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Modeling and Simulation of Microstructure Evolution
for Additive Manufacturing of Metals: A Critical
Review

CAROLIN KÖRNER, MATTHIAS MARKL, and JOHANNES A. KOEPF

Beam-based additive manufacturing (AM) of metallic components is characterized by extreme
process conditions. The component forms in a line-by-line and layer-by-layer process over many
hours. Locally, the microstructure evolves by rapid and directional solidification. Modeling and
simulation is important to generate a better understanding of the resultant microstructure.
Based on this knowledge, the AM process strategy can be adapted to adjust specific
microstructures and in this way different mechanical properties. In this review, we explain the
basic concepts behind different modeling approaches applied to simulate AM microstructure
evolution of metals. After a critical discussion on the range of applicability and the predictive
power of each model, we finally identify future tasks.
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I. INTRODUCTION

ADDITIVE manufacturing (AM) of metal compo-
nents allows the generation of very complex parts even
from high performance alloys such as titanium or nickel
base superalloys.[1–5] Generally, powder bed fusion
(PBF) based on the laser (L-PBF)[6] or the electron
beam (E-PBF)[7] or direct energy deposition (DED)[8]

also known as laser engineered net shaping (LENS) are
used for high materials quality. The DED process is
characterized by injecting metal powder into a melt pool
generated by a coaxial laser. In contrast, the beam
locally melts powder in a powder bed during PBF.

Generally, AM is involved with rapid and directional
solidification. Typically, the solidification velocity
decreases from L-PBF to E-PBF to DED. The compo-
nent evolves during several hours in a line-by-line and
layer-by-layer process defined by a variety of process
parameters such as beam velocity, beam power, distance
between lines, layer thickness, line length, etc. The
resulting microstructure is governed by all these param-
eters since they determine the local solidification condi-
tions, i.e., the solidification velocity v and the thermal

gradient G at the solidification front.[9] Thus, the
microstructure reflects the scanning strategy with the
inherent periodicity and symmetry. We observe elon-
gated grains following the solidification front as well as
equiaxed microstructures.[10–12] The directional solidifi-
cation conditions very often lead to strong texture
formation, typically the <001> orientation is pre-
ferred.[13] Specific scanning strategies may even result
in single crystals.[14]

As a consequence, the mechanical properties of
additively build parts are dependent on the build
direction.[15,16] In most cases, this is not desired and a
variety of strategies has been developed to break up this
kind of texture formation.[17,18] On the other hand, the
possibility to manipulate locally the microstructure and
thus the mechanical properties is also a unique oppor-
tunity inherent to AM. No other production technology
is able to adjust locally the materials properties. Apart
from the ability of producing near net shape parts with
complex geometries, this is an important feature of AM
methods, which has not been exploited so far and
requires full understanding of microstructure evolution
during the building process. Although microstructure
evolution of single tracks is properly understood, the
line-by-line and layer-by-layer process results in very
complex patterns due to multiple remelting. Suitable sim-
ulation tools can only capture this complexity.
There are different physical and numerical models

available to simulate microstructure evolution during
solidification[19,20]: phase-field models,[21–24] cellular
automaton models[25,26] or Monte Carlo[27] models.
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These models differ by their physical exactness and the
necessary computational effort. The more physics is
contained the higher is the computational effort.

Phase-field (PF) models consider the complex solid-
ification pattern formation and segregation of an alloy
based on a sound thermodynamic basis.[23] Due to the
extreme high computational effort, PF models are
usually restricted to alloys with only some components,
typically two or three elements. In addition, only a small
number of cells or dendrites is simulated. The lack of
reliable material properties, e.g., the interface energy as
a function of direction, complicates matters even more.
Nevertheless, PF models not only give information
about the grain structure but also the dendritic segre-
gation patterns. This method gives the highest level of
information but is restricted to very small sections of a
part.

Cellular automation (CA) approaches have a coarser
look on the cellular or dendritic microstructure. In this
case, only the convex hull of a dendrite is considered.[28]

There is no information of the internal segregation
structure of a grain. The growth kinetics of the dendrite
tips is governed by the local undercooling. Here, PF
calculations may give information about the undercool-
ing situation at the dendritic tips as well as the growth
rate—undercooling dependence.[29]

Kinetic Monte Carlo models are based on curvature
driven growth of phase boundaries.[30] Although large
problems, i.e., dimensions in the order of a component,
can be solved the correlation between the numerical
model and the physics behind grain growth and grain
selection is not quite clear.

All these methods show specific advantages and
disadvantages.[31,32] Nevertheless, they have one com-
mon challenge – modeling of new grain nucleation.[28]

Nucleation is a key problem and far from being solved.
Nucleation models available in literature exhibit several
free parameters. These parameters have substantial
influence on the numerical result and are used to fit
experimental and numerical results.[33]

The aim of this work is to review the theoretical
approaches to simulate AM microstructures. A short
overview of the most important phenomena observed in
experiments gives us a sound physical basis for the
different mechanisms governing grain structure evolu-
tion during AM. Eventually, the numerical models have
to be validated against experimental findings. Basis for
modeling the microstructure is a well-defined tempera-
ture field. Different approaches to model the tempera-
ture at the solidification front are described and their
specific advantages and disadvantages are discussed.
The main part of the review concerns the various
approaches modeling grain structure evolution includ-
ing a critical discussion on their predictive power to
calculate microstructures in real components.

