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The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating
voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage,
capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion
batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising
research opportunities are outlined.
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Lithium-ion (Li-ion) batteries are becoming increasingly popular
for energy storage in portable electronic devices. Compared to alter-
native battery technologies, Li-ion batteries provide one of the best
energy-to-weight ratios, exhibit no memory effect, and experience
low self-discharge when not in use. These beneficial properties, as
well as decreasing costs, have established Li-ion batteries as a lead-
ing candidate for the next generation of automotive and aerospace
applications.1, 2 Li-ion batteries are also a promising candidate for
green technology. Electrochemical power sources have had signif-
icant improvements in design, economy, and operating range and
are expected to play a vital role in the future in automobiles, power
storage, military, mobile-station, and space applications. Lithium-ion
chemistry has been identified as a good candidate for high-power/high-
energy secondary batteries and commercial batteries of up to 100 Ah
have been manufactured. Applications for batteries range from im-
plantable cardiovascular defibrillators operating at 10 µA, to hybrid
vehicles requiring pulses of up to 100 A. Today the design of these sys-
tems have been primarily based on (1) matching the capacity of anode
and cathode materials, (2) trial-and-error investigation of thicknesses,
porosity, active material and additive loading, (3) manufacturing con-
venience and cost, (4) ideal expected thermal behavior at the system
level to handle high currents, etc., and (5) detailed microscopic models
to understand, optimize, and design these systems by changing one or
few parameters at a time. The term ‘lithium-ion battery’ is now used
to represent a wide variety of chemistries and cell designs. As a result,
there is a lot of misinformation about the failure modes for this device
as cells of different chemistries follow different paths of degradation.
Also, cells of the same chemistry designed by various manufacturers
often do not provide comparable performance, and quite often the per-
formance observed at the component or cell level does not translate
to that observed at the system level.
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Problems that persist with existing lithium-ion battery technol-
ogy include underutilization, stress-induced material damage, capac-
ity fade, and the potential for thermal runaway.3 Current issues with
lithium-ion batteries can be broadly classified at three different levels
as shown schematically in Fig. 1: market level, system level, and single
cell sandwich level (a sandwich refers to the smallest entity consisting
of two electrodes and a separator). At the market level, where the end-
users or the consumers are the major target, the basic issues include
cost, safety, and life. When a battery is examined at the system level,
researchers and industries face issues such as underutilization, capac-
ity fade, thermal runaways, and low energy density. These issues can
be understood further at the sandwich level, at the electrodes, elec-
trolyte, separator, and their interfaces. Battery researchers attribute
these shortcomings to major issues associated with Solid-Electrolyte
Interface (SEI)-layer growth, unwanted side reactions, mechanical
degradation, loss of active materials, and the increase of various in-
ternal resistances such as ohmic and mass transfer resistance. This
paper discusses the application of modeling, simulation, and systems
engineering to address the issues at the sandwich level for improved
performance at the system level resulting in improved commercial
marketability.

“Systems engineering can be defined as a robust approach to the
design, creation, and operation of systems. The approach consists of
the identification and quantification of system goals, creation of alter-
native system design concepts, analysis of design tradeoffs, selection
and implementation of the best design, verification that the design is
properly manufactured and integrated, and post-implementation as-
sessment of how well the system meets (or met) the goals.”4 Process
systems engineering has been successfully employed for designing,
operating, and controlling various engineering processes and many
efforts are currently being attempted for Li-ion batteries. The devel-
opment of new materials (including choice of molecular constituents
and material nano- and macro-scale structure), electrolytes, binders,
and electrode architecture are likely to contribute toward improv-
ing the performance of batteries. For a given chemistry, the systems
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Figure 1. Current issues with Li-ion batteries at the
market level and the related performance failures ob-
served at the system level, which are affected by multi-
ple physical and chemical phenomena at the sandwich
level.

engineering approach can be used to optimize the electrode architec-
ture, operational strategies, cycle life, and device performance by
maximizing the efficiency and minimizing the potential problems
mentioned above.

The schematic in Fig. 2 shows four systems engineering tasks
and the interactions between these tasks. Ideally, the eventual goal of
the systems engineering approach applied to Li-ion batteries would
develop a detailed multiscale and multiphysics model formulated so
that its equations can be simulated in the most efficient manner and
platform, which would be employed in robust optimal design. The
first-principles model would be developed iteratively with the model
predictions compared with experimental data at each iteration, which
would be used to refine the detailed model until its predictions became
highly accurate when validated against experimental data not used in
the generation of the model. The following sections describe each of
these systems engineering tasks in more detail.

Systems engineering approaches have been used in the battery
literature in the past, but not necessarily with all of the tasks and their
interactions in Fig. 2 implemented to the highest level of fidelity. Such
a systems engineering approach can address a wide range of issues in
batteries, such as
(1) Identification of base transport and kinetic parameters
(2) Capacity fade modeling (continuous or discontinuous)
(3) Identification of unknown mechanisms
(4) Improved life by changing operating conditions
(5) Improved life by changing material properties
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Figure 2. Schematic of systems engineering tasks and the interplay between
them: In the figure, u, y, and p are vectors of algebraic variables, differential
variables, and design parameters, respectively.

(6) Improved energy density by manipulating design parameters
(7) Improved energy density by changing operating protocols
(8) Electrolyte design for improved performance
(9) State estimation in packs

(10) Model predictive control that incorporates real-time estimation
of State-of-Charge (SOC) and State-of-Health (SOH).

(11) Improved protocols for optimum formation times.

The next section reviews the status of the literature in terms of mod-
eling, simulation, and optimization of lithium-ion batteries, which is
followed by a discussion of the critical issues in the field, and meth-
ods for addressing these issues and expected future directions in the
conclusions section.

Background

In Fig. 2, model development forms the core of the systems engi-
neering approach for the optimal design of lithium-ion batteries. Gen-
erally, the cost of developing a detailed multiscale and multiphysics
model with high predictive ability is very expensive, so model devel-
opment efforts begin with a simple model and then add more physics
until the model predictions are sufficiently accurate. That is, the sim-
plest fundamentally strong model is developed that produces accu-
rate enough predictions to address the objectives. The best possible
physics-based model can depend on the type of issue being addressed,
the systems engineering objective, and on the available computational
resources. This section describes various types of models available in
the literature, the modeling efforts being undertaken so far, and the
difficulties in using the most comprehensive models in all scenarios.

An important task is to experimentally validate the chosen model
to ensure that the model predicts the experimental data to the required
precision with a reasonable confidence. This task is typically per-
formed in part for experiments designed to evaluate the descriptions
of physicochemical phenomena in the model whose validity is less
well established. However, in a materials system such as a lithium-ion
battery, most variables in the system are not directly measurable during
charge-discharge cycles, and hence are not available for comparison
to the corresponding variables in the model to fully verify the accu-
racy of all of the physicochemical assumptions made in the derivation
of the model. Also, model parameters that cannot be directly mea-
sured experimentally typically have to be obtained by comparing the
experimental data with the model predictions.

A trial-and-error determination of battery design parameters and
operating conditions is inefficient, which has motivated the use of bat-
tery models to numerically optimize battery designs. This numerical
optimization can be made more efficient by use of reformulated or
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Figure 3. Wide range of physical phenomena dictates different computational demands.

reduced order models.5–10 Simulation time plays a role in determining
the use of these models in various applications, and high simulation
times have limited the application of battery optimization based on
physics-based models. Efficient ways of simulating battery models is
an active area of research and many researchers have published various
mathematical techniques and methods to simulate physics-based bat-
tery models faster.5, 6, 9, 10 This has enabled greater use of optimization
and systems engineering based on physics-based models.11–13

Once an efficient method of simulating the battery models is
devised, the next step is to formulate optimization problems to address
the real-world challenges described in the previous section. The
objective function can be chosen based on the required performance
objectives at the system level. Optimization of operating conditions,
control variables, and material design (architecture) can be performed
based on specific performance objectives described in more detail in
a later section. After obtaining either an optimal operating protocol
or electrode architecture for a specific performance objective, the
results should be verified using experiments.

