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Abstract

This thesis gives different views on the modeling and simulation of physi-
cal systems, especially together with embedded systems, forming mechatronic
systems. The main considered application domain is automotive. One moti-
vation behind the work is to find suitable representations of physical systems
to be used in an architectural description language for automotive embedded
systems, EAST-ADL2, which is implemented as a UML2 profile, and uses
concepts from both UML and SysML.

As a part of the thesis, several languages and tools are investigated, includ-
ing bond graphs, MATLAB/Simulink, Ptolemy II, Modelica, MATLAB/Sim-
scape and SysML. For SysML, the modeling of continuous-time systems and
how it relates to MATLAB/Simulink and Modelica is evaluated. A case study
of an electric power assisted steering is modeled to show the differences, the
similarities and the usage of the above mentioned languages and tools. To be
able to classify the tools and languages, five realization levels were developed:

• Physical modeling models

• Constraint models

• Continuous causal models

• Discretized models

• Discretized models with solver and platform implementation

By using these realization levels, models, tools and modeling languages
can be classified, and transformations between them can be set up and ana-
lyzed.

As a result, a method to describe the simulation behavior of a MATLAB/
Simulink model has been developed using SysML activity diagrams as an
approach to achieve integrated system models. Another result is an evaluation
of the parametric diagrams of SysML for continuous-time modeling, which
shows that they do not enable “physical modeling”, i.e. modeling the topology
of the system and getting the underlying equations out of this topology. By
including physical ports and physical connectors to SysML internal block
diagrams, this could be solved.

The comparison also shows many similarities between the languages. The
results led to a more detailed investigation on conjugate variables, such as
force and velocity, and electric current and voltage, and how these are treated
in various languages.

The thesis also includes two industrial case studies: one of a twin-screw
compressor, and one of a simulation environment for automotive fuel-cell sys-
tems. Conclusions are drawn from these models, referring to the realization
levels.

Keywords: mechatronics, MATLAB/Simulink, SysML, bond graphs, Mod-
elica, Simscape, simulation, modeling, EAST-ADL2, physical modeling
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Chapter 1

Introduction

This thesis is on the subject of mechatronics, and therefore it starts out by describ-
ing and defining the term “mechatronics”. Compared with other interdisciplinary
subjects, such as Thermodynamics or Biomedicine that perhaps do not need such
an introduction, this in itself could be seen as a failure for Mechatronics as a subject.
But it can also be seen through the perspective that the evolution in information
technology has been enormous since the 1960s, when the mechatronics subject was
invented. The subject has been redefined many times in academia over the years
[33], and there are also textbooks and research that have been relabelled as mecha-
tronics (see e.g. [44] and [45]).

1.1 Mechatronics and related terms

The word mechatronics is made up of mechanics and electronics. Information tech-
nology could be seen as the third element of the mechatronics subject [93], and
sometimes control theory is also referred to as a fourth element (e.g. [73]).

A mechatronic system is typically composed of an embedded system, controlling a
physical system, the plant, through actuators, and measuring the result by sensors.
This way it is also a control system, which can be analyzed and synthesized using
control engineering, which can be seen as a view of the system. The embedded

Figure 1.1: A generic mechatronic system.

3



4 CHAPTER 1. INTRODUCTION

system consists of one or many microcontrollers. The mechatronic system interacts
with the environment. Besides the design, the product development of a mechatronic
product includes identifying customer needs and production development. When
the requirements are derived, the synthesis of a product can also be called systems
engineering.

A central characteristic of a mechatronic system is the tight copuling between
the embedded system and the plant, which leads to that both have to be considered
and analyzed concurrently when developing such systems.

For a more strict interpretation of some of these terms, the following definitions
are given. They are exemplified in the following section.

Mechatronics: The synergistic combination of mechanical and electrical en-
gineering, computer science, and information technology, which includes control
systems as well as numerical methods used to design products with built-in intelli-
gence1 [35].

Embedded system: A special-purpose computer system designed to perform
one or several dedicated functions, often with real-time computing constraints.

Systems engineering: A multidisciplinary approach to develop balanced system
solutions in response to diverse stakeholder needs. Includes both management and
technical processes [29].

Product development: The set of activities beginning with the perception of
a market opportunity and ending in the production, sale and delivery of a product
[92].

Control engineering: An engineering discipline that applies control theory to
design systems with predictable behaviors. The engineering activities focus on the
mathematical modeling of systems of a diverse nature.

Plant: The controlled physical system, being a part of the product (as opposed
to the physical environment).

View: A representation of a whole system from the perspective of a related set
of concerns [40].

1.1.1 An example technical system: Steering of a car

To exemplify the terms defined in the previous section and to illustrate the issues
involved in developing mechatronical products, the steering of a car is investigated.

1This is perhaps the most accepted definition today, used in VDI 2206. Wider definitions are
those of [5] and [89].
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Figure 1.2: A mechatronic system: Steer-by-wire. There is no mechanical connec-
tion between the steering wheel and the steering rack.

The product development of a car involves market activities such as identifying the
customer and their needs, current trends, pricing and financing alternatives. When
it comes to selection of steering technology, this can be seen as the realization of the
steering function. The steering function can be realized in many different ways, e.g.
conventional steering with a hydraulic servo, electric power assisted steering (see
Figure 3.1) or steer-by-wire (in Figure 1.2) which all have their different advantages
and disadvantages. The generation and evaluation of these alternatives can be seen
as systems engineering.

When considering the electric power assisted steering, or steer-by-wire alterna-
tives, we are now into mechatronics, which then can be regarded as a specialized
branch of systems engineering. Mechatronics includes the selection of actuators,
gears and microcontrollers, and the development of the software to control the
wheels. To get a satisfying response from the steering wheel to the steering of the
car in a steer-by-wire system, control engineering must be considered. All these
aspects correspond to different views of the system.

Using the mechatronics perspective, completely new solutions can emerge. An
example of this is BMW’s active steering system with variable gain, which has an
all-mechanical steering linkage, but where the gain is varied between 10:1 to 20:1
(standard is 14:1) using an electric actuator [90].
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Figure 1.3: Car - today a software product?

1.2 Automotive embedded systems

As seen in Figure 1.3, embedded systems are used extensively in modern vehicles.
While the mechanical features in a vehicle are getting more mature and only in-
crementally developed, it is in the embedded/mechatronic system that innovations
take place, and many new features are introduced. Moreover, new propulsion meth-
ods, such as electric, hybrid or fuel-cell-driven cars also change the optimal system
solutions of components. For example, in an electric vehicle, there may not be an
engine-shaft to connect a hydraulic pump to, but instead a larger battery capacity
to take advantage of.

One scope of the new electronic functions is to assist the driver in the traction
and braking of the car, using functions such as anti-lock braking system (ABS),
electronic stability program (ESP), electric power assisted steering (EPAS), “by-
wire” solutions (steer-by-wire, gas-by-wire) active suspensions, or engine control.
Another application for electronic systems is to control devices in the body of a
vehicle such as lights, wipers, doors and windows. Functions that just a few years
ago were considered as high-tech luxury are now considered to be standard, such
as ESP, seat belt reminders and whiplash protection. Cars without them are even
labeled as “dangerous” by The National Society for Road Safety in Sweden [26].
Furthermore, infotainment products such as GPS navigation systems, DVD, hands-
free phones and music players are also becoming important functions to add value
for the customer.

In modern cars, more than 2500 signals, carrying information such as the speed
of the vehicle, could be exchanged by more than 70 Electronic Control Units



1.3. RAISING THE ABSTRACTION LEVEL 7

(ECUs2) [61], and these figures are constantly increasing. One ECU can contain
many functions, but functions could also be distributed among several ECUs. More-
over, many sensor signals are shared, e.g. the velocity of the car might be used to
adapt the steering effort, set the right wiper speed, or turn off the DVD screen
for the driver. In the same way, actuators, such as the engine controller, might
get inputs from different systems such as the anti-skid system, the adaptive cruise
control, external peripherals, not to mention the driver. Somewhere an arbitration
of these requested values has to be made, and it is not trivial to decide how this
should be carried out.

The bottom line is that the systems have become complex to maintain, develop
and test to make sure that they do not have unintended behavior3. For this reason,
the automotive industry considered an industry-wide standardized software infras-
tructure as a means to reduce the structural complexity of automotive electronics
[36]. As a result, the AUTOSAR development partnership was established in 2003,
and it consists today of 9 core members and 59 premium members [6], involving
major parts of the automotive industry. In addition to AUTOSAR, there are also
several efforts that address model-based development and integration. An example
of this is the EAST-ADL2 architectural description language, which is developed
in the ATESST and ATESST2 projects [3]. Much of the research behind this thesis
has been carried out inside these two projects. Another important initiative is the
forthcoming automotive safety standard ISO262624, highlighting the need for spe-
cial care with the increasing use of embedded systems in safety related applications.

1.3 Raising the abstraction level

A well-proved way of dealing with the complexity of engineering systems is to
find a suitable abstraction level to work with [51]. Many engineering subjects can
themselves be seen as higher abstraction levels of Physics, e.g. Solid mechanics,
Tribology and Thermodynamics. At the higher abstraction level, details can be
masked or hidden, and a big picture view of the system can be achieved, without
getting lost in details.

For embedded control systems, the programming language has changed from
machine-code over assembler to C-code, and further to C-code in a real-time oper-
ating system, which can be considered as current state-of-practice today. This can
be seen as a raise of the abstraction level for the developer. Efforts have been made
to move to even more high-level object-oriented languages such as C++ or Java,
but it is often difficult to combine with real-time constraints. Another approach is
to generate code from models, e.g. Simulink, UML diagrams or some other action
language.

2Electronic Control Unit, the automotive word for microcontroller.
3An example of this is that in 2004 Mercedes-Benz had to remove 600 functions from one of

their car models to ensure the function of important electronic parts [74].
4Since this standard is not publicly available today, it is not referenced.
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Figure 1.4: Historical raise of the abstraction level. For the modeling of physical
systems, evolution has gone from general purpose software (FORTRAN, at the
bottom left), to simulation software (MATLAB), to graphical simulation software
(Simulink), to physical modeling. On the right hand side, a similar evolution is
shown for the embedded system: Machine-code at the bottom (represented by
Z80 programming from [65]), C-code program on an AVR microprocessor (note the
embedded assembler instruction), RTOS with task model and topmost model-based
development represented by a UML class diagram [62] and a finite state-machine
[42]. This thesis studies the left side of this figure, and so some extent, how it fits
with the right side.
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For physical systems, one trend is “virtual engineering”, meaning that instead
of testing things in the lab, they are tested using simulation software on comput-
ers. Simulation software has, just like embedded control systems, also undergone
a similar raise of abstraction level, see Figure 1.4. In the early days of computer
simulation, the engineer had to program everything from scratch, including the
solver, time discretization, error estimation, etc. An example can be found in [70],
where a FORTRAN simulation program of a compressor is included. In this code,
it is difficult to separate the simulation model from the solver. Using MATLAB,
which was released in the mid-1980s [58], a more distinct separation between mod-
els and the simulation engine can be made by using the built-in ODE solvers, or
the fsolve or fzero commands. The Simulink extension to MATLAB was introduced
in 1990 [58], allowing users to create continuous causal models, which are created
graphically, without writing any code. Different acausal modeling languages were
merged into the Modelica language, released in 1997 [31], then only supported by
the Dynasim tool [22]. Modelica enables physical modeling, i.e. to model the phys-
ical components and their interconnections, and let the tool find the equations, and
eventually solve them.

For a mechatronic system, the combined raise of abstraction levels at both the
embedded system and physical systems enables model-based development, where
much of the engineering work is made and documented using models. One might
claim that all development is model-based, the models varying in level of detail and
level of abstraction. In model-based development, the transformations between
models at different abstraction levels, such as compiling a program, generating
code, or provide a specific view of a system become important.

As seen in Figure 1.4, some of these abstractions are used for both embedded
systems and plant models, e.g. programming code, or Simulink models. Simulink
is today used to synthesize code for the embedded system, and to test it virtually
through Hardware-in-the-Loop and Software-in-the-Loop simulation techniques.

1.4 Scope

As mentioned previously, the overall scope of this work is to find new, higher
level abstractions to model mechatronic systems, in particular to incorporate plant
modeling in the context of automotive embedded systems. The abstractions have
two purposes:

1. Documentation of the design, how it is intended to work, which requirements
it fulfills, how it is related to other functions, etc.

2. To provides analysis and synthesis, such as simulation and generation of the
final product.

Models of the first kind relate to model-based development or model-based systems
engineering, while models of the second kind relate to model-based design. Since
the documentation and intended functionality of a system is often captured and
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contained in tools for model-based design, especially at the higher abstraction levels,
model-based design can be regarded as being a subset of model-based development.