II. EXPERIMENTAL AM MICROSTRUCTURES

Basically, AM of metals is a welding process where a
high power beam melts a powder layer or powder is
injected into the melt pool produced by a laser beam.

Thus, most of the phenomena observed during weld-
ing[34,35] are also governing the microstructure of AM
components. Nevertheless, there is an important differ-
ence between welding processes and AM. During AM,
several hundred of lines and several hundred of layers
form the component over many hours. Thus, we observe
transient temperature fields, superposition of tempera-
ture fields, in-situ heat treatment and geometric effects
(Figure 1). Generally, the material is remolten and
reheated many times.
Figure 2 gives an overview of important experimental

observations. During AM, the previous layer is partially
remolten and solidification is very often dominated by
epitaxial growth combined with directional solidifica-
tion in building direction (Figure 2(a), left). Grain
selection often leads to columnar grains associated with
fiber texture (for cubic crystals the<001>-direction is
oriented in building direction).[37] This columnar grain
structure tends to show secondary alignment and texture
formation within the building plane (x-y-plane).[38,39]

The latter is dependent on the scanning strategy and
reflects the symmetry of the scanning pattern.
Suitable scanning strategies support secondary grain
selection in such a way that even single crystalline
structures evolve.[14,40–42]

Very often, new grain formation at the bottom of the
melt pool is observed (Figure 2(b), left). Several exper-
imentalists reported but not investigated this phe-
nomenon in detail until today. One reason of grain
nucleation is that a segregated microstructure is
remolten. During remelting it may happen that some
precipitates or particles do not fully dissolve and serve
as heterogeneous nuclei (Figure 2(b)). In addition, the
rough interface between cells or dendrites and melt pool
in combination with a more or less homogenous melt
(convection) may lead to a strong undercooling situa-
tion, especially within the interdendritic regions. The
latter phenomenon is almost unexplored and needs
detailed investigations in the future.
Properly understood is the well-known colum-

nar-equiaxed transition (CET) during solidifica-
tion.[43,44] During CET new nuclei form in front of the
solidification front and the columnar grain structure
transfers to an equiaxed one. This phenomenon is
governed by the temperature gradient G and the
solidification velocity v.[45] The CET is initiated by
strong undercooling ahead of the solidification front.
Figure 2(a) shows this transition for IN718 (E-PBF)
provoked by increasing the total energy input. Never-
theless, standard processing conditions for L-PBF or
E-PBF typically do not lead to CETs.
In AM, the scanning strategy has strong influence on

the microstructure (Figure 2(c)). In this case, the beam
parameters and the energy input are identical. The only
difference between these two experiments is that the
scanning direction changed by 90 deg for each layer for
the equiaxed sample and every 10 layers for the
columnar one. This example demonstrates that the
change of the main solidification direction in each layer
has strong influence on the appearance of new grains.
Either more new grain nuclei are formed and/or the
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Fig. 1—AM temperature fields. (a) Superposition of the temperature field of neighboring lines. (b) Calculated evolution of the temperature for
Ti-6Al-4V during E-PBF at different positions at and below the surface. Reproduced with permission.[36] Copyright 2017, Springer. (c)
Geometric effects demonstrated using a ring structure.

Fig. 2—Experimental observations with respect to microstructure evolution: (a) columnar to equiaxed transition by increasing the energy input
(E-PBF, IN718), (b) new grain formation. Left: new grains at the bottom of the melt pool. Right: new grains everywhere due to the addition of
TiB2 particles (L-PBF, Al-12Si). Reproduced with permission.[47] Copyright 2019, Elsevier. (c) Influence of the scanning strategy. Left: hatch
direction changes in each layer by 90 deg. Right: hatch direction changes only after 10 layers (E-PBF, IN718). Reproduced under the terms of
the CC BY 4.0 license.[48] Copyright 2014, EDP Sciences. (d) Geometric effects (E-PBF, Ti-6Al-4V). Adapted under the terms of the CC BY 3.0
license.[46] Copyright 2013, Elsevier.

METALLURGICAL AND MATERIALS TRANSACTIONS A



present nuclei have better growth conditions due to the
change of the solidification direction.

Finally, surface effects have strong influence on the
microstructure (Figure 2(d)). For small geometries, e.g.,
thin walls or lattice structures, surface effects may be
even dominant. New grains origin from partially molten
powder particles at the surface.[46] In addition, the
temperature field near the surface differs from that
within the bulk. Thus, the properties of very fine
structures are quite different from that of the bulk
material.

III. PHYSICAL MODELS AND NUMERICAL

METHODS

During AM, rapid and directional solidification
determines the resultant microstructure of the metallic
deposit.[46] Speed, power and size of the heat source
govern melt pool geometry and solidification kinetics.[49]

Microstructures observed[50] are the result of a complex
interplay between solidification conditions, thermal
environment, thermal cycling, phase transformations
and their kinetics. Macroscale components (hundreds of
mm in dimension) develop from a submillimeter melt
pool formed from powder particles with about
101-102 lm diameter. Hundreds of layers between
20 lm and 500 lm are necessary to realize components
whereas the microstructure is on the micron or submi-
cron scale.[51] The time scale for microstructure evolu-
tion is 10�3 s or less whereas the total building time
takes several hours. These time and length scales across
many orders of magnitude constitute an enormous
challenge for modeling both, the thermal field as well
as the resulting microstructure.

