
MODELING AND SIMULATIONS OF WORMS AND

MITIGATION TECHNIQUES

A Dissertation

Presented to

The Academic Faculty

By

Mohamed Abdelhafez

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in

Electrical and Computer Engineering

School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2007

Copyright© 2007 by Mohamed Abdelhafez

MODELING AND SIMULATIONS OF WORMS AND

MITIGATION TECHNIQUES

Approved by:

Dr. George Riley, Committee Chair

Associate Professor, School of ECE

Georgia Institute of Technology

Dr. Henry Owen

Professor, School of ECE

Georgia Institute of Technology

Dr. John Copeland

Professor, School of ECE

Georgia Institute of Technology

Dr. Yorai Wardi

Professor, School of ECE

Georgia Institute of Technology

Dr. Robert Cole

Senior Member of Professional Staff

Johns Hopkins University / Applied Physics

Laboratory

Date Approved: November 2007

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

SUMMARY . viii

CHAPTER 1 INTRODUCTION . 1

1.1 Computer Worm Overview . 1

1.2 Mitigation Techniques Overview . 4

1.2.1 Outbound Traffic Analysis . 5

1.2.2 Inbound Traffic Analysis . 9

1.2.3 Ratio Based Detection . 9

1.2.4 Fixed Set Approach . 10

1.3 Motivation . 11

1.4 Thesis Contributions . 12

1.4.1 Evaluation of Contemporary Worm Defense Strategies 13

1.4.2 Design of Worst Case Scenarios 13

1.4.3 Modeling and Simulations of MANET Worms 14

1.5 Thesis Outline . 14

CHAPTER 2 EVALUATION OF CONTEMPORARY WORM DEFENSE STRATE-

GIES . 15

2.1 Motivation . 15

2.2 Simulation Models . 16

2.3 Worm Detection Algorithms . 18

2.3.1 Virus Throttle . 19

2.3.2 CounterMalice . 20

2.3.3 Packet Matching . 22

2.3.4 DAW . 24

2.3.5 TCP–ACK . 26

2.4 Experimental Results . 28

2.4.1 Virus Throttle . 30

2.4.2 CounterMalice . 31

2.4.3 Packet Matching . 32

2.4.4 DAW . 32

2.4.5 TCP–ACK . 34

2.5 Large-scale Simulations . 34

2.6 Conclusion . 40

CHAPTER 3 DESIGN OF WORST CASE SCENARIOS 41

3.1 Motivation . 42

3.2 Related Work . 42

iii

3.3 Compact Flash . 46

3.3.1 Resilience to Imperfect Maps . 48

3.3.2 Simulation Model . 50

3.4 Experimental Setup . 51

3.5 Results . 52

3.5.1 Effect of Varying Bandwidth . 52

3.5.2 Effect of Varying Link-delays . 53

3.5.3 Resilience to Imperfect Maps . 53

3.6 Conclusions . 54

CHAPTER 4 MODELING AND SIMULATIONS OF MANET WORMS . . . 57

4.1 Motivation . 58

4.2 Related Work . 59

4.3 The TCP Worm Propagation Model . 60

4.3.1 Low Number of Flows . 61

4.3.2 Moderate to High Number of Flows 65

4.3.3 Combined Results . 70

4.3.4 Numerical Results . 72

4.4 Simulation . 74

4.5 Results . 75

4.6 Conclusion . 82

CHAPTER 5 CONCLUSION AND FUTURE WORK 84

5.1 Evaluation of Contemporary Worm Defense Strategies 84

5.2 Design of Worst Case Scenarios . 86

5.3 Modeling and Simulations of MANET Worms 87

REFERENCES . 88

iv

LIST OF TABLES

Table 1 Parameter definition for packet matching algorithm 23

Table 2 Parameter definition for the DAW algorithm 25

Table 3 Parameter definition for large-scale simulation experiments 35

Table 4 Parameter definition for simulation experiments. 72

v

LIST OF FIGURES

Figure 1 Class hierarchy for worms in GTNetS 4

Figure 2 Class hierarchy for worms and mitigation algorithms 17

Figure 3 Random tree topology with depth 3 and fan-out 3 18

Figure 4 Effect of algorithms on the network for a UDP worm attack 29

Figure 5 Effect of algorithms on the network for a TCP worm attack 30

Figure 6 Effect of TCP–ACK on the network for TCP worm 33

Figure 7 Effect of containment strategies on worm spread 36

Figure 8 Effect of containment strategies on background traffic 36

Figure 9 Effect of increasing topology size on simulator overhead 37

Figure 10 Effect of increasing topology size on time required to run the simulator . 38

