-section related dynamics only at the belt element-driver pulley interface. 

Thus, the slip between the band pack and the belt element further enhances the 

transmission losses and reduces torque carrying capacity of the CVT system. 

 The compressive force arises in the belt due to the pushing action of the steel 

elements against each other. In addition to the push mechanism, the pulling action in the 

band pack also contributes to the torque transmission. The pulling action of the bands 

causes the tensile force in the band pack to vary, as observed in Figure 5.20. Over the 

driver pulley wrap, the band pack aids in positive torque transmission whereas the belt 

elements impede torque transmission as they transmit negative torque. However, over the 

driven pulley wrap, since the band pack transmits torque negatively, the belt elements 

transmit more torque in order to successfully meet the load requirements. The total power 

transmitted by the band pack under the current loading conditions, as it traverses the 

driver and driven pulley wraps, is higher than that generated by the belt elements. Thus, it 

is the combined effect of tensile force in the band pack and the compressive force in the 

belt elements that determine the redistribution of inter-element gaps in the belt, which 

consequently influences the belt slip, the torque carrying capacity, and the pulley 

clamping forces. Figure 5.21 illustrates the time history of the compressive force that is 

generated in the belt due to the push action of the steel elements. As the belt element 

wedges into the driver pulley sheave, the compressive force decreases as the elements 

begin to move at a larger pitch radius in order to maintain constant driver pulley speed. It 
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can be noted from the figure that the inactive arcs exist not only over the driven pulley 

wrap, but also over the driver pulley wrap (contrary to the result depicted by Figure 5.13). 

 
Figure 5.21: Time history of belt element compressive force – Case 2 

Since the belt fails to generate enough compressive force in the region of inactive arcs, 

the gaps between the elements tend to redistribute among them. The redistribution of 

gaps among the steel elements leads to microslip phenomena in the belt [41, 43, 78], 

which further enhance the transmission losses. These gaps among the belt elements exist 

due to manufacturing or assembly defects. They can also arise with time due to wear and 

fatigue of the belt elements owing to the continual operation of a CVT. Moreover, since 

the gaps among the belt elements increase over the region of inactive arc, it is quite 

plausible for the band pack to traverse the pulley wrap at a pitch radius lower than that of 

the belt element. Figure 5.17 illustrates this phenomenon as the driven band pack begins 

to traverse the pulley wrap at a lower pitch radius than the driven belt element after 13-14 

ms. Thus, it is not only feasible for the band pack to travel at a pitch radius higher than 

Inactive arc
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that of a belt element (which is the most commonly observed phenomenon), but also to 

move at a lower pitch radius (owing to gap redistribution between the belt elements). 

Figure 5.22 illustrates the time histories of the angular speeds of the driver and 

driven pulleys for both the cases. The driver pulley speed, as seen from the plots, remains 

constant at all times. In addition to the pulley speeds, Figure 5.23 depicts the angular 

speeds with which a belt element and the band pack traverse the pulley wraps. It can be 

observed that the angular speed of a belt element traversing the driver pulley decreases 

with time because of the presence of a higher frictional torque that prevents the driver 

pulley from accelerating. The belt element traversing the driven pulley wrap undergoes a 

complementary phenomenon as it moves around the pulley at a decreasing pitch radius. It 

can also be observed from Figure 5.23 that there is a small amount of tangential slip that 

continuously exists between the belt element and the band pack. However, there is a 

considerable amount of slip between the belt element and the pulley. The bands initially 

move slower than the element; however, with passage of time (i.e. about 13-14 ms), they 

begin to catch up with the angular speed of the element. It can be observed the CVT 

system is able to meet the load torque successfully over a cycle as the driven pulley 

rotates in the forward direction. However, since the driven pulley speed decreases with 

time, the speed of the final drive is also reduced. Moreover, since the losses due to slip 

are higher in this case, the axial forces required to actuate the pulley sheaves in order to 

ensure successful torque transmission are higher than those observed in the previous 

model, as depicted by Figure 5.24. 
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Figure 5.22: Time histories of element and pulley angular speeds – Case 2 

 
Figure 5.23: Time histories of element and band pack angular speeds – Case 2 
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Figure 5.24: Time histories of pulley axial force – Case 2 

 

 

5.4 Closure  

The results describing the dynamic interactions in two different types of CVTs, chain-

type and metal belt-type, have been discussed. The models were subjected to different 

friction characteristics that described the friction conditions between the chain/belt and 

the pulley sheaves. The models describe detail dynamic interactions between the various 

components of a CVT. The system performance was observed to vary with respect to 

these friction characteristics. For instance, the chain CVT model plausibly behaves 

chaotically under the influence of boundary lubrication- like friction characteristic. 

Moreover, the torque transmissibility also varies with these characteristics. The chain 

CVT model was able to transmit much more torque for cases 1 and 3 than for case 2. The 

bending of pulley sheaves further enhances the transmission losses. Although a belt CVT 
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guarantees faster response to the loading conditions than a chain CVT, by smoothly but 

rapidly varying the transmission ratio, the axial forces needed to perform such task are 

much higher in comparison to those for chain CVT. The torque carrying capacity for a 

belt CVT is also observed to be higher than that for a chain CVT under the influence of 

boundary-lubrication friction characteristic. The belt CVT is able to meet the load torque 

of 100 Nm under the friction characteristic described by case 2, whereas the chain CVT, 

under the same contact conditions, fails to transmit enough torque to compensate for the 

resisting load torque. In addition to varying friction characteristics of the contact zone, 

clearance between CVT components significantly affect the torque capacity and the 

dynamic performance of a CVT system, as was observed in the case of chain CVT 

model. 



 

CHAPTER 6  

 

CONCLUSIONS AND RECOMMENDATIONS  

6.1 Concluding Remarks  

 

Continuously variable transmission is an emerging automotive technology that 

offers a continuum of gear ratios between two extremes, which consequently allows 

better matching of the engine operating conditions to the variable driving scenarios. The 

CVT technology has aroused tremendous interest in the vehicle industry for the last two 

decades. The advantages it offers over an automatic transmission, as discussed in the 

introductory chapter, makes it an exciting area of research. Several automotive 

manufacturers have already started implementing the CVT technology, along with a 

planetary gear train, in the driveline of a real production vehicle. In spite of some of the 

associated transmission losses, a CVT indubitably plays a crucial role in the plan to 

improve fuel economy. Among all the different types of CVTs, metal-belt and chain 

CVTs are the most commonly used. These CVTs fall under the category of friction-

limited drives as their performance and torque capacities rely significantly on the friction 

characteristic of the contacting surface between the belt/chain and the pulley sheave.  

In order to maximize the potential benefits of a CVT, it is incumbent upon the 

researchers to understand the dynamic interactions between the various components of a 

CVT in detail. Two different models were developed in order to capture the detailed 

dynamic interactions in a metal V-belt and chain CVT system. Since belt and chain CVTs 

are friction-limited drives, it is crucial to study the influence of different friction 
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characteristics on the dynamic performance of such systems. A friction-limited drive is 

governed by a set-valued friction law; however, it is a common engineering practice to 

introduce smoothening functions to approximate the inherent discontinuity in the stick-

phase of the friction law. Owing to continual operation, different components of a system 

usually undergo wear and fatigue, which further introduce various nonlinearities in the 

system. These nonlinearities, which possibly emerge as a change in the friction 

characteristic or as clearance between the different components, significantly affect the 

performance of a CVT system. The belt and the chain CVT models were subjected to 

torque loading conditions and different friction characteristics. The clearance effect 

between the chain links was modeled using a piecewise stiffness element between two 

links. Moreover, since the pulley sheaves in a CVT system experience high thrusts in the 

axial direction (i.e. along the shaft axis), a bending model based on Sferra’s work [48] 

was incorporated in the models to capture the influence of pulley flexibility on the 

dynamic performance of a CVT system.  

Chain CVT: 

The chain CVT model was subjected to the conditions of a high input-torque on the 

driver pulley and a low load torque on the driven pulley. The model was also subjected to 

three different friction characteristics that simulated its behavior under continuous 

Coulomb friction characteristic, boundary lubrication-like friction, and Stribeck-like 

friction. It was observed that the chain CVT system, under the given loading conditions, 

runs most efficiently under the influence of Stribeck-friction characteristic. The links, in 

this case, were able to travel faster into and out of the pulley grooves; however, the axial 

forces on the pulley sheaves required to ensure such motion were considerably high. 
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Consequently, the losses due to pulley bending also increase. The chain CVT exhibited 

lower torque transmitting capacity under boundary lubrication-like friction characteristic. 

The pulley sheaves, in this case, underwent medium amplitude oscillations in addition to 

their gross rigid body motions. It is plausible that this phenomenon marks the onset of 

chaoticity in the system, which severely degrades the system performance. Moreover, the 

CVT system with boundary lubrication-like friction characteristic exhibited huge 

wedging losses as the links moved in and out of the pulleys. It was also observed during 

the analysis that the chain CVT system under continuous Coulomb friction characteristic 

ensured much smoother torque transmission in comparison to the other friction 

characteristics. However, it also exhibited a transmission lag as the driven pulley took 

time to rev-up to meet the load torque. Moreover, the losses due to slip between the chain 

link and the pulley are plausibly more in the case of continuous Coulomb friction 

characteristic than in the other cases. It was observed that increasing the clearance, ε, 

between the links and reducing the slope, (k1, b1) in the clearance model (refer to Figure 

3.16) foster chaoticity in the system and also cause chattering of the pulley sheaves. 

Metal V-belt CVT: 

 The metal V-belt CVT model was also subjected to the conditions of a high input-torque 

on the driver pulley and a low load torque on the driven pulley. Moreover, the driver 

pulley was constrained to run at a constant speed at all times. Two different friction 

characteristics were incorporated to simulate the model’s behavior under continuous 

Coulomb friction regime and boundary lubrication-like friction regime. It was observed 

that the belt CVT had higher torque transmission capacity than the chain CVT in the case 

of boundary lubrication-like friction. Moreover, the axial force requirements for the belt 
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CVT were lower in the case of boundary lubrication-like friction than in the case of 

continuous Coulomb friction characteristic. This was attributed to lower slip between the 

belt and the pulley in the case of a system with boundary lubrication-like friction. 

