
Modeling and Simulation of
Mobile Gateways Interacting with Wireless Sensor Networks

F. Fummi§, D. Quaglia§, F. Ricciato‡, M. Turolla‡
§Dipartimento di Informatica, Università di Verona, strada le Grazie 15, I-37134, Verona, Italy

‡Telecom Italia Lab, Via G. Reiss Romoli 274, I-10148, Torino, Italy
[franco.fummi|davide.quaglia]@univr.it, [fabio.ricciato|maura.turolla]@tilab.com

Abstract

Sensor networks are emerging wireless technologies;
their integration with the existing 2.5G, 3G mobile networks
is a key issue to provide advanced services, e.g., health con-
trol. However this integration poses new challenges in the
design and simulation of the involved embedded systems
since it requires the cooperation of simulation tools that
model hardware, software, and network aspects and their
interactions. We present the modeling and simulation of a
network scenario, core of a telecom provider’s future port-
folio, in which an ARM-based mobile handset is used as the
gateway between a wireless sensor network (WSN) and re-
mote users through a wide area network (WAN). Initially,
the gateway and the WSN are modeled at system level with
SystemC while the wide area network is modeled with NS-
2. Then, HW/SW partitioning is performed on the gateway
and an instruction set simulator of the ARM processor is
used for the cycle-accurate execution of the RTOS and the
application software.

1 Introduction

Wireless sensor networks (WSN) appear a promising
tool to build ambient intelligence systems. Past research ef-
fort has been primarily focused on internal issues like rout-
ing, self-organization, MAC layer design, and collaborative
data processing [7, 12, 13]. Now telecom providers are ever
more interested in the interconnection of WSN’s with tradi-
tional communication networks to provide value-added ser-
vices through the interaction with a large number of remote
users and service centers. The potentialities of this approach
are not yet investigated completely but a possible applica-
tion is a monitoring system which sends alarms to remote
users when a dangerous event happens.

Fig. 1 shows the scenario modeled in our work. The
wireless sensor network consists of heterogeneous nodes

Figure 1. Network of heterogeneous nodes.

connected in ad-hoc manner through short-range radio
links; some nodes are equipped with environmental sensors
while others simply aggregate and relay data from sources
to destinations. The gateway is a mobile phone equipped
with two radio interfaces; from one side it is connected to
the WSN to inject queries and collect data; from the other
side it exchanges voice and data through the traditional mo-
bile infrastructure which is part of the wide area network.
The wide area network consists of a number of links of dif-
ferent capacity and delay managed by one or more telecom
providers. It is responsible for connecting the gateway to
geographically distributed users and Internet hosts to deliver
events, log monitored data and retrieve information from
servers. Therefore, the gateway is the center of a so-called
heterogeneous network.

The design flow of the gateway requires the co-design
and co-simulation of hardware, software, and network as-
pects in order to achieve energy efficiency, quality-of-
service support, reliability, and network scalability. The
traditional simulation approaches [10, 9, 11] often empha-

3-9810801-0-6/DATE06 © 2006 EDAA

size only one of these three aspects because of the diffi-
culty to merge different knowledge domains. To fill this
gap, this work applies an alternative HW/SW/network co-
design and co-simulation methodology, based on the inte-
gration of domain-specific simulation tools, i.e., NS-2 [10]
for network simulation, SystemC [6] for system-level simu-
lation and hardware description, and an instruction set sim-
ulator [5] to run the operating system and the application
software.

The paper is organized as follows. Section 2 describes
the different aspects to be modeled in the above scenario
and the available tools. Section 3 shows a recent methodol-
ogy to combine different domain-specific simulation tools
and thus to provide a complete simulation framework. In
Section 4 the proposed modeling approach for the above
scenario is presented in detail. Finally, conclusions are
drawn in Section 5.

2 Background

Efficient modeling and simulation of networked systems
require that tools exhibit a good level of scalability, com-
pleteness, fidelity, and reusability. The simulator should be
able to handle large networks of thousands of nodes in a
wide range of configurations (scalability). It should be able
to cover as many system interactions as possible, accurately
capturing behavior at a wide range of levels (completeness)
and revealing unanticipated interactions, not just those a
developer suspects (fidelity). Finally, the simulator should
bridge the gap between algorithm and implementation, al-
lowing developers to test and verify the code that will run
on actual hardware (reusability).

Different aspects should be addressed during the mod-
eling and simulation of networked systems. They can be
classified according to three domains, i.e., software, hard-
ware, and network.