Figure 11 Effect of increasing topology size on web traffic performance 38

Figure 12 Worm spread as we increase the toplogy size 39

Figure 13 Effect of parallelism . 40

Figure 14 The logical tree for the flash worm . 45

Figure 15 Two schemes for doubling up worm delivery resilience 49

Figure 16 Worm spread for the flash and Compact flash (CFlash) worms 52

Figure 17 Effect of varying bandwidth of links on the worm spread and infection

time . 53

Figure 18 Worm spread for the flash and Compact flash (CFlash) worms for differ-

ent time-delay links . 54

Figure 19 Effect of varying time-delay of links 55

Figure 20 Varying the vulnerability of hosts in the initial list using single and dou-

ble infections . 55

Figure 21 Example packet discard results from simulation traces for a TCP worm

with payload of 400 Kbytes. 67

Figure 22 A stationary network flow model to derive the TCP throughput depen-

dence upon number of flows. 69

vi

Figure 23 The TCP Model results (top) for various worm payload sizes compared

with simulation results (bottom). 73

Figure 24 The TCP Model results (top) for various transmission rates with simula-

tion results (bottom). 76

Figure 25 The TCP Model results (top) for various initial population size with sim-

ulation results (bottom). 78

Figure 26 The TCP Model results (top) for various radio ranges with simulation

results (bottom). 79

Figure 27 MANET topologies for various values of the radio range. The upper left

plot results from r = 100m, the upper right from r = 150m, the lower

left from r = 200m and the lower right from r = 250m. 80

Figure 28 The TCP Model results (top) for various number of nodes with simula-

tion results (bottom). 81

Figure 29 The simulation results for varying the routing protocol 82

vii

SUMMARY

Internet worm attacks have become increasingly more frequent and have had a

major impact on the economy, making the detection and prevention of these attacks a top

security concern. Several counter–measures have been proposed and evaluated in recent

literature. However, the effect of these proposed defensive mechanisms on legitimate com-

peting traffic has not been analyzed.

The first contribution of this thesis is a comparative analysis of the effectiveness of

several of these proposed mechanisms, including a measure of their effect on normal web

browsing activities. In addition, we introduce a new defensive approach that can easily be

implemented on existing hosts, and which significantly reduces the rate of spread of worms

using TCP connections to perform the infiltration. Our approach has no measurable effect

on legitimate traffic.

The second contribution is presenting a variant of the flash worm that we term Compact

Flash or CFlash that is capable of spreading even faster than its predecessor. We perform a

comparative study between the flash worm and the CFlash worm using a full-detail packet-

level simulator, and the results show the increase in propagation rate of the new worm given

the same set of parameters.

The third contribution is the study of the behavior of TCP based worms in MANETs.

We develop an analytical model for the worm spread of TCP worms in the MANETs envi-

ronment that accounts for payload–size, bandwidth–sharing, radio range, nodal density and

several other parameters specific for MANET topologies. We also present numerical solu-

tions for the model and verify the results using packet–level simulations. The results show

that the analytical model developed here matches the results of the packet–level simulation

in most cases.

viii

CHAPTER 1

INTRODUCTION

A computer worm is a piece of software that replicates itself on the network. A worm

uses vulnerabilities in popular applications to attack victim hosts, which would become

infected and start to infect others. The first known worm was the Morris worm in 1988

[1]. Since then, the security threats and damaging effects of modern worms have increased

dramatically. The Code Red [2] and Nimda [3] worms infected hundreds of thousands

computers around the world. In 2003 the SQL Slammer worm [4] infected more than 90%

of the vulnerable hosts (75,000) in less than 10 minutes. It has become apparent that no

human intervention can react in a timely enough manner to these types of attacks, and

therefore automatic detection and prevention mechanisms are a necessity.

This research provides detailed simulation analysis of some worm outbreaks and mit-

igation techniques. The simulation models developed here offer researchers background

to develop any new worm detection algorithm. These models are implemented in Georgia

Tech Network Simulator (GTNetS). GTNetS features detailed and scalable network models

that simplifies the development of large-scale complex simulation experiments needed for

accurate studies of worm outbreaks.

The rest of this chapter is organized as follows. An overview of computer worms is

discussed in section 1.1. Section 1.2 gives an overview of mitigation strategies. Section 1.3

motivates the need for analyzing worms and mitigation techniques. Thesis contributions

are introduced in section 1.4. Finally, section 1.5 provides the outline of the thesis.

1.1 Computer Worm Overview

A computer worm is a malicious code that exploits software bugs in popular applications

to infect vulnerable hosts. When a host is infected, it starts searching for other vulnerable

hosts to infect. This spread pattern results in exponential growth of the infected population

1

and this spread alone can cause major network failures because of the increasing traffic

volume with the growth of the infected population.

There are three stages in the worm life-cycle:

1. Propagation: The worm is transfered to a certain host by exploiting some vulnerabil-

ity.

2. Activation: The worm starts to execute a set of commands to gain higher access to

the compromised system.