Moreover, it was observed that the axial forces experienced by the pulley sheaves in the 

belt CVT were also higher than those in the chain CVT system. Since the axial forces are 

high, transmission losses due to pulley flexibility are also predictably high in a system 

with continuous Coulomb friction characteristic. The belt transmits torque due to the 

combined action of the tensile and compressive forces that arise in the band pack and the 

steel elements respectively. Inactive arcs were also found to exist over certain regions of 

the pulley wrap where the belt does not contribute effectively to torque transmission. The 

belt CVT system was also observed to transmit torque at a much lower noise level than a 

chain CVT. Although a belt CVT guaranteed faster response to the loading conditions 

than a chain CVT, by smoothly but rapidly varying the transmission ratio, the axial forces 

needed to perform such task were much higher in the case of a belt CVT than in the case 

of a chain CVT. The variations in the belt/chain pitch radii under the contact conditions 

of boundary lubrication (i.e. case 2) were also observed to be smaller than those under 

continuous Coulomb friction conditions (i.e. case 1). This can be attributed to the 

reduction in the force transfer due to greater lubrication-related effects in the contact zone 

of the belt/chain and the pulley. Moreover, it was observed that not only the inertial 

coupling between the belt element and the pulley, but also the slip dynamics between the 

band pack and the belt element significantly affect the torque transmission behavior of a 

belt CVT system. Owing to the slip dynamics between the band pack and the element, 

inactive arcs were even noted to exist on certain regions of the band pack. Thus, the 
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redistribution of gaps between the belt elements is dependent not only on the negligible 

compressive force in the inactive arc of the element-pulley wrap, but also on the low 

tensile force that exists in certain regions of the band pack. Since the losses associated 

with the band pack slip are higher, the axial forces required to meet the load torque on the 

driven pulley also increase. It was also noted that the torque carrying capacity of a belt 

CVT system is higher than that of the chain CVT drive under the same contact conditions 

of boundary lubrication. 

 It is quite evident from the aforementioned results that the performance of a 

belt/chain CVT varies in response to a variation in the friction characteristic of the 

contact zone between the belt/chain and the pulley. Since the friction characteristics used 

in the present research are mathematical models, it is necessary to study the influence of 

variations in friction parameters on the behavior of a CVT system. The three important 

parameters which govern the aforementioned friction characteristics are: the rising slope 

(1/b, κ ), the Stribeck parameter ( 0/1, vλ ), fr (which is related to the ratio of static friction 

to kinetic friction), and α0, α1 (stiction-related parameters). It was observed that the lower 

the rising slope, the higher are the losses encountered in the CVT system. However, from 

a physics point of view, lower rising slope in the friction model does not represent the 

stick-phase dynamics accurately. So, in order to accurately represent the stick-slip 

dynamics exhibited by a CVT system, it is preferable to choose a high value for the rising 

slope in the friction model. The parameters, 0/1, vλ , aim to capture the Stribeck effects 

that occur in the contact-zone of the belt/chain-pulley interface due to lubrication. The 

lower the values of 0/1, vλ , the greater is the influence of lubrication on the system 

dynamics. The higher the value of fr, the greater is the effect of stiction on the system 
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dynamics. So, under the conditions of enhanced Stribeck effects (high lubrication) and 

high stiction, higher axial forces are required to achieve a desired variation in the 

transmission-ratio (Srivastava et al. [163-164]).  

 It is evident from the results that a CVT, being a highly nonlinear system, is 

capable of exhibiting varied performance under different friction characteristics of the 

contact zone between the belt/chain and the pulley. It is also plausible for the system to 

undergo self-excited vibrations [105] which not only hampers the torque transmission, 

but also makes it difficult to be controlled. So, the performance of a CVT can vary 

drastically from the condition of dry friction to a fully-lubricated condition. It is thus 

crucial to study the influence of different friction characteristics on the performance of a 

CVT system. A CVT, like any other dynamical system, is susceptible to form clearances 

among its components, which can drastically influence its dynamic behavior. It is 

important to note that although an exact knowledge of the friction characteristic and 

clearance in a CVT system can only be obtained by real-time monitoring of both the 

contact patch dynamics and the motion of individual elements/links in a production CVT, 

these mathematical models still give profound insight into the probable behavior of a 

CVT system under different operating/loading conditions. This knowledge can be further 

exploited to design efficient CVT controllers, to analyze the noise and vibration behavior 

of a CVT-loaded powertrain or vehicle, to identify various loss mechanisms in a CVT, to 

characterize the operating regime of a CVT for maximum load carrying capacity, etc. The 

detailed dynamic models presented in this dissertation characterize the friction-driven 

CVTs in a broader context by taking into account the effects of various nonlinearities on 

their performance. 
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6.2 Recommendations for Future Work 

The research reported in this dissertation significantly contributes towards providing a 

detailed understanding of the various dynamic interactions among the different 

components of a CVT. The results are not only in consensus with the physics of the 

transmission, but also in agreement with some of the trends mentioned in the literature on 

CVT dynamics. For instance, some of the results from the chain CVT model are 

analogous to those reported by Pfeiffer et al. [7, 122-123]. Some of the results obtained 

from the belt CVT model agree with those mentioned in literature [6, 59, 76-77]. 

However, since most of the newly observed phenomena, as reported in this dissertation, 

are based on the theoretical models of belt and chain CVT drives, an experimental 

investigation is necessary to corroborate the trends associated with such friction- and 

clearance- related dynamics. Moreover, a more accurate analysis of the torque 

transmissibility of a belt/chain CVT system can be done by modeling the 

belt/links/pulleys as elastic bodies under unilateral contact, accounting for spatial 

orientation of the chain links, and developing a finite element model for elastic 

deformations in the pulley sheave. It is to be noted that the results from the belt CVT 

model are valid for one cycle i.e. till a belt element moves past the exit of either of the 

two pulleys. The continuity of the belt can be incorporated in the present model by 

modeling the dynamics in the free-section of the belt. Extensive literature is available on 

vibrations of belt [103], however, a detail vibration analysis of the coupled pulley and 

metal-belt/chain motion is still keenly being pursued. As mentioned earlier, since 

literature on vibrations and noise of CVT systems is scarce [95, 98, 132], the present 

models could be further extended to understand the vibration-related effects in a CVT 
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drive. Although the friction characteristics mentioned in the present models are able to 

capture the effects of stiction and lubrication, a more accurate description of friction can 

be obtained by using the theory of Elastohydrodynamic lubrication [165], which relates 

the coefficient of friction not only to the relative velocity between the two surfaces, but 

also to the normal force (or pressure) between those two surfaces. It is to be noted that the 

friction models presented in this research are static-based friction models as the stiction 

phase of the motion is represented approximately by the conditions of negligible relative 

velocity. A more accurate analysis of the sticking-phase contact conditions can be done 

using a dynamic friction model, like Lugre friction model, that accounts for not only the 

effects of relative velocity, but also the effects of relative acceleration between two 

contacting surfaces. Moreover, these detailed transient dynamic models of belt/chain 

CVT (as discussed in this research) can be further exploited to characterize a CVT drive 

from a system (or macroscopic) point of view, which may enable easy integration into a 

powertrain/vehicle model for future research studies on fuel economy and vehicle 

efficiency. These recommendations, if incorporated along with the present concepts, will 

provide a profound insight towards understanding or identifying important parameters for 

improving the CVT efficiency, and consequently the vehicle performance. 
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Appendix A 

MATLAB codes for running the SIMULINK models of metal V-belt CVT 

The following two MATLAB files are used as model initialization functions for the 

SIMULINK models of belt CVT: 

• design_variables.m provide the initial operating conditions (compressive and tensile 

forces at the pulley inlets) for the model to meet load torque requirements 

• input_data.m provide the parameter values and loading conditions for the model 

 

There are 3 SIMULINK models for the belt CVT 

• MODEL 1: cvt_belt_v2.mdl with constant driver angular speed + time-rates of 

bending-model  parameters + continuous Coulomb friction model 

• MODEL 2: cvt_belt_v2_B.mdl with constant driver angular speed + time-rates of 

bending-model  parameters + boundary lubrication-like friction model (Case-2 

friction, refer to the text) 

• MODEL 3: cvt_belt_band_B1.mdl with constant driver angular speed + time-rates 

of bending- model parameters + boundary lubrication-like friction model (Case-2 

friction, refer to the text) + slip between band pack and belt element 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% input_data.m 

format long 

clc                       % Comment it out if running GA 

clear all               % Comment it out if running GA 

time_step =     1e-5;                  % 1e-5 for simulation, 1e-4 for GA 
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rpm_init =      2000;                  % initial driver pulley speed in rpm 

Stop_time  =  1.0;  

pi =            3.14159265358979; 

in2m =          2.54/100; 

rpm2rads =      pi/30; 

center_dist = 0.5;  % in meters 

 

half_sheave = 15*pi/180;  %  non-deformed pulley half sheave angle (in radians) 

mu_a_bp = 0.25;  %  friction between band pack and element (for MODELS 1 and 2) 

 

Driver_inertia = 0.01452;  % Pulley inertia (kg-m
2
) 

Driven_inertia = 0.03275; 

 

% Friction between the element and pulley  

% MODEL 1 friction parameters  

% (Uncomment the following 3 lines if you want to run MODEL 1)  

% a = 0.0003;               % initial friction offset 

% b = 0.05;                  % slope with which friction rises 

% mu_b_sat = 0.25;    % saturation limit of friction 

% 

% MODEL 2 friction parameters 

% (Uncomment the following 4 lines if you want to run MODEL 2)  

% mu_b_sat = 0.25; 
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% a = 4; % Stribeck-slope of friction 

% b = 250; % Rising slope of friction 

% ff = 1.85; % relates static to kinetic friction 

% 

% MODEL 3 friction parameters 

%  Lubrication-related friction between the element and the pulley, and between the 

%  element and the band pack 

% (Uncomment the following 8 lines if you want to run MODEL 3) 