A. Temperature Fields

Basis for microstructure evolution is the transient
temperature field (Figure 1).[52] The melt pool depth is
strongly dependent on the scan length. There is a
superposition of the temperature fields of neighboring
lines (Figure 1(a)). The melt pool depth normally
increases from line to line until a quasi-stationary value
is reached. Shorter scan lengths lead to larger melt pools
since the beam return time decreases. At turning points,
the energy input depends on the AM machine. Typi-
cally, the melt pool depth at turning points is larger
compared to the bulk. Finally, boundary effects have
strong influence on the temperature field since the
surroundings (powder bed in PBF, atmosphere in DED)
are nearly perfect thermal isolators.

Although the basic equation for the temperature is a
parabolic scalar equation, which is relatively easy to
solve, many simplifications are still necessary to make
the whole problem feasible for microstructure evolution
calculations. Generally, individual powder particles are
not considered. The powder bed is treated in a homog-
enized way as second material with adapted proper-
ties.[53] Hydrodynamics is in most cases not considered.
Exceptions can be found in Rai et al.[54] albeit in two
dimensions. Evaporation effects are usually ignored.

Even with these strong simplifications, the calculation of
predictive temperature fields is still a challenge:

1. The absorbed beam energy and energy loss by
evaporation is not exactly known.

2. Many material parameters such as the specific heat
or the thermal diffusivity are unknown at high
temperatures. These parameters are simply esti-
mated or extrapolated.

3. The temperature field is not stationary but tran-
sient. It is influenced by initial effects, turning
points, length of scan vectors, etc. (Figure 1(c)).

Whereas the first and second aspects require suitable ex-

perimental input, e.g., to adapt the energy absorption

coefficient, the last aspect is a question of computational

effort. High deflection speeds combined with small melt

pool dimensions constitute an enormous challenge on

the computational resources when modeling the result-

ing thermal fields. This leads to the fact that quite

different approaches, i.e., analytical or numerical solu-

tions, are applied to generate temperature fields as input

for microstructure calculations.
Many researchers address this challenge by develop-

ing analytical or quasi-analytical solutions for the
transient heat conduction problem. These approaches
are based on the fundamental solution of the heat
conduction equation, i.e., the solution for a spatial and
temporal point-line source.[55–58] Rosenthal calculated
the quasi-stationary thermal field surrounding a moving
point source.[55] Eagar and Tsai replaced Rosenthal’s
point source with a Gaussian heat distribution.[57] Yajun
combined a point- and line source approach for mod-
eling welding melt pools.[58] Analytical solutions are
reaching their limit at phase transitions or for real
geometries. Promoppatum et al. compared the results of
Rosenthal’s solution and a numerical finite element (FE)
model.[59] While the authors find good agreement
between both models for moderate energy input values,
Rosenthal’s solution overestimates the melt pool dimen-
sions in comparison to the numerical results when
applied to line energies larger than 0.4 J/mm. One
reason for that is that Rosenthal’s equation is not able
to treat phase transformations and latent heat effects.
Solving the heat diffusion equation numerically

involves the discretization of the underlying governing
equation. Besides finite element (FE), the most com-
monly used approaches are Finite-Difference (FD) and
Finite-Volume (FV) techniques.[60] An efficient combi-
nation of thermal analysis and fluid dynamics for
modeling of PBF provides the Lattice-Boltzmann (LB)
method.[61] These methods incorporate the energy input
of the laser- or electron beam by an additional source
term, in most cases a Gaussian distribution analogous to
the work of Eagar and Tsai.[57] Goldak implemented a
double ellipsoidal power density distribution for ana-
lyzing both shallow and deep penetration welds.[62] A
survey of the use of the FE method for welding is given
by Lindgren.[63] The small length and time scales
encountered in fusion welding enforce a very fine spatial
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and temporal resolution. Maintaining these extraordi-
nary resolutions for an additively build part is com-
pletely unfeasible even for the most capable super
computers available today. Thus, King et al. suggest
the separation of different scales for generating insights
in the AM process.[64]

Summarizing, most approaches in literature to calcu-
late temperature fields as input for microstructure
evolution calculations use stationary solutions of the
temperature field, i.e., the temperature field is constant
in a coordinate system moving with the same velocity as
the beam moves. These fields result either from analyt-
ical solutions of a moving heat source or numerical
approaches. Analytical solutions are cheap with respect
to numerical effort but show specific deficits to model
the correct melt pool geometry. Numerical approaches
for the stationary temperature field result in a more
realistic melt pool geometry. Based on these stationary
solutions for the temperature field, different process
strategies can be simulated resulting in bulk microstruc-
tures. Although analytical solutions allow the superpo-
sition of temperature fields of neighboring lines, this
approach fails for real part geometries such as depicted
in Figure 1(c). That is, the full temperature field, which
is the result of a specific process strategy and the
geometry, is necessary to predict the microstructure of
real parts. Köpf et al. already demonstrated the consid-
eration of the full temperature field for simple geome-
tries as input for microstructure simulation.[65]

B. Microstructure Modeling

Each model is only able to capture part of the full
physics of microstructure evolution. Before we discuss
the different microstructural modeling approaches in
detail, we review the fundamental processes at the
solidification front, which eventually determine the
microstructure. This is essential to understand the
different model assumptions, their advantages and
disadvantages, and eventually their predictive power.

