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�is work presents an alternative model of multimode �ber links with conventional silica weakly-guiding graded-index irregular
multimode �bers under a few-mode optical signal propagation generated by laser source. �e proposed model is based on
the piecewise regular representation. It takes into account launch conditions, dierential mode delay, both lower- and higher-
order mode chromatic dispersion, dierential mode attenuation, and mode mixing and power diusion occurring due to real
�ber irregularity and micro- and macrobends. We present some results of introduced model approbation with following pulse
propagation simulations. A close matching with measured pulse responses at the output of test �bers is noticed.

1. Introduction

Silica multimode graded-index �bers are used in a wide
variety of applications ranging from on-board to in-premises
networks links with length not more than 1–2 km. Since
IEEE 802.3z standard was rati�ed and commercial avail-
able SFP transceivers with Vertical Cavity Surface Emitting
Lasers (VCSELs) appeared on telecommunication market,
multimode �bers became very popular both for in-building
structural cabling systems (SCS) and typical distributed net-
works with backbone/vertical �ber cabling systems, private
networks in premises, and campus environments. Nowadays
the most top applications of multimode �bers are associated
with data center SCS, high bit-rate storage area networks,
and radio-over-�ber (RoF) techniques over already installed
multimode �ber infrastructure inside building [1–3].

Modern commercial multi-Gigabit transmission tran-
sceivers are realized on Vertical Cavity Surface Emitting
Lasers (VCSELs) or single-mode Fabry-Perot laser diodes
(LD) [1–4]. Because emission from the conventional VCSEL
usually consists of about 5 or 6 transversal modes ���� with
maximal azimuthal order � not more than 3, and single-mode
LD injects just fundamental and lower-ordermodes ��01 and��11, only several guided modes are excited in multimode
�ber link [5–7]. �erefore optical signal propagates over

multimode �ber link in a so-called few-mode regime, and
passage to the simulation of a few-mode pulse transmission
over multimode �ber requires taking into account both
“individual” dispersion parameters of mode component with
particular order (amplitude, attenuation, delay, chromatic
dispersion, etc.) and mode coupling.

A variety of methods have been developed for modeling
and simulation of laser-based multi-Gigabit data transmis-
sion over multimode �bers. Monograph [4] can be con-
sidered as fundamental complete basis work. �e following
groups of publications—[8–15]—should also be noted: their
authors are a�liated to IEEE 802.3z, 802.3ae, 802.3aq, and
802.3ba Task Forces. Other works are also concerned with
the design and simulation ofmulti-Gigabitmultimode optical
communication systems. �us model [16–18] was realized
in commercial RSo� tool ModeSYS, [19, 20] are based on
vector methods, and [21] applies ray-tracing analysis. All
mentioned models [4–20] are primarily assigned for the esti-
mation of dierential mode delay (DMD), which is the main
issue of pulse distortion for laser-based multi-Gigabit data
transmission over multimode �ber links and is concerned
with theoretical research of DMD dependence on source
parameters, launch conditions, and real �ber refractive index
pro�le defects and deviations from the optimum graded-
index pro�le form. �ey also provide accurate simulation
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technique of signal generation, conversion and processing in
transceivers of multi-Gigabit communication systems.

A generalized chromatic dispersion parameter is applied
in some models mentioned above. It is based on well-
known empiric formula, which is cited in the most of �ber
speci�cations and data sheets [22]. However this approach
does not dier of lower- and higher-order modes and does
not solve the problem of “individual” chromatic dispersion
estimation for guidedmode with particular order. Alsomode
coupling is neglected in most of the listed above. It is justi�ed
by the short length of multimode �ber link. In some works
correction factors or modal noise penalty are applied, but
only mode power redistribution at �ber interconnections in
�ber optic distribution systems, consolidation points, patch-
panels, and so forth, is recalculated without taking into
account both real �ber irregularities and �ber bends.

Here we introduce an alternative model of multimode
�ber links with conventional silica weakly-guiding graded-
index irregular multimode �bers under a few-mode opti-
cal signal propagation generated by laser source. Proposed
model is based on the piecewise regular representation. It
takes into account launch conditions, dierential mode delay,
both lower- and higher-order mode chromatic dispersion,
dierential mode attenuation, and mode mixing and power
diusion occurring due to real �ber irregularity and micro
andmacro-bends.We also present some results of introduced
model approbation with following pulse propagation simu-
lations and matching with measured pulse responses at the
output of test �bers.

2. Brief Overview of Methods for
Simulation of Pulse Propagation over
Irregular Optical Fibers

A several methods have been developed for computing elec-
tromagnetic wave �elds during propagation over irregular
waveguides.Monograph [23] is one of the fundamental works
of this direction. Eects of wave interaction in irregular
waveguides are exact described by the coupled mode theory.
Complete overview, description, classi�cation, and list of
applications of coupled mode theory methods can be found
in monograph [24].

Generally coupled mode theory is based on represen-
tation of mode �elds along longitudinal cross-section �
of irregular optical waveguide in the kind of mode �eld
superposition of complete system of guided and leaky modes
in regular optical waveguide. �is expansion varies along the
�ber longitudinal axis and it is described by systemof coupled
mode equations. �e system of equations is formulated by
substitution of mentioned irregular optical waveguide mode
�eld representation to Maxwell equations [25] or Helmholtz
equation [26, 27]. Result of substitution is in�nite system of
dierential equations of the �rst or second order (it depends
on initial equations—Maxwell or Helmholtz) for each mode
amplitude depending on longitudinal coordinate �.

�e system of equations exactly describes mode �elds in
longitudinal cross-section of irregular optical waveguide, but
it has not general analytical solution. Problem can be much

simpli�ed for the limited number of modes—just one or
two [28–30]. For example coupled mode theory is eectively
applied for analysis of the fundamental mode propagation
over irregular optical �ber under taking into account the
birefringence eect [25–27, 31]. However few-mode regime of
signal transmission over multimode �bers requires increase
of mode components that much complicates solutions of the
system of equations. �is fact limits coupled mode theory
application in the case of random �uctuations of �ber core
geometry parameters along the longitudinal axis �.