% mu_b_sat = 0.25; 

% a = 2; 

% b = 250; 

% ff = 1.3; 

% a_bp = 10;        

% b_bp = 250;       

% ff_bp = 1.15; 

% mu_a_sat = 0.25;     

% 

density_bp = 1.5;  % linear mass density of band pack 

density_ele = 2.0;  % linear density of element 

rho_red = (density_ele+density_bp)/(density_ele*density_bp); 

del_sheave_init = 0.001;     

% del_sheave = 0.001; 
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const1 = (1+(cos(half_sheave))^2)/(sin(half_sheave)*cos(half_sheave)); 

%  

% Driver pulley loading and initial conditions 

pulley_dot_init = rpm_init*rpm2rads; 

theta_dot_init = 0.99*pulley_dot_init;  

gam_dot_init = 0.985*pulley_dot_init; 

theta_init =  0.0001; 

gam_init = 0.00005; 

r_dot_init =    -0.001; 

r1_dot_init =  -0.001; 

r_init =        3*in2m;  %  in inches 

r1_init =        3.05*in2m; 

N_init = 1000;  % in N 

F_init = 1000; 

Input_torque = 200;   % in Nm 

% 

% Driven pulley loading and initial conditions 

r_dot2_init = 0.001; 

r1_dot2_init = 0.001; 

r2_init = 4.5*in2m; 

r1_2_init = 4.55*in2m; 

pulley2_dot_init = pulley_dot_init*r_init/r2_init; 

theta_dot2_init = 0.99*pulley2_dot_init; 
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gam_dot2_init = 0.985*pulley2_dot_init; 

theta2_init = 0.0001; 

gam2_init = 0.00005; 

N2_init = 2750; 

F2_init = 2250; 

Load_torq = 100;   % in Nm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% design_variables.m 

% This file is obtained using a Genetic-Algorithm for the parameters and loading 

% conditions mentioned in input_data.m 

% Driver initial inlet operating conditions 

T_init = 2019; 

Q_init = 1461; 

% Driven initial inlet operating conditions 

Q2_init = 802; 

T2_init = 578; 
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Appendix B 

MATLAB codes for implementing Genetic Algorithm on a metal V-belt CVT model 

As mentioned in the text and by Srivastava et al. [77], the belt CVT model requires a 

feasible set of initial operating conditions (pretension and precompression) for the belt to 

traverse the entire pulley wrap and successfully meet the load torque requirements. The 

subsequent pages outline the MATLAB-based GA (Genetic Algorithm) codes. Out of 

these, the most important ones are “prega.m” and “fct.m”, where the users can make 

changes to the objective function, the fitness function, and the number of 

optimization/design variables. The main program to be executed for implementing the 

GA on belt CVT model is “prega”. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% prega.m 

%  

clear all 

nvars = 4;      % Number of design variables 

nbits(1) = 11; 

nbits(2) = 11; 

nbits(3) = 11; 

nbits(4) = 11; 

N = 50; % Number of individuals in a population 

max_generations = 120;  

freq_conv_check = 20; 

mutation_parameter = 0.15; 
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epsilon = 0.0001; 

 

gene_size = 0; 

for i=1:nvars 

    gene_size = gene_size+nbits(i); 

end 

 

[evolution,pop_dec] =  

GA(nvars,nbits,gene_size,N,mutation_parameter,max_generations,epsilon, 

freq_conv_check) 

 

plot(evolution) 

 

fid = fopen('results.m','w'); 

s = size(evolution); 

fprintf(fid,'%s\n','Number of generations = '); 

fprintf(fid,'%s\n',num2str(s(1))); 

fprintf(fid,'%s\n','evolution = '); 

for i=1:s(1) 

    fprintf(fid,'%s\n',num2str(evolution(i,:))); 

end 

fprintf(fid,'%s\n','population = '); 
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for i=1:N 

    fprintf(fid,'%s\n',num2str(pop_dec(i,:))); 

end 

fclose(fid); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% fct.m 

function y = fct(x) 

clear design_variables 

if (x(1) > 10 & x(2) > 10 & x(3) > 10 & x(4) > 10) 

  fid = fopen('design_variables.m','w'); 

  fprintf(fid,'T_init = %s;\n',num2str(x(1))); 

  fprintf(fid,'Q_init = %s;\n',num2str(x(2))); 

fprintf(fid,'Q2_init = %s;\n',num2str(x(3))); 

fprintf(fid,'T2_init = %s;\n',num2str(x(4))); 

fclose(fid); 

open_system('cvt_belt_band_B1');  % input SIMULINK model file name 

[timeVector,stateVector,outputVector] = sim('cvt_belt_band_B1'); 

y = 1/length(R); 

else 

 y = 1000000; 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% ga.m 
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function [evolution,pop_dec] = 

GA(nvars,nbits,gene_size,N,mutation_parameter,max_generations,epsilon,freq_conv_ch

eck) 

% 

% Initialize population 

% 

[pop_bin,pop_dec] = initialize_pop(N,gene_size,nbits); 

pop_dec 

%--------------------------- 

% START EVOLUTION 

%--------------------------- 

convergence = 0; 

count = 1 

evolution = []; 

while (convergence == 0 & count < max_generations) 

% 

% Analyze population 

% 

[fitness,keep_track] = analyze(pop_dec,nbits); 

evolution = [evolution;keep_track]; 

% 

% SELECTION: Select individuals to fill up the mating pool based on merit 

pool_1 = selection(pop_bin,fitness); 



 217

% CROSSOVER (one-point crossover) 

pool_2 = crossover(pool_1); 

% 

% MUTATION 

pool_3 = mutation(pool_2,mutation_parameter); 

 

for i=1:N 

    pop_dec(i,1:nvars) = bin2dec(pool_3(i,:),gene_size,nbits); 

end 

 

pop_bin = pool_3; 

count = count+1; 

% 

% Convergence check 

if (mod(count,freq_conv_check) == 0) 

    pop_dec 

    [num2str(count),' / ',num2str(max_generations)] 

    convergence = convergence_check(pop_dec,epsilon); 

end 

end 

convergence 

%%%  For brevity purposes, the implementation of the standard algorithms for mutation, 

crossover, etc. are not included in the text 
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Appendix C 

Visual C++ - based modules for the simulation of a chain CVT model 

// Bolt class: 

#ifndef BOLT_H 

#define BOLT_H 

#pragma warning( disable : 4786 ) 

class Pulley; 

class Link; 

class Spring; 

#include "Rigid.h" 

class Bolt 

{ 

protected: 

 double m_K; 

 //double m_orgLength; 

 Pulley *m_pPulley[2]; 

 Link *m_pLink; 

 Spring *m_pSpring; 

 int m_refIndex; 

 struct Vector m_relativeVelocity; 

 struct Vector m_frictionForce; 

 double m_magnitude; 

 double m_radialRelaVelocity; 
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 double m_tangentialRelaVelocity; 

 double m_radialRelaFriction; 

 double m_tangentialRelaFriction; 

 double m_slipAngle; 

 double m_pulleyDeformPhi; 

 double m_currMu; 

public: 

 Bolt(double K, Link *m_pLink, int refIndex, Spring *pSping = NULL); 

 ~Bolt(){}; 

public: 

 double m_dist2Pulley[2]; 

public: 

 void SetSpring(Spring *pSpring); 

 void SetPulley(Pulley *pPulley1, Pulley *pPulley2); 

 void SetDeformPulleyPhi(double phi) 

 { 

  m_pulleyDeformPhi = phi; 

 } 

 void GetForce(struct Vector *pForce, Pulley **contactPulley); 

 struct Vector *GetFrictionForce(); 

 struct Vector *GetRelativeVelocity(); 
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 void GetRelativeVelocity(double *radial, double *tangential) 

 { 

  *radial = m_radialRelaVelocity; 

  *tangential = m_tangentialRelaVelocity; 

 } 

 void GetRelativeFriction(double *radial, double *tangential) 

 { 

  *radial = m_radialRelaFriction; 

  *tangential = m_tangentialRelaFriction; 

 } 

 double GetNormalForce(); 

 double GetSlipAngle() { return m_slipAngle; } 

 double GetMu() { return m_currMu; } 

 void GetPosition(struct Vector *pos); 

protected: 

 void CalRadialTangentialRelative( 

  Vector *center,  

  Vector *pos,  

  double dist, 

  Vector *relaVector, 

  double *radialRela, 

  double *tangentialRela); 

  double CalSlipAngle(double radial, double tangential); 



 221

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// CVT Class: 

#ifndef CVT_H 

#define CVT_H 

 

class Link; 

class Bolt; 

class Pulley; 

class Spring; 

class EventCenter; 

struct LinkList 

{ 

 struct LinkList *pNext; 

 Link *pLink; 

}; 

struct SpringList 

{ 

 struct SpringList *pNext; 

 Spring *pSpring; 

}; 
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struct BoltList 

{ 

 struct BoltList *pNext; 

 Bolt *pBolt; 

}; 

  

class CVT 

{ 

protected: 

 int m_linkNum; 

 Pulley *m_pPulley[2]; 

 struct LinkList *m_pLinkList; 

 struct SpringList *m_pSpringList; 

 struct BoltList *m_pBoltList; 

 EventCenter *m_eventCenter; 

public: 

 CVT(); 

 ~CVT(); 

public: 

 void AddPulley(Pulley *pPulley1, Pulley *pPulley2); 

 void AddLink(Link *pLink); 

 void AddSpring(Spring *pSpring); 

 void AddBolt(Bolt *pBolt); 
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 Pulley* GetPulley(int index); 

 

 int GetLinkNum(); 

 LONG GetFirstLink(Link **pLink); 

 LONG GetNextLink(LONG index,  Link **pLink); 

 

 LONG GetFirstBolt(Bolt **); 

 LONG GetNextBolt(LONG index, Bolt **); 

 

 LONG GetFirstSpring(Spring **); 

 LONG GetNextSpring(LONG index, Spring **); 

public: 

 void SetRotateSpeed(int index, double velocity); 

 void InputTorque(int index, double torque); 

 void OutputTorque(int index, double torque); 