Figure 3 shows schematically the situation at the
solidification front. Solidification of alloys is

characterized by planar, cellular or dendritic solidifica-
tion.[45] Grain growth velocity in z-direction is given by
the isotherm velocity vT. Undercooling is necessary for
each grain to reach vT in solidification direction (here
z-direction). The growth velocity in cubic crystal systems
is highest in <001>-direction. Unfavorably oriented
grains with angle / between <001> orientation and
z-direction have to grow faster with velocity v/ ¼
vT=cos /ð Þ in order to reach the velocity vT in z-direction.
As a consequence, undercooling at unfavorably oriented
grains has to be higher than at favorably oriented ones.
Thus, unfavorably oriented grains fall behind favorably
oriented ones. This mechanism is essential for grain
selection since favorably oriented grains are able to
overgrow unfavorably oriented ones. As a result, grains
oriented with their preferred growth orientation aligned
with the thermal gradient will outgrow grains with other
orientations and the microstructure will evolve a fiber
texture.
A further, very important mechanism is new grain

formation within the undercooled zone in front of the
solidification front. The size of the undercooled zone
depends on the temperature gradient G and the solid-
ification velocity v ¼ vT. As long as the necessary
undercooling for nucleation DTn, is higher than the
undercooling in front of the solidification front, new
grain formation is suppressed. Nucleation of new grains
becomes more and more important with decreasing G
and increasing v. Eventually, epitaxial grain growth
transforms to an equiaxed microstructure. This is the
well-known CET.
Nucleation has a pronounced effect on the resultant

microstructure. Generally, phenomenological
approaches model nucleation according to experimental
observations. Usually, the probabilistic phenomenolog-
ical approach based on the work of Gandin and Rappaz
is used[66]
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Fig. 3—Schematic of the situation at the solidification front (in analogy to Gandin and Rappaz[66]).
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where N0, DTc and DT are nucleation parameters which
have to be determined experimentally. Physically, the
three parameters have different meanings: N0 is a
maximum nuclei density, DTc is the critical undercooling
necessary for nucleation (it corresponds to DTn in
Figure 3), DT describes a temperature interval where
nucleation takes place.

The following sections discuss the microstructure
modeling approaches, namely phase-field, cellular
automaton and Monte Carlo Potts models. Figure 4
shows schematically the basic idea behind each of these
models.

1. Phase-Field Model
The phase-field (PF) method is an important

approach to describe phase transformation induced
microstructure evolution.[67,68] PF methods were origi-
nally applied to model solidification[69] but the area of
application has spread to, e.g., solid-state phase trans-
formation, recrystallization, grain coarsening or heat
treatment. The fundamental principle is a smoothly
varying function called ‘phase-field’ describing the
interface between two mobile phases. One important
advantage of the PF method to so-called sharp interface
models[70–73] is the avoidance of explicitly tracking the
interface between different phases reducing computa-
tional costs.[74,75] The temporal evolution of the PF rests
upon a sound thermodynamic and kinetic basis and
represents the phase evolution, i.e., microstructure
evolution. Thus, PF modeling of alloys is always linked
to thermodynamic modeling (CALPHAD).

PF models make use of a scalar field, e.g., / 2 �1; 1½ �,
to distinguish between two phases, e.g., the solid (/ ¼ 1)
and the liquid (/ ¼ �1) phase.[76] Typically, a phe-
nomenological free energy functional F is applied to
describe the two-phase system [76,77]

F /; c;Tð Þ ¼
Z

V

f /; c;Tð Þ þ
R 2

/

2
r/j j2þg /ð Þ

" #

dV; ½2�

where c is a concentration field, T is the temperature
field, V a volume, f is the thermodynamic potential and

e2/=2 � r/j j2 corresponds to the interfacial energy with

parameter e/ and g is a potential function.
The thermodynamic potential f is an interpolation

function between the free energy densities of the various
phases. The construction of this interpolation function is
a crucial step for setting up a PF model. On the one
hand, the bulk free energy densities have to be consistent
with values obtained from thermodynamic databases.[76]

On the other hand, there is a freedom in the choice of
the interpolation function because it only has an
influence on the interface region because of its depen-
dence on /.[76] The role of the potential function g,
usually the double well potential, is to stabilize the two
phases / ¼ � 1.[78] The combination of f andg is the
so-called free energy density function.[77]

During any process, the free energy functional
decreases monotonously. The equations of motion
describing the time evolution of the system are gained
by calculus of variations of the functional F.[67] The first
equation is the Allen–Cahn equation

@/

@t
¼ �M/

dF

d/
; ½3�

which describes the time evolution of the phase field.
The parameter M/ is a mobility related to the inter-
face kinetic coefficien[77] which is usually temperature
dependent.[76] The second equation is the so-called
Cahn–Hilliard equation

@c

@t
¼ r � Mcr

dF

dc

� �

; ½4�

where Mc is the mobility of solute atoms. The
Cahn–Hillard equation describes the process of phase
separation. There also exist multi-component and mul-
ti-phase PF models applying several phase-fields
/i 2 0; 1½ �, which sum up to unity.[68,77] These models
allow more than one solid phase, e.g., to model
precipitations in the interdendritic regions.[79]