The focus of the thesis is on the “mechanics” part of mechatronics, which apart
from pure mechanical systems also can be extended to include other domains like
fluid, electrical or thermal systems, and hence named physical systems. An evalu-
ation of the abstractions available for the modeling of physical systems has been
made, including the integration with abstractions of the embedded system. Mainly,
dynamical lumped models of physical systems are investigated. Geometric/kine-
matic models, like CAD (Computer Aided Design), MBS (Multi-Body Structure),
CFD (Computer Fluid Dynamics) or FEM (Finite Element Method) models are
not considered here.

1.5 Approach and research questions

The research leading to these results has received funding from three different Euro-
pean Community research projects: NFCCPP (ENK5-CT-2002-00692, 5th Frame-
work Programme), ATESST (2004-026976 in the EC 6th Framework Programme)
and ATESST2 (7th Framework Programme under grant agreement no. 224442).

The NFCCPP (Numerical Fuel-Cell Component Performance Prediction) project
was about creating a modular simulation environment for fuel-cell vehicles, and the
ATESST (Advancing Traffic Efficiency and Safety through Software Technology),
and ATESST2 projects are about developing the architectural description language
EAST-ADL5, originally invented in the EAST-EAA project. The research topics
have thus been closely related to the description of work in these projects.

The following research questions and sub-questions were formulated during the
research work:

• How can one create a component-based simulation environment, using MAT-
LAB/Simulink?

– How should generic interfaces be designed in different physical domains,
especially for fluid systems?

• How can one relate current modeling and simulation environments for physical
systems to the EAST-ADL2 modeling language?

Since EAST-ADL2 today reuses concepts from SysML, e.g. flow ports, it would
make sense to reformulate this question to; “How to relate current modeling and
simulation environments to SysML”. The sub-questions that have been investigated
are:

• How can one relate Modelica and SysML/UML?

• How can one relate Simulink and SysML/UML?

5The language has been renamed to EAST-ADL2 during the ATESST project.



1.6. OVERVIEW OF THE RESULTS 11

• What are suitable abstraction levels of a physical system, and how can they
be related?

– How can a visual language such as Simulink simplify modeling tasks?

– How to choose the right tool for a modeling task?

– How could a universal language be used?

• How can the behavior of continuous-time systems be specified?

These research questions are reviewed in section 6.1 on page 73.

1.6 Overview of the results

• Two simulation models have been developed: one of a twin-screw compressor
and the other of a fuel-cell simulation environment.

• A method of protecting the intellectual property (I.P.) of simulation compo-
nents has been developed.

• A survey of modeling languages for continuous-time systems has been carried
out. An example model of an electric power assisted steering system has been
implemented in these languages.

• Transformations between SysML and Simulink as well as between SysML and
Modelica have been investigated.

• Based on experience from the case studies, methodological concerns when
modeling continuous-time systems have been identified and elaborated.

The validity of these results is discussed in section 6.3 on page 75.

1.7 Thesis outline

Following this introductory chapter of the thesis summary, Chapter 2, “Model-
based Development of Mechatronic Systems”, is presented as a frame of reference.
In Chapter 3, the tools and languages investigated are presented, using an exam-
ple system. The case studies performed during the research work are presented in
Chapter 4. Using results from both Chapter 3 and Chapter 4, various method-
ological concerns are derived for the modeling of continuous-time systems. These
concerns are presented in Chapter 5. Chapter 6, “Conclusions and Future Work”,
summarizes and concludes the thesis summary, and provides suggestions for future
work.

After these chapters the following papers are appended:
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1.7.1 Appended papers

Paper A: Modelling of Displacement Compressors Using MATLAB/
Simulink Software Sjöstedt, C.-J. Product Development in Changing Environ-
ment, 2004

Originally presented at the NordDesign conference 2004. This paper is a case
study of modeling and simulation of a physical system, giving some insights on the
choice of abstraction level. This paper is further discussed in section 4.1 on page 47.

Paper B: Virtual Component Testing for PEM Fuel Cell Systems: An Ef-
ficient, High-Quality and Safe Approach for Suppliers and OEM´s Sjöst-
edt, C.-J., Chen, D.-J., Prenninger, P., Faye, I., Hülshorst, T., Kells, A., Harkness,
I. and Schönfelder, C. 3rd European PEFC Forum, electronic proceedings, 2005

As stated previously, much of the research work was carried out in the NFCCPP
project. This is the publication from this project, originally presented at the third
European PEFC forum in Lucerne 2005. In this thesis, the NFCCPP simulation
environment is used as a second case study, and it is further discussed in section 4.2
on page 50

The paper was co-written by all authors; Sjöstedt was the presenting author,
mostly involved in the chapters “Standardization of simulation modules & inter-
faces” and “Model encryption and protection”.

Paper C: Developing Dependable Automotive Embedded Systems us-
ing the EAST ADL; representing continuous time systems in SysML
Sjöstedt, C.-J., Chen, D.-J., Cuenot, P., Frey, P., Johansson, R., Lönn, H., Servat,
D. and Törngren, M., Proceedings of the 1st International Workshop on Equation-
Based Object-Oriented Languages and Tools, Berlin, Germany, 2007

This paper was used to start the discussion on how to relate the SysML con-
structs for continuous systems: parametric diagrams and constraint blocks, with
Modelica. The approach used in this paper is presented in section 4.3.1 on page 53.

The paper was co-written by all authors; Sjöstedt was the presenting author, and
developed parts related to Modelica and SysML.

Paper D: Mapping Simulink to UML in the Design of Embedded Sys-
tems: Investigating Scenarios and Structural and Behavioral Mapping
Sjöstedt, C.-J., Shi, J., Törngren, M., Servat, D., Chen, D-J., Ahlsten, V. and
Lönn, H., OMER4 Post-proceedings, 2008

This paper originates from work done by Shi on transforming Simulink to UML
structure. The behavioral mapping was added in this extensively revised version of
the paper.

Sjöstedt revised the structural mapping, and developed the behavioral part of the
transformation.



1.7. THESIS OUTLINE 13

1.7.2 Additional publications

This section describes publications that were published during the research work,
but for various reasons were not included as a part of this thesis.

The Design of Modular Dynamical Fluid Simulation Systems Sjöstedt,
C.-J. and Persson, J.-G., Proceedings from OST 05 conference, 2005

Here, equations for a lumped system of dynamical fluid systems are derived,
and a technique to reduce simulation time using virtual mass is presented. This is
simlar to the tearing concept, further described in section 2.2.3.

The work presented in the paper and the writing was made by Sjöstedt. Persson
provided feedback and supervision.

On the Modular Modelling for Dynamical Simulation with Application
to Fluid Systems Sjöstedt, C.-J.

Licentiate thesis presented in December 2005, summarizing Paper A and Pa-
per B and the paper above [83].

Automotive Fuel Cell System simulation, component and compressor
modelling Persson, J.-G., Chen, D.-J. and Sjöstedt, C.-J., Schraubenmaschinen,
VDI Verlag GmbH, 2006

This paper was presented at Schraubenmaschinen 2006 [71], and could be seen
as a successor to Paper A, together with results on code-protection included in
Paper B. This paper is discussed in section 4.1.

The code-protection methods were developed by Chen and Sjöstedt, together with
the NFCCPP project. All twin-screw compressor calculations are performed by
Sjöstedt, using ideas from Persson.

Experiences from Model supported Configuration Management and Pro-
duction of Automotive Embedded Software Larses, O., Sjöstedt, C.-J.,
Törngren, M. and Redell, O., SAE Word Congress & Exhibition, 2007

This paper was presented at the SAE World congress 2007 [49]. It describes
the SAINT project, which was run as three capstone courses for final-year students
in mechatronics. Sjöstedt co-supervised two of these courses. The project is about
creating a small scale AUTOSAR-like environment, connected to a commercial
Product Data Management database.

The project was initiated by Törngren, Larses and Redell, of which the latter two
had left the department when the paper was written. The paper is mainly written
by Törngren and Sjöstedt.

Managing Complexity of Automotive Electronics Using the EAST-ADL
Cuenot, P., Chen, D., Gérard, S., Lönn, H., Reiser, M.-O., Servat, D., Tavakoli Ko-
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lagari, R., Sjöstedt, C.-J., Törngren, M. and Weber, M., ICECCS, IEEE Computer
Society, 2007

Presented at an IEEE Conference on Engineering Complex Computer Systems
2007 [20]. This is one of many publications describing EAST-ADL2.

The paper was co-written by all authors; Sjöstedt wrote the environment model-
ing parts.



Chapter 2

Model-based Development of
Mechatronic Systems

This chapter includes an overview of design methodologies for mechatronic sys-
tems, as well as a section devoted to modeling languages of mechatronic systems
that support model-based development. The intention is to find out how modeling
languages can support the development process, or possibly improve it by providing
new ways of working.

2.1 Design methodology for mechatronic systems

Mechatronics is often considered to be a special subject, requiring special attention
to how it is taught [33], and how such products are developed [73]. As said in
section 1.1, mechatronics spans over mechanical engineering, electrical engineering,
control engineering and computer science. The difference between software and
mechanical systems, and the development methodologies and traditions in these
domains, is perhaps the most important factor, making the development of mecha-
tronic systems difficult to describe.

2.1.1 Traditional engineering design methodology

An excellent overview of the history of design research and a comparison of different
processes can be found in [8]. In short, traditional design methodology roots back to
the mid-1960s, when prescriptive models on development processes were introduced.
They consist of a number of stages or activities, or a combination of them. The
name and number of the stages varies, but [8] identifies three main stages.

• Problem definition stage, including getting the requirements

• Conceptual design stage, where a solution principle, or concept is generated

• Detail design, resulting in a full product description

15
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Representative examples of such design processes are those of Pahl & Beitz[66],
Andreassen [60] and Ulrich / Eppinger [92]. It is emphasized to work in a structured
way, an thus finding issues and alternative solutions early in the process.

2.1.2 VDI 2206

VDI 2206 [93] is a standard design methodology for mechatronic systems, developed
by a committee in VDI, The Association of German Engineers. It is a 118-page
document written in both English and German, and it was released in 2004. Com-
pared with other standards, such as ISO9000, VDI 2206 does not contain many
prescriptive phrases (e.g. “shall” statements).

The first part of the standard is an introduction to the mechatronics topic,
including definitions, and a relatively big part of the standard is dedicated to case
studies of mechatronic systems. The methodology chapter starts out with the
sentence:

Both the experiences of industrial practice and the results of empirical
design research from recent years have made it clear that there is no
“canonizable” optimal form of the design process which the designer
can follow in a fixed schedule.

This could possibly be seen as a criticism to the classical design methodologies in
section 2.1.1. Instead of providing a complete design process, VDI 2206 defines a
procedural model, supported by three elements, described below.

General problem-solving cycle on the micro-level

By dividing the project in smaller subtasks, these tasks can be solved using a general
problem-solving cycle. These smaller cycles can be predicted and thus scheduled,
and unforeseeable problems can also be assigned to new problem-solving cycles.
The problem-solving cycle presented is adopted from systems engineering [21].

V model as a macro-cycle

The V model is adopted from software development, to fit mechatronic systems.
The contents of the V model: Requirements, System design, Domain-specific design,
System integration, Assurance of properties and Modeling and model analysis are all
displayed in Figure 2.1. For complex products, the V model is run through many
times, increasing the maturity of the product. The V model shows that system
integration - Verification and Validation, are important, and matched against the
requirements and system design.

Process modules for recurrent working steps

VDI 2206 points out that there are process modules for recurrent working steps,
such as system design, modeling and modeling analysis, domain-specific design,
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Figure 2.1: The V model [93].

system integration and assurance of properties (verification and validation, e.g.
Hardware-in-the-Loop). In the chapter Model-based system design of VDI 2206,
abstraction levels for models are defined, which are reviewed in section on page 67.

The procedure chapter also contains a section on integrative design of product
and production systems. This is an important aspect, not trivial to deal with,
since it spans many different competences, from production engineers to software
system architects. For software systems the variable cost is zero, and for electronic
systems (circuit boards etc.), which are designed in procedural way it is predictable.
However, for a complete system, like the electronic system of a car, the production
cost is very complex to estimate. It depends on many factors, e.g. how many ECUs
are used, and where they are located. There are also other things to consider, like
modularity, safety concerns, cabling cost, accessibility etc..

Additional topics

In addition, VDI 2206 also includes a chapter on model-based system design, an
overview of common tools, and a section on organization of development teams.
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Figure 2.2: The 13 diagrams of UML 2.0, described using a class diagram.

2.2 Modeling languages for mechatronic systems

Since mechatronics is a diverse topic involving many different disciplines, there
are many modeling languages that support different views of the system. There are
programming languages for embedded systems, including imperative languages such
as C, C++ or Java, functional languages such as Hume and Erlang, synchronous
languages, e.g. Lustre and Esterel, and model-based languages like Simulink and
Ptolemy II. See e.g. [15] for a recent overview of such languages. In [91], a survey
of different languages for co-design of control systems and their real-time imple-
mentation is given, the languages mentioned here are AIDA, Jitterbug, ORCCAD,
Ptolemy, Targetlink, Torsche and Truetime.