Mathematical models for lithium-ion batteries vary widely in
terms of complexity, computational requirements, and reliability of
their predictions (see Fig. 3). Including more detailed physicochem-
ical phenomena in a battery model can improve its predictions but at
a cost of increased computational requirements. Therefore simplified
battery models continue to be applied in the literature when appropri-
ate for the particular needs of the application. This section summarizes
the literature on model development for lithium-ion batteries, and
the application of these models in systems engineering. Models
for the prediction of battery performance can be roughly grouped
into four categories: empirical models, electrochemical engineering
models, multiphysics models, and molecular/atomistic models.

Empirical models.— Empirical models employ past experimental
data to predict the future behavior of lithium-ion batteries without con-
sideration of physicochemical principles. Polynomial, exponential,
power law, logarithmic, and trigonometric functions are commonly
used as empirical models. The computational simplicity of empiri-
cal models enables very fast computations, but since these models
are based on fitting experimental data for a specific set of operating
conditions, predictions can be very poor for other battery operating

conditions. Such battery models are also useless for the design of new
battery chemistries or materials.

Electrochemical engineering models.— The electrochemical en-
gineering field has long employed continuum models that incorpo-
rate chemical/ electrochemical kinetics and transport phenomena to
produce more accurate predictions than empirical models. Electro-
chemical engineering models of lithium-ion batteries have appeared
in the literature for more than twenty years.14 Below is a summary of
electrochemical engineering models, presented in order of increasing
complexity.
Single-particle model.—The single-particle model (SPM) incorpo-
rates the effects of transport phenomena in a simple manner. Zhang
et al.15 developed a model of diffusion and intercalation within a single
electrode particle, which was expanded to a sandwich by considering
the anode and cathode each as a single particle with the same sur-
face area as the electrode.16 In this model, diffusion and intercalation
are considered within the particle, but the concentration and potential
effects in the solution phase between the particles are neglected.16, 17

The following typical reactions are considered in each of the particle
in the SPM (MO refers to metal oxide):

Discharge

Charge yyMO Li e LiMO+ −
+ +  at the cathode and 

Discharge

Charge 66LiC Li e C+ −
+ + at the anode. 

Due to these simplifications, this model can be quickly simulated,
but is only valid for limited conditions, such as low rates and
thin electrodes.17 Greater efficiency can be obtained by including
a parabolic profile approximation for the lithium concentration within
the particle.16, 18

Ohmic porous-electrode models.—The next level of complexity is a
porous-electrode model that accounts for the solid- and electrolyte-
phase potentials and current while neglecting the spatial varia-
tion in the concentrations. The model assumes either linear, Tafel,
or exponential kinetics for the electrochemical reactions and in-
corporates some additional phenomena, such as the dependency
of conductivities as a function of porosity. Optimization studies
have been performed using this model to design the separator and
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Figure 4. P2D model with schematic of the cell sandwich with the cathode,
anode, and separator also showing the spherical particles in the pseudo-second
dimension.

electrode thicknesses19–21 and ideal spatial variations of porosity
within electrodes.13

Pseudo-two-dimensional models.—The pseudo-two-dimensional
(P2D) model expands on the ohmic porous-electrode model by in-
cluding diffusion in the electrolyte and solid phases, as well as Butler-
Volmer kinetics (see Fig. 4). Doyle et al.14 developed a P2D model
based on concentrated solution theory to describe the internal be-
havior of a lithium-ion sandwich consisting of positive and negative
porous electrodes, a separator, and a current collector. This model
was generic enough to incorporate further advancements in battery
systems understanding, leading to the development of a number of
similar models.16, 22–32 This physics-based model is by far the most
used by battery researchers, and solves for the electrolyte concentra-
tion, electrolyte potential, solid-state potential, and solid-state concen-
tration within the porous electrodes and the electrolyte concentration
and electrolyte potential within the separator. This model based on
the principles of transport phenomena, electrochemistry, and ther-
modynamics is represented by coupled nonlinear partial differential
equations (PDEs) in x, r, and t that can take seconds to minutes to
simulate. The inclusion of many internal variables allow for improved
predictive capability, although at a greater computational cost than the
aforementioned models.

Multiphysics models.— Multiscale, multidimensional, and multi-
physics electrochemical-thermal coupled models are necessary to ac-
curately describe all of the important phenomena that occur during the
operation of lithium-ion batteries for high power/energy applications
such as in electric/hybrid vehicles.
Thermal models.—Including temperature effects into the P2D model
adds to the complexity, but also to the validity, of the model, especially
in high power/energy applications. Due to the added computational
load required to perform thermal calculations, many researchers have
decoupled the thermal equations from the electrochemical equations
by using a global energy balance, which makes it impossible to mon-
itor the effects on the performance of the cells due to temperature
changes.33–37 Other researchers have similarly decoupled the thermal
simulation of the battery stack from the thermal/electrochemical sim-
ulation of a single cell sandwich.38, 39 Other thermal models have been
reported that are coupled with first-principles electrochemical models
both for single cells and cell stacks.40–42 The global energy balance is
only valid when the reaction distribution is uniform all over the cell;
for accurate estimation of heat generation in a cell, the local variations
in the reaction current and SOC must be incorporated.43 Recently, Guo
et al.17 published a simplified thermal model applied to a single parti-
cle. Some papers have presented 2D thermal-electrochemical coupled
models for lithium-ion cells that take into account the effects of local
heat generation.44, 45 Similar studies predict battery discharging per-
formance at different operating temperatures.46 Additionally, the cou-

pling of a 1D electrochemical model with a lumped thermal model by
means of an Arrhenius form of temperature dependence for the physic-
ochemical properties has been reported.47–49 Recently, researchers
have begun considering 3D thermal models to better understand the
dynamic operation and control of lithium-ion batteries for large-scale
applications. Since such models are quite computationally expensive,
several approximations are made, resulting in various shortcomings.
Some models cannot monitor the thermal effect of electrochemical
parameters,35, 50 while other models require empirical input from ex-
periments or other simulations,51, 52 (or use volume-averaged equa-
tions for the solid-phase intercalation). Another approach assumes a
linear current-potential relationship and neglects spatial concentration
variations and is therefore only valid for low power operations.53 A
Multi-Scale Multi-Dimensional (MSMD) model54 and a model de-
rived from a grid of 1D electrochemical/thermal models55 have also
been implemented for 3D thermal simulation of batteries.
Stress-strain and particle size/shape distributions.—Intercalation of
lithium causes an expansion of the active material, such as graphite or
manganese oxide, while lithium extraction leads to contraction. The
diffusion of lithium in graphite is not well understood, but some work
has been done to model the diffusion and intercalation of lithium into
the electrode material.27, 56, 57 Since lithium diffuses within the par-
ticle, the expansion and contraction of the material will not happen
uniformly across the particle (i.e., the outer regions of the particle
will expand first due to lithium intercalating there first). This spatial
nonuniformity causes stress to be induced in the particle and may
lead to fracture and loss of active material,58, 59 which is one of the
mechanisms for capacity fade. Various models have been developed
to examine the volume change and stress induced by lithium-ion in-
tercalation for single particles.60–62 A two-dimensional microstructure
model was developed63 to extend the stress-strain analysis from single
particles and was eventually incorporated into the full P2D model.64