In [32, 33], mode components of few-mode signal are
combined in mode groups with roughly equal propagation
constants. In works [34–36], a passage to in�nite number of
mode components (mode continuum) is proposed followed
by replacing the sum of discrete mode component �elds by
integration. By neglecting core geometry variation, random
�ber macrobends is considered as the main factor of mode
coupling in [37–39]. Also in [40–44] a special curvilinear
coordinates are applied to describe mode coupling via �ber
bends. In [45–47], mode mixing and power diusion is
simulated by combination of coupled mode theory and ray-
tracing analysis.

�e system of incoherently coupled nonlinear Schro-
dinger equations is applied for mathematical description of
pulse propagation overmultimode �ber in [48–54]. Although
the generalized system of equations was written for in�nite
number of modes by taking into account �ber nonlinearity,
themain application of thismethod is used just for simulation
of coupling between two orthogonally polarized modes in
single mode �bers occurring due to birefringence.

Piecewise regular representation [25, 26, 55] of irregular
optical waveguide is an alternative method to coupled mode
theory. It is basic for direct methods like �nite-dierence
time-domain (FDTD) method—one of the most accurate,
universal, and “popular” numerical methods, which is widely
used for analysis of electromagnetic wave propagation over
waveguides with arbitrarily complicated con�guration (e.g.,
[56–62], etc.). Also well-known direct rigorous methods are
method of moments [58, 62, 63], �nite-dierence frequency-
domain (FDFD) method [55, 58, 62], �nite element method
[55, 58, 62], wavelets [64–66] and their modi�cations, and
combinations with elements of coupled mode theory [41–
44, 67–73].

Rigorous methods provide accurately computing of the
transversal mode �eld distribution at the particular distance
of emission source and time interval under the lowest
error. �e main issue of their application is complicated
formulation of boundary and initial conditions according to
individual problem and waveguide properties and con�gura-
tion. �ey are very eective for the modeling of waveguide
structures with quite short dimensions—not more than(103, . . . , 104) ⋅ �—like integral optics components. However
simulation of pulse propagation over conventional �ber
link (with length of hundreds or even tens meters) by the
mentioned direct rigorousmethods requires extra computing
resources and is almost impossible.

In terms of piecewise regular representation of both LAN,
MAN (metropolitan area network) and long-haul �ber links,
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Figure 1: Piecewise regular representation of 200m irregular mul-
timode optical �ber with varying core diameter.

matrix methods [62, 74–80], recurrent methods [81–85] and
quasi-analytic time-domain models based on quasianalytic
methods [86–89] and spatial transformmethods [55, 86, 90–
95] are widely used. �e most of them were developed for
simulation of pulse propagation over single mode �bers.

From this point of view, method described in [96–98]
can be considered as an exception. It combined coupled
mode theory with piecewise regular representation and was
developed formodeling of signal transmission processes over
long irregular multimode �ber links. Here a random �ber
bends are preset and supposed as the main reason of mode
coupling occurring. Also it takes into account birefringence.
However the method neglects core geometry variation along
longitudinal �ber axis and considers only multimode �bers
with ideal in�nite �-pro�les.

�erefore the most considered methods above for mod-
eling and analysis of pulse propagation over optical �bers
should be adapted for irregular multimode �ber link oper-
ating in a few-mode regime. Model has to take into account
the whole total selected excited guided mode composition
of transferred few-mode optical signal and their “individual”
parameters during propagation over multimode �bers with
real graded-index pro�les diering form ideal �-pro�les by
local defects and refractive index �uctuation. Moreover, in
this case division ofmode composition on lower- and higher-
order mode groups with averaged propagation constant is
unacceptable. Also model has to take into account launch
conditions and mode coupling due to both variation of
core geometry parameter along �ber length and micro- and
macrobends of �ber occurring in real cable links.

3. Model of Piecewise Regular
Multimode Fiber Link

In this work we also apply piecewise regular representation
combined with general approach of split-step method [99]
to simulate a processes of mode mixing and power diusion
due to mode coupling (Figure 1). Here single silica weakly
guiding circular multimode �bers with arbitrary axial sym-
metric refractive index pro�le with single continue outer
claddings are considered. According to piecewise regular
representation the �ber is divided into regular spans with
length Δ�. Inside the span �ber geometry parameters are
considered as constant, and modes propagate independently

without interaction and mixing. It is supposed that each
excited guided mode with propagation constant, varying
from one regular span to another span, satis�es to cut-o
condition for whole regular spans composing �ber. Also it is
assumed that at the link transmitter end each excited guided
mode starts transferring single optical pulse in particular
form identical to input signal (e.g., Gaussian). During pulse
propagation over regular span its amplitude decreases due
to mode attenuation. �e signal is mainly distorted due to
dierence between group velocities and amplitudes ofmodes,
that is, DMD eect. Also transferred by each mode pulse,
spreading due to chromatic dispersion for particular mode
is taken into account.

Boundaries of regular spans can be represented gener-
ally as ideal axially alignment splice of two almost similar
optical �bers with mismatching parameters. However it
is correct only for “straight” �bers. �erefore it is pro-
pose to simulate �ber bends by representation of bound-
aries in the form of splice of two mismatched �bers with
some low angular misalignment. Mode power redistribu-
tion between the amplitudes of signal components as a
result of mode interaction is estimated by mode coupling
coe�cient matrix computing at the joints of regular spans.
Here only guided modes are considered as the main issue
under pulse dynamics research during propagation over
multimode �ber link in a few-mode regime. However, in fact,
power loss due lo component transformation from guided
to leaky mode, and re�ections are also indirectly taken into
account.