The PF method describes the evolution of the phase
and the concentration field by using a coupled temper-
ature model. The simplest coupling is to apply defined

Fig. 4—Schematic of the different modeling approaches: Left: Phase-field method, middle: Cellular automaton, right: Monte Carlo Potts model.
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temperature conditions, like a constant undercooling,
cooling rate or temperature gradient. The assumption of
defined temperature conditions is only valid for the
simulation of few dendrites on short time scales.
Additionally, a quasi-stationary evolution of the solid-
ification front in the melt pool is required. The defined
values are often gained by analytical solutions or
macroscopic simulation results of temperature fields
and are provided within a small subset as boundary
conditions.[80–82] A second case is the direct coupling to
a numerical temperature field which is computed paral-
lel to the PF.[83] The option to couple the concentration
fields back to the temperature solver is usually not used.
Sometimes the coupling is extended by melt pool
motion, i.e., the melt step is additionally solved (usually
on the powder scale) and the melt pool dynamics are
coupled to the PF model.[83,84]

PF models require many different material as well as
model parameters. The applied material parameters are
often unknown, such as exact temperature dependent
mobility coefficients. However, a reasonable approxi-
mation is due to the relation to real physics often
possible. In addition, atomistic simulations are suit-
able to gain material parameters like kinetic coeffi-
cients.[29,85,86] It is important to notice, that some model
parameters used in the free energy function can arbi-
trarily be chosen because they are not related to physical
properties. One example is the interface width, which
can have an influence on the numerical result. Exem-
plarily, Fallah et al. show, that the interface width has to
be small enough to achieve a correspondence to exper-
imental results.[80] On the one hand, these additional
model parameters allow an exact calibration of the PF
model to experimental results. On the other hand, a
careful validation of the model after calibration with
more experimental results is necessary to ensure correct
numerical predictions.

PF models are usually applied on the dendritic scale
(Figure 5(a)), i.e., the spatial resolution is of the order of

nanometers to resolve dendritic structures and concen-
tration fields. The maximum domain size is therefore
limited to the order of micrometers due to computa-
tional restrictions. In the recent years, numerical
approaches like mesh refinement and massively paral-
lelization improved the computational efficiency of PF
methods.[85] However, the necessary fine resolution near
the dendritic tips makes an application on the part scale
impossible.
The dendritic scale is suitable to predict the primary

dendrite arm spacing for different materials under
different process conditions.[80–83,87,88] The numerical
predictions are in good agreement with experimental
results as well as with phenomenological equations (e.g.,
Hunts model[89]). Due to the fine spatial resolution, the
concentration in the dendritic core as well as segrega-
tions in the interdendritic regions are resolved. This
allows the relation between process parameters and the
resulting changes in the dendrite morphology as well as
in the concentrations.[81,90]

A further application is to identify growth rates of the
dendritic tips.[29,82,91,92] The identified relations are very
useful for mesoscopic interface tracking approaches
(CA-Model in Sect Cellular Automata). Once mul-
ti-phase PF methods are applied, it is also possible to
predict additional phases during solidification like
precipitates in the interdendritic regions.[79]

The fine spatial resolution of the PF approach on the
dendritic scale prevents the use on the part scale. In
order to bridge these scales, there are two main
approaches. One approach is the dendritic needle
network model, where a hierarchical network of needle-
like branches interact through the long-range diffusion
field.[85,93,94] The computational effort decreases due to
the simplified modeling of dendrites by needles. This
approach has already been used for directional solidi-
fication,[94] but a validation for rapid solidification
processes is missing. A different approach is the PF
method on the grain scale, where the free energy

Fig. 5—PF simulation results. (a) Solute concentration field of rapid solidification on the dendritic scale (resolution of 30 nm) of Ti-6Al-4V with
a cooling rate of 50,000 K/s. Reproduced with permission.[83] Copyright 2019, Elsevier. (b) Phase field information on the grain scale (resolution
100 nm) for E-PBF of Ti-6Al-4V with 420 W beam power and 0.8 m/s scan speed. Adapted with permission.[98] Copyright 2018, Laboratory for
Freeform Fabrication and University of Texas at Austin.
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functional is modified, that whole grains instead of
single dendrites are modeled (Figure 5(b)).[84,95–98] Each
PF represents an individual grain. The number of grain
orientations is limited by the number of different PF
variables.[97] As a consequence to the high number of
PFs and the coarser resolution, the evolution of the
concentration field is no longer tracked. The approach
mimics different grain orientations by different mobility
constants for different grains.[84] But, these constants are
not dependent on the temperature gradient, i.e., inde-
pendent from the favorable growth direction, a certain
grain is always preferred due to a higher growth
velocity. Although this approach is already applied on
AM,[84,98] a broad experimental validation is missing.

PF models on the grain scale increase the order of the
spatial resolution to micrometers. Consequently, they
can operate on the same scale than CA approaches and
may reach similar results. However, the PF method
needs more model parameters, which implies a more
careful validation and consequently raises issues regard-
ing numerical predictability. In addition, regarding
computation time, CA models are more efficient.[99]

Summarizing, on the dendritic scale, the PF method is
important to bridge between atomistic and mesoscopic
models and to predict the microstructure of few den-
drites. Regarding the grain scale, we recommend the
application of CA instead of PF approaches because of
less model parameters, a broader experimental valida-
tion and a better numerical efficiency.