These models show that high rates of charging result in increased stress
and increased chance of fracture, which can be somewhat mitigated
by using smaller particles, or ellipsoidal particles. Additionally during
battery cycling, some particles are lost or agglomerate to form larger
sized particles, which results in performance degradation. In addition,
porous materials rarely have uniform particle size and shape. Some
continuum models have accounted for the distribution of particle sizes
and its effect on the battery performance,65, 66 for example, through
the equation65

∂ ĩ2

∂x
=

(

4π

∫

∞

0
N (r )Y (r )r 2dr

)

(�̃1 − �̃2) [1]

where ĩ2 is the fraction of total current flowing in solution, N (r)
is the number of particles per unit volume of composite electrode
with a radius between size r and r + dr in the porous electrode,
Y(r) is a function that relates the outward normal current density
per unit surface area of a particle to the potential difference, and
�̃1 − �̃2 is the potential difference between the solid particle and
the adjacent solution. A promising future direction would be to
extend such models to include variations in particle size and shape
distribution by (1) writing N in terms of the multiple independent
particle coordinates that define the particle shape (typically 3), and (2)
replacing the single integral with a more complicated volume integral.
The time-dependent change in the particle size distribution due to
breakage and agglomeration can be modeled by a spatially-varying
multi-coordinate population balance equation:

∂ f (l, x, t)

∂t
+

∑

i

∂(G i f )

∂li

= h(l, x, t, f ) [2]

where f (l, x, t) is the particle size and shape distribution function, x is
the spatial coordinate, li is the ith independent size coordinate, l is the
vector with elements li (typically of dimension three), Gi (l,t) = dli/dt
is the growth rate along the ith independent size coordinate (which
is negative for shrinkage), h(l, x, t, f) is the generation/disappearance
rate of particle formation (e.g., due to breakage and agglomeration),
and t is time.67–70 The expression for h(l, x, t, f) for breakage and
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agglomeration contains integrals over the f (l, x, t), and the h and Gi

have dependencies on additional states such as local lithium-ion con-
centrations. This model to capture the effects of morphology within
a material, called a mesoscale model,71, 72 would enable the material
degradation due to spatially-varying and time-varying changes in the
particle size and shape distribution to be explicitly addressed.
Stack models.—In order to simulate battery operation more accurately,
battery models are improved by considering multiple cells arranged
in a stack configuration. Simulation of the entire stack is important
when thermal or other effects cause the individual cells to operate
differently from each other. Since it is often not practical or possible
to measure each cell individually in a stack, these differences can lead
to potentially dangerous or damaging conditions such as overcharg-
ing or deep-discharging certain cells within the battery, which can
cause thermal runaway or explosions. The ability to efficiently simu-
late battery stacks would facilitate the health monitoring of individual
cell behavior during charging and discharging operations and thereby
increasing safety by reducing the chances of temperature buildup
causing thermal runaway. The significant increase in computational
requirements to simulate a stack model has slowed its development and
most examples of stack modeling perform some approximation or de-
coupling to facilitate efficient simulation.36, 39, 73 Researchers have also
published simplified coupled thermal electrochemical models applied
to a single particle for stacks in parallel and series configurations.74

Fully coupled battery stack simulations have been performed for a
limited number of cells by using reformulation techniques to expedite
simulation.75

Molecular/atomistic models.— Kinetic Monte Carlo method.—
The Kinetic Monte Carlo (KMC) method is a stochastic approach that
has been used to model the discharge behavior of lithium ions during
intercalation. Such models76–79 have been used to simulate diffusion of
lithium from site to site within an active particle to aid in understand-
ing on how different crystal structures affect lithium mobility75 and
how the activation barrier varies with lithium-ion concentration.78, 79

Additionally, Monte Carlo methods have been used to predict ther-
modynamic properties.80 KMC has also been applied to simulate the
growth of the passive SEI-layer across the surface of the electrode
particle, to simulate one of the mechanisms for capacity fade.81

Molecular dynamics.—Molecular dynamics has been used to gain in-
sight into several molecular-scale phenomena that arise during the
operation of lithium-ion batteries. One of the applications has been
to the simulation of the initial growth of the passivating SEI film at
the interface of the solvent and graphite anode. The application of a
large negative potential during initial charging decomposes ethylene
carbonate (EC) in the solvent, to produce the passivating SEI film
containing lithium ethylene dicarbonate and salt decomposition prod-
ucts. Although molecular dynamics is computationally very expensive
for simulation of more than tens of picoseconds of battery operation,
the method was demonstrated to be fast enough for simulation of the
initial stage of SEI layer formation.82 The simulations were able to
predict the formation of carbon monoxide, which has been detected in
experiments, and predicted that the initial SEI layer formation occurs
is initiated at highly oxidized graphite edge regions of the anode.

Another application of molecular dynamics to lithium-ion batteries
has been the simulation of the initial transport of lithium ions through
a polycrystalline cathode.83 Between each crystal grain is an amor-
phous intergranular film (IGF), and the motivation for the study was
the conjecture that lithium ions diffuse much faster through the IGF
than through the crystal grains. Although the simulations employed a
particular lithium silicate glass as a solid electrolyte and vanadia with
an amorphous V2O5 IGF separating the crystal grains, the results are
expected to have more general applicability. The simulations were fea-
sible with molecular dynamics because the conclusions only required
that the lithium ion diffuse far enough into the cathode to quantify
the differences in diffusion rates through the IGF and crystal grains.
The simulation of effective diffusivities is one of the most common
applications of molecular dynamics.84

Density functional theory.—Density functional theory (DFT) calcula-
tions can be used to provide predictive insight into the structure and
function of candidate electrode materials. The ground-state energy is
given as a unique functional of the electron density, which can be
calculated by self-consistently solving for the atomic orbitals. Geom-
etry optimizations are used to determine structures, energetics, and
reaction mechanisms. In the area of sustainable energy storage, DFT
calculations have been used to predict and rationalize the structural
changes that occur upon cycling of electrode materials, for example,
in the calculation of activation barriers and thermodynamic driving
forces for Ni ions in layered lithium nickel manganese oxides. Simi-
lar calculations have been used to determine the lattice properties and
electronic structure of graphite and LiC6.85 Additionally, DFT calcu-
lations can be used to examine the effect of lithium intercalation on
the mechanical properties of a graphite electrode, including Young’s
modulus, expansion of the unit cell, and the resulting stress effects,86

as well as to compare the stability of LiPF6 (a common electrolyte)
in various solvents.87 DFT calculations have also been used to exam-
ine the mechanisms affecting the stability and function of the organic
electrolytes separating the electrode materials, as in the reductive de-
compositions of organic propylene carbonate and ethylene carbonate
to build up a solid-electrolyte interface that affects cycle-life, lifetime,
power capability, and safety of lithium-ion batteries.

Simulation.— Multiple numerical methods are available for the
simulation of any particular battery model. For empirical models,
analytical solutions are usually possible and can be easily solved
in Microsoft Excel or Matlab.88 Analytical solutions can be imple-
mented in a symbolic language such as Mathematica,89 or Maple,90 or
Mathcad,91 or in a compiled language such as FORTRAN or C++.
Analytical solutions based on linear model equations often involve
eigenvalues, which might have to be determined numerically. For
nonlinear model equations, sometimes analytical series solutions us-
ing perturbation methods92 or other symbolic techniques93 can be de-
rived. Numerical simulation methods are more flexible, with multiple
methods available for any particular battery model. The best numer-
ical methods tend to be more sophisticated when moving toward the
upper right of the battery models shown in Fig. 3.