 

 void MovePulley(int index, double x, double y, double z); 

 void Update(); 

 void Step(double time); 

 //void Save(FILE *out); 

 //void Read(FILE *in); 

 double GetCenterDistance(); 
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 //void RecordLinkInfo(FILE *fp, char type, double time, int index); 

 /*interface for the user*/ 

 double GetOutputAngle(){ return 0.0; } 

 double GetOutputVelocity() { return 0.0 ; } 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// CVT Parameters Listener Class 

#include "factory.h" 

#include "deformhelper.h" 

 

class CVTCfgParamListener : public ParamListener   

{ 

protected: 

 CVTCreateParam m_param; 

 DeformParam m_deformParam; 

 int m_deformParamSet; 

public: 

 CVTCfgParamListener(); 

 virtual ~CVTCfgParamListener(); 

public: 

 virtual int NewItemAttribute(OLECHAR *nodeName, OLECHAR *attrName, 

OLECHAR *value); 
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 CVTCreateParam *GetFilledParam() { return &m_param; } 

 DeformParam *GetDeformParam() { if (m_deformParamSet) return 

&m_deformParam; else return NULL; } 

protected: 

 int FillLinkParam(OLECHAR *attrName, OLECHAR *value); 

 int FillSpringParam(OLECHAR *attrName, OLECHAR *value); 

 int FillPulley1Param(OLECHAR *attrName, OLECHAR *value); 

 int FillPulley2Param(OLECHAR *attrName, OLECHAR *value); 

 int FillBoltParam(OLECHAR *attrName, OLECHAR *value); 

 int FillCfgParam(OLECHAR *attrName, OLECHAR *value); 

 int FillSimulationParam(OLECHAR *attrName, OLECHAR *value); 

 int FillTorqueParam(OLECHAR *attrName, OLECHAR *value); 

 int CVTCfgParamListener::FillDeformParam(OLECHAR *attrName, OLECHAR 

*value); 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// CVT Create Parameter Class 

#ifndef OBJECT_FACTORY_H 

#define OBJECT_FACTORY_H 

#include <list> 

#include <vector> 
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class Pulley; 

class Link; 

class Spring; 

class Bolt; 

class CVT; 

class CVTFactory; 

// #include <fstream.h> 

#define MAX_LINK_NUMBER 200 

#define CONTINUOUS_COULOMB_FRICTION_MODEL 0 

#define SELF_EXCITED_FRICTION_MODEL    1 

#define SELF_EXCITED_FRICTION_MODEL2   2 

#define LUGRE_FRICTION_MODEL              3 

#define ELASTO_FRICTION_MODEL             4 

#define FACTORY_EVENT_ON_CVT_CREATED      0 

 

struct CVTCreateParam 

{ 

 int linkNum; 

 double linkWidth, linkLength, linkMass, linkJ, boltDist2Center; 

 double springK, springB, springK2, springB2, springK3, springB3; 

 double radius1, minRadius1, pulleyPhi1; 

 double radius2, minRadius2, pulleyPhi2; 

 double pulleyMass1, pulleyMass2, pulleyJ1, pulleyJ2; 
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 double centerDistance; 

 double mu, mu_a, mu_b; 

 double boltK; 

 int IsLinearSpring; 

 double nonLinearSpringClearance, nonLinearSpringClearance2; 

 unsigned char simuMode; 

 unsigned char frictionModel; 

 double inputTorque, outputTorque; 

 double inputSpeed; 

 double aa, bb, ff; 

 double cc, dd; 

// parameters for Lugre friction model 

     double sigma0, sigma2; 

     double mus, muk, vs; 

 // parameters for elasto friction modeml 

 double sigma1, fc, fe, zba; 

}; 

class CVTFactoryEvent 

{ 

public: 

    virtual void OnCVTFactoryEvent(unsigned long id, CVTFactory *sender, void 

*param) = 0; 

}; 
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class CVTFactory 

{ 

protected: 

 struct CVTCreateParam m_CVTParam; 

    std::vector<std::list<CVTFactoryEvent *> *> m_EventListenerList; 

public: 

 CVTFactory(); 

 ~CVTFactory(); 

public: 

 CVT *CreateCVT(struct CVTCreateParam *param, struct DeformParam 

*deformParam); 

 //CVT *CreateCVTFromStream(FILE *in); 

 void ArrangeCVTInitialPosition(CVT * pCVT, struct CVTCreateParam *param); 

 struct CVTCreateParam GetCVTCreateParam() { return m_CVTParam; } 

     void RegisterCVTFactoryEvent(unsigned long EventID, CVTFactoryEvent 

*listener); 

protected: 

 void IsInPulley(int pulleyIndex, Link *pLink); 

 void ArrangeCVTInitialPosition2(CVT *pCVT, struct CVTCreateParam 

*param); 

 void CalculateInitialAngle(CVT *pCVT, struct CVTCreateParam *param); 
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 void CalculateNextPosition(struct Vector *pos, double *angle, CVT *pCVT, 

struct CVTCreateParam *param); 

 void TestAndSetState(CVT *pCVT, struct CVTCreateParam *param); 

protected: 

 double m_beltMiddleAngle; 

 double m_pulleyContactAngle[2][2]; 

 int m_initialized; 

 struct Vector *m_linkPrePos; 

 double m_linkPreAngle; 

 int m_linkState; 

 double m_linkCalculatedLength; 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Classes related to CVT Events 

// EventCenter.h: interface for the EventCenter class. 

#if 

!defined(AFX_EVENTCENTER_H__4B724A2F_9C73_475E_BB18_0F30C5E4ED90_

_INCLUDED_) 

#define 

AFX_EVENTCENTER_H__4B724A2F_9C73_475E_BB18_0F30C5E4ED90__INCLU

DED_ 
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#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

#pragma warning( disable : 4786 ) 

#include <map> 

#include <list> 

class RigidBody;  

 

#define LINK_ENTER_DRIVING_PULLEY  100 

#define LINK_LEAVE_DRIVING_PULLEY  101 

#define LINK_ENTER_DRIVEN_PULLEY  102 

#define LINK_LEAVE_DRIVEN_PULLEY  103 

class CVTEvent 

{ 

public: 

 CVTEvent(RigidBody *sender, int msg, void *arg) 

 { 

  m_sender = sender; 

  m_msg = msg; 

  m_arg = arg; 

 } 
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protected: 

 RigidBody *m_sender; 

 int m_msg; 

 void *m_arg; 

 

public: 

 RigidBody *GetSender() { return m_sender; } 

 int GetMsg() { return m_msg; } 

 void *GetArgument() { return m_arg;} 

}; 

 

class CVTEventObserver 

{ 

public: 

 virtual int Notify(CVTEvent *pEvent) = 0; 

}; 

 

class EventCenter   

{ 

private: 

 EventCenter(); 

 virtual ~EventCenter(); 
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public: 

 static EventCenter *CreateInstance(); 

 int Delete(); 

public: 

 int DispatchEvent(CVTEvent *event); 

 int RegisterObserver(int msg, CVTEventObserver *pObserver); 

protected: 

 static EventCenter *m_this; 

 std::map<int, std::list<CVTEventObserver *>* >m_listeners; 

 static int m_ref; 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// CVTInput.h: interface for the CVTInput class. 

// 

#if 

!defined(AFX_CVTINPUT_H__FD7A3A3E_1FAD_4381_AE43_83E59377837A__IN

CLUDED_) 

#define 

AFX_CVTINPUT_H__FD7A3A3E_1FAD_4381_AE43_83E59377837A__INCLUDED

_ 

 

#if _MSC_VER > 1000 



 233

#pragma once 

#endif // _MSC_VER > 1000 

 

#include "CVTSimulator.h" 

 

class CVTInput : public CVTSimuObserver   

{ 

public: 

 CVTInput(double inputTorque, double outputTorque) 

 { 

  m_input = inputTorque; 

  m_output = outputTorque; 

 } 

 

 virtual ~CVTInput(); 

public: 

 virtual int Operation(CVT *pCVT, double time); 

protected: 

 double m_input, m_output; 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// CVTPositionRecorder.h: interface for the CVTPositionRecorder class. 
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#if 

!defined(AFX_CVTPOSITIONRECORDER_H__308AFA03_33B0_4789_BEED_84BE

389D6E97__INCLUDED_) 

#define 

AFX_CVTPOSITIONRECORDER_H__308AFA03_33B0_4789_BEED_84BE389D6E

97__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

#include "COMPONENT\CVTSimulator.h" 

 

class CVTPositionRecorder : public CVTSimuObserver   

{ 

protected: 

 FILE *m_OutputFile; 

 double m_NextTime; 

 double m_Interval; 

public: 

 CVTPositionRecorder(const char *fileName, double interval); 

 virtual ~CVTPositionRecorder(); 
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public: 

 virtual int Operation(CVT *pCVT, double time); 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// CVTSimulator.h: interface for the CVTSimulator class. 

// 

#if 

!defined(AFX_CVTSIMULATOR_H__9DEAD3BB_A0E2_4F53_BF82_5224F31EEC3

0__INCLUDED_) 

#define 

AFX_CVTSIMULATOR_H__9DEAD3BB_A0E2_4F53_BF82_5224F31EEC30__INC

LUDED_ 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

#include <list> 

 

class CVT; 

class CVTSimuObserver 

{ 

public: 

 virtual ~CVTSimuObserver() {}; 
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public: 

 virtual int Operation(CVT *pCVT, double time) = 0; 

}; 

class CVTSimulator   

{ 

public: 

 CVTSimulator(CVT *pCVT); 

 virtual ~CVTSimulator(); 

public: 

 void Simulate(double initTime = 0.05, double step = 0.01, double time = 10.0); 

public: 

 int RegisterPreSimuObserver(CVTSimuObserver *pObserver); 

 int RegisterPostSimuObserver(CVTSimuObserver *pObserver); 

protected: 

 std::list<CVTSimuObserver *> m_preList; 

 std::list<CVTSimuObserver *> m_postList; 

 CVT *m_pCVT; 

protected: 

 int PostSimuOperation(double t); 

 int PreSimuOperation(double t); 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
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// CVTStateRecorder.h: interface for the CVTStateRecorder class. 