3. Infection: The worm starts looking for other hosts to infect, and replicates itself on

those hosts.

There are many factors used to classify worms which include target selection (algorithm

for finding vulnerable machines), worm carrier mechanisms, possible payloads, worm ac-

tivation, and types of attackers using the worm [5]. As an example worms can be classified

according to how they find their targets into:

1. Topological worms: These worms find information about new targets from data

stored on an infected host. Many applications contain information about other hosts,

and therefore give the worm a good source for finding other potential victims. The

Morris worm was a topological worm.

2. Passive worms: These worms do not actively seek potential victims. Instead they rely

on user actions to spread elsewhere. There have been been many passive worms like,

Gnuman [6] and the CRClean [7]. Gnuman operates by acting as a gnutella node

which replies to all queries with copies of itself. If this copy is run the worm starts

on the victim machine and repeats the process. CRClean was intended to remove

the Code Red II worm from the machine. The CRClean worm waits for a Code Red

II probe. When it detects an infection attempt it launches a counterattack removing

Code Red II and installs itself on the machine. These worms spread without any

scanning.

2

3. Scanning worms: These worms search for new targets by probing IP addresses across

the Internet. Scanning can be sequential where the worm works through an address

block using an ordered set of addresses, or random where the worm selects addresses

in a random fashion.

Our focus in this study is the scanning category of worms, such as Code Red, Nimda,

and SQL-Slammer.

Many researchers studied worm behavior by collecting traces of worm spread and pro-

ducing several statistics about infected hosts and infection rates. One such study is the

work by Moore et al. [2], where they traced the Code-Red worm by collecting data in the

form of a packet header trace of hosts sending unsolicited TCP SYN packets into their \8

network.

Researchers also developed different models to represent the worm spread. These mod-

els can be divided into three types: analytical, simulation based, and hybrid models.

Analytical models rely on equations that represent the dynamics of worms. The random

constant spread (RCS) model [8] is an example of an analytical model. This model is also

called the classic susceptible-infected (SI) model in [9] and is used to describe the worm

spread through homogeneous random contacts between susceptible and infected hosts. The

susceptible-infected-removed (SIR) and susceptible-infected-susceptible (SIS) models [10,

11] add the repair and the removal of infected hosts into the SI model. Zou et al. introduced

an analytical model called the “two factor” worm model that includes the effect of human

countermeasures [12].

Network simulations were also used to study the worm problem. Sharif [13] built worm

models into GTNetS [14] and was able to simulate networks having hundreds of thousands

of hosts and measure the effect of different network parameters on the worm spread rate.

Wagner [15] discusses an efficient simulator for worm propagation implemented in the

Perl scripting language, where he used models for large groups of nodes for the Internet

rather than single hosts as well as simplified models of UDP and TCP behavior to reduce

3

Worm

TargetVector

Local

Preference
SequentialUniform

Worm

Worm

TCP

Worm

UDP

Figure 1. Class hierarchy for worms in GTNetS

complexity. This enabled large simulations but without packet-level detail.

Hybrid models incorporate both analytical models and packet-level simulations. Lil-

jenstam et al. [16] used the SSFNet [17] simulator with packet-level details for a small

section of the network and represented the rest of the Internet with an analytic model.

We are using the worm models in GTNetS, which model the behavior of scanning

worms [13]. Figure 1 shows the class hierarchy for the worms. The Worm class has the

common features of all scanning worms like: payload size, signature, target selection, scan

range, and infection port. According to the transport protocol, the worm is represented by

TCP or UDP class. The scanning algorithm in the worm can be set through the WormTar-

getVector member variable, which can be either sequential, uniform, or local preference. In

sequential scanning the worm selects a random start address which is uniformly distributed

in the scan range and then generates sequential addresses after it. In uniform scanning the

worm chooses random addresses uniformly distributed in the scan range. In local prefer-

ence scanning the worm generates addresses that can be in the whole scan range or in the

local range based on a defined probability.

1.2 Mitigation Techniques Overview

In this section we discuss some of the most widely used worm detection and mitigation

strategies. Detection strategies can be generally divided into two main categories: signature

4

based and behavior based. The signature based approach looks for a common string or byte

pattern in the payload and identifies packets that match that pattern as anomalous. It is clear

that this strategy is only as good as the signature. The signature has to be specific enough so

that it will not be present in normal traffic and also general enough to catch different forms

of the same worm. Signature based detection therefore requires considerable analysis of

the payload to be able to come out with the ideal signature. There has been a lot of work

done in automating signature generation such as Autograph [18] and Vigilante [19]. This

form of detection is very effective against known attacks. However, a polymorphic worm

(a worm that can change its payload by compression, encryption or other methods) can

render this detection method useless. Moreover, Chung and Mok [20] showed that the

automatic signature generating (ASG) system can be used to attack the protected network

by what they call “allergy” attack. The authors used crafted packets that would cause the

ASG system to generate signatures that would match normal traffic and therefore cause a

denial of service attack when the ASG starts dropping packets that match these signatures.