At the receiver end the resulting pulse envelope is con-
sidered as superposition of all mode components of signal.
Here it is propose to apply a well-known expression for the
frequency response of the signal transferred by 
 mode
components ���� over regular multimode �ber with length� [4, 8–15, 18, 99–101]:

���� (�, �) =  [ℎ�� (�)] �∑
	
�(0)	 exp (−�	�)

× exp [−� (� − �0) �(	)1 �]
× exp [−�12(� − �0)2�(	)2 �] ,

(1)

where  is direct Fourier transform; ℎ��(�) is initial pulse at
the transmitter end; �(0)	 and �	 are starting amplitude and

mode attenuation of �th guided mode ���� (� = 1, . . . ,
);�(	)1 and �(	)2 are �rst- and second-order dispersion param-
eters. �ese dispersion parameters are elements of well-
knownTaylor series expansion approximation of propagation
constant frequency dependence �(�) [2, 55, 99]:

� (�) = (� − �0) �1 + 12(� − �0)2�2
+ 16(� − �0)3�3, . . . ,

(2)
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where

�
 = [ 
� �
 ]�=�0 . (3)

Here �(	)1 = "(	) is mode delay and �(	)2 is group velocity
dispersion (GVD) associated with chromatic dispersion of�th guided mode ����.

�erefore, according to introduced piecewise regular rep-
resentation of irregular multimode �ber link, the frequency
response of a few-mode optical signal transferred by 

guided modes over irregular multimode �ber with length �
under given particular length of regular span Δ� by taking
into account expression (1) can be written in the following
form:

��� (�, �)
=  [ℎ�� (�)] �∑

	
�(	)(��+1) exp [−�(	)(��+1) (� − #Δ�)]

× exp [−� (� − �0) "(	;��+1) (� − #Δ�)]
× exp [−�12(� − �0)2�(	;��+1)2 (� − #Δ�)]
× ��∏
�=1

�(	)� exp (−�(	)� Δ�)
× exp (−� (� − �0) "(	;�)Δ�)
× exp (−�12(� − �0)2�(	;�)2 Δ�) ,

(4)

where# = '(�/Δ�); '(*) is the integer part of real number*.
�e resulting pulse response at the receiver end of

irregularmultimode link is computed by the following simple
expression:

ℎ�� (�) = −1 (��� (�)) ⋅ [−1 (��� (�))]∗, (5)

where −1 is inverse Fourier transform; [*]∗ is the complex
conjugate of *.

It is obvious that the proposed model requires fast and
simple method for the analysis of the optical �bers with
complicated refractive index pro�le form close to pro�les of
real �bers, which provides evaluation of parameters not only
for the fundamental but also higher-order guidedmodes. For
this purpose we propose to apply an extension of modi�ed
Gaussian approximation (EMGA) generalized for estimation
of any order guided mode parameters, propagating over
silica weakly guiding optical �bers with an arbitrary axial-
symmetric refractive index pro�le [102]. EMGA is based on
combination of Gaussian approximation and strati�cation
method. It permits amuch reduce computing time, especially
for the calculations of higher-order mode parameters under
the low error [103] by making a passage to analytical expres-
sions both for the variational expression and characteristic

equation. Below a detailed description of EMGA and its
application for the proposed model is presented.

4. Extension of Modified
Gaussian Approximation

EMGA is based on classical Gaussian approximation [25] of

radial mode �eld distribution (�)� (-) in the weakly guiding
optical waveguidewith an arbitrary refractive index pro�le by
the well-known Laguerre-Gauss function expression [4, 25,
100], describing a mode �eld distribution in weakly guiding
optical waveguide with ideal in�nite parabolic index pro�le:

Ψ(�)� (-) = ( --0)
��(�)�−1 (-2-20) exp(−-22-20 ) , (6)

where �(�)�−1 is Laguerre polynomial.
EMGA leads to equivalent normalized mode �eld radius-0 estimation by solving a characteristic equation, which

is derived from propagation constant variational expression

under following passage to square core mode parameter 92
variational expression, written for analyzed weakly guiding
optical waveguide with given refractive index pro�le. Param-
eter -0 is basic for this method and completely de�nes mode
transmission parameters.

Unlike knownmethods and their modi�cations [25, 104–
110], based on conventional Gaussian approximation, in
EMGAoptical �berwith an arbitrary graded axial-symmetric
index pro�le is considered as multicladding optical �ber.
�erefore, refractive index pro�le inside core region can be
represented in the form of the set of # layers in which the
refractive stays a constant [102, 103]:

: (-) = {{{
:�, -� = ?#, 0 ≤ ? ≤ # − 1,:�, 1 < - ≤ +∞, (7)

and any pro�le function C(-) related to refractive index
pro�le :(-) as

:2 (-) = :2
max

[1 − 2Δ ⋅ C (-)] , (8)

where Δ = (:2
max

− :2�)/2:2max
is pro�le height parameter, can

be written in terms of pro�le parameter ℎ�:
C (-) = {{{

ℎ�, -� = ?#, 0 ≤ ? ≤ # − 1,1, 1 < - ≤ +∞, (9a)

where

ℎ� = :2
max

− :2�:2
max

− :2� , (9b)

where :� is refractive index of ? layer (? = 0, . . . , #); :max is
the maximal core refractive index; :� is cladding refractive
index.