// 

#if 

!defined(AFX_CVTSTATERECORDER_H__3F101D6C_9DAE_47ED_9DAD_1A9BF

2A3A067__INCLUDED_) 

#define 

AFX_CVTSTATERECORDER_H__3F101D6C_9DAE_47ED_9DAD_1A9BF2A3A06

7__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

#include "CVTSimulator.h" 

#include <list> 

 

struct CVTStat 

{ 

 double m_pulleyAxleForce[2]; 

 double m_pulleyTorque[2]; 

 double m_pulleyRotateSpeed[2]; 

 double m_toPulleyDist[2]; 

 double m_linkForce; 
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 double m_time; 

 double m_relativeVelocity; 

 double m_friction; 

 double m_mu; 

 double m_normalForce; 

 double m_springForce; 

 double m_radialRelaVelocity; 

 double m_tangentialRelaVelocity; 

 double m_radialRelaFriction; 

 double m_tangentialFriction; 

 double m_relaVelX; 

 double m_relaVelY; 

 

 double m_tension; 

}; 

class CVTStateRecorder : public CVTSimuObserver   

{ 

public: 

 CVTStateRecorder(double recordInterval); 

 virtual ~CVTStateRecorder(); 

public: 

 virtual int Operation(CVT *pCVT, double time); 

 std::list<struct CVTStat *> *GetStateList() { return &m_statList; } 
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protected: 

 double m_interval; 

 std::list<struct CVTStat *> m_statList; 

 double m_nextTime; 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Class for different friction models 

// FrictionModel.h: interface for the FrictionModel class. 

// 

#if 

!defined(AFX_FRICTIONMODEL_H__4C31864D_2F9D_48C1_A53F_B5C1B776CB

FB__INCLUDED_) 

#define 

AFX_FRICTIONMODEL_H__4C31864D_2F9D_48C1_A53F_B5C1B776CBFB__INC

LUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

#include "factory.h" 

class Link; 
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class FrictionModel   

{ 

protected: 

    unsigned long m_Ref; 

public: 

    FrictionModel() 

    { 

        m_Ref = 0; 

    } 

public: 

    unsigned long AddRef() 

    { 

        m_Ref++; 

        return m_Ref; 

    } 

    unsigned long Release() 

    { 

        unsigned long ref; 

        if (m_Ref != 0) 

            m_Ref--; 

        ref = m_Ref; 

        if (m_Ref == 0) 

            delete this; 
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        return ref; 

    } 

protected: 

 virtual ~FrictionModel(){}; 

public: 

 virtual double CalculateMu(double relaVelocity, Link *link) = 0; 

 virtual double CalculateMu(double relaVx, double relaVy, Link *link); 

}; 

 

class CoulombFrictionModel : public FrictionModel 

{ 

protected: 

 double m_a, m_b, m_mu; 

public: 

 CoulombFrictionModel(double a, double b, double mu) 

 { 

  m_a = a;  

  m_b = b; 

  m_mu = mu; 

 } 

 virtual double CalculateMu(double relaVelocity, Link *link); 

}; 
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class SelfExcitedFrictionModel : public FrictionModel 

{ 

protected: 

 double m_a, m_b, m_f, m_mu; 

public: 

 SelfExcitedFrictionModel(double a, double b, double f, double mu) 

 { 

  m_a = a; 

  m_b = b; 

  m_f = f; 

  m_mu = mu; 

 } 

 virtual double CalculateMu(double relaVelocity, Link *link); 

}; 

 

class SelfExcitedFrictionModel2 : public FrictionModel 

{ 

protected: 

 double m_a, m_b, m_c, m_d; 

public: 

 SelfExcitedFrictionModel2(double a, double b, double c, double d) 

 { 

  m_a = a; 
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  m_b = b; 

  m_c = c; 

  m_d = d; 

 } 

 virtual double CalculateMu(double relaVelocity, Link *link); 

}; 

 

class FrictionModelFactory 

{ 

private: 

    static FrictionModel *m_FrictionModel[10]; 

public: 

 static FrictionModel *CreateFrictionModel(CVTFactory *factory, 

CVTCreateParam *param); 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Class for Spring 

#ifndef LINEAR_SPRING_H 

#define LINEAR_SPRING_H 

 

#include "spring.h" 

class LinearSpring : public Spring 
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{ 

protected: 

 double m_K, m_orgLength, m_B; 

 struct 

 { 

  RigidBody *pRigid; 

  int refPoint; 

 }m_rigid[2]; 

public: 

 LinearSpring(double K, double B, RigidBody *pRigid1, int refPoint1, RigidBody 

*pRigid2, int refPoint2); 

 virtual ~LinearSpring(){}; 

 

public: 

 virtual int GetForce(struct Vector *force, struct Vector *springForce, struct 

Vector* dampForce, RigidBody *pRigid); 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Link class 

#ifndef LINK_H 

#define LINK_H 
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#pragma warning( disable : 4786 ) 

 

class Spring; 

class Bolt; 

class DeformHelper; 

class Pulley; 

class LinkExternalState; 

 

#include "rigid.h" 

 

#define LINK_IN_DRIVING_PULLEY 0 

#define LINK_IN_MIDDLE   1 

#define LINK_IN_DRIVEN_PULLEY 2 

#define LINK_STATE_UNDEFINED  -1 

 

class Link : public RigidBody 

{ 

protected: 

 double m_length, m_width; 

 Spring *m_pSpring; 

 Bolt *m_pBolt; 

 double m_bolt1Dist, m_bolt2Dist; 

 double m_springForce; 
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 double m_tension; 

 DeformHelper *m_DeformHelper; 

 Pulley *m_ContactPulley; 

 LinkExternalState *m_ExternalState; 

public: 

 Link(double length, double width,double mass, double J); 

 virtual ~Link(); 

public: 

 void AddSpring(Spring *pSpring); 

 void AddBolt(Bolt *pBolt); 

 

 // link context, currently only used by Lugre friction model 

 void InstallExternalState(LinkExternalState *externalState) 

 { 

  m_ExternalState = externalState; 

 } 

 LinkExternalState* GetExternalState() 

 { 

  return m_ExternalState; 

 } 

public: 

 double GetBoltDistance(); 

 double GetSpringForce() { return m_springForce; } 
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 double GetTension() { return m_tension; } 

 void GetDistanceToPulley(double *dist); 

 Bolt *GetBolt() { return m_pBolt; } 

 Spring *GetSpring() { return m_pSpring; } 

 double GetRelativeVelocity(); 

 double GetFrictionForce(); 

 void InformContact(int isContact, int refIndex, int pulleyIndex, double 

contactLen); 

 int GetForce(int refIndex, Vector *force); 

 double GetBolt2CenterDistance(int index) 

 { 

  if (index == 0) 

  { 

   return m_bolt1Dist; 

  } 

  else 

  { 

   return m_bolt2Dist; 

  } 

 } 

 

 void DoDeformAdjustment(DeformHelper *deformHelper); 
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public: 

 virtual void Update(); 

 virtual int PostUpdate(); 

 virtual int AddPoint(double distance, double angle); 

 virtual void Step(double time); 

 //virtual void RecordInfo(FILE *fp, char type, double time); 

 void DoDeformAdjustment(struct DeformParam *deformParam); 

protected: 

 int m_state; 

 Vector m_force[2]; 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// LinkEventHandler.h: interface for the LinkEventHandler class. 

// 

#if 

!defined(AFX_LINKEVENTHANDLER_H__9514C40A_556E_4C2D_9F46_16E098E6

3262__INCLUDED_) 

#define 

AFX_LINKEVENTHANDLER_H__9514C40A_556E_4C2D_9F46_16E098E63262__I

NCLUDED_ 

 

#if _MSC_VER > 1000 
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#pragma once 

#endif // _MSC_VER > 1000 

 

class Link; 

#include "EventCenter.h" 

 

class LinkEventHandler : public CVTEventObserver   

{ 

public: 

 LinkEventHandler(); 

 virtual ~LinkEventHandler(); 

public: 

 virtual int Notify(CVTEvent *pEvent); 

 

public: 

 double GetTension(); 

 double GetDistance(); 

protected: 

 Link *m_link[2]; 

 int m_refIndex[2]; 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
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// Clearance model parameters defined in this Class 

// NonlinearSpring.h: interface for the NonlinearSpring class. 

#if 

!defined(AFX_NONLINEARSPRING_H__E3892130_CF22_4847_8EE6_4A66D8EB3

AE6__INCLUDED_) 

#define 

AFX_NONLINEARSPRING_H__E3892130_CF22_4847_8EE6_4A66D8EB3AE6__IN

CLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

#include "spring.h" 

 

class NonlinearSpring : public Spring   

{ 

public: 

 NonlinearSpring(double K1, double B1, double K2, double B2, double K3, 

double B3, double clearanceDist, double clearanceDist2, RigidBody * pRigid1, int 

refPoint1, RigidBody * pRigid2, int refPoint2); 

 virtual ~NonlinearSpring(); 
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protected: 

 double m_K[3], m_orgLength, m_B[3], m_clearance[2]; 

 struct 

 { 

  RigidBody *pRigid; 

  int refPoint; 

 }m_rigid[2]; 

 

public: 

 virtual int GetForce(struct Vector *force, struct Vector *springForce, struct 

Vector* dampForce, RigidBody *pRigid); 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// ParamListener.h: interface for the ParamListener class. 