Languages that aim to describe and document systems, rather than simulate
them, include the Unified Modeling Language (UML). UML is a standardized
general-purpose modeling language, originating from object oriented software en-
gineering, and it is maintained by the Object Management Group (OMG). Today,
UML is used for many purposes, such as business modeling and systems model-
ing. As seen in Figure 2.2, the language includes six structural diagrams and seven
behavior diagrams.

Another means to describe large heterogeneous systems, is by using an archi-
tectural description language, such as AADL [2] or EAST-ADL2. SysML (see
section 3.6) is a systems engineering language, and is thus also aimed at describing
systems spanning different domains.

2.2.1 The model - metamodel concept

One way to define modeling languages in a stricter form is to define a metamodel
for the language. This metamodel can in turn be defined using another metamodel,
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Figure 2.3: The OMG four-layered architecture. Models are classified by languages,
which in turn are classified by meta-meta models.

which then is called the meta-metamodel. OMG developed the Meta Object Facility
(MOF) standard as a means to define the UML language. In Figure 2.3, the four-
layered architecture is displayed. As MOF can be defined using itself, it is the
highest layer. In the more recent MOF 2.0 standard, the role of the four-layered
architecture is toned down [63]:

One of the sources of confusion in the OMG suite of standards is the
perceived rigidness of a ‘Four layered metamodel architecture’ which
is referred to in various OMG specifications. Note that key modeling
concepts are Classifier and Instance or Class and Object, and the abil-
ity to navigate from an instance to its metaobject (its classifier). This
fundamental concept can be used to handle any number of layers (some-
times referred to as metalevels). . . . Note that most systems use a small
number of levels (usually less than or equal to four).

Using these concepts, a modeler can create a language suitable for a particular
task. This technique is called Domain-Specific Modeling [32]. In metamodeling
tools, the modeler can create a metamodel, and then the tools generate a language
environment where concepts defined in the metamodel can be used. Examples of
such tools are GME, MetaEdit+, ATOM3 and GMF [32]. One of the advantages
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Figure 2.4: The EAST-ADL2 model structure.

of using the metamodeling concept is that it facilitates transformations between
languages, which can be defined in a declarative way. The Atlas Transformation
Language [4], used in Paper D, is an example of a transformation language that
utilizes such technique.

2.2.2 EAST-ADL2

EAST-ADL2 and AUTOSAR both have roots from the EAST-EAA European
project. EAST-ADL2 is an Architecture Description Language for handling all
engineering information required to sustain the evolution of vehicle electronics.

As shown in Figure 2.3, the EAST-ADL2 domain model is defined at the M2
level, in other words it is a metamodel. Basic concepts of UML, such as classes,
compositions and associations, are used to define the domain model. EAST-ADL2
also reuses a subset of UML and SysML. Based on the domain model, a UML
profile is designed, which uses UML extensions, stereotypes with properties and
constraints. This way, EAST-ADL2 can be modeled using a standard UML tool. A
reference implementation of EAST-ADL2, including some language specific plugins,
is made in the Eclipse-based open-source tool Papyrus [67].
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An EAST-ADL2 system model is described using five abstraction levels:

Vehicle level In the Vehicle Feature Model, vehicle electronic features such as
Brake, Wiper, Collision warning etc. are organized. A variability mechanism sup-
ports the definition of rules for inclusion in different vehicles, enabling Product Line
Architecting.

Analysis level The Functional Analysis Architecture describes functions, ADL-
Functions, that realize the features. The ADLFunctions are connected to the envi-
ronment via sensors and actuators, modeled as Functional Devices. Interfaces and
interaction can be defined and simulated in legacy tools, e.g. Simulink. In fact,
this abstraction level is much influenced by modeling in Simulink.

Design level One component of the Design Architecture is the Functional Design
Architecture, where functions defined at the Analysis Level are decomposed and
allocated. In the Middleware Abstraction, interfaces to a middleware are defined.
The Design Architecture also includes a Hardware Design Architecture.

Implementation level In the Implementation Architecture, reusable code (plat-
form independent) and AUTOSAR compliant software are defined.

Operational Level The Operational Architecture is the final binary software
deployment.

When analyzing EAST-ADL2 models, the controlled system, i.e. the plant,
must also be considered. The function analysis is performed at any of the four lower
levels of abstraction, so accordingly these models want to communicate with the
Environment model. The environment, as defined in this context, consists of both
the plant and the environment as defined in Figure 1.1 on page 3. The environment
can therefore also contain other embedded systems. When considering a single car,
the plant is the vehicle and the environment consists of e.g. the road and other
vehicles. When there are functions where many cars and traffic signs cooperate, this
separation is not so clear. This is on-going research in the ATESST2 project, which
is focused on cooperative systems. As seen in Figure 2.4, the environment/plant is
part of the system model, and that is in short the background of the work presented
in section 4.3: Modeling physical systems with embedded systems.

2.2.3 Modeling dynamical systems

Although this thesis is not intended to be a textbook of the modeling of dynamical
systems, there are a few topics that will be mentioned and defined for further
reference within this thesis.
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Modeling in the time and frequency domains

The key characteristic of dynamical systems is that they are time-dependent. Be-
cause of this, it is interesting to observe the evolution of a dynamical system, over
a certain time span. Another way of analyzing dynamical systems is to see how
they behave when the frequency of the input is varied. This is called modeling in
the frequency domain, and is a common method in control engineering. The tools
presented in this thesis work mainly in the time domain.

Causality

A central term when modeling dynamical systems is causality, which means the
relation between cause and effect. A plant model typically has one or more inputs
to actuators and one or more outputs to the sensors. In the steer-by-wire model
in Figure on page 5, the inputs to the plant model consist of two voltages, which
assert torques on the steering actuator and the feedback motor. The angles from
the steering wheel and the steering actuators are the two outputs from the plant
model. The plant model consists of many mathematical expressions, to calculate in-
termediate variables as the inputs propagate to the outputs. Assuming a particular
design, this can be modeled in different ways, e.g.:

Voltage → Current → Torque → Torque → Angle
Voltage → Torque → Angle → Torque → Angle

It is up to the modeler how to choose this, but the choice of causality can
affect the simulation performance and accuracy of the model. Integral causality is
preferred, which means that the causality is chosen so that the solver only needs to
integrate.

Ill-formulated problems

By using the causality rules of integral causality, a problem can become ill-formulated,
when two components with the same “preferred causality” are connected. The typ-
ical problem is two adjacent masses connected stiffly to each other, or two capac-
itances in series in electrical systems. One solution to this is to reformulate the
problem by lumping together these masses or capacitances. Another possibility is
to use Transmission Line Modelling [47] to cope with this issue.

Algebraic loops

Another concern when modeling dynamical systems is algebraic loops. An algebraic
loop typically occurs when dynamics are unaccounted for, or when connecting com-
ponent models to each other. In Simulink, different techniques to solve algebraic
loops are shown in Figure 2.5. Using tearing [24], algebraic loops can be avoided
by inserting additional components, and thus introducing additional dynamics.
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Figure 2.5: Different ways of approaching algebraic loops: In (a) Simulink’s al-
gebraic loop solver works well for simple problems like this, but gets slow and in
practice unusable for more complex models. In (b) a simplistic way to break the
loop by using a memory block, which is easy to implement but gives oscillations
with the periodicity of the time step. Next in (c) a transfer function is used, which
turns the algebraic equation into a differential equation, which distorts the output
slightly; a large time constant is used to show this. Using a smaller time-constant
(d) the result is indistinguishable from the real solution, except for the first few
time-steps. However, a smaller time-step is needed for this solution, hence it is
simulated separately from the others (a-c).
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Hybrid systems

Physical systems can be modeled with discrete behavior, such that the system vari-
ables change instantaneously for certain state or time values. A classical example
is a bouncing ball; another is a gear-box. An on/off switch, or a step input function
also makes the system hybrid, so any system controlled by a microcontroller is a
hybrid system, although they might be abstracted to a continuous system.

Hybrid systems can not only be described using equations; some event logics,
such as “if - then”, or “when” causes must be included. This also has implications
for the system solver, which can not only be a differential equation solver, but
must also take into account this hybrid behavior. The behavior of hybrid models is
tightly coupled with the type of solver that is used, and thus the simulation result
depends on the solver to a higher extent than for pure differential equations. In
Simulink, this mechanism is called zero-crossing detection [88].

For a more detailed approach on how to define continuous systems, see [9], where
five different types of continuous systems are defined. In [17], more information on
hybrid systems, including a formal definition, can be retrieved.



Chapter 3

Modeling Tools and Languages for
Continuous-Time Systems

There are many modeling languages, tools and methods available for modeling
mechatronic systems, covering different and overlapping aspects. In this section the
focus is on how the language/tool handles continuous-time systems. The purpose
of this study is to compare how SysML’s constructs for modeling continuous-time
systems match with the tools and languages that are available today. The following
tools and languages were chosen: Bond Graphs, Ptolemy II, MATLAB/Simulink,
MATLAB/Simulink/Simscape (Simscape) and Modelica. These languages repre-
sent different ways of describing continuous-time systems at high levels of abstrac-
tion.

The evaluation criteria, and related questions are:

• Language scope

– What is the purpose of the language?

– What other kinds of models are included in the language?

• Level(s) of abstraction(s)

– Which models of computations are used?

• Modularity

– How can components be separated and reused?

• Tool support.

– Is it possible to run the model and/or to generate C-code?

• Tool transparency

25
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Figure 3.1: A schematic view of double-pinion-type EPAS. The controller function
controls the motor voltage, getting information from a torque sensor mounted on
the steering column.

– Is the source code open?

– Are the simulation results predictable; does the user know what is hap-
pening inside the simulation engine?

These questions are reviewed in the last section of this chapter on page 44. A similar
study can be found in [17], where different languages and tools are also evaluated
with a focus on hybrid systems, an aspect that not is covered here. In that pub-
lication the simulation tools Simulink and Stateflow, Modelica, HyVisual1, Scicos,
Shift and Charon, and the formal verification tools HyTech, PHAVer, HSOLVER,
CheckMate, d/dt and Hysdel are evaluated.
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About the case study

To show the differences and similarities between the modeling languages, and to
serve as a benchmark, an example was modeled using the languages. The following
criteria were set when choosing the example model:

• An automotive mechatronic system, with an extensive plant model to be
controlled, preferably in multiple physical domains.

• An authentic modeling scenario with accurate parameters.

• A simple enough model for the reader to grasp, but still complex enough to
be non-trivial, requiring thorough analysis.

The choice fell on the modeling of power assisted steering. This is a typical ex-
ample of a system which is about to be converted from traditional mechanical and
hydraulic solutions, hydraulic power assisted steering (HYPAS), to a mechatronic
solution: electric power assisted steering (EPAS). Typical advantages of using EPAS
(compared with HYPAS) include [16]:

• Better fuel economy, since power is taken from the engine on demand, and
not continuously from an engine-driven pump.

• Savings in development time, since steering characteristics can be tuned in-
vehicle, through software.

• Reduced number of parts for the manufacturer, since the EPAS system can
be made to automatically select its software configuration and calibration to
match different vehicle variants.

• Reduced system weight and volume.

• Improved functionality, e.g. speed sensitivity, yaw damping, active return
and optional steering “feel” settings.

• Reduced environmental impact, since no hydraulic fluid is used, fuel consump-
tion is reduced, and recyclability is increased.

There are different configurations of the EPAS: in this example, taken from [68],
a double-pinion configuration where the assist motor is placed beside the steering
column is used. This configuration is used for heavy vehicles; in lighter vehicles,
a single pinion is used, and the assist motor is packaged on the steering column,
steering rack or in the pinion.

When modeling physical systems, it is crucial to find the right level of detail.
Too detailed models will result in a modeling swamp [48], where the modeling work
seems like an endless process, giving complex models that are difficult to analyze.

1 HyVisual is a customized version of Ptolemy II for hybrid systems modeling [13].
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Figure 3.2: Schematic lumped model of the plant model of the EPAS system in
Figure 3.1.

On the other hand, too simplistic models will not capture the actual behavior,
and will not produce any solutions to the problem. It is up to the engineer to
decide what assumptions to make in a particular problem. In this example, these
assumptions are made by the authors in [68], leaving us with the simplified lumped
model in Figure 3.2. Equations 3.1, 3.2, 3.3 and 3.4 describe the system. These
equations are derived using Lagrange’s method. In the following sections different
tools and methods will be investigated, where some start out with these equations,
while others start out with the simplified system in Figure 3.2.

Jcθ̈c +Bcθ̇c −Kc

(
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p

rp

)

= τd (3.1)
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Li̇+Ri+ k ˙θm = v (3.4)
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3.1 Bond graphs

Bond graphs were devised by Professor H. Paynter at Massachusetts Institute of
Technology (MIT) in 1959. His former PhD-students Karnopp, Margolis and Rosen-
berg, now all professors at different institutions, and authors of [45], have continued
to develop the method, together with research communities [11].