�is refractive index pro�le representation permits writ-
ing the variational expression for core mode parameter 92
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and characteristic equation for normalized equivalent mode
�eld radius  92/ -0 = 0 in the form of �nite nested sums as
follows [15, 16]:

92 = (D − 1)!(� + D − 1)!
× { G-20 + H2 [J0 + �−1∑

�=0
ℎ� (J1 − J2)]} ,

J0 = exp(− 1-20)
2�−2∑
�=0

M� �+�∑
	=0

(� + N)!�!-2	0 ,
J1 = exp(− ?2#2-20)

2�−2∑
�=0

M� �+�∑
	=0

(� + N)!�!-2	0
?2	#2	 ,

J2 = exp(−(? + 1)2#2-20 ) 2�−2∑
�=0

M� �+�∑
	=0

(� + N)!�!-2	0
(? + 1)2	#2	 ,

−G + H2 [O0 + �−1∑
�=0

ℎ� (O1 − O2)] = 0,

(10)

O0 = exp(− 1-20)
2�−2∑
�=0

M� �+�∑
	=0

(� + N)!�!-2	0 (1 − �-20) ,
O1 = exp(− ?2#2-20)

2�−2∑
�=0

M�
× �+�∑
	=0

(� + N)!�!-2	0
?2	#2	 ( ?2#2 − �-20) ,

O2 = exp(−(? + 1)2#2-20 ) 2�−2∑
�=0

M�
× �+�∑
	=0

(� + N)!�!-2	0
(? + 1)2	#2	 ((? + 1)2#2 − �-20) ,

G = (� + D − 1)! (3� + 2D − 1)(D − 1)!
+ 2�2 2�−2∑

�=0
M� (N + � − 1)! − 4�

× 2�−2∑
�=0

R� (N + �)!,

(11)

where

M� = min(�,�−1)∑
	=max(0,�−�+1) S

(�,�−1)
	 S(�,�−1)�−	 , (12a)

�(�)�−1 (*) �(�+1)�−1 (*) = 2�−2∑
�=0

R�*�, (12b)

and S(�,�)	 is coe�cient of polynomial representation in the

form of power series [111, 112]:

�(�)� (*) = �∑
�=0

S(�,�)� *�, (13a)

S(�,�)� = (−1)� (� + D)!(� + N)! (D − N)!N! , (13b)

H = ?0T:max
√2Δ is normalized frequency; ?0 = 2V/� is

wavenumber; � is wavelength.
�erefore analysis of weakly guiding single-cladding

optical �ber with an arbitrary pro�le leads to the following.
Refractive index pro�le is represented by the pro�le function
(9a) and (9b) in the form of # layers. Fiber parameters and
mode orders � and D are substituted to the characteristic
equation (11). By means of numerical solution (11), the
normalized equivalent mode �eld radius -0 will be obtained.
�en -0 is substituted to the expression (10), and mode
core parameter 9 is estimated; that permits evaluating the
propagation constant � for guided mode ���� by the well-
known expression [4, 25–27, 55, 100]:

�2 = ?20:2max
− 92T2 . (14)

Solution of the characteristic equation (11) is correct
under normalized frequency H > 1, and it should satisfy the
guided mode cuto condition [4, 25–27, 55, 100]:

?0:� < � ≤ ?0:max. (15)

Optical con�nement factor �core can be considered as the
second criterion for the identi�cation of the ghost solutions:

�(��)
co

≥ 0.5. (16)

If we take into account Gaussian approximation, parameter�core is de�ned by analytical expression derived in [15] from
the generalized integral form forweakly guiding optical �bers
presented in [25]:

�(��)
co

= (D − 1)!(� + D − 1)!
2�−2∑
�=0

M� (� + N)! ⋅ Z�, (17)

where

Z� = 1 − exp(− 1-20)
�+�∑
	=0

1�!-2	0 . (18)

5. Mode Group Velocity

According to what is mentioned above, realization of intro-
duced model of piecewise regular multimode �ber link
requires a passage to analytical expressions for mode group
velocity. Guidedmode group velocity V� is related to propaga-
tion constant� by thewell-known formula [4, 25–27, 55, 100]:

V� = −2V\�2  � � . (19)
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By squaring and following dierentiation of the expres-
sion (14) with respect to wavelength, the �rst partial deriva-
tive of the square of propagation constant will be obtained:

 �2 � = −2?20:2max� + ?20  :2max � − 1T2  9
2

 � . (20)

A�er substitution of (20) to (19), an expression for the
mode group velocity can be rewritten in the following form:

V� = −4V�\�2  � �2 = −?20�\V  � �2 . (21)

�en by dierentiating expressions (10) and (11) with
respect to wavelength, �rst derivatives of square core mode

parameter 92 and normalized equivalent mode �eld radius-0 will be obtained:
 92 � = (D − 1)!(� + D − 1)!

× {−2Z-30  -0 � +  H2 � [J0 + �−1∑
�=0

ℎ� (J1 − J2)]
+ 2H2J(1)0  -0 � + H2 �−1∑

�=0

 ℎ� � (J1 − J2)
+ 2H2  -0 �

�−1∑
�=0

ℎ� (J(1)1 − J(1)2 )} ,
J(1)0 = exp(− 1-20)

2�−2∑
�=0

M� �+�∑
	=0

(� + N)!�!-2	+30 (1 − �-20) ,
J(1)1 = exp(− ?2#2-20)

2�−2∑
�=0

M�
× �+�∑
	=0

(� + N)!�!-2	+30
?2	#2	 ( ?2#2 − �-20) ,

J(1)2 = exp(−(? + 1)2#2-20 ) 2�−2∑
�=0

M�
× �+�∑
	=0

(� + N)!�!-2	+30
(? + 1)2	#2	 ((? + 1)2#2 − �-20) ,

 -0 � = (O0  H2 �
+ �−1∑
�=0

[(O0 − O1) (ℎ�  H2 � + H2  ℎ� � )])

× (−2H2 ⋅ [O(1)0 + �−1∑
�=0

ℎ� (O(1)1 − O(1)2 )])−1,
O(1)0 = exp(− 1-20)

2�−2∑
�=0

M� �+�∑
	=0

(� + N)!�!-2	+30 [(1 − �-20)2 − �-40] ,
O(1)1 = exp(− ?2#2-20)

2�−2∑
�=0

M�
× �+�∑
	=0

(� + N)!?2	�!#2	-2	+30 [( ?2#2 − �-20)2 − �-40] ,
O(1)2 = exp(−(? + 1)2#2-20 ) 2�−2∑

�=0
M�

× �+�∑
	=0

(� + N)!(? + 1)2	�!#2	-2	+30
× [((? + 1)2#2 − �-20)2 − �-40] .