// 

#if 

!defined(AFX_PARAMLISTENER_H__58B4345E_843E_41CB_8F71_56C116BA30D

1__INCLUDED_) 

#define 

AFX_PARAMLISTENER_H__58B4345E_843E_41CB_8F71_56C116BA30D1__INCL

UDED_ 
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#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

#include <atlbase.h> 

 

class ParamListener   

{ 

// Uncomment the following lines of code (i.e. between /* an */) to run the program 

/ * public: 

 ParamListener(); 

 virtual ~ParamListener(); 

public: 

 virtual int NewItemAttribute(OLECHAR *nodeName, OLECHAR *attrName, 

OLECHAR *value); */ 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Pulley Class 

#ifndef PULLEY_H 

#define PULLEY_H 

#include "rigid.h" 

class FrictionModel; 

class Link; 
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class Pulley : public RigidBody 

{ 

protected: 

 double m_radius, m_slotRadius; //, m_contactRadius; 

 double m_phi; 

 double m_torque; 

 //double m_boltLength; 

 double m_axleForce; 

 double m_savedTorque; 

 double m_inputTorque; 

 double m_outputTorque; 

 double m_saveAxleForce; 

 FrictionModel *m_friction; 

public: 

 Pulley(double radius, double slotRadius, double phi, 

  double mass, double J, FrictionModel *frictionModel); 

 virtual ~Pulley(); 

 

public: 

 void GetForce(double magnitude, struct Vector *pos, struct Vector *velocity,  

  struct Vector *force, double *mu, struct Vector *relaVelocity, Link *link); 

 BOOL GetSpace(struct Vector *pos, double *length, double deformPhi); 

 void SetRotationVelocity(double velocity); 
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 void AddForce (struct Vector* force, Vector *pos); 

 void SetRotateSpeed(double velocity) {  m_angleVelocity = velocity; } 

 double GetRotateSpeed() { return m_angleVelocity; } 

 double GetRadius() { return m_radius; } 

 double GetTorque() { return m_savedTorque; } 

 double GetAxleForce() { return m_saveAxleForce; } 

 void InputTorque(double inputTorque); 

 void OutputTorque(double output); 

public: 

 virtual void Step(double time); 

 virtual void Update(); 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Rigid body Class 

#ifndef RIGIDBODY_H 

#define RIGIDBODY_H 

 

#include "def.h" 

#include <fstream> 

#include <stdio.h> 

 

#define MAX_REFERENCE_POINT_NUM 10 
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#define RECORD_SPRING_FORCE 1 

#define RECORD_PIN_DISTANCE1 2 

#define RECORD_PIN_DISTANCE2 3 

 

struct Vector 

{ 

 double x, y, z; 

}; 

 

class RigidBody 

{ 

protected: 

 double m_time; 

 double m_mass, m_J; 

 struct Vector m_center; 

 struct Vector m_velocity; 

 struct Vector m_acceleration; 

 double m_angle, m_angleVelocity, m_angleAcceleration; 

 struct { 

  int used; 

  double distance; 

  double angle; 



 256

 }m_point[MAX_REFERENCE_POINT_NUM]; 

public: 

 RigidBody(double mass, double J); 

 virtual ~RigidBody(){}; 

public: 

 void Rotate(double angle)  { m_angle += angle; } 

 void RotateTo(double angle) { m_angle = angle; } 

 void Move(struct Vector *displacement); 

 void MoveTo(struct Vector *pos) { m_center = *pos; } 

 BOOL GetPointCurrentPos(int refIndex, Vector *pos); 

 BOOL GetPointCurentVelocity(int refIndex, Vector *velocity); 

 Vector* GetCenterVelocity() { return &m_velocity; } 

 double GetAngle() { return m_angle; } 

 double GetRotationVelocity() { return m_angleVelocity;} 

 void SetRotationVelocity(double w) { m_angleVelocity = w;} 

 double GetRotationAcceleration() { return m_angleAcceleration;} 

 void SetRotationAcceleration(double w) { m_angleAcceleration = w;} 

 Vector *GetCenterAcceleration() { return &m_acceleration; } 

 struct Vector &GetPosition() const; 

public: 

 int virtual AddPoint(double distance, double angle); 

 void virtual Step(double time) { m_time += time; }; 

 void virtual Update() {}; 
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 int virtual PostUpdate() { return 0; } 

 //void virtual Save(FILE *out); 

 //void virtual Read(FILE *in); 

 void virtual RecordInfo(FILE *fp, char type, double time) {}; 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// Spring.h: interface for the Spring class. 

// 

#if 

!defined(AFX_SPRING_H__466A627F_18B5_4027_8F34_B5F3C5B84D08__INCLU

DED_) 

#define 

AFX_SPRING_H__466A627F_18B5_4027_8F34_B5F3C5B84D08__INCLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

 

class RigidBody; 

 

class Spring   

{ 
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public: 

 Spring(); 

 virtual ~Spring(); 

 

public: 

 virtual int GetForce(struct Vector *force, struct Vector *springForce, struct 

Vector* dampForce, RigidBody *pRigid) = 0; 

}; 

#endif 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// TensionObserver.h: interface for the TensionObserver class. 

// 

#if 

!defined(AFX_TENSIONOBSERVER_H__2BA9008F_D9A6_4379_A4C6_8B60722B

5564__INCLUDED_) 

#define 

AFX_TENSIONOBSERVER_H__2BA9008F_D9A6_4379_A4C6_8B60722B5564__IN

CLUDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 
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#pragma warning( disable : 4786 ) 

 

#include "CVTSimulator.h" 

#include <list> 

class LinkEventHandler; 

class TensionObserver : public CVTSimuObserver   

{ 

public: 

 TensionObserver(double recordInterval); 

 virtual ~TensionObserver(); 

public: 

 virtual int Operation(CVT *pCVT, double time); 

public: 

 std::list<double> *GetResultList() { return &m_KList; } 

 std::list<double> *GetTimeList() { return &m_timeList; } 

protected: 

 double m_interval; 

 std::list<double> m_KList; 

 std::list<double> m_timeList; 

 double m_nextTime; 

 LinkEventHandler *m_observer; 

}; 

#endif 
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///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// XmlCfgReader.h: interface for the XmlCfgReader class. 

#if 

!defined(AFX_XMLCFGREADER_H__36C9C376_3B3B_4437_BC25_325A1E30B35

6__INCLUDED_) 

#define 

AFX_XMLCFGREADER_H__36C9C376_3B3B_4437_BC25_325A1E30B356__INCL

UDED_ 

 

#if _MSC_VER > 1000 

#pragma once 

#endif // _MSC_VER > 1000 

#include "ParamListener.h" 

 

class XmlCfgReader   

{ 

public: 

 XmlCfgReader(); 

 virtual ~XmlCfgReader(); 

public: 

 virtual int Read(BSTR fileName, ParamListener *pListener); 

}; 
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#endif // 

!defined(AFX_XMLCFGREADER_H__36C9C376_3B3B_4437_BC25_325A1E30B35

6__INCLUDED_) 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

// CVT Main Executable Class 

#include "XmlCfgReader.h" 

#include "CVTCfgParamListener.h" 

#include "CVTSimulator.h" 

#include "cvt.h" 

#include "CVTStateRecorder.h" 

#include "CVTInput.h" 

#include "tensionobserver.h" 

#include "deformhelper.h" 

// #include "cvtpositionrecorder.h" 

 

typedef struct _StatOutputInfo 

{ 

 _StatOutputInfo(char *fileName, char *varName, int offset) 

 { 

  this->offset = offset; 

  strcpy_s(this->fileName, fileName); 

  strcpy_s(this->varName, varName); 

  //strcpy(this->fileName, fileName); 
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  //strcpy(this->varName, varName); 

 } 

 char fileName[256]; 

 char varName[20]; 

 int offset; 

}StatOutputInfo; 

 

int OutputTension(std::list<double> *list, std::list<double> *time) 

{ 

 std::list<double>::iterator iter; 

 FILE *fp; 

  

 fopen_s(&fp, "tension.txt", "w"); 

  

 fprintf(fp, "tension=[\n"); 

 

 for (iter = list->begin(); iter != list->end(); iter++) 

 { 

  fprintf(fp, "%f, \n", (*iter)); 

 } 

 fprintf(fp, "]\n"); 

 fclose(fp); 
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 return 0; 

} 

void OutputSelectedInfo(std::list<StatOutputInfo *>* selectedList, std::list<struct 

CVTStat *> *dataList) 

{ 

 FILE *fp; 

 std::list<StatOutputInfo *>::iterator i; 

 std::list<struct CVTStat *>::iterator j; 

 

 for (i = selectedList->begin(); i != selectedList->end(); i++) 

 { 

  fopen_s(&fp, (*i)->fileName, "w"); 

  fprintf(fp, "%s=[\n", (*i)->varName); 

  for (j = dataList->begin(); j != dataList->end(); j++) 

  { 

   fprintf(fp, "%f, \n", *(double *)((char *)(*j) + (*i)->offset)); 

  } 

  fprintf(fp, "]\n"); 

  fclose(fp); 

 } 

 

} 

void OutputInfo(std::list<struct CVTStat *> *list) 
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{ 

 std::list<StatOutputInfo *>::iterator i; 

 std::list<StatOutputInfo *>selectedList; 

 selectedList.push_back(new StatOutputInfo("dist.txt", "dist", offsetof(CVTStat, 

m_toPulleyDist[0]))); 

 selectedList.push_back(new StatOutputInfo("time.txt", "time", offsetof(CVTStat, 

m_time))); 

 selectedList.push_back(new StatOutputInfo("friction.txt", "friction", 

offsetof(CVTStat, m_friction))); 

 selectedList.push_back(new StatOutputInfo("spring.txt", "spring", 

offsetof(CVTStat, m_springForce))); 

 selectedList.push_back(new StatOutputInfo("NormalForce.txt", "normalForce", 

offsetof(CVTStat, m_normalForce))); 

 selectedList.push_back(new StatOutputInfo("Radial.txt", "RadialVelocity", 

offsetof(CVTStat, m_relativeVelocity))); 

 selectedList.push_back(new StatOutputInfo("Tangential.txt", 

"TangentialVelocity", offsetof(CVTStat, m_tangentialRelaVelocity))); 

 selectedList.push_back(new StatOutputInfo("Tension.txt", "Tension", 

offsetof(CVTStat, m_tension))); 

 selectedList.push_back(new StatOutputInfo("pulley1rad.txt", "pulley1_speed.txt", 

offsetof(CVTStat, m_pulleyRotateSpeed[0]))); 

 selectedList.push_back(new StatOutputInfo("pulley2rad.txt", "pulley2_speed.txt", 

offsetof(CVTStat, m_pulleyRotateSpeed[1]))); 
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 selectedList.push_back(new StatOutputInfo("pulley1torq.txt", 