2. Cellular Automata
Gandin et al. employed successfully a CA model

coupled with an FE heat model for the prediction of the
microstructure in complex castings (CAFE model).[100]

The challenge to use this model for AM is melting and
solidification of hundreds of layers with hundreds of
lines with extremely varying temperature fields. On the
one hand, this is a question of computational power. On
the other hand, and this is different from castings, a
specific fraction of material is remolten during AM.

CA were introduced by von Neumann.[101] The
physical system of interest is divided into cells, where
each cell is allowed to interact iteratively with its
neighbors according to some specific rules.[102] The
strength of a CA model in comparison to Potts Monte
Carlo- or Ginzburg-Landau type PF models lies in the
combination of computational simplicity and scalability
with physical stringency.[103]

The fundamental idea of the model lies in reproducing
the envelope of a growing dendritic grain by the
superposition of many small geometric objects (squares
in 2D, octahedrons in 3D), each controlled individually
by a cell of the CA (Figure 6). A serious issue of
modeling solidification microstructures with CA lies in
their tendency to reflect the underlying grid network.[28]

Gandin and Rappaz solved this problem by developing
a sophisticated CA crystal growth model for cubic
metals both in two- as well as three dimensions.[25] The
model avoids the lattice dependency by tracking the
dendritic growth front at the level of the typical
secondary arm spacing (decentered square model).

Based on observations by Ovsienko et al.[105] of
cyclohexanol crystals exhibiting square contours when
growing in a uniform thermal field, the two-dimensional
model approximates the envelope of a growing dendrite
by a square. The vertices of the square represent the tips
of the primary dendrite arms growing along the den-
drites main growth directions (<10> for cubic metals,
Figure 6(a)). The orientation of the dendrite is consid-
ered by the rotation of primary growth directions about
an angleH against the lattice coordinate system.
For grain nucleation in a distinct cell, a square is

positioned with its center matching the center of the
nucleation cell. Subsequently, the square grows with
velocity v DTð Þ depending on the local undercooling
DTof the cell. With the temperature assumed constant
throughout the cell, growth of the square is realized by
moving all vertices along the respective diagonals of the
square with the same velocity v. Once a square reaches
the center of an adjacent liquid cell, this cell is
incorporated into the growing dendrite. The newly
initiated square matches the grain number and -orien-
tation of the parental grain. It is truncated and
repositioned to ensure the envelope of the grain remains
intact according to distinct rules explained in detail by
Gandin and Rappaz.[25] Due to this repositioning, the
algorithm is denoted decentered squares (DS).
Different temperatures of the cells in the presence of a

thermal gradient G result in varying growth velocities of
the corresponding squares. This growth results in a
distortion of the grain growing faster in the direction of
increasing undercooling (Figure 6(b)). Growth of the
dendrite is accelerated in the direction opposing the
direction of G while maintaining its preferred growth
orientation. Figure 6(c) illustrates the envelope of the
dendrite calculated by this algorithm. The active cells
(red) at the border of the dendrite form the envelope
with their corresponding squares (blue).
The three-dimensional analogy of the DS algorithm is

denoted decentered octahedra (DO). The algorithm is
quite similar to the two-dimensional case. Octahedra are
growing depending to the undercooling of the associated
(cubic) cells. When the envelope of an octahedron
comprises the center of an adjacent cell, the cell is
incorporated in the growing grain. Figure 6(d) shows an
octahedron enveloping a three-dimensional dendrite and
the result of the DO algorithm for a three-dimensional
dendrite growing within an undercooled melt.
As mentioned above, the growth velocity v DTð Þ of the

square or octahedron associated with a distinct cell is a
function of the cells undercooling. The growth velocity
correlates the CA model with the thermodynamics and
kinetics of the liquid-solid phase transformation. For
this reason, the choice of v DTð Þ is crucial. In their
original work, Gandin and Rappaz[28] applied a model
form Kurz, Giovanola and Trivedi[106] (KGT) for
dendritic growth rates in the range of the limit of
absolute stability for calculation of the dendritic growth
kinetics. Foundation of this analysis represents the
theory of morphological instability. This theory consti-
tutes a dynamical approach on calculating the stability
of perturbed surfaces in contrast to the static approach
used by the theory of constitutional supercooling.[107]
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Consideration of the complex relationships addressed in
the KGT model for prediction of crystal growth using a
CA at the mesoscale is computationally expansive.
Gandin et al.[26,108] use a simple polynomial function
to speed up the calculations:

v DTð Þ ¼ a2 � DTð Þ2þa3 � DTð Þ3; ½5�
where a2 and a3 are parameters to be defined. Other
authors, e.g., Guillemot et al.,[109] use the form

v DTð Þ ¼ A � DTð Þn; ½6�

where the parameters A and n have to be adapted to the
investigated material. The variety of implemented
approximations shows the arbitrariness of the solutions.
As presented, a reasonable approach for modeling the
growth kinetics at the microscale is the PF method.