(22)

6. Mode Chromatic Dispersion Parameter

�e same technique is applied to derive the analytical expres-
sions for mode chromatic dispersion parameterM associated
with GVD. Chromatic dispersion parameter M is related to
propagation constant � by the well-known formula [4, 25–
27, 55, 100]:

M = − �2V\ (2 � � + � 2� �2 ) . (23)

By dierentiating (20), a second partial derivative of the
square of propagation constant will be obtained:

 2�2 �2 = ?20 ( 2:2
max �2 + 6:2

max�2 − 4�  :2
max � ) − 1T2  

292 �2 . (24)

�erefore expression forM leads to following form:

M = − V?20�\ [ 2�  �2 � +  2�2 �2 − 12�2( �2 � )2] . (25)

By dierentiating expressions (22) with respect to wave-
length, required second derivatives of square core mode
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parameter 92 and normalized equivalent mode �eld radius-0 will be obtained:
 292 �2

= (D − 1)!(� + D − 1)!
× {2
-30 [ 3-0( -0 � )2 −  2-0 �2 ]

+ �−1∑
�=0

(J1 − J2)

× (ℎ�  2H2 �2 + 2 ℎ� �  H2 � + H2  2ℎ� �2 )

+ 2�−1∑
�=0

(J(1)1 − J(1)2 )

× (2ℎ�  H2 �  -0 � + 2H2  ℎ� �  -0 � + H2ℎ�  2-0 �2 )

+ 4H2( -0 � )2 [J(2)0 + �−1∑
�=0

ℎ� (J(2)1 − J(2)2 )]

+ J0  2H2 �2 + 2J(1)0 (2 H2 �  -0 � + H2  2-0 �2 )} ,
J(2)0 = exp(− 1-20)

2�−2∑
�=0

M�
× �+�∑
	=0

(� + N)!�!-2	+60 [(1 − �-20)2 + -202 (�-20 − 3)] ,
J(2)1 = exp(− ?2#2-20)

2�−2∑
�=0

M�
× �+�∑
	=0

(� + N)!�!-2	+60
?2	#2	

× [( ?2#2 − �-20)2 + -202 (�-20 − 3?2#2 )] ,
J(2)2 = exp(−(? + 1)2#2-20 ) 2�−2∑

�=0
M�

× �+�∑
	=0

(� + N)!�!-2	+60
(? + 1)2	#2	

× {[(? + 1)2#2 − �-20]2

+ -202 [�-20 − 3(? + 1)2#2 ]} ,
 J(1)0 � = 2J(2)0  -0 � ,
 J(1)1 � = 2J(2)1  -0 � ,
 J(1)2 � = 2J(2)2  -0 � ,

 2-0 �2 = − [H2O(1)0 + �−1∑
�=0

ℎ� (O(1)1 − O(1)2 )]−1

× {2 -0 �
�−1∑
�=0

(O(1)1 − O(1)2 )
× (H2  ℎ� � + ℎ�  H2 � )
+ �−1∑
�=0

(O1 − O2)
× (ℎ�2  2H2 �2 +  ℎ� �  H2 � + H22  2ℎ� �2 )
+ 2H2( -0 � )2

× [O(2)0 + �−1∑
�=0

ℎ� (O(2)1 − O(2)2 )]
+ O02  2H2 �2 + 2O(1)0  -0 �  H2 � } ,

O(2)0 = exp(− 1-20)
2�−2∑
�=0

M�
× �+�∑
	=0

(� + N)!�!-2	+60
× {(1 − �-20)3 + -202 [�-40 (3� − 1) − 3]} ,
O(2)1 = exp(− ?2#2-20)

2�−2∑
�=0

M�
× �+�∑
	=0

(� + N)!?2	�!#2	-2	+60
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× {( ?2#2 − �-20)3

+ -202 [�-40 (3� − 1) − 3?4#4 ]} ,
O(2)2 = exp(−(? + 1)2#2-20 ) 2�−2∑

�=0
M�

× �+�∑
	=0

(� + N)!(? + 1)2	�!#2	-2	+60
× {((? + 1)2#2 − �-20)3

+ -202 [�-40 (3� − 1) − 3(? + 1)4#4 ]} ,
 O(1)0 � = 2O(2)0  -0 � ,
 O(1)1 � = 2O(2)1  -0 � ,
 O(1)2 � = 2O(2)2  -0 � .

(26)

7. Material Dispersion and Profile Parameters

We shall apply a well-known Sellmeier equation to take into
account the refractive index dependence on wavelength [4,
25–27, 55, 100]:

: (�) = √1 + 3∑
�=1

� ��2�2 − g2� , (27)

where� � andg� are Sellmeier’s coe�cients (g� is also denoted
as the resonance wavelength) which has been empirically
measured for GeO2-SiO2 glasses [113, 114] under the several
particular dopant concentration. Here we shall apply the
method described in [115] to estimate Sellmeier coe�cients
at the graded-index pro�le points.

A passage from the dierentiation operator to its square
is used by analogously to propagation constant derivatives.
�is passage will much simplify expressions for the �rst and
second derivatives of the refractive index:

 : � = 12:  :2 � ,
 :2 � = −2� 3∑

�=1

� �g2�(�2 − g2� )2 ,
(28)

 2: �2 = 12: [ 2:2 �2 − 12:2( :2 � )2] , (29a)

 2:2 �2 = 3∑
�=1

2� �g2� (g2� + 3�2)
(�2 − g2� )3 . (29b)

�erefore the �rst and second derivatives of the pro�le
height parameter Δ can be expressed as follows:

 Δ � = 12:2
max

[(1 − 2Δ)  :2max � −  :2� � ] ,
 2Δ �2 = 12:2

max

[(1 − 2Δ)  2:2max �2
−  2:2� �2 − 4 Δ �  :2

max � ] .
(30)

�en derivatives of pro�le parameter ℎ� de�ned by
formula (9b) are determined by the following expressions:

 ℎ� � = 1:2
max

− :2� [(1 − ℎ�)  :2max � −  :2� � + ℎ�  :2� � ] ,
 2ℎ� �2 = 1:2

max
− :2� [(1 − ℎ�)  2:2max �2

−  2:2� �2 + ℎ�  2:2� �2
− 2 ℎ� � ( :2

max � −  :2� � )] .