For SPMs for a single electrode, analytical solutions have been
derived for constant-current operation and cannot be obtained directly
for the constant-potential operation, due to the fact that the boundary
flux is implicitly determined by the nonlinear Butler-Volmer equation
particularly when the open circuit voltage changes with state of charge.
At this scale, especially for AC impedance data, analytical solutions
are easily obtained and have been heavily used even for estimating
unknown diffusion coefficients. A numeric symbolic solution was also
derived for the AC impedance response that showed similar results to
the analytical solution.94–96

When two electrodes are included in an SPM, an analytical solu-
tion is available for constant-current operation but not for constant-
potential operation, for reasons as stated above, or when film formation
for the SEI layer is modeled. Beyond SPM and porous electrode ohmic
resistance models, analytical solutions are not possible for simulating
charge-discharge curves. A SPM with two electrodes consists of a
single partial differential equation for each electrode. Conversely, a
finite-difference scheme discretized with 50 node points in the radial
direction generates 50 × 2 + 50 × 2 = 200 differential algebraic
equations (DAEs). Recall that the SPM is computationally efficient
but is not accurate, especially for high rates. For P2D models14 typi-
cally the finite-difference approach has been used. A P2D model with
polynomial approximation18 for the solid phase, when discretized
with 50 node points in the spatial direction for each variable, results
in a system of 250 DAEs for each electrode and 100 DAEs for the
separator. Thus, the total number of DAEs to be solved for the P2D
model across the entire cell is 250 + 250 + 100 = 600 DAEs. The
addition of temperature effects to this model results in 750 DAEs
to be solved simultaneously. Stack models are much more computa-
tionally expensive, as the number of DAEs is equal to the number
of cells in the stack (N) times the number of equations coming from

Downloaded 26 Jan 2012 to 128.252.20.193. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp



R36 Journal of The Electrochemical Society, 159 (3) R31-R45 (2012)

each sandwich. Using the finite-difference discretization of spatial
variables in x, y, and r with 50 node points along each direction in a
pseudo-3D thermal-electrochemical coupled model would generate
15,000 + 7500 + 15,000 = 37,500 DAEs to be solved simultane-
ously for a single sandwich.

The speed and accuracy of a numerical method depends upon
the complexity of the model equations, including operating and
boundary conditions, and the numerical algorithm. The most com-
mon numerical methods for simulation of lithium-ion batteries are
the finite-difference method (FDM), finite-volume method (FVM, or
sometimes called the control volume formulation), and finite-element
method (FEM). The main continuum simulation methods reported in
the literature for the simulation of batteries can be classified as

(1) DUALFOIL.26 This software employs Newman’s BAND
subroutine,97 which is a finite-difference method used to simu-
late electrochemical systems for more than four decades. Sym-
bolic software such as Mathematica89 and Maple90 can be used
for determining analytical expressions for the Jacobians and
for generating the associated FORTRAN code for use with the
BANDJ subroutine.23

(2) FVM with various time-discretization schemes,98 which has
been applied to P2D models.

(3) COMSOL99/BATTERY DESIGN STUDIO,100 which imple-
ments the FEM/FDM in a user-friendly interface and includes a
module that implements the P2D battery model.

(4) Finite-difference or reformulation schemes in spatial coordinates
with adaptive solvers such as DASSL in time.23

Each approach has its advantages and disadvantages. DUALFOIL is a
freely available FORTRAN code. The FDM has been used extensively
in battery simulation23 as it is easy to implement and modify. The
FVM is closely related to the FDM but more easily handles irregular
geometries. The FEM handles both irregular geometries and hetero-
geneous compositions, but is much harder to implement by hand, and
so is usually only applied to batteries using commercial FEM software
such as COMSOL. An advantage of commercial software like COM-
SOL is ease of use and that the numerical implementation is invisible
to the user and results from COMSOL can be directly integrated to
MATLAB environment, which is a widely used tool for control and
optimization. However, a disadvantage is that COMSOL’s numerical
implementations cannot be modified by the user to (1) increase com-
putational efficiency by exploiting additional mathematical structure
in the model equations or (2) integrate such efficient simulation results
into advanced systems engineering algorithms for optimal design, op-
eration, or control in a computationally efficient manner.

When optimization fails while using COMSOL-like codes, detec-
tive work is required to determine whether the numerical simulation
was robust enough to provide accurate numerical Jacobians. Also, as
of today, global optimization methods are readily available only for
algebraic equations. Algebraic optimizations can be formulated by
discretization of all the variables and parameters including the con-
trol variables,101, 102 but these optimization schemes typically have too
high complexity to be solvable using existing global optimization soft-
ware. Many groups are working on the development of optimization
software that is more computationally efficient at computing local
optima for dynamic optimizations or on ensuring convergence to a
global optimum.103, 104

BATTERY DESIGN STUDIO100 has a module for the sim-
ulation of P2D lithium-ion battery models. Adaptive solvers
provide advantages in speed compared to fixed time-discretization
schemes. Researchers have used DASSL for solving battery models.23

DASSL/DASPK use backward differentiation schemes in time, which
are numerically stable and efficient. For the same set of equations,
these adaptive schemes can provide an order of magnitude savings in
time. Battery models more advanced than the P2D model are usually
solved offline in the literature (an exception is the P2D thermal model
from Gu et al.44, 48 and the stress-strain model from Renganathan
et al.63).

To understand the importance of capacity fade in a lithium-ion sec-
ondary battery system, significant efforts have been devoted to the de-
velopment of mathematical models that describe the discharge behav-
ior and formation of the active and passive SEI layers. The majority of
these models are empirical or semi-empirical.105, 106 Other works have
attempted to simulate capacity fade by considering the lithium depo-
sition as a side reaction and the resulting increased resistance.31, 107–111

Others have simulated capacity fade by modeling the active material
loss, or change of internal parameter with cycling.31, 108–113 Other re-
searchers have used KMC methods to examine the SEI layer formation
at the microscale level.81 Such a model, however, is computationally
expensive, which makes online simulation difficult. Further work is
needed to couple such fundamental models to the popular continuum
models in use.

Optimization applied to Li-ion batteries.— Several researchers
have applied optimization to design more efficient electrochemi-
cal power sources. Newman and co-workers obtained optimal val-
ues of battery design parameters such as electrode thickness and
porosity.21, 24, 26, 114–117 To simplify the optimization, many of these
papers employed models with analytical solutions, which are only
available in limiting cases. Battery design optimization using a full or-
der model has been demonstrated by several researchers.11, 24, 26, 115, 116

Newman and co-workers report the use of Ragone plots for studies
regarding the optimization of design parameters, changing one design
parameter at a time, such as electrode thickness, while keeping other
parameters constant, Ragone plots for different configurations can be
obtained. Hundreds of simulations are required when applied current
is varied to generate a single curve in a Ragone plot, which is tedious
and computationally expensive. An alternative is to simultaneously
optimize the battery design parameters and operating conditions such
as the charging profile.11 Parameters have been simultaneously opti-
mized for different models and goodness of fits compared based on
statistical analysis.118 Parameter estimation has also been used in a
discrete approach to analyze and predict capacity fade using a full-
order P2D model.110, 111 Golmon et al.119 attempted a multiscale design
optimization for improving electrochemical and mechanical perfor-
mance of the battery by manipulating both micro- and macro-scale
design variables such as local porosities, particle radii, and electrode
thickness to maximize the capacity of the battery. A surrogate-based
framework using global sensitivity analysis has been used to opti-
mize electrode properties.120 Simulation results from P2D models
have been used to generate approximate reduced-order models for
use in global sensitivity analysis and optimization. Rahimian et al.12

used a single-particle model when computing the optimum charging
profile for maximizing the life of battery during cycling. The follow-
ing section describes the systems engineering tasks of (1) parameter
estimation, (2) model-based optimal design, and (3) state estimation
that have been applied to lithium-ion batteries.