2.1 Software domain

The characteristics to simulate in the software domain
are: the functional and timing behavior of the software
and its interaction with external events through interrupts
(e.g., the presence of concurrency issues). While the func-
tional behavior of a system can be easily simulated through
general-purpose languages such as C or C++, other charac-
teristics can be reproduced only by a cycle-accurate emula-
tion of the CPU through an instruction set simulator [5] and
the support of debug facilities.

The instruction set simulator (ISS) is an application
which runs on a host workstation and executes programs
written and compiled for a different processor (target plat-
form) [5]. ISS simulates the behavior of a program and the

associated operating system at the instruction-set level; sim-
ulation is cycle-accurate, i.e., the number of simulated in-
struction cycles to perform a given operation is the same as
on actual hardware. This tool can be used to verify the in-
teractions between the application and the operating system
and, if a power model of the CPU is available, to evaluate
power consumption. Using this tool, developers can test and
verify the same object code that will run on actual hardware.

Simulations performed by ISS lack realistic timing infor-
mation since instruction cycles, not seconds, are the basic
time unit. For this reason, this tool cannot be used to model
asynchronous events triggered by hardware components or
by the network.

2.2 Hardware domain

Also in this domain, the functional behavior of the sys-
tem should be reproduced at the first design stage. Then,
the tool should allow to refine the description to represent
the architecture as a set of interconnected blocks (structural
view). In this flow, non-functional information should be
managed, e.g., timing behavior, area utilization and power
consumption. A desired feature for a HW simulation tool is
its support for the synthesis of the architecture.

A traditional language for hardware description is
VHDL while SystemC [6] is gaining increasing attention
for its great flexibility in describing devices at different ab-
straction levels, from system level down to RTL and gate
levels. SystemC is a C++ class library that provides the
constructs required to model system architectures including
hardware timing, concurrency and reactive behavior that are
missing in standard C++. In literature SystemC was already
used to describe network-on-chip architectures [2] and to
simulate the lowest network layers of the Bluetooth com-
munication standard [1].

2.3 Network domain

Network can be modeled at different levels of detail,
from packet level down to the electromagnetic propagation.
Simulated values can be either generated by an analytic
model or taken from experimental data sets; the first ap-
proach is more general but it strongly depends on the model
validity and may be computational intensive.

Network Simulator, NS-2 [10], is the most widely used
discrete event simulator for computer networks. It is writ-
ten in C++ and provides modules for the simulation of well-
known protocols both wired and wireless. NS-2 simulates
networks at the packet level and provides facilities to col-
lect statistics at different detail levels. Some extensions
have been developed to simulate sensor networks for en-
vironmental monitoring applications [12, 13, 11]. The main
weakness of NS-2 for the simulation of ad-hoc wireless net-

works is that it does not model concurrent processes within
the network node. With NS-2, simulation scenarios are cre-
ated by connecting together different kind of objects, i.e.,
nodes, agents and applications describing different layers
of the ISO/OSI model. Since a cross-layer approach is
preferred in the design of wireless sensor networks, NS-
2 should be deeply modified to exploit the interaction be-
tween protocols and applications. Besides, implementing a
new protocol requires the update of a lot of NS-2 configu-
ration files.

Some specific tools were developed in the past for the
simulation of wireless sensor networks (e.g., TOSSIM [9],
AVRORA, EMSTAR, ATEMU, SQUALNET) even if most
of them are targeted to a specific architecture (e.g., Berke-
ley’s motes). A common drawback of these approaches is
that they do not offer a direct path to the implementation,
e.g., hardware synthesis. Using different tools for model-
ing and implementation limits the reuse of code and test-
benches. Although this issue can be tolerated in today’s
wireless systems often designed using off-the-shelf hard-
ware components, the high integration of next-generation
networked embedded systems will require that hardware de-
sign and network simulation will be applied on the same
models.

3 Co-simulation

Table 1 summarizes the main features of the tools de-
scribed above. It can be seen that domain-specific tools do
not provide all the capabilities required for a comprehen-
sive simulation of the heterogeneous network depicted in
Fig. 1. Specific simulators for WSN (e.g., TOSSIM) and
NS-2 do not provide mechanisms for HW description; ISS
models software with high fidelity but should be combined
with other tools. SystemC is the most versatile tool but it
does not provide cycle-accurate emulation of the CPU and
lacks models for Internet protocols. This context suggests
an alternative approach in which different domain-specific
tools are combined to perform a synchronized simulation of
the different aspects of the problem as in [4].