(31)

Finally the �rst and second derivatives of the normalized
frequency can be written with a help of formulas (28)–(30) in
the following form

 H2 � = T2?20 [ :2max � −  :2� � − 2� (:2
max

− :2�)] ,
 2H2 �2 = − 2�  H2 � + T2?20

× { 2:2
max �2 −  2:2� �2

+ 2� [ 1� (:2
max

− :2�) −  :2
max � +  :2� � ]} .

(32)

8. Differential Mode Attenuation

We shall apply a simple empirical relation proposed in
work [116] using experimental data from [117] to estimate
dierential mode attenuation depending on mode order:

�� (�) = �0 (�) + �0 (�) h9 [7, 35(j − 1
0 )
2�/(�+2)] , (33a)
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where j = 2D + � + 1 is principal mode number; �0(�) is the
attenuation of lower-order modes (it is supposed equal to the
attenuation at the correspondence wavelength mentioned in
�ber speci�cation); 
0 is total number of modes satisfying
the cuto condition for analyzed �ber:


0 (�) = 2V:max (�)� √lΔ (�)l + 2 , (33b)

where l is gradient factor of smoothed �-pro�le.
9. Mode Coupling

Nowadays calculation of mode coupling coe�cients is still
one of the most well-known and simple methods for opti-
cal waveguide junction analysis. It is widely applied for
estimation of insertion loss and re�ection at the splices of
the same type optical �bers with nonidentical technologic
parameters [117–121], modeling, and research of the in�uence
of launch conditions on optical waveguidemode composition
excitation [25, 122–124] including the modeling of a few-
mode optical signal propagation over multimode �bers [4, 8,
10].

Generally, the coupling coe�cient m�
 of injected modeD with excited mode : is determined by the overlap integral
of interacting mode �elds [4, 8, 10, 117–124]:

m�
 =
nnnnnn∫∞0 ∫2�0 Ψ(��)� Ψ(��)
 pqp qrnnnnnn2∫∞0 ∫2�0 nnnnnΨ(��)� nnnnn2pqp qr∫∞0 ∫2�0 nnnnnΨ(��)
 nnnnn2pqp qr . (34)

�erefore substitution of radial mode �eld distribution
expressions to integrals (34) is required for estimation of
mode coupling coe�cients.�e simplestmode �eld structure
corresponds to the fundamental mode ��01. As a result, it
permits obtaining analytical formulas for the overlap integral
(34) by applying simple approximation expressions or by
a particular function series expansion for the fundamental
mode �eld representation. �ese algorithms are widely used
for analysis of the single mode �ber splices [25, 117–123].

Contrariwise, higher-order mode �eld structure is more
complicated. For this reason in certain papers concerning
multimode �ber analysis [4, 8, 10] it is propose to integrate
expression (34) numerically or to substitute simple approxi-
mation expressions, which are solutions of wave equation for
the �bers with ideal step or in�nite parabolic refractive index
pro�le. However this substitution is not correct entirely: as
it was mentioned above, real refractive index pro�les dier
much from the model ideal smoothed �-pro�les [100] even
for the last generation of commercial silica optical �bers both
single mode and multimode.

Here we propose to apply the overlap integral method
combined with introduced EMGA. Under the EMPG appli-
cation, the use of the algorithm mentioned above for the
following mode coupling estimation becomes acceptable:
here local features of real silica optical �ber refractive index
pro�le are taken into account that provides decreasing the
error of calculations. �ereby the �ber splice analysis will
led to substitution of simple approximation expression (6)

(a)

(b)

Figure 2: Multimode �ber samples: (a) spools of modern mul-
timode �bers Corning of cat. OM2+/OM3; (b) coil of the �rst-
generation multimode �ber of cat. OM2.

to the overlap integral (34) under preliminary estimation of
equivalent mode �eld radiuses of injected and excited modes
with given azimuthal and radial orders by EMPG. In terms
of introduced model of piecewise regular multimode �ber
link, this approach provides both simulation of mode mixing
and power diusion by recalculation of the matrix of mode
coupling coe�cients at the junctions of regular span bound-
aries and modeling of initial mode composition excitation in
multimode �ber by laser source at the transmitter end under
taking into account launch condition (single mode pigtail,
central launching, oset, air gap, special matching �ber, etc.).

Another advantage of proposed method combining the
overlap integral method and EMGA is the ability of passage
to analytical expressions both for mode coupling coe�cients
at the ideal centralized splice and splice with oset or tilt
for modes with arbitrary order. In recent work [125] the
derivation of them is described in detail. �erefore here only
�nal heavy analytical expressions are presented.

First of all let us consider the idealized model of diverse
optical �ber splice: jointed mismatched type �bers have ideal
smooth ends cleaved under 90∘ to the core axes, and there are
no any longitudinal, axial, or angular misalignments between
core centers. On the one hand it is very simpli�ed �ber splice
description; on the other hand this ideal splice representation
corresponds to central launching during themodeling of �ber
excitation by laser source.