"pulley1_force.txt", offsetof(CVTStat, m_pulleyTorque[0]))); 

 selectedList.push_back(new StatOutputInfo("pulley2torq.txt", 

"pulley2_force.txt", offsetof(CVTStat, m_pulleyTorque[1]))); 

 selectedList.push_back(new StatOutputInfo("friction_rad.txt", "FrictionRadial", 

offsetof(CVTStat, m_radialRelaFriction))); 

 selectedList.push_back(new StatOutputInfo("friction_tan.txt", 

"FrictionTangential", offsetof(CVTStat, m_tangentialFriction))); 

 selectedList.push_back(new StatOutputInfo("axle1.txt", "axleForce1", 

offsetof(CVTStat, m_pulleyAxleForce[0]))); 

 selectedList.push_back(new StatOutputInfo("axle2.txt", "axleForce2", 

offsetof(CVTStat, m_pulleyAxleForce[1]))); 

 selectedList.push_back(new StatOutputInfo("mu.txt", "mu", offsetof(CVTStat, 

m_mu))); 

 selectedList.push_back(new StatOutputInfo("RelaVelX.txt", "RelaVelX", 

offsetof(CVTStat, m_relaVelX))); 

 selectedList.push_back(new StatOutputInfo("RelaVelY.txt", "RelaVelY", 

offsetof(CVTStat, m_relaVelY))); 

 OutputSelectedInfo(&selectedList, list); 

 

 for (i = selectedList.begin(); i != selectedList.end(); i++) 

 { 

  delete *i; 
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 } 

} 

CVT *CreateCVT(OLECHAR *file, CVTCreateParam *param) 

{ 

 XmlCfgReader reader; 

 CVTCfgParamListener listener; 

 

 BSTR fileName = ::SysAllocString(file); 

 if (reader.Read(fileName, &listener) != 0) 

 { 

  ::SysFreeString(fileName); 

  return NULL; 

 } 

 ::SysFreeString(fileName); 

 

 CVTFactory factory; 

 *param = *listener.GetFilledParam(); 

 

 return factory.CreateCVT(param, listener.GetDeformParam()); 

} 

 

void RunCVT(CVT *pCVT, double recordTime, double step, double timeSpan, 

CVTCreateParam *param) 
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{ 

 CVTSimulator simu(pCVT); 

 CVTStateRecorder recorder(recordTime); 

 CVTPositionRecorder posRecorder("CVTPosition.txt", recordTime); 

 

 CVTInput input(param->inputTorque, param->outputTorque); 

 TensionObserver tension(recordTime); 

 

 simu.RegisterPostSimuObserver(&recorder); 

 simu.RegisterPostSimuObserver(&posRecorder); 

 //simu.RegisterPostSimuObserver(&tension); 

 simu.RegisterPreSimuObserver(&input); 

 simu.Simulate(0.05, step, timeSpan); 

  

 std::list<struct CVTStat *> *list = recorder.GetStateList(); 

 

 OutputInfo(list); 

 //OutputTension(tension.GetResultList(), tension.GetTimeList()); 

} 

void main(int argc, char *argv[]) 

{ 

 CoInitialize(0); 

 OLECHAR *fileName; 
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 int strLen, i; 

 double recordTime, timeSpan, step; 

 CVTCreateParam param; 

 

 if (argc != 5) 

 { 

  printf("Usage: CVTSimu [configuration file] [record time interval] [time 

step] [simulation time duration]\n"); 

  return; 

 } 

 

 strLen = strlen(argv[1]); 

 fileName = new OLECHAR[strLen + 1]; 

 

 for (i = 0; i < strLen; i++) 

 { 

  fileName[i] = argv[1][i]; 

 } 

 fileName[i] = 0; 

  

recordTime = atof(argv[2]); 

 step = atof(argv[3]); 

 timeSpan = atof(argv[4]); 



 269

 

 CVT *pCVT = CreateCVT(fileName, &param); 

 delete []fileName; 

 

 if (pCVT) 

 { 

  RunCVT(pCVT, recordTime, step, timeSpan, &param); 

  delete pCVT; 

 } 

 else 

 { 

  printf("Failed to create CVT simulator. Please check your configuration 

file\n"); 

 } 

 CoUninitialize(); 

} 

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

Command line: executable file [configuration file.txt] [recording time] [integration time 

step] [final time] > output.txt 

Use integration time step of 1e-6 seconds. 

The configuration file contains parameters for clearance, friction characteristics, loading 

conditions, and CVT component dimensions.  

An example configuration file is given as: 
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<CVT> 

 <Items> 

  <Link Num="34" Width="0.02" Length="0.030035" Mass="0.1125" 

J="1.5026e-005" BoltDistance2Center="0.02"/> 

  <Spring IsLinear="0" K="35000" B="1200" K2="70000" B2="2400" 

K3="93000" B3="3000" ClearanceDistance="0.00005" ClearanceDistance2="0.0001"/> 

  <Pulley1 Mass="1" J="1.4516" MinRadius="0.0" Radius="0.0762" 

SlopeAngle="15.0"/> 

  <Pulley2 Mass="1" J="3.2661" MinRadius="0.0" Radius="0.1143" 

SlopeAngle="15.0"/> 

  <Bolt K="200000"/> 

 </Items> 

 <Configure> 

  <Param name="PullyDistance">0.5</Param> 

  <Param name="FrictonModel">Continuous Coulomb Friction</Param> 

  <Param name="FrictionRate">0.25</Param> 

  <Param name="Friction_a">0.003</Param> 

  <Param name="Friction_b">0.01</Param> 

 </Configure> 

 <Simulation Mode="0"> 

  <Torque Input="200" Output="100"/> 

 </Simulation> 

</CVT> 
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APPENDIX D 

MATLAB codes for plotting the results from belt and chain CVT models 

% plotcvt.m - used for belt CVT models 1 and 2 

acclnE1_r = r_accln-R.*theta_dot.^2; 

acclnE1_t = R.*theta_accln+2*R_dot.*theta_dot; 

acclnE1 = sqrt(acclnE1_r.^2+acclnE1_t.^2); 

acclnE2_r = r_accln2-R2.*theta_dot2.^2; 

acclnE2_t = R2.*theta_accln2+2*R_dot2.*theta_dot2; 

acclnE2 = sqrt(acclnE2_r.^2+acclnE2_t.^2); 

acclnE1_id = R*(pulley_dot_init)^2; 

acclnE2_id = R2*(pulley2_dot_init)^2; 

 

figure(1) 

plot(time,theta,time,alpha,'--',time,theta2,'-.',time,alpha2,':','Linewidth',1.5) 

 

figure(2) 

plot(time,theta_dot*30/pi,time,pspeed1*30/pi,'--',time,theta_dot2*30/pi,'-

.',time,pspeed2*30/pi,':','Linewidth',1.5) 

legend('Driving belt speed','Driver pulley speed','Driven belt speed','Driven pulley speed') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Angular Speed (rpm)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 
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figure(3) 

plot(time,Q,time,Q2,'-.','Linewidth',1.5) 

legend('Driver','Driven') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Belt Compressive Force (N)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(4) 

plot(time,R,time,R2,'-.','Linewidth',1.5) 

legend('Driver','Driven') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Belt pitch radius (m)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(5) 

plot(time,beta*180/pi,time,beta2*180/pi,'-.','Linewidth',1.5) 

legend('Driver','Driven') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

ylabel('Sheave angle : bending effect (degrees)','Fontweight','bold','FontSize',10) 

 

figure(6) 

plot(time,Fz_1/1000,time,Fz_2/1000,'-.','Linewidth',1.5) 
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legend('Driver','Driven') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Pulley Axial Force (kN)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(7) 

plot(R_dot,R.*(theta_dot-pspeed1),R_dot2,R2.*(theta_dot2-pspeed2),'--','Linewidth',1.5) 

xlabel('Relative Radial Velocity (m/s)','Fontweight','bold','FontSize',10) 

ylabel('Relative Tangential Velocity (m/s)','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm, Relative Velocity 

Diagram','Fontweight','bold','Fontsize',12) 

 

figure(8) 

plot(time,fric1,time,fric2,'--') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Frictional Force (N)','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(9) 

plot(time,mu_b,time,mu_b2,'--') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 



 274

ylabel('Coefficient of Friction','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(10) 

plot(time,theta,time,theta2,'--','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Element angular location on pulleys (rad)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

legend('Driver','Driven') 

 

figure(11) 

plot(time,phi*180/pi,time,phi2*180/pi,'-.','Linewidth',1.5) 

legend('Driver','Driven') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Element slope angle (degrees)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(12) 

plot(time,acclnE1,time,acclnE2,'--',time,acclnE1_id,'-

.',time,acclnE2_id,':','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Belt element acceleration (m/s^2)','Fontweight','bold','FontSize',10) 
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title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

legend('Total driver element accln','Total driven element accln','Driver element 

centripetal accln','Driven element centripetal accln') 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% plotcvt_band.m: used for plotting belt CVT model 3 results 

FricE = mu_b.*N; 

FricE2 = mu_b2.*N2; 

FricB = mu_a.*F; 

FricB2 = mu_a2.*F2; 

 

acclnE1_r = r_accln-R.*theta_dot.^2; 

acclnE1_t = R.*theta_accln+2*R_dot.*theta_dot; 

acclnE1 = sqrt(acclnE1_r.^2+acclnE1_t.^2); 

acclnE2_r = r_accln2-R2.*theta_dot2.^2; 

acclnE2_t = R2.*theta_accln2+2*R_dot2.*theta_dot2; 

acclnE2 = sqrt(acclnE2_r.^2+acclnE2_t.^2); 

 

acclnB1_r = r1_accln-R1.*gam_dot.^2; 

acclnB1_t = R1.*gam_accln+2*R1_dot.*gam_dot; 

acclnB1 = sqrt(acclnB1_r.^2+acclnB1_t.^2); 

acclnB2_r = r1_accln2-R1_2.*gam_dot2.^2; 

acclnB2_t = R1_2.*gam_accln2+2*R1_dot2.*gam_dot2; 
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acclnB2 = sqrt(acclnB2_r.^2+acclnB2_t.^2); 