Behavior based detection on the other hand does not require extensive analysis of the

payload, but it does require the identification of the common behavior between attacks or

at least the range of acceptable behavior patterns that normal hosts do not deviate from.

The rest of this section will look into some of the most widely used detection strategies of

this category. The behavior based detection algorithms would be organized according to

the type of network statistics they depend on to signal their detection.

1.2.1 Outbound Traffic Analysis

These detection strategies look at the outbound traffic from the host or the network and

decide whether it is anomalous or not by comparing the traffic to the “normal profile”. The

normal or anomalous behavior is decided based on different network traffic metrics, some

of which are discussed below.

5

1.2.1.1 Connection Rate

This metric relies on the fact that normal hosts communicate with a small number of

servers, and therefore would have a relatively small number of connection requests per

unit time. On the other hand, an anomalous host would try to infect as many hosts as

possible and therefore would have a much higher connection rate.

In [21] the authors present the Network Security Monitor (NSM) which was developed

at the University of California, Davis. NSM works by maintining a four dimension matrix

of which the axes are: Source, Destination, Service, and Connection ID, where each cell

in that matrix holds the number of packets sent for that connection as well as the total size

of data transfered. In order to detect an attack this matrix can be compared to a matrix

containing known attack patterns, or some detection rules can be applied to it. One simple

rule is that a host communicating with 15 or more hosts during a five minutes interval is

flagged anomalous.

The idea of rate limiting was proposed by Williamson in [22], where each host is al-

lowed to have a working set of n hosts to communicate with during t seconds. Any new

connection attempt is delayed by placing it at the end of a delay queue. As the queue fills

up more delay is introduced to new connection attempts. The size of the delay queue can

also be used to detect worm attacks. In other words, if the queue size is more than a certain

threshold then this host is infected. One problem with this setup is that this algorithm has

to be implemented on all end hosts to get good results [23] and that proves to be expen-

sive. However, the same idea can be implemented on a router or on a special hardware as

proposed by Staniford [24].

The host-based connection rate detection is effective against greedy worms, which try

to infect as many hosts as possible in the shortest time. However, a stealthy worm can easily

avoid them by reducing its scan rate to be below the threshold. To address this problem,

the algorithm can be applied on the LAN level and the network level. So even if the worm

is slow to be detected on each individual host, after it reaches a certain population size, its

6

compound connection rate would prove to be significantly more than that of normal traffic.

1.2.1.2 DNS Anomalies

David Whyte et al. [25] present a worm detection strategy based on DNS anomalies. They

observed that users tend to remember alphanumeric strings and use the network service

provided (i.e. DNS) for new connections, whereas a scanning worm would directly use

numeric IP addresses to connect to. The authors also note that there are some protocols

that would directly use the numeric IP addresses for connections and they propose to put

those on a whitelist so as not to trigger false positives.

The basic methodology is to divide the network into segments called cells. Each cell

contains a worm detection device that monitors the DNS queries and the connection re-

quests from that cell. Any connection attempt to an IP address that was not a result of a

DNS query or not in the whitelist would generate an alarm. In the discussion of the false

positives resulting from that algorithm the authors suggest using two anomalous connec-

tions from the same host to generate an alarm. One drawback of that approach is that it

does not detect scanning behavior within the same cell.

1.2.1.3 ARP Anomalies

In [26] the authors address the shortcoming of the previous approach in detecting intra-cell

scans by monitoring the ARP requests from the hosts within each cell. They observe that

anomalous hosts would exhibit an increase in their ARP request activities.

During a training period an ARP chain of each host is built. This chain represents the

other hosts in the cell that this host communicates with. An anomaly score is calculated for

each host based on three metrics:

1. Number of ARP requests to hosts outside the ARP chain.

2. Total number of ARP requests.

3. Number of ARP requests to unused IP addresses within the cell.

7

Each of those metrics is calculated for a sample interval t (60 seconds), weighted and

together they present an anomaly score for a certain detection window w. The anomaly

score is compared to a certain threshold to decide wether a certain host is infected.

The authors note that this approach can cause a high number of false positives to occur

if all the hosts have the same threshold of detection, as they note that some servers might

exhibit bursts in their ARP requests at certain intervals which would trigger an alarm. As a

solution to this problem they propose function-specific thresholds for servers and end hosts.

Also because only ARP requests are monitored and not replies, the system has a serious

limitation for cells that have dynamic IP assigning. In order to address that limitation

the ARP replies would have to be monitored as well to record the MAC addresses of the

different hosts in the cell.