Bond graphs can be regarded as a graphical method to describe the energy flow
in a lumped description of a physical system. One of the key features of bond
graphs is the systematic approach. Different physical domains are described using
the same building blocks, such as effort source, flow source, capacitor, resistor,
inertia, transformer, 1-junction, 0-junction, and gyrator. There are predefined
methods to convert physical models into bond graphs; to convert from the lumped
representation in Figure 3.2, the following method was used for the mechanical part
[50]:

• For each distinct velocity establish a 1-junction

• Insert 1-port junctions for differences in velocities and use 0-junctions to con-
struct these differences

• Insert inertia (I) elements in 1-junctions, associated with masses

• Insert capacitance (C) and resistor (R) elements

• Make simplifications (junctions with two connections can be removed; two
adjacent junctions can be lumped together)

There are similar methods for electrical systems, which were used for the electrical
part of the EPAS system. Causalities were introduced and the end result is shown
in Figure 3.3. Using the information provided by this bond graph, many actions
can be performed:

• The derivation of system equations from a bond graph is systematic and can
thus be algorithmized. In other words, equations 3.1 to 3.4 can be derived
from Figure 3.3. In contrast with Lagrange’s method, which only applies
to mechanical systems, this can be done for both the mechanical and the
electrical domain.

• A bond graph can also systematically be converted into a signal flow repre-
sentation [45], such as the one in Figure 3.4.

• In [50], an automated transformation from bond graphs to a sorted list of
equations is shown. Using this sorted list of equations, a solver program can
be programmed using e.g. C-code.

• There are also tools for direct simulation of bond graphs, e.g. 20-sim [1], See
[38] for a complete list of available software.
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Figure 3.3: Bond graph representation of the EPAS plant.

3.2 Ptolemy II

The Ptolemy project labels themselves as being an “informal group of researchers
at University of California, Berkeley” [13]. The project studies heterogeneous mod-
eling, simulation and design of concurrent systems, especially embedded systems.
Ptolemy II, developed since 1996, is the third generation of design software to
emerge from this group. Executable models are constructed under a model of com-
putation (MoC), which governs the interaction of components in the model. The
MoC determines when actors perform internal computation, update their internal
state, and perform external communication. The MoC also defines the nature of
communication between components. Most MoC:s in Ptolemy II support actor-
oriented design. An actor is in principle a block, which executes and communicates
with other actors, using ports, interfaces and parameters. This forms the abstract
syntax of actor-oriented design, which is the structure of the model. A set of rules
that govern the interaction of components is called the semantics of the MoC. The
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semantics is largely orthogonal to the syntax, and is determined by the MoC. The
MoC is executed by a director. The Ptolemy group defines Simulink and LabVIEW
as also being actor-oriented programs [13].

3.2.1 The Ptolemy II continuous-time domain

The Ptolemy II Domain documentation [14] refers to [39], defining two ways to
specify a continuous-time system: using the conservation-law model or the signal-
flow model. Using the terms defined later in this thesis, this would correspond to
constraint models and causal models respectively. Ptolemy II uses the signal-flow
model as interaction semantics, and specifies four major reasons for this:

1. The signal-flow model is more abstract

2. The signal-flow model is more flexible and extensible

3. The signal-flow model is consistent with other models of computation in
Ptolemy II

4. The signal-flow model is compatible with the conservation law model

These reasons are reviewed in section 5.4. In short, modeling in the continuous-time
domain with Ptolemy II is very similar to modeling with Simulink. The model in
Figure 3.4 could also be modeled using Simulink.

Ptolemy II is “first and foremost a laboratory for experimenting with design
techniques” [13], and as such a demonstration tool, it is very competent. The
simulation engine, written in Java, is reasonably fast, although it is slower than
Simulink.

3.3 MATLAB/Simulink

MATLAB is marketed as “the language for technical computing” [88], and it is
definitely an important tool/language today, together with Simulink (“Simulation
and model-based design”) and the many toolboxes.

The Simulink extension to MATLAB was introduced in 1990 [58], allowing users
to create continuous causal models graphically, without writing any code. Today,
Simulink has grown in many directions: adding more blocks, built-in algebraic loop
solving, and a multitude of toolboxes for e.g. signal processing, rapid prototyping
and physical modeling (Simscape, presented in section 3.5). These additions have
made it more powerful, but also more difficult to overview, and to understand and
define the simulation semantics.

As said in 3.2.1, a Simulink model of the EPAS system will be very similar to
the Ptolemy model in Figure 3.4, so instead of just drawing this diagram again2,
another aspect is presented here, namely how this model could be restructured. To

2In fact, it is shown in Figure 4.8 on page 59.
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Figure 3.4: Ptolemy II model of the EPAS, as modeled in [68]. The model is derived
from equation 3.1, 3.2, 3.3 and 3.4.
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organize large Simulink models, they can be divided into subsystems. In virtual
subsystems, this division is only graphical, and does not imply any simulation
semantics.

A possible way of dividing the EPAS into subsystems is shown in Figure 3.5.
Notable is that the two Pinion subsystems, representing two instances of the same
physical object, here have different inputs and outputs. This could be a causality
issue (as described in section 2.2.3 on page 22), but is to some extent also a sub-
jective choice by the modeler. The definition of interfaces between components in
a modular and convenient way is a typical caveat when modeling physical systems
in Simulink. In Paper B, we try to bring order to this, it is also described in short
in section 4.2.

3.4 Modelica

Modelica is a modeling language that allows specification of mathematical mod-
els for the purpose of computer simulation of dynamical systems. Modelica is a
“free object-oriented modeling language with a textual definition to describe phys-
ical systems in a convenient way by differential, algebraic and discrete equations”
[56]. One could say that Modelica consists of three parts, which are interrelated:
The language, the standard library and the Modelica tools. By being a standard
language, it can be seen as an enabling technology to build a library of reusable
components. As the Modelica language would not be very usable if there were no
tools to execute and analyze the models, the language design is also influenced on
how the models are solved in tools.

The Modelica language One key feature of the Modelica language is that it is
based on equations, instead of assignment statements as in conventional program-
ming languages. Another feature is that it is object-oriented, which facilitates reuse
of components and evolution of models. It also has a strong software component
definition, with constructs for creating and connecting components [30].

The Modelica library The free Modelica Standard Library contains 777 models
and 549 functions for mechanical (1D and 3D) components, electrical components,
heat transfer, fluid flow and more [57]. More importantly, the Modelica Standard
Library defines interfaces for these domains, which enables physical modeling. Using
the Modelica language connect statement, simulation components can be connected
like the real components would be connected physically, which makes it intuitive
to model these systems.

Modelica tools The people behind the company Dynasim were (and still are)
active in developing the Modelica standards, and for many years their Dymola tool
was the only tool supporting the Modelica language [22]. The Modelica language
and the Dymola tool could then easily be mixed up.
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Figure 3.5: Open-loop EPAS system model [68], modeled in Simulink. Compare
with Figure 3.4 to see the underlying blocks.
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model Inductor " I d ea l l i n e a r e l e c t r i c a l inductor "
extends I n t e r f a c e s . OnePort ;
parameter SI . Inductance L=1 " Inductance " ;
/∗The l i n e a r inductor connects the branch v o l t a g e v with the
branch current i by v = L ∗ di/dt .
The Inductance L i s a l lowed to be p o s i t i v e , zero , or ne g at i v e . ∗/
equation

L∗der ( i ) = v ;
end Inductor ;

Figure 3.6: A model of an inductor, from the Modelica standard library [57].

Today, there are five commercial and three open-source Modelica environments
available [56]. Recently, Maplesoft also introduced the MapleSim toolbox, which
is related to Modelica in the sense that some component models are based on the
Modelica standard library, and that models can be exported to Modelica. Maplesoft
promises support for third-party Modelica libraries “in the near future”.

3.4.1 About the model

The model is shown in Figure 3.7. Compared with the lumped representation of the
system (Figure 3.2 on page 28), the transformation into a Modelica representation
is rather straight-forward.

3.5 Simscape

Simscape is a toolbox for physical modeling developed by the MathWorks for
Simulink, and it has been available since version R2007A of the MATLAB suite
[88]. It includes a foundation library, which contains basic components for electri-
cal, hydraulic, mechanical and thermal systems. There are also more specialized
toolboxes for physical modeling (such as SimDriveline, SimHydraulics, SimElectron-
ics and SimMechanics) that now are considered as parts of the Simscape product
family (albeit that some of them had been around before Simscape).

In R2008b, a major upgrade of Simscape was made, introducing the Simscape
language which allows the user to create their own physical models, and even new
physical domains, with new conserving ports. The language is based on MAT-
LAB syntax, but it is possible to define acausal equations. Simscape distinguishes
between the variables as:

Through Variables that are measured with a gauge connected in series to an
element.

Across Variables that are measured with a gauge connected in parallel to an
element.

Examples of these variables are conveyed in Table 3.1.
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Technology Across Variables Through Variables

Mechanical Position
Linear velocity

Linear acceleration
Angle

Angular velocity
Angular acceleration

Force
Torque

Hydraulic Pressure Flow rate
Volume

Electrical Voltage
Flux

Current
Charge

Thermal Temperature Heat flow
Enthalpy
Entropy

Table 3.1: Examples of Across and Through variables in different domains, from
the Simscape documentation.

Port Type Across Variable Through Variable

Electrical Voltage Current

Hydraulic Pressure Flow Rate

Thermal Temperature Heat Flow

Mechanical
translational

Translational velocity Force

Mechanical
rotational

Angular velocity Torque

Table 3.2: The Physical Conserving ports used in Simscape Foundation library
blocks, and the corresponding Across and Through variables. These are a subset of
those in Table 3.1. Table 5.1 compares how such conjugate variables are represented
in other languages and tools.
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Figure 3.7: Modelica model of the EPAS system, modeled in Dymola [22].

3.5.1 About the model

The Simscape model in Figure 3.9 is somewhat similar to the Modelica model
(Figure 3.7) and the lumped model if Figure 3.2 on page 28. There are some
subtle differences: one is that the inertia and mass components only have one
port in Simscape. There are also problems when trying to simulate a system with
unconnected components. Also, to view a signal, a sensor has to be modeled, and
then the sensor needs to be converted to a standard Simulink signal to be monitored
using e.g. a scope block.

3.6 SysML

SysML is a rather new modeling language, it origins from a strategic decision by the
International Council on Systems Engineering’s (INCOSE) Model Driven Design
workgroup in 2001. This led to a request for proposal of a UML for Systems
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component i dea l_ inductor
% I d e a l Inductor

nodes

p = foundat ion . e l e c t r i c a l . e l e c t r i c a l ; % +: top
n = foundat ion . e l e c t r i c a l . e l e c t r i c a l ; % −:bottom

end

parameters

L = { 1 , ’H ’ } ; % Inductance
V0 = { 0 , ’V ’ } ; % I n i t i a l v o l t a g e

end

variables

i = { 0 , ’A ’ } ; % Current through v a r i a b l e
v = { 0 , ’V ’ } ; % Voltage across v a r i a b l e

end

function setup
i f L <= { 0 , ’H ’ }

error ( ’ Inductance  must be g r ea t e r  than zero ’ )
end

through ( i , p . i , n . i ) ; % Through v a r i a b l e i from node p to node n
across ( v , p . v , n . v ) ; % Across v a r i a b l e v from p to n
i = I0 ; % i ( t =0) == I0

end

equations

v == L∗ i . der ; % Equation
end

end

Figure 3.8: Example use of the Simscape language. Compare with the Modelica
component Figure 3.6.

Engineering in 2003, and the first open source SysML specification drafts were
distributed in 2004. In September 2007 OMG SysML 1.0 was listed as an “Available
Specification” 3 [29].

As a UML for Systems Engineering profile, some software-specific diagrams have
been removed. One of the reasons is that the language should be easier to learn.
The reason why it is even based on UML is that user experience and tools can be
(re-)used [29]. Two new diagrams are introduced: The requirements diagram and
the parametric diagram. Furthermore, SysML uses the block diagram and internal
block diagram, which are slightly modified versions of the UML class diagram and
composite structure diagram, respectively. The motive for SysML working with
blocks instead of classes is that the latter are more software-specific, while blocks
could represent different things such as hardware, data, people or facilities.

Both Paper C and Paper D include results from our investigations on SysML;
in this section we try to use the SysML diagrams in a conventional way, directly
adopted from the specification.

3In fact, there are two SysML brands: OMG SysML™, trademarked and maintained by the
Object Management Group, which is derived from open source SysML, and consequently also
includes an open source license for distribution and use [87].
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Figure 3.9: Simscape model of the EPAS system. Regular Simulink signals must
be converted into physical signals using the Simulink-PS Converter blocks.
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Figure 3.10: Modeling an Ordinary Differential Equation (ODE) in SysML, using
constraint blocks and a parametric digram. This diagram is used in Figure 3.11.