Parameter estimation is typically formulated as the minimization
of the sum-of-squared differences between the model outputs and their
experimentally measured values for each cycle i, for example,121–123

min
θi

ni
∑

j=1

[yi (t j ) − ymodel,i (t j ; θi )]
2 [3]

where yi (t j ) is the measured voltage at time tj for cycle i, ymodel, i (t j ; θi )
is the voltage computed from the battery model at time tj for cycle i
for the vector of model parameters θi (the parameters being estimated
from the experimental data), and ni is the number of time points in
cycle i. Solving the optimization [3] is known in the literature as least-
squares estimation.121–123 Many numerical algorithms are available for
solving the nonlinear optimization [3], such as the steepest descent,
Gauss-Newton, and Levenberg-Marquardt methods.122 These iterative
methods reduce the sum-of-squared differences between the model
outputs and the experimental data points until the error is no longer sig-
nificantly reduced. More sophisticated Bayesian estimation methods
employ the same numerical algorithms but use optimization objectives
that take into account prior information on the model parameters.124
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Battery design parameters such as cell thickness and electrode
porosity and operating profiles can be optimized using the same nu-
merical algorithms, for objectives such as maximization of perfor-
mance (e.g., energy density, life) or minimization of capacity fade
and mechanical degradation. These optimizations are solved subject
to the model equations and any physical constraints. The optimal
estimation of unmeasured states in lithium-ion batteries can also be
formulated in terms of a constrained model-based optimization. The
optimization objectives, models, and constraints differ for different
systems engineering tasks, but can all be written in terms of one
general formulation:125

min
z(x),u(x),p

� [4]

such that
d

dx
z = f(z(x), y(x), u(x), p),

f(z(0)) = 0, g(z(1)) = 0, [5]

g(z(x), y(x), u(x), p) = 0, [6]

uL ≤ u(x) ≤ uU , yL ≤ y(x) ≤ yU , zL ≤ z(x) ≤ zU , [7]

where � is the optimization objective,126 z(x) is the vector of differ-
ential state variables, y(x) is the vector of algebraic variables, u(x)
is the vector of control variables, and p is the vector of design pa-
rameters. Although there are many numerical methods for solving
constrained optimization problems,127–129 this paper summarizes only
control vector parameterization (CVP) as this is the method that is
easiest to implement and most commonly used in industrial applica-
tions. The CVP method parameterizes the optimization variables, by
employing basis functions or discretization, in terms of a finite number
of parameters to produce a nonlinear program that can be solved us-
ing standard software. First-principles models for lithium-ion batteries
tend to be highly stiff, requiring adaptive time-stepping for reason-
able computational efficiency.104 CVP is well suited for optimizations
over such models, as CVP incorporates the model equations by call-
ing a user-specified subroutine for simulating the model equations.
Any speedup obtained by an adaptive time-stepping for the model
equations directly translates into a speedup on the CVP calculations.

More specifically, the control variable u(x) in CVP is parame-
terized by a finite number of parameters, typically as a polynomial
or piecewise-linear function or by partitioning its values over space,
and the resulting nonlinear program is solved numerically. Most nu-
merical optimization algorithms utilize an analytically or numerically
determined gradient of the optimization objective and constraints to
march toward improved values for the optimization variables in the
search space. In CVP, as the number of intervals increases, the number
of equations increases and makes optimization more computationally
expensive. Hence the fastest and most efficient battery model and code
for the desired level of accuracy is recommended when applying CVP
or any alternative optimization methods.

A discussion of simulating lithium-ion batteries at the systems-
level is incomplete without addressing issues pertaining to the esti-
mation of state-of-charge and health of the battery. Designing a tool
to predict the life or performance of a battery is an interesting opti-
mization problem with implications on material modifications during
the initial battery formulation for a particular application, allowance
for making a specific maintenance plan during the course of the life of
the battery, and, most importantly, on the cost of the battery. Precise
estimations of SOC and SOH are also essential to ensure the safe op-
eration of batteries, that is, preventing the battery from overcharging
and thermal runaway.

Some commonly used methods in the industry to monitor the SOC
of the battery include monitoring of the cell impedance,130–133 equiv-
alent circuit analyses,134, 135 techniques based on fuzzy logic,136, 137

or pattern recognition.138 Optical and eddy current methods139, 140 are
being devised to monitor available capacity in battery systems with
flat response surfaces. Based on the algorithm used for estimation,
the models used to estimate SOC and SOH can be classified broadly

into two categories. Some utilities such as the battery packs used in
on-board satellites during the lack of solar energy or cells used in
watches follow a routine or pre-programmed load. In such instances,
it is possible to develop a degradation model based on a priori testing,
knowing the operating conditions and the design parameters of the
cell. Such a model does not require frequent updates for the param-
eters, unless there is a significant change in the operating conditions.
In some other applications, such as battery packs used in vehicles,
the battery is subjected to a dynamic load that changes as frequently
as every few milliseconds. In these cases, the degradation mechanism
and hence state of charge or the state of health of the power sys-
tem depends on the load conditions imposed in the immediate past
and it is necessary to monitor the cell on a regular basis. There are
some differences between the algorithms used to make life-estimates
for the case with the known operating parameters compared to the
dynamic-load case. The latter situation is less forgiving in terms of
the calculation time, for example. SOC and SOH estimators have been
an integral part of battery controllers; however, the estimations have
been primarily based on empirical circuit-based models that can fail
under abusive or non-ideal operating conditions. Precise estimations
of SOC and SOH are very essential for the safe operation of the batter-
ies, in order to prevent them from overcharging and thermal runaway.
Santhanagopalan et al.141 reviewed past efforts on the monitoring and
estimation of SOC in the literature, and reported an online Kalman
filter-based SOC estimation for lithium-ion batteries based on a single-
particle model. Klein et al.9 recently published state estimation using a
reduced order model for a lithium-ion battery. Smith et al.’s10 analysis
of a 1D electrochemical model for a lithium-ion battery indicated that
the electrode surface concentration was more easily estimated from
the real-time measurements than the electrode bulk concentration.
Domenico et al.142 designed an extended Kalman filter for SOC esti-
mation based on an electrochemical model coupling the average solid
active material concentration with the average values of the chemical
potentials, electrolyte concentration, and the current density.

Critical Issues in the Field

This section describes the challenges that arise when building pre-
dictive models for lithium-ion batteries and employing these models
for systems engineering.

Sparsity of manipulated variables.— Once the battery is manu-
factured and closed in a sealed case, the battery is discharged (used)
according to the requirements of the application. The only variables
that can be manipulated during battery operation to make best use
of the battery is the charging current profile and operating tempera-
ture, which can affect transport and electrochemical rates resulting in
modified performance.

Before the battery is sealed, the design variables such as the elec-
trode dimensions, the type of materials, and materials properties such
as porosity, active surface area, and microstructure can be selected so
as to provide the best possible performance. The resulting battery de-
sign can be verified at small scale (e.g., few milli- or micro-Ah batter-
ies) relatively easily in the laboratory, but scaling up to the large-scale
batteries required for some industrial applications is challenging.

Need for better fundamental models to understand SEI-layer,
structure.— The physicochemical understanding is incomplete for
much of the phenomena that occur inside a battery, such as capacity
fade, stress-strain effects, mechanical degradation, and mechanisms
for failure due to shocks, defects, and shorts. Much progress has been
made in the last twenty years on failure mechanisms, stress-strain
models, capacity fade mechanisms involving side reactions, SEI-layer
formation, and other phenomena, and studies have been published
with the objective of understanding battery operation at the molecu-
lar scale, using Kinetic Monte Carlo simulation, molecular dynamics,
and density functional theory calculations, and at the mesoscale using
population balance models. The molecular-scale models are simulated
off-line (that is, not in real-time) and their predictions have been fed to
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continuum-scale models. A potential future application of molecular-
and mesoscale models would be in the real-time prediction of the
states of the battery at the small length scales for use in more accurate
prediction of the whole battery performance in real time.