A passage from the generalized form of the overlap
integral (1) to analytical expression for the arbitrary order
mode coupling coe�cient estimation at the central splice of
the optical �bers with mismatched parameters and without
any misalignments was proposed in work [121]. Analytical
expression deriving is described in detail in [125]. Finally the
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Figure 3: Refractive index pro�les measured by EXFO NR-9200: (a) sample no. 01: multimode �ber Corning of cat. OM2+/OM3, length is
373m; sample no. 02: �rst-generation multimode �ber of cat. OM2, length is 456m.
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Figure 4: Simpli�ed block scheme if pulse response workstation R2D2 and experimental setup.

Figure 5: Experimental setup. Figure 6: So�ware screenshot.



Advances in Optical Technologies 11

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (ns)

A
/A

m
ax

t05 = 340ps

Figure 7: Input pulse.

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.05

0.1

0.15

0.2

0.25

−0.2

−0.15

−0.1

−0.05

z (km)

Δ
a

(�
m

)

Figure 8: Core diameter variations over �ber length 340m.

formula for arbitrary order mode coupling coe�cient at the
central splice is written as follows:

m�
 = Γ (D) Γ (:)Γ (� + D) Γ (� + :)(2t�t
)2�+2[ (t� − t
)�+
−2(t2� + t2
)�+
+�−1]
2

× {{{{{
min(�−1
−1 )∑
�=0

(−1)� Γ (D + : + � − ? − 1)Γ (D − ?) Γ (: − ?) ?!
× (t2� + t2
t2� − t2
 )

�}}}}}
.

(35)

Here mode coupling occurs only for modes with the same
azimuthal order �; Γ is Gamma function; t� and t
 are
injected ���� and excited ���
 mode �eld radiuses.

�e analytical expression for arbitrary order mode cou-
pling coe�cient at the optical �ber splice under low angle
misalignment z < 10∘ has the following form [125]:

m(�)�
 = 4 (D − 1)!(�� + D − 1)! (: − 1)!(�
 + : − 1)!
× {{{
�+
−2∑
	=0

min(	,�−1)∑
�=max(0,	−
+1) S

(�� ,�−1)
� S(�� ,
−1)	−�

× 2(��/2)+	(?0:�z)��Γ ((��/2) + �
 + � + 1)(t2� + t2
)(��/2)+��+	+1 (�
)!
× t2(��+	−�)+1� t��+��+2�+1


⋅ 11 [(��2 + �
 + � + 1) ,
(�
 + 1) ; −(?0:�z)2 t2�t2
(t2� + t2
)]

}}}
2

,
(36)

where 11 is con�uent hypergeometric function of the 1st
kind [111, 112]:

11 (T, S; *) = 1 + ∞∑
	=1

[	−1∏
�=0

(T + N) *(1 + N) (S + N)] , (37)

where S(�� ,�−1)� and S(�� ,
−1)� are Laguerre polynomial expan-

sion factors of (13a), (13b); :� is refractive index of launching
medium (air gap, core of adjusting/exiting �ber, etc.).

�e �nal expression for mode coupling coe�cients for
0th azimuth order modes ��0� and ��0
 at the splice with
transverse oset q has the form [125]:

0m(�)�
 = 
0 ⋅ {�+
−2∑
	=0

∑
�
S(0,�−1)� S(0,
−1)	−�

× 	∑
�=0

∑
�
G(�,	−�)�

× 2(�−�)∑
�=0

(−1)� (2| − 1)!! [2 (N − �)]!}![2 (N − �) − ?]!?!
× �(�/2)∑
�=0

12� (} − 2~)!~! ⋅ q2(	−�−�)(t2� + t2
)�+�−�
× t2(�−�+�)� t2(�−	+�+�−�)
 }2,

(38)

where the lower and upper limits of second and forth sums
are N = max(0, � − : + 1) . . .min(�,D− 1) and � = max(0, | −
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Figure 9: Measured and simulated pulse responses: (a) multimode �ber of the OM2+/OM3 category (pro�le is shown in Figure 3(a)); (b) (a)
multimode �ber of the OM2 category (pro�le is shown in Figure 3(b)).

� + N) . . .min(|, N) and the “odd” factorial is (2| − 1)!! = 1 ⋅3 . . . (2| − 1):

0 = 4t2�t2
(t2� + t2
)2 exp[−

q2t2� (1 − t2
t2� + t2
 )] ,
G(�,	−�)� = N!(N − �)!�! ⋅ (� − N)!(� − N − | + �)! (| − �)! ,

} = ? + 2 (� − N − | + �) .
(39)

�e analytic formula mode coupling coe�cients for the
1st azimuth order modes ��1� and ��1
 at the splice with
transverse oset q is written in the following form [125]:

1m(�)�
 = 4
0D: ⋅ {�+
−2∑
	=0

∑
�
S(1,�−1)� S(1,
−1)	−�

	∑
�=0

∑
�
G(�,	−�)�

× 2(�−�)+1∑
�=0

((−1)�+1 (2| − 1)!! [2 (N − �) + 1]!
× (} + 1)!)

× ([2 (N − �) + 1 − ?]!?!)−1
× �((�+1)/2)∑
�=0

12� (} + 1 − 2~)!~!
⋅ q2(	−�−�+1)(t2� + t2
)�+�+1−�
× t2(�−�+�)−1� t2(�−	+�+�−�)+1
 }2.

(40)

Finally the expression for mode coupling coe�cients for
the arbitrary higher-order (� ≥ 2) modes ���� and ���
 at the
splice with transverse oset q leads to the following form:

1m(�)�
 = 
0 (D − 1)!(� + D − 1)! (: − 1)!(� + : − 1)!
× {22� [
(�)1 +
(�)2 +
(�)3 +
(�)4 ]}2,

(41)

where


(�)1 = 12
�+
−2∑
	=0

min(	,�−1)∑
�=max(0,	−
+1) S

(�,�−1)
� S(�,
−1)	−�

× 	∑
�=0

min(�,�)∑
�=max(0,�−	+�) G

(�,	−�)
�

�+2(�−�)∑
�=0

Ω(�)� �((�+�)/2)∑
�=0

Ψ(�)� ,


(�)2 = �((�−2)/2)∑
�=0

�(�)� �+
−2∑
	=0

min(	,�−1)∑
�=max(0,	−
+1) S

(�,�−1)
� S(�,
−1)	−�

× 	+�+1∑
�=0

min(�,�+�+1)∑
�=max(0,�−	+�) G

(�+�+1,	−�)
�

× �+2(�−�)∑
�=0

Ω(�)� �((�+�)/2)∑
�=0

Ψ(�)� ,
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Figure 11: Refractive index pro�le of the single mode �ber.