3.6.1 The parametric diagram

The parametric diagrams’ conceptual foundation is the composable objects repre-
sentation (COBs), developed at Georgia Institute of Technology [69], the academic
partner of the SysML team [62]. COBs provide five basic views of a system: Shape
Schematic, Relations, Constraint Schematic, Lexical COB structure and Subsys-
tem, of which Relations, Constraint Schematic and Subsystems have equivalent
representation in SysML.

The parametric diagram describes constraints between variables, like equations,
and how they are related to each other. The SysML specification gives an example
of Newton’s equation (F = ma), which can be modeled in continuous time. The
constraints are acausal, and by combining many modular subsystems, acausal re-
lationships for a large system can be achieved. In addition, state machines can tell
which equations to use in the parametric diagram, and in this way describe hybrid
systems.

Modeling the EPAS equations using parametric diagrams

Section 4.3.1 describes how we tried to map Modelica to SysML using paramet-
ric diagrams. This could possibly be seen as an unintended way of using those
diagrams, so an attempt to evaluate SysML’s native way of modeling using the
parametric diagram is presented here. The physical layout of the components is
then ignored, and only the constraints are modeled. In the SysML specification [62]
it says “A constraint block is a block that packages the statement of a constraint



3.6. SYSML 41

so it may be applied in a reusable way to constrain properties of other blocks”.
Equation 3.1, 3.2 and 3.3 are all Ordinary Differential Equations (ODE:s), with
a right-hand side input function. These were then modeled in this reusable way
(Figure 3.10 shows how it was made). The input functions, i.e. the right-hand side
of Equation 3.1-3.3, were modeled as constraints ColumnInput, MotorInput and
RackInput respectively. Equation 3.4 was modeled as a constraint CurrentEqua-
tion, Then a parametric diagram was made, which connects all these constraints,
see Figure 3.11. Some conclusions from this exercise can be drawn:

• Although this is a fairly simple problem, the parametric diagram has too
many lines to be readable. Besides the parametric diagram there is also a
block definition diagram, defining the constraints ColumnInput, MotorInput,
RackInput and CurrentEquation, like in Figure 3.10.

• All constraints need to be defined in a reusable way, due to the UML class-
instance mechanisms. Here, the input functions (ColumnInput, MotorInput
and MotorInput) origin from the particular configuration of this EPAS system,
so they are not very reusable, making this rather inconvenient.

• Another way of modeling these equations would be to model each equation
3.1 to 3.4 as a constraint. The reusability would then decrease even further.

• Another possibility is to introduce hierarchies, e.g. by introducing a new
constraint that represents one ODEquation and an input function. However,
in order to describe this new constraint, another three parametric diagrams
and three new constraint blocks must be modeled.

3.6.2 Using continuous activity diagrams

UML 2.0 was a major upgrade from previous versions; in literature it is referred to as
UML 2 (or UML2) to distinguish it from previous versions. The activity diagram is
one of the diagrams that were redefined in UML 2, in order to support flow modeling
[9]. The activity diagram has been developed with the Enhanced Functional Flow
Block Diagram (EFFBD), a widely-used systems engineering diagram [62], in mind.
As a result, EFFBDs can now be described using SysML extension mechanism4 by
stereotyped activities; this is described in detail in the SysML specification [62].
The SysML activity diagram is based on the UML 2 activity diagram, adding a
few extensions. Most notable from our point of view is the possibility of modeling
continuous systems.

Activities describe behavior that specifies transformation of inputs to outputs.
The building blocks of activities, describing how they execute, are actions. An
action has token semantics, i.e. it accepts inputs and produces outputs (tokens)
on their pins. Tokens can consist of data information, but also physical items

4The EFFBD extension does not address replication, resources, or kill branches.
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Figure 3.11: The EPAS system, modeled as a native SysML parametric diagram.
This parametric diagrams is about to choke on complexity, if more components are
added, an hierarchical decomposition would be necessary.

like gasoline. By setting the time between tokens to zero, continuous flow can be
specified [29].

In both [10] and the appendix of [62], the numerical solution to the equation
˙x(t) = −2x(t) + u(t) is modeled using activity diagrams. In Figure 3.12, the EPAS

equations 3.1 on page 28 to 3.4 on page 28 are modeled using that technique. The
diagram is very similar to the Simulink or Ptolemy II diagrams (Figure 3.4 on
page 32), however the semantics is not coherent with how the Simulink simula-
tion engine works, for example algebraic loops and zero-crossing detection (both
explained in section 2.2.3 on page 21) are not taken into account. In order to ad-
dress this, another mapping of Simulink models to SysML was developed, which is
presented in Paper D.

3.7 Other continuous-time systems simulators

Today, there are many languages and tools available in which the EPAS model,
or parts of it, could be implemented. For example, MSC ADAMS [59] or CarSim
[54] could be used to model the mechanical parts of the system at a higher level of
detail. Some tools are not mentioned here, and some are mentioned in short in the
following section:
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l ibrary i e e e ;

use i e e e . e l e c t r i c a l_ sy s t ems . a l l ;

entity inductor i s

generic (L : inductance := 1 .0E−3 ) ; −− [H]
port ( terminal t1 , t2 : e l e c t r i c a l ) ;

end entity inductor ;

architecture s imple of inductor i s

quantity v across i through t1 to t2 ;
begin

v==L∗ i ’ dot ;
end architecture s imple ;

Figure 3.13: Example of VHDL-AMS code of an electrical inductor. Compare with
Figure 3.6 and Figure 3.8.

SystemC-AMS and VHDL-AMS SystemC is a hardware description language
for embedded systems, which is implemented as C++ functions and macros. This
also makes it possible to simulate the model. The AMS extension stands for analog
mixed-signals. Today, this extension is rather limited, including only linear signal
flow and linear electrical networks [64]. The application is more focused on RF-
design and sensor modeling than modeling mechatronic systems. VHDL-AMS is
the implementation of SystemC architecture; a VHDL-AMS component definition is
actually similar to a Simscape component definition, using across-through notation,
see Figure 3.13.

ASCET ASCET is a tool which is similar to Simulink, but tailor-made for de-
veloping automotive embedded systems, and focusing on code-generation. [27].

Scicos Scicos is an open-source alternative to Simulink. Scicos also has some
Modelica support, and recently a new Modelica toolbox called Coselica was released
[79].

3.8 Conclusions

Here, the different evaluation criteria defined in the beginning of this chapter are
summarized.

3.8.1 Language scope

Bond graphs

Using bond graphs is a means to convert from a “physical model” to a continuous
causal model. Using the rules imposed by the bond graphs, it is an aid to the
modeler to verify that he or she is creating a sane model, with right causality.
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As opposed to signal-flow representation, there is a clear separation of signal and
physical flow. For physical flow, the modeler is forced to consider the upstream
physical flow. The bond graph method could be seen as a teaching tool, where
experienced modelers eventually can skip the bond graph step, and make a signal-
flow model directly.

Ptolemy II

The overall scope of Ptolemy II is to spread research results from Berkeley, and the
results are different descriptions of Models of Computations. The result investigated
here is a way to formalize the execution of a continuous causal system.

Simulink

Since Simulink is commercial software, the scope of the language is to sell software,
and to satisfy all customer needs. From a tool-vendor perspective, making cus-
tomers dependent on the software (customer lock-in) is a positive aspect, and that
is why a strictly defined language definition using open interchange formats and a
transparent simulation engine not necessarily are positive factors.

Modelica

The scope of the language is to have a unified way to represent models of technical
systems, especially physical systems.

Simscape

The scope of this language is to extend Simulink with physical modeling and
equation-based modeling. The language does not to comply with current standards
for equation-based modeling, like Modelica or VHDL-AMS.

SysML

The scope of SysML is to be the systems engineering language of the future, where
information of system components can be stored in a common model. It is more
focused on information modeling than on simulation, although these aspects can
coincide.

3.8.2 Levels of abstraction

In short, both Ptolemy II and MATLAB use the signal-flow model, and bond graphs
also use the signal-flow model with added semantics. Modelica and Simscape use
constraints/equations, which enable physical modeling. In SysML, it is possible to
model signal-flow models using activity diagrams. The parametric diagram is basi-
cally the same abstraction level as constraint/equations, it is a means to visualize
the constraints and how they are interrelated.
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The included abstraction levels of these tools are further elaborated in section 5.2
on page 62, including a discussion on which abstraction level to use for different
purposes.

3.8.3 Modularity

The modularity involves both the tightness of coupling between components, i.e.
how they can be separated and reused, and to what extent the semantic rules of
the system architecture enable or prohibit the mixing and matching of components
[77].

When modeling physical systems, the physical modeling view (e.g. Simscape
and Modelica) gives a higher potential for reuse of simulation components compared
to the signal-flow tools MATLAB/Simulink and Ptolemy II. The major point is the
interface definition, which makes the system convenient to compose. SysML also
has reuse mechanisms, but at the constraint level, which is not as convenient for
physical systems, as shown in section 3.6 on page 37. Bond graphs are reusable in
the sense that parts of them can be reused, sometimes with changed causality.

3.8.4 Tool support

The MathWorks products Simulink and Simscape are both tools, rather than lan-
guages. Although there is a Simscape language, its purpose is to be able to run
own-developed models inside Simscape and not by any other external tool. It is
possible to generate C-code from both Simulink and Simscape using external tool-
boxes.

Ptolemy II can be seen as a language, implemented in a tool. Bond graphs
and Modelica are general languages, which can be implemented in different tools,
and from them it is possible to generate C-code. In SysML, however, there is no
such possibility; although there are tools that support code generation from UML
diagrams, the technique is immature today.

3.8.5 Tool transparency

Ptolemy II is the only open-source tool investigated in this thesis. C-code can be
generated from different Ptolemy II domains, but not from the continuous-time
domain. The transparent simulation engine is a key feature of Ptolemy II, so simu-
lation results are thus predictable. It is rather well-documented how the Simulink
simulation engine behaves, as elaborated in Chapter 4.3.5. How the Simscape and
Modelica/Dymola simulation engines works is more hidden in the tool. Flattening
a Modelica results in a vast set of equations, which have to processed and sorted
by a tool. How Simscape sets up the governing equations for a system is not very
well documented either.



Chapter 4

Case Studies

Throughout the PhD project, several case studies on modeling and simulation were
conducted. They are presented in more detail in the associated publications. Here
an overview of the cases is given, together with additional conclusions.

4.1 Modeling of a twin-screw compressor

A twin-screw compressor was modeled, using different detail and abstraction level.
This case study highlights difficulties in making a usable simulation model of the
right detail and abstraction level.

4.1.1 Overview

The twin-screw compressor was invented in Sweden in 1934, and then known as
the Lysholm compressor. It has been used in many different fields: for compressing
air, for refrigerating systems and more recently in fuel-cell systems. At a glance,
the compressor has a rather simplistic design, but it has proven hard to thoroughly
analyze the thermodynamic process in detail. In academia, state-of-the-art inves-
tigations are typically presented at the recurring Schraubenmaschinen conferences.
In industry, the company SRM (Svenska Rotor Maskiner, which has historical con-
nections to the Lysholm inventor) is active in the research and development of twin
screw compressors, and provides licences for companies that develop and manufac-
ture twin-screw compressors [86].

As a part of the NFCCPP project, a detailed model of a twin-screw compressor
was to be created, in order to optimize its characteristics for fuel-cell applications.
The model architecture was adapted from [46], where a twin-screw compressor
is modeled using the custom-made software KaSim, implemented in C++. The
concept is to model the compressor as a moving queue of chambers, where new
chambers are instantiated and put first in the queue at the compressor inlet, and
chambers eventually disappear at the outlet. These chambers have internal states,
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which vary depending on the chamber volume, which in turn depends on the rota-
tion angle of the compressor. Between the chambers, there is leakage, which is also
geometry-dependent. In the KaSim model, both the chambers and the leakages are
modeled as classes, which are instantiated and destroyed during simulation-time.
In the Simulink model in Figure 4.1, the chambers and leakages are modeled as
(virtual) subsystems. However, in Simulink, the model cannot be modified during
simulation-time, so to model the instantiation and destruction of the chambers,
the data (i.e. internal states) are exchanged between the subsystem blocks, at the
instantiation and destruction times. The process is described in detail in Paper A.

From an engineering point of view, the results achieved from this model were
not accurate compared with measured results. Maybe the model was not detailed
enough; important phenomena seem to have been left out. For instance, the cham-
ber model is one-dimensional, while the twin-screw compressor geometry is three-
dimensional. It is also difficult to calculate the states in the chambers, as the vol-
ume approaches zero. Yet another problem was to get hold of the geometry curves,
crucial for the simulation. Instead, in a follow-up paper [71], another model was
developed that combines the adiabatic model (that consists of a single equation)
with scaling factors. This way, the model is accurate “by design”. The downside of
that model is that it can not be used to test new designs, or to evaluate different
geometry curves, which the chamber model can. Instead it could be used in system
design, to predict performance of a similar design but different size.