Macroscopic heat conduction calculations usually
provide the local undercooling DT necessary for the
calculation of the dendrite growth velocity. For simple
scan paths and geometries, analytical solutions for the
heat conduction equation were successfully employed
for microstructure simulations by Köpf et al. for
E-PBF.[110] Zinovieva et al. applied Goldak’s heat
source model with CA for calculating the three-dimen-
sional microstructure evolution for L-PBF.[111] While
analytical methods are computationally efficient, their
use is limited to model bulk materials microstructures.
Modeling complex beam paths of real components
requires numerical solutions. A combination of FE heat
analysis and CA crystal growth modeling is shown by
Koepf et al.[65] In this work, the authors resolved the

individual scan paths and the resulting thermal field for
an additively build cylinder (160 layers, 30 lines in each
layer) and validated the result with optical micrographs
(Figure 7). Li and Tan combined a mesoscale CA with a
macroscale thermal model for to investigate the influ-
ence of nucleation in direct laser deposition processes.[33]

By adopting the nucleation model originally introduced
by Rappaz et al.,[28] the authors found the parameters
used in the nucleation model are significantly affecting
the resulting grain structure, albeit without experimental
validation.
The repeated beam scanning during processing of

many layers remelts previously consolidated material.
Modeling of this phenomenon in CA necessitates the
dynamical adjustment of all octahedra constituting the
partly remolten grains. There is a high uncertainty how
to describe this effect within the CA model. Köpf et al
introduced a factor for dynamical size adaption of the
grains, but kept it at unity for the time being.[110]

3. Potts Model
The Potts model shows the highest level of abstraction

with respect to the physical processes. Dendrites, segre-
gation and undercooling during solidification are not
considered. Figure 4, right, shows a schematic of the
approach for modeling grain structure evolution during
solidification. All cells within the melt pool have a
different state (‘‘spin’’). During solidification, the struc-
ture starts coarsening due to surface energy effects.
Coarsening only talks place within a heat affected zone
(HAZ). At lower temperatures, i.e., outside of the HAZ,
coarsening stops and the grain structure is stable.

Fig. 6—Schematic of the basic CA approach to simulate grain growth. (a) 2D-dendritic growth at T = const. with a square as envelope, (b)
2D-dendritic growth within an temperature gradient G and envelopes, (c) representation of the envelope by squares defined for each cell forming
the envelope, (d) 3D-representation of a dendrite (Adapted under the terms of the CC BY 3.0 license.[104] Copyright 2012, IOP Publishing Ltd)
by an octahedron and representation of a 3D-grain.
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The Potts model is a generalization of the Ising
model, which describes the interaction of spins on a
lattice.[112,113] The strength of Potts model is that it can
be generalized to model different problems in physics,
e.g., coarsening in grain structures or in foams. Potts
models to simulate grain evolution during AM are
derived from the Potts Kinetic Monte Carlo (KMC)
method.[114] The KMC method aims to simulate the
time evolution of processes based on given transition
rates among states. The problem is defined on a lattice
and the driving force for grain boundary movement and
coarsening is the curvature of the interface between
different grains. Each lattice site is assigned a state, the
so-called ‘‘spin’’. Neighboring lattice sites with the same
spin form a grain. The total energy of the system is the
sum of the interaction energy between neighboring
lattice sites with different spin[34]

E ¼ 1

2

X

N

i¼0

X

L

j¼1

1� d qi; qj
� �� �

; ; ½7�

where N is the number of lattice sites, L is the number of
neighbors at each site, qi is the spin at lattice site i, d is
the Kronecker delta function which is 1 when qi ¼ qj
and 0 otherwise.

Curvature driven changes of the spin of each lattice
site lowers the total energy of the system. A random
process changes the spin of a lattice site to that of a
neighboring site. As a result, the total energy changes.
Whether this new spin is accepted is decided with the
help of the Metropolis algorithm where a random
number between 0 and 1 is compared with an acceptance
probability P, given by[34]

P ¼ e
� DE

kBTs ; DE>0

1; E � 0

	

½8�

where DE the energy change of the system, kB is
Boltzmann’s constant, TS is the simulation temperature.

If the energy of the system is reduced, the new state is
always accepted. If the energy is increased, the new state
is accepted with the probability P. During one time step,
all lattice sites are updated. It is important to note that
the simulation temperature Ts does not represent the
real temperature of the system. The energy kBTs defines
the thermal fluctuations present in the simulation.
Rogers et al. use the KMC method to simulate

microstructure evolution during AM.[115] The heat
source is not directly simulated but imposed as a molten
zone surrounded by a heat affected hone (HAZ). The
molten zone is simulated by assigning random spins to
lattice sites within the melt pool. Local grain boundary
mobility is only simulated within the HAZ. The grain
boundary mobility M within the HAZ surrounding the
melt pool is given by

M Tð Þ ¼ M0e
� Q

RT; ½9�
where Q is the activation energy for grain boundary
movement, R is the gas constant, M0 is a constant.
With this, the probability of executing a spin change
becomes[34]

P ¼ M Tð Þe�
DE

kBTs ; DE>0

M Tð Þ; DE � 0

	

; ½10�

Small grains just at the boundary between the melt
pool and the HAZ appear. These grains are quickly
consumed by larger grains or grow to from larger grains
for themselves.
Using KMC model, grain structure formation takes

place within the HAZ and is governed by surface
curvature effects inducing grain coarsening. If we
compare this mechanism to generate grain structures
with the real physical grain growth and selection process
(Figure 3), it becomes clear, that this approach does not
cover the fundamental physical mechanism. Solidifica-
tion is a highly non-equilibrium process governed by the