Robustness and computational cost in simulation and
optimization.— Battery models result in multiple DAEs to be sim-
ulated with unknown initial conditions while operating for multiple
cycles of charge and discharge. For these models adaptive time step-
pers are usually more than an order of magnitude faster than uniform
time-discretization. Several adaptive solvers are available for solu-
tions of DAE models.143–146 Recently, many easy-to-use ODE solvers
have been made available (ode15s, ode15i, etc.) from MATLAB,88

“NDsolve” from MATHEMATICA,89 and “dsolve” from MAPLE90

to solve non-stiff, stiff and moderately stiff DAE models of index-1.
In spite of recent advancements, many of these DAE solvers and

initialization routines can fail due to numerical convergence problems
during Newton iteration to solve nonlinear equations and singular/ill-
conditioned Jacobian matrices resulting from small integration steps.
The complexity in battery model simulation is increased by steep
variations of the dependent variables (concentrations and potentials)
between charging and discharging.

Battery simulations for extended operations, such as during switch-
ing from constant-current to constant-potential operations, typically
require some form of event detection. The DAEs for battery models
increase in complexity and also in number as the accuracy and pre-
dictability of models increase. Simulation times for battery models
range from milliseconds for empirical circuit-based models to min-
utes for P2D/P3D models and even days for a multiscale model such
as a P2D model coupled with KMC simulation, limiting the options
for real-time simulations.

Uncertainties in physicochemical mechanisms.— Although much
literature exists for capacity fade, SEI-layer formation, and other phe-
nomena, no existing model simulates all of the mechanisms for ca-
pacity fade or battery failure. More detailed information is required
to sufficiently specify a hypothesized mechanism for a phenomenon
before it can implemented in a simulation model, such as

� Which chemical species are formed and consumed in each phase
and at the interface between phases?

� What is the physical configuration of each chemical species
at the interface between phases (e.g., is a molecule on an electrode
surface sticking out into the electrolyte or flat against the surface)?

� How many sites does each molecule on a solid surface cover?

Substantial experimental design efforts are required to answer such
questions so the answers can be incorporated into first-principles
lithium-ion battery models. Also, most applications using batteries
for long-term requirements depend on projections made from model
predictions coupled with limited test data; however, the relationship
between failure modes during the test conditions and those during
actual operating scenarios have not been clearly established – neces-
sitating the tools used in SOC and SOH predictions to be independent
of the operating or manufacturing conditions. Quite often in such sce-
narios, the use of look-up tables limits the confidence in the predictive
capabilities of the models.

Conventional degradation models based on extensive testing of
batteries under various operating conditions and loads have in general
attributed the degradation of battery performance to loss of the active
material and loss of lithium that can be cycled. Several detailed mod-
els to quantify the signature of these parameters on the aging profile
of lithium ion batteries have been presented.31, 147 Other approaches
include the use of arbitrary empirical parameters obtained by regress-
ing test data. These models usually interpolate the SOC and the health
of the battery based on pre-stored database of information. Such mod-
els are widely employed in the industry when sufficient information
on the physics of the materials in the batteries is not available – this
problem is commonplace among module and pack manufacturers,

who assemble the units from cells manufactured by a third-party. It is
standard industrial practice to calibrate such models148, 149 since mon-
itoring the evolution of all of the physical parameters such as transport
coefficients and the reaction rates within each cell inside the pack is
expensive, if not impossible. Network models have also been used to
address non-uniform degradation in large format cells.150

Addressing the Critical Issues, Opportunities,
and Future Work

This section describes some approaches for addressing the crit-
ical issues raised in the previous section, looking toward likely fu-
ture research directions in the modeling and systems engineering of
lithium-ion batteries.

Sparsity of manipulated variables.— Currently, batteries are
charged at constant current until a cutoff potential is reached or a
time limit followed by charging at constant potential. However, these
charging protocols may result in thermal runaway, leading to under-
utilization and possibly even explosions. Given the limited variables
that are available for manipulation, it is especially important to make
the best utilization of these variables during battery operations. A first-
principles battery model can be employed in a dynamic optimization
framework to compute a time-varying charging profile that maximizes
life, minimizes capacity fade, and improves battery performance.

The determination of an optimized charging profile requires a
first-principles model that has high predictive accuracy for a wide
range of operating conditions, since charge transfer, reaction kinetics,
and diffusion rates may be quite different than in the experiments used
in the model development. A first-principles model that describes the
battery behavior at the meso- and microscale models would be able to
take these effects into account during the dynamic optimization. The
application of dynamic optimization to compute an optimal charging
profile is illustrated here for a P2D model11 for lithium-ion batteries.
The dynamic optimization for a cell was formulated as:

max
iapplied (t)

E(t f )

s.t.
d E

dt
= V (t)iapplied (t)

V (t) ≤ 4.05 V

t f ≤ 1 hour

[8]

where the optimization objective E is the total energy stored in
the cell, V is the voltage obtained from the cell as computed from
the first-principles model, iapplied is the applied current to the cell,
the charging time tf was restricted to 1 hr, the maximum allowed
voltage was 4.05 V, and the value for V as a function of time. The
implementation of dynamic optimization is facilitated by the use of
a reformulated model6 to compute the optimization objective. The
time profiles for the electrolyte concentration at the cathode/current
collector interface in Fig. 6 are for three different charging sce-
narios: (1) conventional charging at constant-current followed by
constant-potential charging, (2) constant-current charging at an
optimized value obtained by solving the dynamic optimization for
a fixed value, and (3) the time-varying charging profile given by
Eq. 5. The electrolyte concentration at X = 0 (the cathode/current
collector interface) has the highest peak value during dynamically
optimized charging, due to its higher initial current. For the chosen
chemistry, mass transfer limitations in the electrolyte occur at higher
currents. This protocol indicates that to increase the energy density,
more energy should be stored at shorter time, albeit causing mass
transfer limitations in the electrolyte, and allow the concentration to
equilibrate at longer times to ensure longer operability of the battery.
During dynamically optimized charging, the electrolyte concentration
decreases in the latter part of charging, as lithium-ion transfer slows
while more lithium ions are packed into the carbon matrix in the
negative electrode. In contrast, after the first 10 minutes the electrolyte
concentration is nearly constant during optimized constant-current
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charging. When a meaningful global objective function was chosen at
the system level and robust optimization tool and meaningful models
are used, improvements in ‘local’ battery behavior are observed.

The above approach can be considered as a top-down approach,
where operating conditions or charging protocols are determined at
the system level (battery as a whole), and the system-level behavior is
affected by the local mass/charge transfer and reaction effects (Fig. 1)
and indirectly manipulates non-measurable internal variables such as
the electrolyte concentration or potential or also the solid-phase con-
centrations as shown schematically in Fig. 6. Physics-based models
are required in the dynamic optimization to correctly relate the local
effects to the system-level behavior as quantified by the optimization
objective. The more detailed and accurate the model, the more op-
timal ‘local’ behavior can be determined using the few manipulated
variables at the system level.

Note that the SPM model lacks sufficient information on the be-
havior in the cell to be of much usefulness in the above optimizations.
If the first-principles model employed in the optimization includes a
high fidelity thermal model, then the localized temperatures in the cell
can be included as a constraint in the optimization. A more detailed
multiscale model that includes more of the physicochemical phenom-
ena would be needed for optimization of battery operations for very
quick charging generally involving rates of 2C or higher.