4.1.2 Conclusions

Although the first model of the twin-screw compressor could be seen as a failure,
there are important conclusions to draw from it:

• It is interesting to see that a fairly non-complex model is difficult to model us-
ing Simulink. Somehow we have reached the limit of the Simulink abstraction.
Many other engineering domains use custom-made software (e.g. KaSim for
displacement machines, GraspIt! for robotic grasp simulation [55]), possibly
because the abstraction-level is set too high, or missing out important things,
in general purpose tools.

• The developed model is a purely physical model - no control system is mod-
eled. However, the model is hybrid in the sense that new chambers must
be created during simulation time, in other words a self-modifying model
is needed. In the C++ model where the user also controls the solver, this
functionality could be implemented. In the Simulink model presented in [81],
major workarounds had to be made. Likewise, using Modelica would lead to
similar problems as it contains no mechanisms for instantiating new classes
during simulation-time.

• This is also an example of how the usefulness of a model is not proportional to
its level of detail. Although a relatively complex model was made compared



4.1. MODELING OF A TWIN-SCREW COMPRESSOR 49

Figure 4.1: A Simulink model of the twin-screw compressor. As the compressor
rotates, new chambers are modeled, and the Enddata is propagated to Startdata.
This way a queue of chambers is modeled.
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with an adiabatic model, it did not provide any useful simulation results.

4.2 Modeling of a fuel-cell test environment

In the NFCCPP project, a complete fuel-cell vehicle was modeled using MATLAB/
Simulink. The target application of the model is Hardware-in-the-Loop simulation,
so component manufacturers can test their components in a complete system model.

4.2.1 Overview

A complete fuel-cell system in a prime mover (e.g. a car) was modeled, including
air management system, hydrogen supply from an on-board gasoline reformer, drive
train, and driver. The control system and the power management system are
modeled separately, see Figure 4.2. The system is simulated over the New European
Driving Cycle [25], which duration is 1220 seconds and the execution time is about
the same on a standard desktop computer. The model is described in more detail
in Paper B.

4.2.2 IP protection of simulation components

As a part of the NFCCPP project, an investigation was carried out on how to
protect the Intellectual Property of simulation models, allowing cross-enterprise
simulation, and interchange of simulation models. To encourage the exchange of
state of the art models across enterprise boundaries, component IP-protection is
crucial. A vendor wants to control the usage of his component, so that only trusted
partners can perform simulations. In addition, only approved simulations must be
feasible to conduct.

IP-protection includes the protection of modeling know-how, such as what equa-
tions are used and what phenomena are modeled. The model should be a “black
box”, i.e. only input and and output should be revealed, and not the content inside.
However, the black-box solution is not completely safe either. If the output and
the input are recorded from the black box, the parameters inside the box could be
identified. This technique of reverse-engineering the model is here referred to as
clamping.

Complete IP-protection requires both social and technical measures. The social
measures relate to business rules and laws for preventing illegal usages of IP, such
as business contracts, patents, copyrights, and trademarks. The technical measures
relate to technologies and tools that provide necessary enforcements of protection,
such as cryptography. It should be noted that there are no completely secure
technical solutions; however a solution can be classified as “secure enough” if the
effort it takes to crack the code is higher than the value of the information inside
it [78].

There are two main tasks that the protection solution needs to handle: en-
cryption and access control. Encryption means that the models should be well
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Figure 4.2: The NFCCPP system model: Electrical and embedded system to the
left and the plant model on the right-hand side.
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Figure 4.3: The drive line of the NFCCPP model. Apart from the torque and veloc-
ity power connection, the moment of inertia is also propagated, and the velocity is
integrated as a function of the combined intertias and torque in the Vehicle block.
This can be seen as a violation of bond-graph methodology, although a correct and
somewhat modular solution is achieved.

hidden, that it will not be possible to reverse-engineer the code and find out how
the component vendors’ model is designed. Access control means that the model
owner will be able to control the simulations that are performed and by whom
they are conducted, and thus preventing clamping. In Paper B three different
ways to achieve this are presented: Centralized simulation with remote user con-
trol, Localized simulation with simulation-time model usage control and Parallel
distributed simulation. A proof-of-concept implementation of Localized simulation
with simulation-time model usage control was made, see [82] for further reading on
this.

4.2.3 Conclusions

During the project, the definition of interfaces between the components was a major
issue, see also section 3.3 for the technical details why this is difficult. In Paper B,
the outcome of the interface definition task is presented, showing clearly defined
interfaces. In practice, ad-hoc interfaces were used, just like one is forced to do
when using Simulink. An example is given in Figure 4.3. System integration of
the components was also a bit of a challenge, since algebraic loops can occur when
many components are assembled. In NFCCPP, these algebraic loops were solved
by the technique shown at the bottom of Figure 2.5 on page 23.

On the positive side, the model runs well, and commercial fuel-cell simulation
has been made on parts of the model. Since the interfaces to components are
explicitly defined, it is not too difficult to plug in your own component model and
see how it behaves in a fuel-cell environment. Another conclusion drawn is that
although it is technically feasible to integrate models, it might not be feasible from
a business perspective. Simulation models contain important intellectual properties
such as knowledge of the product and its key characteristics, and the suppliers do
not want to share this with either the competitors or the OEMs.
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4.3 Modeling physical systems together with embedded
systems

In the ATESST project, the EAST-ADL2 language, described in section 2.2.2 on
page 20, has been developed to model automotive embedded systems. To ease
integration between modeling languages for embedded systems and physical sys-
tems, model transformation techniques and means to describe languages using one
another have been developed, tested and evaluated.

4.3.1 Our approach to model Modelica models using SysML

In Paper C, an attempt to implement a Modelica model using SysML diagrams is
made. In comparison to ModelicaML1 [72], we try to make use of the native SysML
constructs, e.g. parametric diagrams and constraint blocks. The approach is to
use SysML blocks to represent Modelica components, and parametric diagrams to
model the equations. Modelica acausal ports were represented using bi-directional
SysML FlowPorts, and Modelica connectors using ItemFlow, and thus a “physical
modeling” view of the system could be achieved, see Figure 4.4. The Modelica
equations are modeled as SysML constraints. In Modelica the TwoPin2 class is used
as a base for many electrical components, which have two pins, and an equational
relation between the voltage and the current. A component inherits the TwoPin
class, and its constraints. In SysML, we modeled this inheritance using a parametric
diagram, see Figure 4.5. The parametric diagram also contains links to the ports.
As stated in Paper C, this method is not satisfactory, since parametric diagrams
do not contain any sum-to-zero connections. The result will thus be that the
underlying equations do not match the modeled system. Workarounds must be
made; see Paper C for more details.

4.3.2 SysML effort to model Modelica

In [43], a more thorough effort is made to model Modelica systems using a similar
method to the one described above. The conclusions are similar: if components
are to be connected in parallel, extra blocks must be modeled, see Figure 4.6. In
Paper C, we call this extra component FlowSplit, in [43] it is called MechJunction.
Another solution is to extend parametric diagrams with a special connector, called
«connectClause», which has the semantics of a Modelica connector. One difference
between our approaches is that [43] represents Modelica components, like springs
and dampers, inside parametric diagrams. One reason we did not use parametric
diagrams is that we interpreted the SysML specification that only constraints are

1There was little information available on ModelicaML when writing Paper C. ModelicaML
is presented in section 4.3.3.

2This class is called OnePort in Modelica Standard Library 3.0 [57]; the TwoPin class is a
similar class. The TwoPin name for this class is used in [30], and in Paper C, so we continue using
it here.
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Figure 4.4: SysML Internal Block Diagram of the EPAS system, modeled as in
Paper C, where SysML blocks represent components from the Modelica Standard
Library. Compare with the original Modelica model in Figure 3.7.
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Figure 4.6: Modelica components in SysML, modeled like in [43]. This mass-damper
system can be seen as the lower-left of the EPAS system in Figure 3.7. To get the
sum-to-zero relation for force, additional MechNode blocks must be modeled.
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Figure 4.7: The ModelicaML profile for SysML [72].

to be modeled in parametric diagrams, and not structural entities. Due to technical
issues (it is difficult to comprehend if there is a limitation of the tooling environment,
or the model), the parametric diagrams for Modelica components are abandoned
in favor of internal block diagrams. Consequently, the end result is similar to our
representation in Figure 4.4.

4.3.3 ModelicaML - Modelica effort to integrate Modelica in
SysML

Another effort to combine use of SysML and Modelica is the ModelicaML language,
described in [72]. It is a complete implementation of Modelica in SysML, and hence
it supports modeling with all Modelica constructs and properties. It is “partly
based” on SysML, and the ModelicaML meta-model is consistent with SysML to
ensure SysML-to-ModelicaML conversion compatibility.

As seen in Figure 4.7, the SysML block diagram and internal block diagram have
been modified to class diagram and internal class diagram respectively (as described
in section 3.6, these two diagrams are in turn derived from the UML class diagram
and composite structure diagram). The internal class diagram provides a physical
modeling view of the system, so it resembles Figure 4.4. Package diagrams are also
extended, to support Modelica specific features. Instead of using SysML constraint
blocks to model equations (as in Figure 4.5) an equation diagram of ModelicaML
is used, where e.g. the TwoPin class is modeled.

In a follow-up paper [75], it is suggested that ModelicaML should abandon using
UML/SysML as a meta-meta model to describe the language, and instead use MOF
(see [63] and section 2.2.1) in form of Eclipse Modeling Framework [23]. Reasons
for this include:
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• UML is semantically unsound

By this it is meant that there is no way to define what constitutes a valid UML
model, or a test suite to show UML compatibility.

• UML’s profiles are a problem

One problem with UML profiles is that the users often desire to change UML
concepts, rather than constraining them.

• UML’s sublanguages are a problem

UML contains both the Object Constraint Language (OCL) and Action Language,
which will be inherited in UML profiles.

4.3.4 Conclusions of SysML to Modelica integration

There have been several efforts to combine Modelica and SysML. In fact, it is not a
new idea, see e.g. [7] for an early reference on UML/Modelica integration. Today,
there is still no unified, verified way to relate these languages. There are however
some conclusions that can be drawn from this comparison:

• The SysML internal block diagram seems like a good candidate to use to
represent interconnected Modelica components, although they are not used
directly by ModelicaML.

• The parametric diagram does not enable physical modeling, although it is
acausal. This is a reason to separate physical modeling and acausal model
abstractions.

• The sum-to-zero relation for flow-variables has proven difficult to realize in
SysML using parametric diagrams. One solution to this would be to introduce
a sum-to-zero connector in the parametric diagram.

• The conclusion from [75] is that domain specific modeling techniques (men-
tioned in section 2.2.1) are favorable compared with SysML, if the motive is
to describe the Modelica language in a concise way.

Further discussions between Modelica and SysML communities on how to proceed
are ongoing.

4.3.5 Describing Simulink behavior using activity diagrams

In Paper D, Simulink behavior and structure are mapped to UML/SysML. The
structure of Simulink models, i.e. blocks and subsystems, are mapped to composite
structure diagrams. Behavior is mapped to different interacting activity diagrams.
A key factor of describing the behavior of Simulink is the execution order of the
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blocks. When a user is presented to a signal-flow model like in Figure 3.4, it is
intuitive to think that the order starts with the input, and then executes the blocks
to calculate the output. However, as the blocks of a Simulink model describing
differential equations are in one of many loops, it is not trivial to decide where to
begin or end computations.

Simulink uses two rules for defining the order of the blocks [53]3:

1. If a block drives the direct-feedthrough port of another block, it must appear
in the sorted order ahead of the block it drives. Direct feedthrough means
that the output is controlled directly by the value of an input port.

2. Blocks that do not have direct-feedthrough inputs can appear anywhere in
the sorted order as long as they precede any direct-feedthrough blocks which
they drive.

The actual ordering of the blocks can be displayed by the slist MATLAB command.
This ordering can also be altered by assigning priorities to blocks. So, it can be
seen that Simulink only has partial order, which in SysML can be described using
activity diagrams. This activity diagram can be derived using the following method:

1. Create a start node and then a fork to all blocks with non-direct feedthrough.

2. Blocks with multiple inputs will have join nodes in front of them, and signals
going to many blocks will have fork nodes after.

3. Insert all activities according to the precedence, as described above.

4. Finally, create a join node, and propagate all activities here. After the join
node, the end node is inserted.

There are two output activity diagrams: Outputs.minor, and Outputs.major, of
which the first is used for internal steps in e.g. the Runge-Kutta solver. Thus,
outputs (e.g. Scope or To Workspace blocks) are excluded from the Outputs.minor
diagram. The resulting Outputs.minor activity diagram is shown in Figure 4.8. In
Paper D, Figure 7 and Figure 8 represent the other activities that together describe
the Simulink execution loop.