1.2.1.4 Failed Connection Rate

Because a greedy worm wants to infect as many hosts as it can and it does not know ahead

of time which hosts are vulnerable, it would send an infection attempt to any target. This

target might not be offering the vulnerable service that the worm is attacking, or such target

may be turned off or simply non existing. In such situations the connection would fail. A

failed connection can be detected by the receipt of TCP RST message, or ICMP unreach-

able message, or simply non receipt of a SYN ACK message (in case of TCP worms).

Several approaches have considered that metric as essential for worm detection [24],

[27], and [28]. In [28] the authors present the idea of Credit based connection rate lim-

iting (CBCRL) that works by giving each host a certain number of credits and for each

connection attempt that credit is reduced by one, if the connection succeeds then the credit

is increased by two. If a host reaches zero credit then it is blocked. They also introduce

some techniques to prevent a host from being starved or from getting too large a number of

credits by successive inflation.

8

1.2.2 Inbound Traffic Analysis

The analysis of inbound traffic received attention in the literature, some of the most promis-

ing are listed in this section

1.2.2.1 Honeynets

Honeynets or honeypots form an isolated network of vulnerable machines that are meant to

be attacked. These hosts do not offer any real services, therefore any traffic towards them is

considered anomalous. These machines would have monitoring processes running on them

or on their network. The machines are running old versions of most common applications

so as to attract attackers to them. By monitoring the attacks on them, the attack trends

and the vulnerable ports can be identified. Also by analyzing the attack traffic, dynamic

signatures could be generated to help protect the real network. It is important that the

honeynet be isolated from the rest of the network so that it will not be a source of threat

when it is infected.

1.2.2.2 Gateway Sensors

While the honeynet can monitor only a small portion of addresses, a monitor placed on the

gateway or at the egress router can monitor the traffic going to the whole address space.

Some interesting statistics can be gathered from that traffic and common attack signatures

would be identified. Using a collection of these monitors that report alerts to a common

database like DShield, one can detect common sets of source IPs executing scanning and

probing activities across a wide area of victims indicating worm propagations are underway.

1.2.3 Ratio Based Detection

In [29] the authors present an entropy based approach for worm detection. They chose

entropy because it is a measure of how random a dataset is, and scanning activity is more

uniform than normal traffic in some respects and more random in others. Entropy contents

of a finite sequence of values can be measured by representing the sequence in binary form

9

and then using data compression on that sequence. The size of the compressed object cor-

responds to the entropy contents of the sequence. The authors store the source/destination

addresses and source/destination ports for observed traffic in four separate data streams and

then perform compression on each of them. They then calculate an inverse compression

ratio defined as :

Inverse compression ratio =
size compressed

size uncompressed

This ratio is monitored over time and any significant change in it would generate an

alarm. This approach is geared towards fast scanning worms and as the authors note might

not be effective for detecting slow scanning worms.

Another approach presented in [28] used sequential hypothesis testing where H1 rep-

resents an infected host and H0 represents a normal host. The idea is to monitor the con-

nection attempts from each user and find the number of successful and failed connection

attempts (a failed connection is detected by having no reply for the connection attempt after

a certain timeout). After having these numbers one can calculate the likelihood of a host

being infected using the following formula

L(Yn) ≡

n
∏

i=1

Pr[Yi|H1]

Pr[Yi|H0]

where Yi is the result of connection i (1 for success and 0 for failure), so as the ratio

of failed connections to successful ones increase that likelihood function would increase

and if it passes a certain threshold then that host is declared infected. In the other case if

the successful attempts to failed attempts ratio increases then the likelihood function would

decrease and if it gets lower than another threshold then that host is declared normal.

1.2.4 Fixed Set Approach

Sellke et al. [30] introduce the idea of a fixed set approach for worm containment and

detection. They base their argument on modeling the early stages of worm spread using

10

a branching process. Using that model they observe that the total number of scans that

any infected host attempts is what determines wether the worm can spread regardless of

the scan rate. The authors define a maximum number of allowed scans for each host to

be M during a containment cycle (in the order of weeks). If the number of scans from a

certain host exceeds M before the end of the containment cycle, that host is removed from

the network and is subjected to a heavy duty checking process. The rest of the hosts are

thoroughly checked for infection at the end of the containment cycle.

The authors showed that by using M = 1000 they were able to contain the CodeRed

worm with 10 initially infected hosts to less than 360 infected hosts which is less than

0.1% of the total vulnerable population. To consider the effect on normal traffic the authors

looked at a 30 day trace of wide-area TCP connections originating from 1645 hosts in the

Lawrence Berkeley laboratory to analyze the growth of the number of unique IP addresses

contacted per host. They showed the maximum number of unique IP addresses contacted by

a single host was 4000. So setting M to be 5000 in a one-month containment cycle would

not interfere with normal traffic. This approach assumes that a worm is doing uniform

random scanning of the address space, and that all the hosts are willing to contribute to this

worm containment approach.