Another approach that can be used to address the sparsity of ma-
nipulated variables is to have the limited number of material properties
(manipulated variables) vary spatially. If the electrode architecture is
designed to minimize and address every possible local nonideality
at the sandwich level, then the system level performance will im-
prove. This can be viewed as the bottom-up approach, where the
material properties or electrode architecture, etc. are determined at
the electrode level (micro-scale), to produce improved performance
at the system level (Fig. 1). Physics-based models are required in
the optimization framework to correctly relate the local effects to
the system-level behavior as quantified by the optimization objective.
For example, consider the minimization of the ohmic resistance at
the sandwich level (Fig. 1). Optimization of spatially-uniform poros-
ity reduced the ohmic resistance by 20%, whereas optimization for
a spatially-varying profile results in a reduction of 33% (Fig. 7).13

Physics-based models are required in the optimization framework to
correctly relate the local effects to the system-level behavior as quan-
tified by the optimization objective. Note that improved performance
for both solid-phase potential and current are obtained locally, which
leads to reduced ohmic resistance across the sandwich, which then
relates to improved performance for charge-discharge curves at the
system level.

To address all the issues in Fig. 1, a more detailed model is
required (i.e., moving right along the diagonal in Fig. 3). Possi-
ble material properties that can be varied as a function of distance
are given in Fig. 2. Note that for particle radius, optimization with
the P2D model would yield only the smallest possible radius, but

stress-strain models would suggest a different size for mechanical
stability.119

The more sophisticated the battery model, more computationally
intensive the simulations and optimization. While the value of adding
more physicochemical phenomena into battery models is clear, and
discussed in more detail below, there is also a need to improve the
computational efficiency in the simulation of these models by refor-
mulation or order reduction.

Need for better fundamental models to understand SEI-layer,
structure.— Different simulation methods are effective at different
scales (see Fig. 5), which has motivated efforts to combine multiple
methods to simulate multiscale systems. Battery models that dynam-
ically couple the molecular- through macro-scale phenomena could
have a big impact in understanding and designing lithium-ion bat-
teries. The above continuum models could be coupled with stress-
strain models and population balance models to describe the time
evolution of the size and shape distribution of particles. Probably the
first step would be to couple molecular models with P2D models, to
thoroughly validate the coupled simulation algorithms before mov-
ing to more computationally expensive 3D continuum models. KMC
methods could be combined with P2D models to analyze surface
phenomena such as growth of the SEI layer in a detailed manner, sim-
ilarly as has been applied to other electrochemical systems.72, 151–160

For a 125 × 125 mesh, 2D KMC coupled with P2D model with time
steps ranging from nanoseconds to seconds would require simulation
times ranging from minutes to hours and even days for a single cycle.
Another multiscale coupling that could be useful is to occasionally
employ molecular dynamics to update transport parameters in a P2D
or 3D model. Molecular dynamics can provide information that can-
not be predicted using a P2D or 3D continuum model, but long times
cannot be simulated using molecular dynamics, so the combination of
the two approaches has the potential to increase fidelity while being
computationally feasible.

The current literature review suggests that typically researchers
have expertise and skills in one or two of the models/methods reported
in Fig. 6. If researchers with expertise in different fields collaborate,
the task of multiscale model development becomes easier and faster
progress can be expected. While black-box approaches are available
for some of the methods in Fig. 5, it is strongly recommended that,
at least for case studies, hard-coded direct numerical simulation is
carried out to enable better understanding of coupling between models
at different length and time scales.

Robustness and computational cost in simulation and
optimization.— The complexities of battery systems have made ef-
ficient simulation challenging. The most popular model, the P2D
model, is often used because it is derived from well understood
kinetic and transport phenomena, but the model results in a large
number of highly nonlinear partial differential equations that must
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be solved numerically. For this reason, researchers have worked to
simplify the model though reformulation or reduced order methods
to facilitate effective simulation. One method of simplification is to
eliminate the radial dependence of the solid phase concentration us-
ing a polynomial profile approximation,18 by representing it using the
particle surface concentration and the particle average concentration,
both of which are functions of the linear spatial coordinate and time
only. This type of volume-averaging161, 162 combined with the poly-

nomial approximation163, 164 has been shown to be accurate for low
to medium rates of discharge.18, 165–168 At larger discharge rates, other
approaches have been developed to eliminate the radial dependence
while maintaining accuracy.106, 165–168 Approximate solution methods
have also been developed for phase-change electrodes, for solid phase
diffusion.169 Recently, discretization in space alone has been used by
researchers to reduce the model to a system of DAEs with time as
the sole independent variable in order to take advantage of the speed
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Figure 8. Sequential approach for robust optimization of battery models with multiple design parameters.

gained by time-adaptive solvers such as DASSL/DASPK.5, 6, 144 Such
solvers also have the advantage of being capable of detecting events,
such as a specific potential cutoff, and running the simulation only to
that point.

Complications arise when determining consistent initial conditions
for the algebraic equations. Consequently, many good solvers fail to
solve DAE models resulting from simulation of battery models.170

As a result, it is necessary to develop initialization techniques to
simulate battery models. Many such methods can be found in the
literature for a large number of engineering problems. Methods
and solvers specifically focusing on initialization of battery mod-
els are also available in the literature.170, 171 Recently, a pertur-
bation approach has been used to efficiently solve for consistent
initial conditions for battery models.172 An alternative continuum
representation of the discrete events in the charge/discharge cycle
of a battery that does not require initialization between the dis-
crete events of a given cycle or between any two cycles was also
proposed.173

Proper orthogonal decomposition (POD) has been used to reduce
the computational cost in various sets of model equations, by fitting
a reduced set of eigenvalues and nodes to obtain a reduced number of
equations.5 Alternatively, model reformulation techniques have been
used to analytically eliminate a number of equations before solving
the system.6 Other researchers have used orthogonal collocation and
finite elements, rather than finite differences, in order to streamline
simulations.75, 174, 175

For stack and/or thermal modeling of certain battery systems, many
attempts have decoupled equations within the developed model.33–42

This approach breaks up a single large system into multiple, more
manageable systems that can be solved independently. This allows
the model to be solved quickly, but at the expense of accuracy. For
this reason, efficient models that maintain the dynamic online coupling
between the thermal and electrochemical behavior, as well as between
individual cells in the stack are preferred.

Numerical algorithms for optimization can get stuck in local op-
tima, which can be nontrivial to troubleshoot when the number of
optimization parameters is large. This problem can at least be partly
addressed using a sequential step-by-step approach (see Fig. 8). For
illustration purposes, consider the maximization of the energy density
with lp, ln, ls, εp, and εn, where l is the thickness of each region and

ε the porosity (p – positive electrode, s – separator, and n – negative
electrode).

(1) Choose a battery model that can predict the optimization objec-
tive and is sensitive to the manipulated variables (e.g., a P2D
model).

(2) Reformulate or reduce the order of the model for efficient sim-
ulation. This step has to be judiciously made to ensure that the
reduced order model is valid in the range of manipulated vari-
ables for optimization.

(3) Maximize energy density with lp,
(4) Using the solution from Step 3 as an initial guess, find optimal

values for the two parameters (lp, εp).
(5) Add parameters one by one, in the same manner as in Step 4.
(6) Arrive at optimal performance with multiple parameters.
(7) If needed before Step 3, find results with a simpler and less

accurate model for a good initial guess.
(8) After convergence, feed in more sophisticated models (for exam-

ple, including stress effects) to make sure mechanical stability
is not compromised.

A similar approach can be used for CVP for dynamic optimization
with the total time interval divided as 2, 4, 8, etc. for subsequent
optimizations until convergence.

The above algorithm will tend to have better convergence if the
parameters in Steps 3–5 are rank ordered from having the largest
to the lowest effect on the optimization objective. While advances
have been made in the computation of global optima for dynamic
optimizations,104, 176 it will be at least a decade before such methods
are computationally efficient enough for application to the optimal
design of lithium-ion batteries using nontrivial physics-based models.