Figure 12: Screenshot of the Ericsson FSU-975 display with oset
fusion splice.


(�)3 = �((�−2)/2)∑
�=0

�(�)� �+
−2∑
	=0

min(	,�−1)∑
�=max(0,	−
+1) S

(�,�−1)
� S(�,
−1)	−�

× 	+�+1∑
�=0

min(�,�)∑
�=max(0,�−	+�−�−1) G

(�,	−�+�+1)
�

× �+2(�−�)∑
�=0

Ω(�)� �((�+�)/2)∑
�=0

Ψ(�)� ,

(�)4 = 2 2�((�−2)/2)∑

�=0

min[�,�((�−2)/2)]∑
�=max[0,�((�−2)/2)]

�(�)� �(�)�−�
× �+
−2∑
	=0

min(	,�−1)∑
�=max(0,	−
+1) S

(�,�−1)
� S(�,
−1)	−�

× 	+�+2∑
�=0

min(�,�+�+1)∑
�=max(0,�−	+�−�+�−1) G

(�+�+1,	−�+�−�+1)
�

× �+2(�−�)∑
�=0

Ω(�)� �((�+�)/2)∑
�=0

Ψ(�)� ,
�(�)� = (−1)�+122�+3 �j + 1 (� − j − 2)![� − 2 (j + 1)]!j! ,

Ω(�)� = (−1)�+� (2| − 1)!! [� + 2 (N − �)]! (} + �)![� + 2 (N − �) − ?]!?! ,
Ψ(�)� = 12� (} + � − 2~)!~! ⋅ q2(�+	−�−�−�)(t2� + t2
)�+�+�−�

× t2(�−�+�)−�� t2(�−	+�+�−�)+�
 .
(42)
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Figure 13

10. Results and Discussion

Commercial GeO2-doped graded-index multimode �ber
samples of dierent generations of categories OM2 and
OM2+/OM3 with length about 300–500m packed in coils
and conventional spools (Figure 2) were selected for exper-
imental approbations of introduced model.

�e refractive index pro�les of selected samples were
preliminary measured [126] by optical �ber analyzer EXFO
NR-9200 via refracted near �eld scan technique [127]. Pro-
�les reconstructed from the protocol data are presented
in Figure 3. Also each �ber sample passed an OTDR test
with following �ber length measurement by backscattering
method. �e OTDR Hewlett Packard E6000A with single
mode plug-in unit 1310/1550 was used, and test was produced
at the wavelength � = 1310 nm [128, 129].

We applied a typical optical pulse response workstation
R2D2 for DMD diagnostics [128, 129]. Simpli�ed block
scheme of R2D2 is presented in Figure 4. �e experimental
setup and so�ware R2D2 screenshot are presented in Figures
5 and 6.

�e FP LD emits light with a wavelength � = 1310 nm.
�e input pulse is shown in Figure 7. It has the full width

at a half maximum (FWHM) of about 340 ps. �e �rst
series of measurements did not apply special launching
conditions. Here only conventional FC/PC adaptors were
applied. �erefore an angular misalignment was taking into
account z = 4.2∘ according to [8] during the modeling of
transmitter end of link.

We simulated �ber irregularity by core diameter varia-
tion. It was set from the data of �ber diameter measurements
been produced during �ber drawing [130] (Figure 8). Micro-
and macrobends were modeled by equivalent low z = 2 . . . 3∘
angularmisalignment at the boundaries of regular spans with
length Δ� = 4.79m [130]. Measured and simulated pulse
responses of �bers OM2+/OM3 and OM2 with refractive
index pro�les shown in Figure 3 are presented in Figures
9(a) and 9(b). Here a close matching can be noticed. �us
for OM2+/OM3 �ber the error of the FWHM is 1.16%, and
output pulse dispersion error is 7.42%. For OM2 �ber the
errors of second peak amplitude and time scale position is
1.63% and 0.43%, and DMD error is 1.39%.

Another series of tests were produced under the control of
launching conditions. Simpli�ed block-scheme of the exper-
imental setup is shown in Figure 10. Here emission from the
LD launched to testedmultimode �ber via singlemode pigtail
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(ITU-T Rec. G.652) which was spliced with multimode �ber
with precision oset. Refractive index pro�le of the single
mode �ber is presented in Figure 11.�e oset was realized by
Ericsson FSU-975 programnumber 8 “Attenuator” [131]. Here
parameter “attenuation” was set to 0, “oset”—to particular
value, and “ECF factor” (surface tension compensation fac-
tor) also was set to 0 to avoid deformations in the heat zone
of the oset fusion splice (Figure 12). Some measured and
simulated pulse responses of �bers OM2+/OM3 and OM2
under particular oset launching conditions are presented in
Figure 13. A close matching also can be noticed.

11. Conclusion

An alternative model of multimode �ber links with con-
ventional silica weakly-guiding graded-index irregular mul-
timode �bers under a few-mode optical signal propagation
generated by laser source is introduced. �e model is based
on the piecewise regular representation. It takes into account
launch conditions, dierential mode delay, both lower- and
higher-order mode chromatic dispersion, dierential mode
attenuation, andmodemixing and power diusion occurring
due to real �ber irregularity and micro- and macrobends.
Results of theoretical approbation are presented. A good
agreement between developed model and measurements of
pulse response were obtained.
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