1.3 Motivation

The worm spread problem is complex and very hard to study. This is generaly because of

the large number of hosts that contribute to the spread of the worm and the worm inter-

actions with many dynamic network parameters. Reliable evaluation tools are needed for

studying the worm spread and containment strategies. Current evaluation tools are of three

types; theoretical analysis, laboratory testbeds, and simulation models.

Theoretical analysis relies on equations that represent the dynamics of the worms.

These models have the benefit of computational efficiency, meaning that they can be easily

scaled to predict the behavior of networks of millions of hosts and therefore provide an

11

efficient way to study the problem. The main drawback of analytical models is that they

often do not take into account many important worm characteristics, such as payload size,

transport protocol used, and the different probabilities of infection resulting from different

topologies and network conditions.

Labortatory testbeds are usually of a small scale because of the high cost of resources.

This small scale makes them incapable of addressing such a problem of worm spread that

affects hundereds of thousands of hosts.

Simulation has become the method of choice for many networking security research

problems. As new protocols are designed and tested, computer based simulations are used

to validate the correctness of the new protocol, and are used to measure the performance

of the new protocol under a variety of experimental conditions. Current network simula-

tors such as ns-2 [31], OPNet [32], SSFNet [17], and GTNetS are common platforms for

network security research. However, the development of simulation models to represent

worms and mitigation techniques that are accurate and can scale well, is a difficult problem

to solve.

This research provides researchers with enough simulation models that represent most

kinds of worm and mitigation techniques. These models can be easily extended to in-

clude more specific aspects of worms or mitigation algorithms. A full packet-level net-

work simulator is used to represent most kinds of networks and which also collects the

required measurements about worm spread and background traffic. Simulating and analyz-

ing worms/mitigation techniques is a central part of this dissertation.

1.4 Thesis Contributions

In this Section, we summarize the contributions of this dissertation.

12

1.4.1 Evaluation of Contemporary Worm Defense Strategies

Several counter–measures for worm attacks have been proposed and evaluated in recent

literature. However, the effect of these proposed defensive mechanisms on legitimate com-

peting traffic has not been analyzed. Clearly, a defensive approach that slows down or stops

worm propagation at the expense of completely restricting any legitimate traffic is of little

value.

In this research we develop simulation models capable of representing most worm–

mitigation strategies. We use these models to perform a comparative analysis of the ef-

fectiveness of several of the proposed mechanisms, including a measure of their effect on

normal web browsing activities. In addition, we introduce a new defensive approach that

can easily be implemented on existing hosts. This approach significantly reduces the rate

of spread of worms using TCP connections to perform the infiltration. Our approach has

no measurable effect on legitimate traffic.

1.4.2 Design of Worst Case Scenarios

The study of worst-case scenarios has received increased interest from researchers. Of the

traits that make worms dangerous, the speed of spread is the most alarming. The speed of

the spread of Internet worms increased dramatically in recent years. Moreover, it is almost

certain that it will continue to increase in the near future with the increase in available

bandwidth and network resources. The fastest known worm (only in literature) is the flash

worm, which can infect over a million hosts in less than one second. This thesis presents a

variant of the flash worm that we term Compact Flash or CFlash that is capable of spreading

even faster than its predecessor. We perform a comparative study between the flash worm

and the CFlash worm using a full packet-level simulator, and the results show the increase

in propagation rate of the new worm given the same set of parameters.

13

1.4.3 Modeling and Simulations of MANET Worms

Mobile Ad-hoc Networks (MANETs) are used for emergency situations like disaster–

relief, military applications, and emergency medical situations. These applications make

MANETs attractive targets for cyber–attacks and make the development of counter–measures

paramount.

The study of worm behavior is critical to the design of effective counter measures

in MANET environments. This research studies the behavior of TCP based worms in

MANETs. We develop analytical models for the spread of TCP worms in the MANET

environment that account for payload–size, bandwidth–sharing, radio range, nodal density,

packet discards and several other parameters specific to MANETs. We present numerical

solutions for the models and verify the results using high fidelity packet–level simulations.

The results show that the analytical model developed here matches the results of the

packet–level simulation in all cases except when topologies result in a high probability of

disconnected clusters. Our simulation studies show that under many cases, due to the re-

source constrained nature of the MANET and its underlying wireless layers, the TCP-based

worms rapidly become self-throttling. This may benefit the design of effective mitigation

technologies in these critical networking environments.

1.5 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 describes simulation models for

worm spread and mitigation techniques and how they are used to evaluate a number of

mitigation techniques. Chapter 3 presents a worst case scenario for worm outbreak. The

development of an analytical model for TCP worm in the MANET environment is dis-

cussed in chapter 4. Finally, Chapter 5 outlines the conclusions drawn from the research

throughout this doctoral thesis.