Conclusions

Using the Outputs.minor diagram in Figure 4.8 is a means to understand in what
order Simulink blocks execute, and why the execution order can differ between iden-
tical models. It also visualizes how the calculations could be parallelized. Modeling
the solver in UML could also be useful and opens up future possibilities such as:

• The simulation could be run using a UML activity diagram virtual machine.

3These rules are slightly rewritten in this version of the Simulink user manual (R2008b),
compared with Paper D (R2006a)
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Figure 4.8: Activity diagram describing the execution order of the Simulink model
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• Implementation code could be generated from the activity diagrams.

• The functions can be further developed, assigned to processes and hardware,
scheduled etc. in UML.



Chapter 5

Methodological Concerns When
Modeling Continuous-Time
Systems

This chapter presents the various conclusions that can be drawn from the survey of
modeling languages, i.e. the EPAS study in Chapter 3, and from the case studies
presented in Chapter 3.

Section 5.1 discusses interfaces between components, section 5.2 is devoted to
the abstraction levels of the different tools. Section 5.3 is focused on transformation
from the physical modeling realization level to lower levels, and section 5.4 addresses
which tool to choose for what purpose.

5.1 Effort-flow vs potential-flow vs across-through

A central characteristic when modeling lumped systems, is the conjugate variables
in Table 5.1, named effort-flow (bond graphs), potential-flow (Isermann, Modelica)
or across-through (Isermann, Simscape), which are used to define interfaces between
components.

• According to Isermann’s definition, across-variables are variables that can be
measured between two terminals, also named two-point variables or trans-
variables [41]. Through-variables can be measured at one terminal, and are
thus called one-point variables, or per-variables. In the electrical and the fluid
domains they are the same, but in the translational and rotational mechanical
domains they are switched. This is referred to as the dualism issue [41].

• Effort-flow is promoted by bond-graph theory, although it is pointed out that
what is defined as effort and flow respectively can be interchanged [50].

• Modelica labels its conjugate variables as potential-flow, defining potential
quantities as quantities connected to the same port as being equal, and flow
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quantities as obeying laws analogous to Kirschhoff’s current law, summing all
flows into a specific port to zero. Confusingly enough, this is more close to
the across-through viewpoint.

• In bond-graph theory, if the conjugate variables are multiplied, the result will
have the unit power (Watts), and hence the interface is named power-port.
If the product is not power, they are referred to as pseudo-bond graphs [45].
This viewpoint is also shared by Hirz [37].

• It is notable Modelica uses displacements instead of velocities in mechanical
translational and rotational one-dimensional systems. One reason for this
could be that the actual displacement is a key characteristic when modeling
mechanical systems, due to spatial constraints. One side-effect is that for
rotating machines the absolute rotating angle can get very large, which can
lead to numerical problems. This issue is addressed in the 3.0 version of
the Modelica Standard Library, using a relative angle and displacement per
default.

• The previous issue highlights that it can be difficult to know which part of
Modelica to address: Is it a language issue, a tooling issue or an issue with
the standard library? The Modelica Language specification does not prescribe
that any particular conjugate variables should be used, so in principle a new
mechanical library with power-port variables (i.e. force/torque and velocity)
could be designed. However, it is not certain that this library will work
in current tools, and it will not be compatible with current models in the
standard library.

• As mentioned earlier, Simscape uses the across-through classification. For the
foundation library, power-port variables are used (see Table 3.2 on page 36),
but since the documentation also lists another table of across-through vari-
ables (Table 3.1 on page 36) that can be used, Simscape is not limited to
power-port variables for user-defined interfaces and components.

So, it can be seen that if we want to describe a physical port or connector (e.g.
in SysML), there is a naming confusion in academia. If the potential-flow nomen-
clature is used, it will refer to different variables in bond graphs and Modelica for
mechanical systems. We can not name such a connector a power-port either, since
the product will not be of the dimension power in all cases. Using the across-through
classification is more general, and fits best with the physical modeling view.

5.2 Five realization levels of physical systems

Models of continuous-time systems can, just like an embedded system, have different
levels of abstraction. Since the expression abstraction level is reserved in EAST-
ADL2, they are called realization levels throughout this thesis. These realization
levels were created to provide answers to such questions as:
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Table 5.1: A comparison of different ways to describe the conjugate variables.
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• What is the behavior of Simulink and Modelica models?

• How is it possible to connect model x and model y?

• How is it possible to convert model x into model y?

The answer to the first question is that the behavior of simulation models depends
on which realization level is being regarded. Some of these languages specify behav-
ior only at certain realization levels, while other languages specify transformations
into lower levels of abstractions, more or less explicitly, see Table 5.2. The short
answer to the next two questions is that models of the same realization level are,
at least in theory, interchangeable.

5.2.1 Physical modeling models

The physical modeling realization level is a topological schematic view of how com-
ponents are interconnected, with physical connectors. The term “physical model-
ing” is used by [30], [88] and [52] for these kinds of models, it seems like academia
and industry has found a name for this type of models. The name is however not
ideal, it could be mistaken for physical mock-ups of the system, and models at
this realization level will be “physical modeling models”, which is a tautology. In
VDI 2206 [93], the word topological model is used, which maybe is a better word
to describe the characteristics of these models.

5.2.2 Constraint models

A constraint model is a model where the behavior is represented as a set of con-
straints, which could be equations. Equations can be acausal, in the sense that
different variables can be used as input. The word acausal could be misleading,
since it is a negative definition (i.e. models not being causal). Constraints can have
a specified cause and effect, for example:

y = if v > limit then limit else v;

Here, y must be an output from the input variable v, since an inverse function is
not defined. The statement above is not a mathematical equation, so the word
constraint is a better word than equation models, mathematical models or similar.

In the Modelica Standard Library, it is the conjugate variables that are acausal.
E.g. for a standard resistor, the resistance R is given as a parameter, and either
the current I or voltage U is calculated from the formula:

U = RI (5.1)

So, it can be seen that in Modelica, as it is implemented in tools and model
libraries, some variables are parameters and thus must be used as input.



5.2. FIVE REALIZATION LEVELS OF PHYSICAL SYSTEMS 65

5.2.3 Continuous causal models

Continuous causal models are used by control or signal processing engineers to
describe a system and its controller/signal transformation. This abstraction level
corresponds to how continuous-time systems are modeled using Simulink block
diagrams. There is no one-to-one mapping of an equation to a continuous causal
representation; the mapping depends on which variables are used as input and
output, but also on whether integral or differential causality is chosen. The bond
graph is also a continuous causal formalism, with more information added.

5.2.4 Discretized models with solver

Discretized models typically have update and output functions, as a result of inputs
and a time step. The selection of solver is crucial to get a valid simulation result,
including consideration of stiff systems1, selection of time-step etc. When hybrid
models are simulated, the solver will also need to take into account zero-crossing
effects. This level of abstraction can be described by the same means as a computer
program, e.g. UML activity diagrams, state machines, C-code.

5.2.5 Discretized models with solver and platform
implementation

Especially for real-time Hardware-in-the-Loop simulations, it is crucial that the
simulation can be run in real-time. The platform can have a limited numerical
resolution, have memory constraints etc. In a real-time system, the calculation
time needs to be taken into account, and possibly scheduled.

5.2.6 Comparison with other approaches

These realization levels have been developed throughout the work; evidence of
this can be found in Paper C and Paper D, where they have different names. A
comparison with similar approaches follows here.

Sen/Vangheluwe approach

In [80], an approach to transform physical models into bond graph models using
meta-modeling and graph rewriting is presented. This is interesting, since it is a
missing link in Table 5.2. As seen in section 3.1, there are methods to derive a bond
graph from e.g. a mechanical system, and these methods has been implemented
using graph rewriting. The model formalisms used includes [80]:

1A stiff system has such mathematical properties that makes it difficult to analyze numerically;
special solvers must be used.
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Bond
graphs

Ptolemy II
CT

Simulink Modelica Simscape SysML

Physcial

modeling

- - Using
Simscape

Using
Standard
library

Yes Available
through
profiles

Trans-
formation

↓

- - Using
Simscape

Using the
language

Hidden in
tool

-

Constraint
models

- - Using
Simscape

Native Simscape
language

Parametric
diagrams

Trans-
formation

↓

From
physical
to causal

- - - - -

Causal
models

Native Native Native Native Using
Simulink

Using
activity

diagrams

Trans-
formation

↓

Possible,
using

algorithms

Explicit,
using a
director

Using
simulation

engine,
described
in docu-

mentation

Tool (e.g.)
Dymola

transforms
causal and

acausal
models

Using
Simulink

simulation
engine

Using our
approach

in
Paper D

Discretized
models
with

solver

- In
principle,

not
explicit

Native Using
Dymola

Using
Real-time
workshop

Using our
approach

in
Paper D

Trans-
formation

↓

- - Not
explicit

- Not
explicit

-

Discrete
models
with

solver and
execution
platform

- - Using
Real-time
workshop,
Targetlink

- Using
Real-time
workshop

-

Table 5.2: Coverage of the langugages and tools on different realization levels, and
how transformations into lower levels are defined.
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• Real World Visual Modeling Formalism: This is a higher realization level than
physical modeling. In the EPAS case this would correspond to Figure 3.9 on
page 39.

• Idealized Physical Modeling Formalism: This has also been labelled as physical
modeling in this thesis.

• Acausal and Causal Bond Graph Formalism: In our approach there is no such
thing as an acausal bond graph, although it could be seen as an intermediate
step in the generation of a bond graph. Causal bond graphs and continuous
causal models are both on the same realization level (see section 3.1).

• Trajectory Formalism: This is a formalism of the simulation results, basically
to describe a graph of the results.

The approach uses the Modelica Bond Graph Library [18] and Dymola as a sim-
ulation engine. Modeling bond graphs in Modelica could be seen as abstraction
inversion, i.e. implementing lower levels of abstractions using higher level of ab-
stractions, which is undesirable. To a certain extent the concept of using Modelica
is to get rid of causal representations. However, for educational purposes this could
be useful. Bond graphs are also suggested to be used inside Modelica models for
multi dimensional mechanical models, see [95].

VDI 2206

In VDI 2206 [93], the following levels are used:

• Topological model: The topology of the system to be simulated is modeled as
the “arrangement and interlinking of function-performing elements”.

• Physical model, describing system-adapted variables, such as mass, length,
resistances, number of connections etc. It is pointed out that this is a domain-
specific view.

• Mathematical model: The physical model is transferred into an abstract rep-
resentation of the model, using mathematical descriptions. The modeler can
choose the depth of the modeling, using more or less detailed models of e.g.
friction, applying linearization of non-linear properties etc.

• Numerical model: The mathematical model is prepared in such a way that it
can be simulated, i.e. it is discretized and a solver is chosen. The model is
also parameterized, i.e. concrete number values are assigned to variables.

The combination of topological and physical models of VDI 2206 corresponds to
our realization level physical modeling. Mathematical models represent constraint
models, and numerical models represent our two lower realization levels.
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Platform-based design

Sangiovanni-Vincentelli [76] presents a concept of using abstraction levels. Here
the application is low-level design of electrical circuits, system-on-chip (SoC). A
platform is a layer in the design flow for which the underlying design-flow steps are
abstracted. By defining suitable platform layers, and associated transitions between
these layers, the design process can be improved. In a platform enough information
transpires from lower levels of abstraction to allow design space exploration with
sufficiently accurate prediction of the final implementation.

Using the True-Time tool [19], real-time kernels and communication networks
can be modeled using Simulink blocks. This way, the Simulink model can be seen
as a platform, where combined development of control algorithms and their imple-
mentation can be performed.

Leaky abstractions

Leaky Abstractions is a term that originates from software engineering [84]. The
core meaning is that when using a simple high-level abstraction of something much
more complicated, issues from this underlying implementation leak unintentionally
to the high-level abstraction. An example is a two-dimensional array that could
be faster to browse in one direction than the other, depending on the underlying
implementation. For the user, not knowing about the underlying implementation,
this can be rather confusing, for example when error messages from the lower levels
of abstractions are shown on the higher abstraction.

From this point of view, one could say that it is the implementation that is
leaky, and not the abstraction itself. However, [84] claims that “All non-trivial
abstractions, to some degree, are leaky” and that there is no such thing as a perfect
implementation of an abstraction. An example of a leaky abstraction would be
that the signal-flow model allows algebraic loops to be modeled. However, good
modeling practice is to avoid algebraic loops if possible, due to poor simulation
performance.

5.3 Different approaches for transforming from physical
modeling to constraints

A common problem is to convert a physical model of interconnected components,
like the EPAS system, into equations. In section 3.1, we presented the bond graph
approach of converting a physical model into a bond graph, which in turn can be
converted to equations. This method has been implemented using meta-modeling
and graph rewriting in [80], as mentioned in previous section. In this section, other
approaches are discussed.
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5.3.1 Modelica method

Modelica uses the connect statement to connect components, and equations can be
associated with the connector. In the connector, flow variables are defined. When
two ports are connected, potential variables are set to equal, and flow variables are
summed to zero.

