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Supplementary Online Information 

1. The Relativistic Kohn-Sham equations 

The relativistic Kohn-Sham equations have been discussed by Dreizler and Gross.1 

Their equations can be expressed as follows: 

   (1) 

with 

   (2) 
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and 

,   (3) 

for all negative and positive energy orbitals. Note that the energy includes the rest mass energy, 

and that the available energy for bonding and kinetic energy is En − mc2. 

The matrices are defined as 

    (4) 

and σk denotes the Pauli matrices.  The Dirac 4-component spinors, ψn, can be represented as 

single-row matrices: 

.         (5) 

The conserved current, Jμ = (J0, J), is analogous to the density in non-relativistic DFT, and is 

thus the conserved current of the real system that can be calculated from the above spinor 

solutions to the relativistic KS equations: 

.      (6) 
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It is well known that the vacuum expectation value of the current operator is non-zero; pairs of 

electron-positrons can spontaneously be created in vacuum, which is referred to as vacuum 

polarization. If this vacuum polarization is neglected, the current becomes1: 

.      (7) 

2. From the Dirac equation to the Schrödinger equation 

We can separate the compact equation for the bi-spinor ψn in Equation 1, into two equations for 

the 2-component spinors ψA,n and ψB,n: 

   (8) 

.   (9) 

We can now eliminate the lower component spinor and for the upper component spinor, we 

obtain 

, 

            (10) 

while the equation for the lower component spinor becomes 

.    (11) 
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In the non-relativistic limit, 

En ≈ mc2 ,               (12) 

and we can define a non-relativistic energy as 

En
(NR)  = En - mc2 ,          (13) 

which thus is a small energy.  If Veff(r) is also small compared to 2mc2, we can expand 

.     (14) 

If only the first term in the expansion of Equation (14) is retained, Equation (10) becomes the 

non-relativistic Schrödinger equation 

 ,    (15) 

and we note that 

,          (16) 

that is, in the non-relativistic limit, ψB,n, the small component, is much smaller than ψA,n, the 

large component, and can be neglected. 

 Retaining also the second term in the expansion in Equation (14), results in the non-

relativistic Schrödinger equation with first order relativistic corrections, such as, the spin-orbit 

coupling. 
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3. When do we need to use the full relativistic equation? 

The assumption made above, restricting the range of validity of the non-relativistic treatment of 

electrons, is: 

.        (17) 

For typical nuclear fuel calculations the atomic core regions with high density are the regions of 

interest. Here Vext(r) can become very large, resulting in large effective potentials, Veff (r), as 

shown in Figure S1. While the energy levels (a global property) for the hydrogen-like ion do not 

differ much when calculated with the relativistic and non-relativistic equations, see Figure S2, 

local properties, such as wave functions, can be influenced in the regions of space near the nuclei 

where the effective potential is highly attractive, and the assumption in Equation (17) is violated. 

By examining the behavior of the wave functions of the hydrogen-like ions close to the 

nuclei, that is, examining the exact solutions to the hydrogen-like ion as r → 0, we can explore 

the differences between a Dirac and a Schrödinger equation treatment. In many DFT codes, for 

example the RSPt code,2 equations by Harmon and Koelling, including scalar relativistic 

corrections, are used, and we therefore also include these in our comparison. The radial 

dependence of the wave functions in the Dirac, the scalar relativistic, and the Schrödinger 

equations respectively are:  

Schrödinger equation: rl,         (18) 

Scalar relativistic: ,       (19) 
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and Dirac equation: ,       (20) 

where α ≈ 1/137 is the fine structure constant. Already for the s1/2 states (l = 0 and 

κ = −1) we see a difference: while the Schrödinger equation gives that the radial function tends 

to a finite value at the origin, the relativistic treatment, even on the scalar level, gives a slight 

divergence since 1)(1 2 −− αZ  < 0.  This mild singularity, however, is of academic interest 

only, since the wave function at short distances must be modified because of the finite charge 

distribution of the nucleus. 

For states with l > 0 and | κ | > 1 all treatments give wave functions that tend to zero at the origin. 

However, the κ = 1 states, that is, the p1/2 states, have different behavior in the different 

treatments. While the Dirac treatment gives the same slight divergence, discussed above, as the 

s1/2 states, the scalar relativistic and Schrödinger equation both give wave functions that tend to 

zero. It is believed that this erroneous behavior of the p1/2-state in the Schrödinger and scalar 

relativistic treatments is at fault for part of the failure of DFT calculations to give correct lattice 

constants for actinides (the other reason being insufficiently accurate exchange-correlation 

functionals). In Figure 4 in the main article, the difference in behavior is made evident for the 

6p1/2-state. 

4. Using non-relativistic (NR) exchange-correlation functionals 

In non-relativistic DFT, the currents  , that couple to the effective 

vector potential Aeff in the Hamiltonian in Equation (1), are not used, and in order to connect to, 

and be able to use functionals created for NR DFT, we would rather use the spin-density  
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.         (21) 

Here 

.          (22) 

For time-independent problems, J can be written as (Gordon decomposition): 

.          (23) 

where  

. (24) 

By neglecting the orbital current, I, and only using the spin-density current, the e α · Aeff, in the 

Hamiltonian in Equation 1 can be simplified and the Hamiltonian becomes 

,   (25) 

where B = ∇ x A and μB is the Bohr magneton.  Equation (3) should be replaced by 

,    (26) 

where M = μB S. 
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Usual spin density functional such as LSDA can now be used in a framework that approximately 

retains the fully relativistic treatment of the Dirac equation. 
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Fig. S1. The Coulomb potential for the hydrogen like atom. The solid line is the electron 

potential while the dashed line is the positron potential, 2mc2 below the electron one. Non-
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relativistic calculations show that the average displacement of the electron from the nucleus in 

the hydrogen-like ion, in units of aBohr/Z, is (3n2 − l(l + 1))/2, motivating the x-axis. The upper 

row has the same scale on the y-axis, while in the lower row the y-axis has been adjusted so that 

the electron potentials are similar. 
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Fig. S2. The energy levels for the hydrogen-like atom versus atomic number Z, as calculated 

with the Dirac equation and the Schrödinger equation. Full lines are relativistic energies, while 

the dashed lines are the corresponding energies from the non-relativistic equation. 

 

 

 