Fig. 7—3D section view of the numerically predicted microstructure (left) and comparison of the simulation result with a longitudinal section cut
of the superalloy CMSX-4 (right). Reproduced under the terms of the CC BY 4.0 license.[65] Copyright 2012, Elsevier.
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kinetics of diffusion and direction dependent growth
kinetics. The complex dendritic structure demonstrates
that interfacial energies do not govern the grain selec-
tion process during solidification. Consequently, the
current KMC approach is not able to model grain
selection and texture formation. There is some similarity
between experimental grain structures and simulated
structures. This similarity results from the direction of
solidification. Li and Soshi compare aspect ratio, grain
orientation and size with experimental results.[116] Nev-
ertheless, the Potts Model does not represent the
mechanism of grain coarsening by competitive grain
growth. The same is true for texture formation.

In the current form, the KMC method is not able to
predict correctly AM grain structures. Nevertheless, the
KMC method is an interesting approach to model
in-situ heat treatment effects within the solidified
microstructure, i.e., grain coarsening in the HAZ.

4. Influence of the Nucleation Parameters
Modeling of nucleation of new grains is crucial for

microstructure evolution. It is important to note, that
Eq. [1] is not derived from fundamental physics but is a
phenomenological description. Thus, the three param-
eters have to be adapted for each alloy under investi-
gation. This is a practicable approach as long as one
parameter set is used for one specific alloy for all
experimental situations. Actual state-of-the-art is that
the influence of different nucleation parameters are
numerically investigated by different groups.[33,117]

Figure 8 demonstrates the influence of the nuclei density
N0 and critical undercooling Tc on the resulting grain
structure for a CA model for DED.

This example demonstrates a fundamental problem.
Nearly all kind of results can be generated by adapting
the nucleation parameters. A sound correlation between

experimental observations (Figure 2) and nucleation
parameters is still missing and one of the important
tasks for the future.

IV. SUMMARY

The prediction of the microstructure of AM compo-
nents is essential for a broad industrial use of this
technology in the future.
The starting point for the calculation of the

microstructure is the temperature field. Bulk microstruc-
tures can be predicted based on analytical or quasi-an-
alytical models for the temperature. Nevertheless, to
capture all effects involved with real parts, such as
surface effects, turning points, etc., simplifications of the
temperature field are unrewarding.
Phase field (PF) models have a sound physical basis

including thermodynamics and kinetics of microstruc-
ture evolution. Complex solidification microstructures
such as cells or dendrites including segregation effects
develop from this approach on the dendritic scale. Thus,
PF models represent the gold standard among all
modeling approaches for the microstructure. Neverthe-
less, PF models are extremely CPU-intensive. Thus, only
a small number of dendrites is accessible. Even 1000
dendrites is still small for rapid solidification conditions
where dendrite arm spacing are of the order of microns
or even less. Thus, microstructure calculations on the
scale of real parts will not be accessible in the near
future. In addition, one should not forget that PF
models are based on a variety of uncertain data. This
concerns thermodynamic as well as kinetic data. Differ-
ent databases lead to different results. Thus, reliable
predictions by PF models are not invariably the case.
Nevertheless, PF models bring important insights into

Fig. 8—Cross-sectional views of the SD-BD plane for each microstructural domain obtained by varying N0 and DTc. (a) Domain A: N0 = 1013

m�3, DTc = 10 K; (b) domain B: N0 = 1014 m�3, DTc= 0K; (c) domain C: N0 = 1015 m�3, DTN = 5 K; (d) domain D: N0 = 1015 m�3, DTN

= 0 K. The black dashed line indicates the location of the fusion line from the first layer. Reproduced with permission.[117] Copyright 2019, IOP
Publishing Ltd.
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the situation at the solidification front, e.g., the corre-
lation between undercooling and dendrite tip velocity.
In addition, segregation effects at rapid solidification
become more transparent. This is very important for the
appearance of certain phases[88] or the evolution of hot
cracks.[118]

The cellular automaton (CA) approach describes
microstructure evolution on the scale of the grains.
The convex envelope of cells or dendrites is modeled
whereas cellular or dendritic structures and segregations
are not captured. Thermodynamics comes into the
model by the correlation of the dendrite tip velocity
and the local undercooling. CA models have the
potential to predict grain structure evolution on part
dimension. They also have a high power to predict
texture formation during AM and its dependence on the
process strategy.

The Kinetic Monte Carlo model in its current form is
not able to predict grain structure evolution since the
underlying mechanism is not representative for the real
one. Grain coarsening is treated within the KMC model
not by competitive grain growth but is driven by the
curvature of the grain boundaries. Texture is not
predicted and even the appearance of the grain structure
is not reproduced. Thus, the KMC model is not
recommended for AM grain structure evolution. Nev-
ertheless, KMC models might be very useful to model
grain coarsening effects during AM induced by in-situ
heat treatment.

One essential problem for microstructure simulation,
which is independent from the model, is new grain
formation by nucleation. In principle, by adapting the
nucleation parameters nearly all kind of grain
microstructures evolve. This is a fundamental problem
because it weakens the predictive force of all models.
Thus, one task for the future is to determine the
nucleation parameters for a variety of alloys based on
experimental data. This would help to assess the
predictive force of microstructure evolution models.
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