Fig. 9 shows improved performance at each step of an optimization
while successively adding manipulated variables. Capacity matching
was used a constraint for the thickness of the negative electrode.

Uncertainties in physicochemical mechanisms.— Uncertainty
quantification methods have been applied to hundreds of differ-
ent kinds of systems to assess the progress of the development
of first-principles models and to assess the confidence in model
predictions.124, 177, 178 The Monte Carlo method and its many variants
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Figure 9. Optimization of the energy density for a
lithium-ion battery, showing the effect of electrode
thickness and porosities.

for uncertainty quantification are computationally expensive and have
become less used over time compared to power series and polyno-
mial chaos expansions. These expansion-based approaches avoid the
high computational cost associated with applying the Monte Carlo
method or parameter gridding by first computing an approximation
to the full simulation model, followed by application of robustness
analysis to the approximate model. These expansion-based methods
are computationally efficient enough for application to lithium-ion
batteries.

For example, consider the discrete estimation of model parameters
as a way to track the effects of capacity fade. As of today, capacity
fade is attributed to many reasons. This depends upon the chemistry,
mode of operation, and size. A wide range of reasons can be linked to
transport and kinetic parameters as published elsewhere.110, 111, 179 Five
effective transport and kinetic parameters were estimated by applying
least-squares estimation to the 250 mAh button cells experimental
voltage-discharge data. The estimated parameters were the effective
diffusion coefficient of lithium ion in the solution phase (D1), effective
diffusion coefficient of lithium in the solid phase for the negative and
positive electrodes (Dsn and Dsp), and electrochemical reaction rate
constants for the negative and positive electrodes (kn and kp).

The effective negative-electrode solid-phase diffusion coefficient
and reaction rate constant (Dsn and kn) were found to decrease mono-
tonically with cycle #, whereas the other three parameters did not
follow any particular trend. This suggested that the voltage-discharge
curves may not contain sufficient information to accurately estimate
the effective values of D1, Dsp, and kp, and that the change in the
voltage-discharge curves with cycle # could be captured by estimation
of only the effective solid-phase diffusion coefficient Dsn and reaction
rate constant kn for the negative electrode. A more detailed analysis
suggested that the voltage-discharge curves were very sensitive to the
value of the effective solid-phase diffusion coefficient Dsn but weakly
sensitive to deviations in the model parameters D1, Dsp, kp, and kn

from their nominal values, resulting in large uncertainties in their
values when fit to experimental voltage-discharge curves. That the
voltage-discharge curves were much sensitive to a negative-electrode
parameter (Dsn) suggests that mechanisms for capacity fade in the
negative electrode, rather than the electrolyte or positive electrode,
were the most important for this battery under these operating
conditions.111

The overall trend in the variation of model parameters is more
reliably assessed by plotting nominal estimates over many cycles.
A discrete approach was adopted for the prediction of capacity fade
by tracking the change in effective transport and kinetic parameters
with cycle number (N). The model parameters Dsn and kn fit to the

experimental data for cycles 25, 100, 200, 300, 400, and 500 were
used to predict the remaining battery life based on voltage-discharge
curves measured in past cycles. To characterize the degradation in
the model parameters, a power law was fit to the estimated parameter
values from cycles 25 to 500 as shown in Fig. 10a. By implicitly
assuming that the changes in the parameter values are the result of
the same mechanism in later cycles, the parameter values for the
subsequent cycles were predicted using the power-law expressions.
The voltage-discharge curve predicted by this model was in very
good agreement with the experimental data at cycle 1000, indicat-
ing that the model was able to predict capacity fade as shown in
Fig. 10b. Each red dot is an experimental data point and the blue
line is the model prediction. It is likely that when more detailed
multiscale models become available, there will not be a need to per-
form fitting and tracking of transport and kinetic parameters with
cycles.

A rapid update of the parameters usually involves some form of
a moving horizon algorithm that estimates the parameters used in the
model using an initial set of data points (for example between from
the start of the experiment to some interval of time t). These values
for the parameters (θt) are then used to predict the cell performance
for the next few data points (e.g., between times t and t + �t).
The error between the model predictions and the actual data points
collected between t and t + �t is then used to calculate the updated
set of parameters θt+�t. This process is repeated at periodic intervals
of time or the load. Filtering techniques are commonly employed for
on-line estimation;141, 180, 181 in most of these algorithms, the measured
change in the response is divided between the actual battery response
and system noise, based on pre-determined weights assigned to the
functions calculating the noise and the battery models. The predicted
response for the voltage is compared at the next time step and a
correction term is introduced to the weights. More elaborate moving
horizon estimates include the influence from several sets of param-
eters from the past on the current estimates. One example is the use
of exponential forgetting functions.182, 183 In this example, the effect
of the parameter values θt, θt+�t, θt+2�t, etc. on the current estimate
θt+k�t is assumed to decay exponentially. The steps are summarized
below:

Step 1: Choose a subset of data points N0 that end when the
parameters need to be updated. Calculate the initial value for the
SOC.

Step 2: Calculate the value of the exponential forgetting function
at the end of N0.

Step 3: Use the next set of data points N0+1 to N1, to calculate the
updated values for the parameters in the model equations.
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Figure 10. Parameter estimation, uncertainty analysis, and capacity fade prediction for a lithium-ion battery.

Step 4: Update the SOC for the next set of data points using the
parameter values from the previous step.

Step 5: Update the exponential forgetting function, based on the
data points N0+1 to N1, new values for the parameters, and the current
value of the SOC.

Step 6: Repeat Steps 1 to 5 until the end of the data set. This
procedure produces a set of values for the SOC updated whenever the
error between the model and the experimental data is significant.
The use of such online-tracking algorithms, together with reliable
models requiring modest computational effort, greatly reduces the
uncertainty associated with assessing the failure mode of the batteries,
and can be implemented for a variety of operating conditions. The
states of interest are tracked as and when the system operates; the
advantages offered by this approach are two-fold: (1) any mitigation
scheme can be implemented fairly quickly since the operator does
not wait until performing the scheduled capacity checks on the
batteries and (2) the proposed methodology does not rely solely on a
characterization chart made under lab-scale testing environment, and
captures the wear-and-tear imposed by the system on the batteries.

Conclusions

Advances in nanostructured multifunctional materials and new
electrolytes will potentially improve the performance of lithium-ion
batteries in the next two decades. Meanwhile, fundamental under-
standing is currently lagging behind the technological advancement
in lithium-ion batteries as seen by the manufacturing of batteries for
vehicles and other applications. New in-situ methods are currently be-
ing studied to experimentally understand intercalation and processes
inside the lithium-ion battery in real-time.184–186 Whatever understand-
ing that is gained will be incorporated into first-principles models and
used in optimization to maximize the battery performance obtainable
using the chemistry and materials of today. Although the details of
the chemistry may be different, the approaches established for the

optimization of today’s battery designs are based on first principles
that will be valid for tomorrow’s materials and systems.

The main objective of this paper is to discuss recent developments
and challenges in model development and simulation of lithium-ion
batteries at different length and time scales from empirical models to
atomistic models. The improved predictability of detailed multiscale
models will enable precise manipulation of non-measurable variables
at the micro and nanoscale. Numerical methods for the simulation of
these more sophisticated models are expected to continue to improve
in the future, to enable more details physicochemical phenomena to
be included in battery design optimization.

The suggested directions for future research in this area are

� Development of multiscale models with improved fidelity over
the full range of battery operations of interest.

� Development of robust and accurate reduced-order and refor-
mulated models at different scales to enable efficient simulation for
optimization.

� Development and implementation of robust and efficient nu-
merical simulation and optimization schemes and software platforms
to couple models of different kinds (continuum and non-continuum).

� Validation of improved performance at the system level and
development of design procedures more capable of scale-up from
small-scale batteries to large-scale batteries.
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