3.1 SystemC/ISS co-simulation

Two new types of ports iss in and iss out have
been added to the SystemC kernel. From the point of view
of the software running on the ISS, these ports behave as
memory-mapped registers. Each port has a 32 bit address;
when the software performs a write operation in that loca-
tion, the value is delivered to the corresponding port and
the associated sensitive method is triggered as in traditional
write operations. Conversely, values written to an iss out
port can be read by the software at the corresponding loca-
tion. Since memory-mapped I/O is a common approach in

Tool HW SW Network

WSN simulators no yes (note 1) yes (note 2)
NS-2 no yes (note 1) yes
ISS no yes no
SystemC yes yes (note 1) yes (note 2)
VHDL yes no no

Table 1. Comparison of the described tools as
a function of the various aspects to be simu-
lated in heterogeneous networks. NOTE: (1)
no cycle-accurate emulation of the CPU, (2)
Internet protocols not supported.

embedded system programming, software running on the
ISS can be the same code that will be executed on the ac-
tual platform and this fact contributes to shorten the time-
to-market. The SystemC kernel was modified to handle the
presence of these special ports and processes and to commu-
nicate with the ISS through a network socket. The ISS was
modified to re-direct read and write operations at a given set
of addresses to the SystemC kernel.

3.2 SystemC/NS-2 co-simulation

Both simulators have conventional event-driven kernels;
they schedule the execution of events in non-decreasing or-
der of timestamp. In SystemC, events are associated to read
and write operations on ports, while in NS-2 events are as-
sociated to packet transmission and reception. In our work
we follow the approach from [3] in which special types of
SystemC ports and a custom NS-2 agent allow the interac-
tion between the corresponding models. A packet can be
moved from a SystemC module to an instance of the spe-
cial NS-2 agent by writing it on a special output port. Con-
versely, a packet arrived to the agent from the network is de-
livered to a special SystemC input port and triggers the asso-
ciated sensitive method as traditional write operations. Both
kernels have been modified to interact each other through a
network socket in order to reach a global synchronization
of events and to exchange data.

3.3 Simulation of wireless sensor networks

In this work we also evaluated the potentiality of Sys-
temC in the modeling and simulation of wireless sensor
networks. In the proposed simulator, devices are modeled
in SystemC and their instances are connected to a module
that reproduces the behavior of the wireless channel; prop-
agation delay, radio interference, collisions and path loss
are taken into account by considering the spatial position
of nodes and their on-going transmissions. Even if these
physical aspects are considered, simulation is performed at

packet-level to speedup computation. Support for carrier
sense medium access control (MAC) is also provided by the
simulator. Nodes have a set of attributes that can be changed
during the simulation; position can be changed to model
mobile topologies; each node can switch its status from
RUN to OFF to model failures; the use of the SLEEP status
and the variation of the transmission power and rate can be
exploited to specify and evaluate power-saving strategies.
The design of the node can be dealt at different abstrac-
tion levels: from system/behavioral level (transaction-level
model) down to register transfer level (RTL) and gate level.
After each refinement step, nodes can be tested in their net-
work environment to verify that design constraints are met.
Synthesis can be directly performed on those models pro-
vided that they are described using a suitable subset of the
SystemC syntax. Different kinds of node can be mixed in
the network and many instances of the network module can
be created with different values for channel parameters to
build complex systems consisting of many sub-networks of
heterogeneous devices.

4 Test case

To show the proposed modeling flow we designed a sim-
ple test application for the scenario depicted in Fig. 1. WSN
nodes receive stimuli from the environment in the form of
integer values. When a stimulus is received, the correspond-
ing node sends a packet reporting its value, the location of
the node and the timestamp of the reception. Stimuli are
generated every 1 s. Since WSN’s do not provide direct
node addressing, a routing algorithm and multi-hop trans-
fers are needed for data delivery from sources of stimuli
to the gateway; for simplicity’s sake received packets are
re-sent in broadcast by all nodes except the gateway; more
complex routing algorithms can be used [7].

The gateway collects data from the received packets and
creates a table in which, for each stimulus location, the av-
erage of the sampled values is reported. Every 10 s the table
is delivered over the Internet to a remote host.

4.1 Model of the WSN

The WSN is completely modeled in SystemC using the
simulator described in Section 3.3. This tool enables the
modeling of a set of heterogeneous nodes and favorites
cross-layer design and synthesis. Furthermore, during pre-
liminary tests, it provided a higher simulation speed with
respect to TOSSIM and NS-2 as shown in Fig. 2.