14

CHAPTER 2

EVALUATION OF CONTEMPORARY WORM DEFENSE

STRATEGIES

This chapter presents simulation models capable of representing most worm-mitigation

strategies. In addition to a comparative analysis of the effectiveness of several of these

mitigation mechanisms, we introduce a new defense mechanism that can be easily imple-

mented on existing hosts, and which significantly reduces the rate of spread of worms.

The motivation behind the need for worm defense simulations is laid out in Section 2.1.

Section 2.2 describes the simulation models used in our experiments. Section 2.3 gives an

overview of worm detection algorithms and presents the five chosen algorithms in detail.

Section 2.4 talks about our experiments and discusses the results. The extension of our

studies to large-scale simulations is discussed in section 2.5 Finaly, section 2.6 gives the

conclusion of this chapter

2.1 Motivation

A number of methods have been proposed to detect, react to, or prevent worm attacks.

Since almost all worms exploit some software coding error or design flaw to infect the

hosts, the most effective method would be to eliminate these software errors. However, it

is fairly clear that some large fraction of existing or new Internet hosts will always have

some exploitable vulnerability, since not all users or system administrators are willing or

able to install security patches as they become available. Further, new software releases

almost always introduce a new set of exploits.

Another approach is through the use of so-called Intrusion Detection Systems (IDS) [33],

which are either signature-based or anomaly-based. In signature-based systems, a firewall

checks incoming packets against a database of known worm signatures and drops the packet

if a match is found. In anomaly-based systems the normal behavior of hosts is monitored,

15

and if a significant deviation in the hosts activities is detected then some defensive action is

taken. The signature-based approach is only effective against known worms, and has no ef-

fect against a new worm until that worm is analyzed, and its signature extracted and added

to the database. Since this is a time-consuming activity, it is clear that such approaches have

little hope in containing new worms. Thus, the anomaly detection method is the method of

choice when faced with the detection and prevention of unknown worm attacks.

In this chapter, we study different algorithms for worm containment,and evaluate their

effectiveness. There are several requirements for a successful worm containment algorithm.

1. Quick response: The algorithm should be able to quickly detect worm activity and

stop it before it infects other hosts.

2. Low false negatives: The algorithm should be sensitive enough not to miss any attack.

3. Low false detections: The algorithm should not designate a healthy host infected

(false positive), since such detections typically trigger some sort of filtering or reduc-

tion in capacity of that host.

4. Simplicity: The algorithm must be simple to implement and deploy, and not take

excessive resources on routers or end-systems.

2.2 Simulation Models

We are using the worm models in GTNetS, which model the behavior of scanning worms

[13]. Figure 2 shows the additional classes that we have introduced into GTNetS to model

worms and mitigation algorithms.

We have added the models for the flash and cflash worms. These types of worms do not

scan while propagating. The flash worm collects a list of all vulnerable IP addresses before

infection starts and then infects a few nodes and distributes the list of vulnerable IPs among

them to continue the infection process. The full details of the flash and cflash worms will

be explained in chapter 3.

16

Worm

Containment

DAW
Virus

Throttle

FlashWorm

CFlash

Worm
Malice

Counter Packet

Matching

Figure 2. Class hierarchy for worms and mitigation algorithms

The mitigation algorithms all inherit from the parent class WormContainment. The

WormContainment class only defines two methods that intercepts incoming and outgoing

packets. The implementation of these methods is left for the child classes. The different

mitigation algorithms will be discussed in detail in section 2.3.

For the network topology model we use a ring of Random Tree topologies as discussed

in [13]. Figure 3 shows an example of a random tree object. Each random tree is character-

ized by depth and fan-out as in typical tree topologies. However, the random tree provides

an additional random probability factor that decides whether a child node will be created

or not. This leads to more realistic topologies with holes in the assigned IP address space.

In our models we also have variation in the bandwidth of links in the topology.

The web traffic in our simulator is modeled after the empirical model developed by

Mah [34], who studied web traffic through a campus network and generated distributions

for a number of parameters representing this kind of traffic. The model has several param-

eters to characterize traffic, such as:

• Request length: HTTP request size.

• Reply length: HTTP response size.

• Consecutive pages: Number of consecutive documents retrieved from any given

17

Fan−out

depth

Figure 3. Random tree topology with depth 3 and fan-out 3

server.

• Think time: Time between retrieval of any two successive documents.

Each of the previous parameters has a statistical distribution that is sampled to provide

actual values in the GTNetS simulations.