 

acclnE1_id = R*(pulley_dot_init)^2; 

acclnE2_id = R2*(pulley2_dot_init)^2; 

acclnB1_id = R1*(pulley_dot_init)^2; 

acclnB2_id = R1_2*(pulley2_dot_init)^2; 

 

figure(1) 

plot(time,theta,time,alpha,'--',time,theta2,'-.',time,alpha2,':','Linewidth',1.5) 

title('Theta-Alpha Plot','Fontweight','bold','Fontsize',12) 

legend('\theta','\alpha','\theta_2','\alpha_2') 

 

figure(2) 

plot(time,gamma,time,alpha,'--',time,gamma2,'-.',time,alpha2,':','Linewidth',1.5) 

title('Gamma-Alpha Plot','Fontweight','bold','Fontsize',12) 

legend('\gamma','\alpha','\gamma_2','\alpha_2') 

 

figure(3) 

plot(time,theta_dot*30/pi,time,pspeed1*30/pi,'--',time,theta_dot2*30/pi,'-

.',time,pspeed2*30/pi,':','Linewidth',1.5) 

legend('Driver element speed','Driver pulley speed','Driven element speed','Driven pulley 

speed') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 
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ylabel('Element & Pulley Angular Speed (rpm)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(4) 

plot(time,gam_dot*30/pi,time,theta_dot*30/pi,'--',time,gam_dot2*30/pi,'-

.',time,theta_dot2*30/pi,':','Linewidth',1.5) 

legend('Driver band speed','Driver element speed','Driven band speed','Driven element 

speed') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Band & Element Angular Speed (rpm)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(5) 

plot(time,Q,time,Q2,'-.','Linewidth',1.5) 

legend('Driver','Driven') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Element Compressive Force (N)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(6) 

plot(time,T,time,T2,'-.','Linewidth',1.5) 

legend('Driver','Driven') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 
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ylabel('Band Tensile Force (N)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(7) 

plot(time,R,time,R1,'--',time,R2,'-.',time,R1_2,':','Linewidth',1.5) 

legend('Driver element','Driver band','Driven element','Driven band') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Element and Band pitch radii (m)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(8) 

plot(time,beta*180/pi,time,beta2*180/pi,'-.','Linewidth',1.5) 

legend('Driver','Driven') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

ylabel('Sheave angle : bending effect (degrees)','Fontweight','bold','FontSize',10) 

 

figure(9) 

plot(time,Fz_1/1000,time,Fz_2/1000,'-.','Linewidth',1.5) 

legend('Driver','Driven') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Pulley Axial Force  (kN)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 
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figure(10) 

plot(R_dot,R.*(theta_dot-pspeed1),R_dot2,R2.*(theta_dot2-pspeed2),'--','Linewidth',1.5) 

xlabel('Element-Pulley Relative Radial Velocity (m/s)','Fontweight','bold','FontSize',10) 

ylabel('Element-Pulley Relative Tangential Velocity 

(m/s)','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm, Relative Velocity 

Diagram','Fontweight','bold','Fontsize',12) 

 

figure(11) 

plot(time,V_be,time,V_be2,'--','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Relative velocity between band and element 

(m/s)','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(12) 

plot(V_be,R.*(theta_dot-pspeed1),V_be2,R2.*(theta_dot2-pspeed2),'--','Linewidth',1.5) 

xlabel('Band-element relative velocity (m/s)','Fontweight','bold','FontSize',10) 

ylabel('Element-pulley relative tangential velocity (m/s)','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 
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title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm, Relative Velocity 

Diagram','Fontweight','bold','Fontsize',12) 

 

figure(13) 

plot(time,FricE,time,FricE2,'--','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Element-Pulley Frictional Force (N)','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(14) 

plot(time,FricB,time,FricB2,'--','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Band-Element Frictional Force (N)','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(15) 

plot(time,mu_b,time,mu_b2,'--','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Element-Pulley Coefficient Of Friction','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 
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figure(16) 

plot(time,mu_a,time,mu_a2,'--','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Band-Element Coefficient Of Friction','Fontweight','bold','FontSize',10) 

legend('Driver','Driven') 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

 

figure(17) 

plot(time,theta,time,gamma,'--',time,theta2,'-.',time,gamma2,':','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Element and Band angular location on pulleys 

(rad)','Fontweight','bold','FontSize',9) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

legend('Driver element','Driver band','Driven element','Driven band') 

 

figure(18) 

plot(time,phi*180/pi,time,phi1*180/pi,'--',time,phi2*180/pi,'-

.',time,phi1_2*180/pi,':','Linewidth',1.5) 

legend('Driver element','Driver band','Driven element','Driven band') 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Element and Band slope angles (degrees)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 
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figure(19) 

plot(time,acclnE1,time,acclnE2,'--',time,acclnE1_id,'-

.',time,acclnE2_id,':','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Belt element acceleration (m/s^2)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

legend('Total driver element accln','Total driven element accln','Driver element 

centripetal accln','Driven element centripetal accln') 

 

figure(20) 

plot(time,acclnB1,time,acclnB2,'--',time,acclnB1_id,'-

.',time,acclnB2_id,':','Linewidth',1.5) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Band pack acceleration (m/s^2)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm,\tau_l = 100 Nm','Fontweight','bold','Fontsize',12) 

legend('Total driver band accln','Total driven band accln','Driver band centripetal 

accln','Driven band centripetal accln') 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% plot_chain.m: used for plotting chain CVT model results 

clc 

clear 
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format long 

time = [];  % insert data from time.txt which is an output file from chain CVT model 

Tension = [];   % insert data from tension.txt which is an output file from the model 

figure(1) 

plot(time,Tension,'Linewidth',1.25) 

xlabel('time (s)','Fontweight','bold','FontSize',10) 

ylabel('Tensile Force (N)','Fontweight','bold','FontSize',10) 

title('Case 1: \tau_i_n = 200 Nm, \tau_l = 100 Nm','Fontweight','bold','Fontsize',11) 

legend('Driver','Driven') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX E 

SIMULINK models of metal V-belt CVT 

Since models 1 and 2 differ only in the friction characteristic, system level block diagram 

of only model 1 will be subsequently illustrated. Model 3 accounts for slip dynamics 

between band pack and the belt element. 

 

 
(a) Driver System Block Diagram 

 

Figure E.1: SIMULINK block diagram of belt CVT model 1 
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(b) Driven System Block Diagram 

 

Figure E.1: SIMULINK block diagram of belt CVT model 1 (contd.) 
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(a) Driver System Block Diagram 

 

Figure E.2: SIMULINK block diagram of belt CVT model 3 
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(b) Driven System Block Diagram 

 

Figure E.2 SIMULINK block diagram of belt CVT model 3 (contd.) 
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Appendix F 

MATLAB / SIMULINK modeling of 2-DOF stick-slip oscillator 

 

 
 

Figure F.1: SIMULINK block diagram for 2-DOF stick-slip oscillator 

 

% vibr_two.m: calls the above SIMULINK model to plot the time histories 

% 2-DOF system with different friction characteristics 

% mass m1 & m2 = 1 (unit mass) 

clc 

clear all 

close all 

format long 

tstep = 0.005;   
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tfinal = 100;   

Fs = 1/tstep; 

k = 25;  

k1 = 25; 

k2 = 25; 

c = 1; 

vb = 3.5; 

cl = 1; 

% Uncomment the following 3 lines for continuous Coulomb friction characteristic 

% a = 0.003; 

% b = 1e-3;   

% mu_b_sat = 0.25; 

% Uncomment the following 4 lines for Stribeck-like friction characteristic 

% a = 1;  

% b = 5;  

% ff = 6.5;  

% mu_b_sat = 0.25; 

 

IC_data = [0 0 0 0 

5 0 0 0 

0 5 0 0 

0 0 5 0 

0 vb 0 0 
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0 0 0 vb 

0 0 0 5 

3 0 6 0 

0 3 0 6 

3 4 0 0 

0 0 4 3 

-3 0 -6 0 

0 -3 0 -6 

3 0 0 6 

0 -3 6 0 

10 2 12 1 

2 10 1 12 

-10 2 -12 1 

-2 10 -1 12 

-10 -2 -12 -1 

-2 -10 -1 -12 

10 -2 12 -1 

5 7 6 8 

7 5 8 6 

-5 -7 -6 -8 

-7 -5 -8 -6 

-5 7 -6 8 

5 -7 6 -8 
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10 10 15 15  

-10 -10 -15 -15 

-10 10 -15 15 

10 -10 15 -15]; 

 

[row,col] = size(IC_data); 

 

for i=1:row, 

    ic = IC_data(i,:); 

    x1_init = ic(1); 

    x1_dot_init = ic(2); 

    x2_init = ic(3); 

    x2_dot_init = ic(4); 

%   sim('vibr3')  % Coulomb friction model 

      sim('vibr3_b')   % Stribeck-like friction model 

    

    figure(1) 

    plot(x1,x1_dot) 

    title('Phase trajectories of the system') 

    xlabel('x_1 (m)') 

    ylabel('v_1 (m/s)') 

%     pause 

    hold on 



 292

     

    figure(2) 

    plot(x2,x2_dot) 

    title('Phase trajectories of the system') 

    xlabel('x_2 (m)') 

    ylabel('v_2 (m/s)') 

%     pause 

    hold on 

%      

    figure(3) 

    plot(time,x1,time,x2,'--') 

    title('Displacement time histories of the system') 

    ylabel('x_1 & x_2 (m)') 

    xlabel('time (s)') 

    legend('x_1','x_2') 

%     pause 

    hold on 

 

    figure(4) 

    plot(time,x1_dot,time,x2_dot,'--') 

    title('Velocity time histories of the system') 

    xlabel('time (s)') 

    ylabel('v_1 & v_2 (m/s)') 
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    legend('v_1','v_2') 

    hold on 

%     pause 

end 

disp('Program terminated successfully') 
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