A sub-class of the Node module is created to implement
the specific relaying functionality. In this class, the recep-
tion of a stimulus or of a packet triggers the execution of
appropriate SC THREAD methods which put a new packet
into a queue. Another method performs carrier sense and

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 100 200 300 400 500 600 700 800 900 1000

Pe
r-

pa
ck

et
 e

xe
cu

tio
n

tim
e

(s
/r

ec
v

pa
ck

et
s)

Number of sensor nodes

SystemC
NS-2

TOSSIM

Figure 2. Per-packet execution time as a func-
tion of the number of nodes for different sim-
ulation tools.

transmits enqueued packets when the channel is free. An
instance of this class has been created for each node of the
WSN. Sources of stimuli are represented by instances of
a sub-class of the Stimulus module in which a clocked
SC THREAD generates a random value every 1 s.

4.2 Model of the wide area network

The wide area network is modeled with NS-2 to exploit
its full support of standard protocols and traffic models.
Fig. 3 graphically represents the NS-2 model. A classical
bottleneck topology has been created to represent a back-
bone with access links. Node 0 represents the gateway.
The 10 kb/s links between node 0 and node 1 and between
node 2 and node 3 represent mobile connections. The link
between node 1 and node 2 models a geographical back-
bone with 100 kb/s of available capacity and 50 ms delay.
Node 3 represents another mobile user talking with the gate-
way. Node 4 represents a host connected to Internet through
a 10 Mb/s access link. Two agents reproduce an UDP con-
nection carrying sampled data from node 0 (the gateway) to
node 4 (the Internet host). The sc ns agent on node 0
connects NS-2 with the network interface of the gateway
modeled in SystemC; the technique described in Section 3.2
is used. Other two agents model a UDP flow carrying voice
from the gateway to node 3 (the listener); an 8 kb/s con-
stant bit-rate (CBR) traffic model is applied to the agent on
node 0 to reproduce a mobile voice connection. Statistics on
delay and packet drops are generated by NS-2 and used to
evaluate the quality of service. The simulation of the low-
est layers of the mobile infrastructure is possible through
third-party modules included in the NS-2 distribution.

sensor network

gateway 10kb/s 100kb/s
5 ms 50 ms

10Mb/s

10kb/s

5 ms

5 ms

1 20

4

3

sc_ns_agent

DATA traffic

UDP, CBR (8 kb/s)

voice

Figure 3. NS-2 model of the WAN.

SystemC NS−2

Network
Wide Area

to WAN

Interface

Wireless sensor nodes

gateway

Interface
to WSNModule

Process

Figure 4. Co-simulation framework with a
system-level description of the gateway.

4.3 Model of the gateway

The gateway has been initially modeled at system-level
in SystemC. Three modules have been created: the interface
to the WSN, the interface to the wide area network, and the
processing module. The interface to the WSN is a sub-class
of the Node module of the WSN and interacts with other
nodes through the SystemC simulator. The interface to the
wide area network contains special ports to interact with
the NS-2 simulation kernel as described in Section 3.2. The
processing module is connected to both interfaces through
signals and queues; it implements the creation of the table
containing the average of the sampled values.

Then, HW/SW partitioning is applied to the model.
Since in the actual system the creation of the table will be
performed by an application software running over a real-

SystemC NS−2ISS

Network
Wide Area

to WAN

Interface
processor

ARM Interface
to WSN

ARM−based gateway

Wireless sensor nodes

Figure 5. Assignment of the different tools af-
ter the HW/SW partitioning.

time operating system, we decided to replace the SystemC
processing module by the instruction set simulator (ISS) of
the ARM CPU. ISS interacts with SystemC as described in
Section 3.1. Fig. 5 shows the assignment of the different
tools in the final co-simulation framework. The application
software is a C program running over the eCos operating
system [8]; packet transmission and reception is performed
by reading from and writing to memory-mapped registers
of both network interfaces. A debugger can be used to find
and fix bugs. It is worth to note that the same code will run
on the actual platform thus shortening its time-to-market.