The system of equations that is generated by this method is large, containing
many equations with duplicate variables. In our EPAS example, 113 equations con-
taining 113 variables were generated from the native Modelica descriptions. From
equations 3.1 - 3.4, we know that this system can be described by four differential
equations, containing 11 variables if we count all derivatives. The electrical system
alone consists of 47 variables, 13 of them representing the electric current. In this
particular example, there is only one current, as seen in equation 3.4. The reason
for the large number of current variables is that the OnePort-class (see Figure 4.5
on page 55) defines three currents for each component: one component current (i),
one current for the positive port (p.i which is equal to i) and one for the negative
port (n.i) that equals the negative value of the current. The implication of this is
that even for small systems, the native Modelica descriptions are inconvenient to
solve manually and a tool is needed.

5.3.2 Network equations

For electrical networks, there are many techniques to generate the governing equa-
tions and perform computer simulation using matrix methods, see e.g. [94]. Since
electrical networks consist of across-through variables, these methods should be
possible to extend to include other domains. In [85], it is claimed that the ap-
proach of using across-through variables in a network with nodes and edges, can
be used for different application domains. This approach seems promising, but has
not been investigated as a part of this thesis.

5.3.3 Higher-order functions

In [12], a concept is presented on how to create an acausal modeling language
by using the concept of higher-order functions, used in functional programming
languages. This would imply that the transformations are a part of the language.
The results are preliminary, and it would change Modelica in a fundamental way, so
here the concepts are presented using a completely new language. One interesting
thing to note is that nodes (here named wires) are used in this approach, just like the
network methods mentioned above [85]. In Modelica, nodes are somehow implicit;
ports are connected directly to each other. Another interesting thing is that this
method would allow models to be created and modified at run time, which would
be an enabling technology for e.g. a chamber model of displacement machines, as
described in section 4.1.
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5.3.4 MapleSim

The relatively new toolbox for Maple, MapleSim, uses the physical modeling view,
and it is claimed to use symbolic manipulation to derive simplified equations. As
mentioned earlier, MapleSim uses Modelica models “behind the scenes”, and the
models are derived from the standard Modelica library [52]. This tool was not part
of the survey, since it was not possible to get hold of a license.

5.4 Choosing realization level and tool

The choice of simulation language or tool is of course dependent on the task. Other
soft parameters include software licenses, legacy models and knowledge. The user
starts out on one of the three highest realization levels, here it is discussed what
level to choose.

5.4.1 Signal-flow or constraint models

A review of the statements given in the Ptolemy II documentation [14](see sec-
tion 3.2.1 on page 31) is made when choosing between constraint models and signal-
flow (i.e. causal) modeling.

• The signal-flow model is more abstract

The signal-flow mode does abstract away things such as units, physical domains.
It can even abstract away if functions are implemented in hardware or software.
Using a classic example from control theory where a mass-damper system is PID-
controlled by a force actuator, is that in the signal-flow model equivalent to add
mass, as to increase the derivative constant of the PID controller. If a functional-
modeling approach is used, the signal-flow model is indeed more abstract. This
is an interesting feature of the realization levels, making them stand out from
abstraction levels: The final product is at a higher realization level for the plant
(when selecting actuators), but a at lower abstraction level for the embedded system
(when implementing control functions in microcontrollers)

• The signal-flow model is more flexible and extensible

As shown, adding a component to a signal-flow model, such as adding a damper in
the EPAS case study, can cause the causality to change, which in turn implies that
parts of the model needs to be re-modeled. From this point of view, the models are
neither flexible nor extensible.
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• The signal-flow model is consistent with other models of
computation in Ptolemy II

This can be extended to claim that signal-flow modeling (i.e. causal modeling) is
more straight-forward for deriving the behavior, as compared to constraint models.
In section 4.3.5, we have developed a behavioral transformation from Simulink to
SysML activity diagrams, and in section 5.3 we elaborate various methods to derive
the behavior of physical modeling models.

• The signal-flow model is compatible with the conservation law model

One can combine acausal and causal modeling in the same model, so this is true.

5.4.2 Discussion

To conclude, here are some opinions from the author:

• Given a physical system, physical modeling should be used. One reason is
that the cause-effect derivation is abstracted away from the user, and model
rewriting and tearing can be used to formulate the problem to avoid algebraic
loops. Another reason is that there are many models available, e.g. from
the Modelica Standard Library [57], so the modeler should consider reusing
available models, rather than modeling from scratch. For example, large
parts of the NFCCPP model (Paper B) could be implemented directly from
the Modelica Standard Library.

• The off-the-shelf solvers included in Dymola or Simulink include many in-
tegration algorithms with advanced zero-crossing mechanisms. Open source
alternatives such as Scicos and Ptolemy II are also advanced and stable enough
to use. Writing your own solvers is error-prone and something that should be
avoided.

• The bond-graph approach is good for teaching, to learn about causality and
the coupling of the conjugate variables. As a practical modeling tool, bond
graphs do not scale well, especially when parameters are dependent on other
variables than effort and flow. Hybrid systems and non-linear systems (when
there is no direct coupling between effort and flow) are not directly covered
very well by the bond-graph method either.





Chapter 6

Conclusions and Future Work

6.1 Research questions review

To conclude the results of this research, the research questions, formulated in sec-
tion 1.5, are reviewed:

• How can one create a component-based simulation environment,
using MATLAB/Simulink?

The answer to this question is the NFCCPP model, where such a simulation envi-
ronment has been created. The main issue was to define proper generic interfaces
between components. The sub question was “How should generic interfaces be de-
signed in different physical domains, especially for fluid systems?”, and this question
is answered in Paper B with more detail in [83].

• How can one relate current modeling and simulation environments
for physical systems to the EAST-ADL2 modeling language? How can
one relate Modelica and Simulink and SysML/UML?

Many different alternatives of relating SysML with Modelica and Simulink have
been investigated and evaluated. We have developed our own mappings of Modelica
to SysML (Paper C), and from Simulink to UML (Paper D). Related approaches of
Modelica and SysML integration are presented in section 4.3 on page 53 and related
approaches for integrating Simulink and UML/SysML are presented in Paper D.

• What are suitable abstraction levels of a physical system, and how
can they be related?

In two case studies, some of the difficulties in choosing abstraction level are high-
lighted. In the compressor case presented in section 4.1 on page 47, Simulink was an
inappropriate abstraction; using an object-oriented language like C++ could have

73
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been more convenient. For the fuel-cell environment, described in section 4.2 on
page 50 and Paper B, Simulink maybe was at a too low realization level; it would
have been more convenient to model using e.g. Modelica.

• How can the behavior of continuous-time system be specified?

An attempt is made to describe the modeling of physical systems using five real-
ization levels. The approach, described in section 5.2 on page 62, is inspired by
abstraction levels used in embedded systems.

6.2 Future work

The work for model-based design will continue with improved versions of modeling
languages and tools. Although one may find flaws, and missing pieces in SysML
today, it is a standard that many tool-vendor and companies are willing to support,
and develop further. Sanford Friedenthal, one of the key persons behind SysML,
admits that the standard is incomplete in some aspects, but wants to make a
comparison to the more mature CAD-systems for geometrical design of mechanical
products, which were also immature and incomplete not so long ago, but are now
widespread [28]. Another observation is that CAD has not only improved the
development process, it has radically changed it, and as a result both cost and
time-to-market has been reduced [34].

6.2.1 Integration of Simscape and Modelica

A comparison between the Simscape Language and Modelica is of course inevitable.

• Simscape hides away component definitions for the Simscape foundation li-
brary in .p-files, which is MATLAB’s format for code that can be read but
not modified. This can be compared with the large Modelica Standard Li-
brary that is available. Only a handful of Simscape language example files
are provided in the Simscape package, making it difficult to develop new
components.

• Section 5.3 shows how the Modelica language generates many redundant vari-
ables and equations, which are later removed by the solver for the BLT1 form.
In Simscape it is not shown how many equations that are generated, but most
probably it is fewer, given the documentation on how the equations are set
up.

• Equations have well-defined semantics, although the syntax varies between
languages. The strict component model of Modelica should make it possible
to convert Modelica models into Simscape blocks. In the same way, exporting

1Block Lower Triangular, see [30] for more details.
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Simscape blocks to Modelica should be possible, maybe by defining new con-
nectors for various across-through variables. However, since most Simscape
libraries are hidden in .p-files, there are today not too many components or
models to convert to Modelica.

6.2.2 Further integration of SysML and Modelica

One conclusion from this thesis is the recommendation to separate acausal modeling
from physical modeling. In Modelica, acausal connectors enable physical modeling,
but in the case of SysML, the parametric diagram enables acausal modeling, but
not physical modeling (see section 3.6). Extending SysML with a physical connec-
tor and physical ports would enable physical modeling, and a possibility to convert
SysML blocks to Modelica or Simscape. These physical connectors and ports could
have across-through variables declared, as discussed in section 5.1. There are ongo-
ing activities on how to relate the languages, from both the Modelica and SysML
communities.

6.2.3 Higher realization levels

When the physical modeling level is established, the follow-up question is what
a higher abstraction level would mean, and look like. In the Sen/Vangheluwe
approach [80] (described in section 5.2.6) the Real World Visual Modeling Formalism
is set higher, but it is pointed out that there are no fixed rules to transform it into
a physical modeling representation, and in general human input will be required
for this.

One forecast is that tools will perform more engineering work, such as symbolic
manipulation, unit check, sanity check, and be more user friendly. Another vision
is that tools will be able to generate solution concepts from system constraints, or
at least choose between different concepts.

For embedded systems, the vision is to synthesize the lower abstraction levels
from higher, or to find suitable platforms (as defined by [76]) to work on. Here,
embedded systems have a high potential, since the end product is at the lowest
level of abstraction, as compared with simulation models, which per definition are
models of the product.

6.3 Validity of research results

• Two simulation models have been developed: one of a twin-screw
compressor and the other of a fuel-cell simulation environment.

As mentioned earlier, the twin-screw compressor is used in this thesis as a case
study in exploring problems when performing modeling. The individual component
models of the fuel-cell simulation environment have been validated for industrial
use.
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• A method of protecting the intellectual property (I.P.) of simulation
components has been developed.

A security mechanism is never completely secure, it can only be secure enough. We
have tried to consider many different aspects, including clamping, which is often
overseen.

• A survey of modeling languages for continuous-time systems has
been carried out. An example model of an electric power assisted
steering system has been implemented in these languages.

The EPAS models presented in Chapter 3 have been tested in all the respective
tools2, to verify that they generate similar results. No tools were available for bond
graphs, so this model is not verified. For SysML, there is always a possibility that
the specifications has been misinterpreted, or used in a non-intended way.

• Transformations between SysML and Simulink as well as between
SysML and Modelica have been investigated.

The transformations are based on thorough studies of SysML, Simulink and Model-
ica. The transformations have only been investigated for the behaviors and aspects
covered in the thesis. Experiments have been carried out using small examples. As
described in Paper D, a prototype implementation using ATL has been developed
for the Simulink to SysML transformation.

• Based on experience from the case studies, methodological concerns
when modeling continuous-time systems have been identified and
elaborated.

In Chapter 5, and also in section 2.2.3 these methodological concerns are presented.
The realization levels are verified in the sense that they are compared to related
work and evaluated by applying them to studied modeling languages.

6.4 Concluding remarks

To enable model-based development of mechatronics, there is a need for languages
that capture the important aspects of the system at the right level of detail.

This thesis has made an inventory of tools and languages that are available
today, and evaluated how they perform modeling of continuous-time systems. The
potential of model transformations has been shown in the form of transformation
between SysML and Simulink and SysML and Modelica. Today there is trend of
physical modeling, with many new languages emerging. Examples include Modelica

2MATLAB R2008b, Dymola 5.3b, Ptolemy II 7.0.1.
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3.0, the Simscape language, MapleSim, SystemC-AMS and VHDL-AMS. Compar-
ing Figure 3.6 on page 35, Figure 3.8 on page 38 and Figure 3.13 on page 44, the
syntax of the languages are similar, so model transformations between the lan-
guages, or maybe from another source should be possible. This source could be
modeled in an architectural description language, such as EAST-ADL2, or SysML.
These languages should then be equipped with constructs so that this could be
made easily.

The two case studies on modeling and simulation have shown that the signal-flow
Simulink abstraction level has many drawbacks when modeling physical systems,
with respect to e.g. modularity (NFCCPP case) and expressiveness (twin-screw
compressor case). A major argument for why the signal-flow model is used today
is that it is easy to transform into computations. If equation-based models were
equally easy to transform they would be used to an even higher extent. In sec-
tion 5.3, we show that the Modelica way of handling networked system may not be
ideal. In addition, results from the Modelica community (section 5.3.3) point to a
new language, with transformations defined directly in the language.
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