4.4 Experimental results

To assess the performance of the proposed co-simulation
methodology we simulated the application described in
Section 4. In the experimental setup, nodes are placed in
a line and equally spaced. The node at one end of the line
receives environment data every 1 s and broadcasts a packet
containing the sampled value over the radio interface. An-
tennas are omni-directional and the distance between nodes
is such that each node can reliably communicate with the
adjacent nodes only. This scenario lead the simulator to
handle the problem of hidden terminals since it can happen
that nodes that are not able to hear each other when they
are sending, disturb each others transmissions in a receiv-
ing node. When a node receives a packet, it re-broadcasts
the message contributing to deliver it to the other end of the
network. This routing protocol, a kind of unselective flood-
ing, is not the best choice for a real sensor network since
maximizes the number of transmitted packets, but has the
advantage to test the performance of the simulator under
heavy load conditions. The simulation length is 40 s and
total execution time is reported as a function of the number

Nodes SystemC+NS

10 30.9 s
100 504.3 s
250 534.4 s
1000 1717.9 s

Table 2. CPU time of the system-level simula-
tion as a function of the number of nodes in
the WSN.

of nodes to test the scalability of the technique. Tests have
been performed on a Linux workstation.

Table 2 reports the total execution time of the system-
level simulation in which the gateway and the WSN are
modeled using SystemC and the wide area network is mod-
eled with NS-2. The total wall-clock time has been con-
sidered since the simulator consists of different concurrent
processes and it is difficult to obtain the actual aggregated
CPU time for them. Results show that the total elapsed time
strongly depends on the size of the WSN. With ten nodes the
simulation is faster than real-time.

5 Conclusions

In this paper we have presented a methodology for
HW/SW/network co-design and co-simulation of an het-
erogeneous set of networked embedded systems. One of
these systems, a mobile phone, acts as the gateway between
a wireless sensor network and the traditional communica-
tion network; the gateway exchanges data with the WSN
and data/voice with remote hosts through the WAN. The
WSN has been completely modeled in SystemC reproduc-
ing network interactions; the wide area network has been
modeled with a well-known network simulator, NS-2, thus
exploiting its full support of standard Internet protocols for
data and traffic models for voice. The gateway has been
initially modeled at system level with SystemC and then
HW/SW partitioning has been applied on it; an instruction
set simulator of the ARM processor has been used for the
cycle-accurate execution of the operating system and the ap-
plication software. Simulation of the system-level scenario
shows that the total elapsed time strongly depends on the
size of the WSN. With ten nodes the simulation is faster
than real-time.

References

[1] M. Conti and D. Moretti. System level analysis of the blue-
tooth standard. In Proc. of the Design, Automation and Test
in Europe Conference and Exhibition (DATE), volume 3,
pages 118–123, March 2005.

[2] D. Bertozzi et al. NoC synthesis flow for customized do-
main specific multiprocessor systems-on-chip. IEEE Trans.
Parallel Distrib. Syst., 16(2):113–129, Feb. 2005.

[3] F. Fummi, P. Gallo, S. Martini, G. Perbellini, M. Poncino,
and F. Ricciato. A timing-accurate modeling and simula-
tion environment for networked embedded systems. In Proc.
ACM Design and Automation Conf. (DAC), pages 42–47,
Jun. 2003.

[4] F. Fummi, S. Martini, G. Perbellini, M. Poncino, F. Ricciato,
and M. Turolla. Heterogeneous co-simulation of networked
embedded systems. In Proc. IEEE Design Automation and
Test in Europe Conference (DATE), Feb. 2004.

[5] G. Braun et al. A universal technique for fast and flex-
ible instruction-set architecture simulation. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems,
23(12):1625–1639, Dec. 2004.

[6] Grotker, Liao, Martin, and Swan. SystemC. Kluwer, 2002.
[7] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed

diffusion: A scalable and robust communication paradigm
for sensor networks. In Proc. of ACM MOBICOM, Boston,
MA, Aug. 2000.

[8] J. Dallaway et al. Embedded Configurable Operating Sys-
tem – eCos. URL: http://ecos.sourceware.org.

[9] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accu-
rate and scalable simulation of entire TinyOS applications.
In Proc. of the First ACM Conference on Embedded Net-
worked Sensor Systems, 2003.

[10] S. McCanne and S. Floyd. NS Network Simulator – version
2. URL: http://www.isi.edu/nsnam/ns.

[11] S. Park, A. Savvides, and M. Srivastava. Sensorsim: a sim-
ulation framework for sensor networks. In Proc. of 3rd
ACM Int. Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, pages 104–111, 2000.

[12] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govin-
dan, and S. Shenker. GHT: A geographic hash table for data-
centric storage. In Proc. of the 1st ACM Int. Workshop on
Wireless Sensor Networks and Applications, 2002.

[13] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ:
A reliable transport protocol for wireless sensor networks.
In Proc. of the 1st ACM Int. Workshop on Wireless Sensor
Networks and Applications, 2002.