2.3 Worm Detection Algorithms

In this section, we give a short overview of worm detection and prevention algorithms, and

then discuss in detail the five different proposed algorithms that are compared here. Moore

et al. [9] have studied the effectiveness of worm containment systems and divided them

into 2 types: Address blacklisting and content filtering. The address blacklisting approach

detects the misbehavior of certain network addresses and blocks any connection attempts

from them. The content filtering approach identifies common features of worm network

connections and then filters all connections that share these features. Of the methods we

study in detail: the rate limiting approaches, which can be implemented at the host-level

as the virus throttle (section 2.3.1) and network-level as counter malice (section 2.3.2) are

examples of the first type; Packet Matching (section 2.3.3), DAW (section 2.3.4) and TCP-

ACK (section 2.3.5) are examples of the second type. Each of the proposed algorithms is

discussed in detail below.

18

2.3.1 Virus Throttle

The virus throttle approach, proposed by Williamson [22] relies on the fact that worm

scanning involves communicating with a large number of hosts simultaneously (or nearly

so) in order to find a vulnerable host to infect. This behavior is assumed to be atypical of

normal application activity, which tends to communicate with a limited number of hosts.

The goal of the algorithm is to delay connection attempts that appear to be more than what

the host normally makes in a certain period of time. The more aggressive the infection

action is, the more delay its connection requests would experience.

2.3.1.1 Implementation Details

The virus throttle approach has the following parameters:

• WorkingSet: The set of the IP Addresses of the machines that this host has connected

with recently. This list has a limited size; our implementation uses 5. Each entry in

the working set has a time flag.

• DelayQueue: A queue used to store packets that are to be delayed by the algorithm.

The virus throttle approach inspects all outgoing packets from a host, searching for TCP

SYN packets. When a SYN packet is detected, the following algorithm is run.

• If this host is in blocked state

– Drop the packet.

• else

– Compare destination address with addresses in the working set

– If destination address is in the working set

* Allow the connection immediately

– Else if working set is not full

* Add destination address to the working set.

19

* Allow the connection to proceed immediately.

– else

* Add the packet to the delay queue.

* If delay queue size is more than 100

· Set the state of this host to blocked state.

The following method is called once every second.

Process-Queue()

• If working set is full

– Remove oldest member.

• If delay queue is not empty

– Pop the SYN packet from its head and any other packets addressed

to the same destination.

– Send the packet(s).

– Add the destination address of the packet to the working set.

2.3.2 CounterMalice

The CounterMalice [24] approach was developed by Silicon Defense and is conceptually

similar to the virus throttle approach, except that it is intended to operate on a network

device, such as a router, rather than on an end-host. Counter malice works by monitoring

the packets sent by a given host and building a composite score of misbehavior based both

on the number of unique destinations and the number of those destinations that have not

responded.

2.3.2.1 Implementation Details

We based our implementation of the counter malice approach on the information published

in [24]. The published work lacks complete details on the workings of the algorithm,

20

but does provide sufficient information to make an approximation of the approach. In

our implementation, we have an entry for each host in the subnetwork containing all the

parameters mentioned in the virus throttle approach. When a host within a subnetwork

sends a SYN packet to a host outside the subnetwork the following method is called.

Output-packet-received()

• Does the source address represent a new entry ?

– Create new entry

• Is the connection blocked ?

– Drop packet.

• else

– If destination address is in the working set

* Allow the connection immediately.

– Else if working set is not full

* Add destination address to the working set.

* Allow the connection immediately.

– else

* Add the packet to the delay queue.

* If delay queue size is more than 100.

· Set the state of that host to blocked.

The following method is called once every second.

Process-Queues()

• Loop through the list of host entries

– If working set is full

21

* Remove oldest member.

– If delay queue is not empty

* Pop the SYN packet from its head and any other packets addressed

to the same destination.

* Send the packet(s).

* Add the destination address of the packet to the working set.

2.3.3 Packet Matching

The Packet Matching algorithm was proposed by Xuan Chen and John Heidemann [35].

This algorithm relies on the fact that a worm usually exploits some particular security

vulnerability corresponding to a specific port number. Further, the nature of worms is

such that an infected host will probe other vulnerable hosts with the same vulnerability.

Therefore, routers seeing unusually high levels of bi-directional probing traffic with the

same destination port number can infer a new worm attack is underway.

2.3.3.1 Implementation Details

The algorithm operates on 2 steps; port matching and address checking. In the port match-

ing step the algorithm compares the list of destination ports observed for inbound traffic to

the list of destination ports observed for outbound traffic. If a match is found, then the port

is flagged as suspicious. In the address checking step, suspicious ports are monitored to

detect how many unique IP addresses are being contacted, and an exponentially weighted

moving average is computed for the number of unique destination IP addresses seen. When

the instantaneous number of unique destinations is much larger than the moving average,

the port is flagged as infected.

The authors also suggest using collaboration between routers to disseminate suspicious

and infected port information. We did not model this extension in the algorithm in our

simulations. Table 1 shows the parameters for the packet matching algorithm.

When a local host within a subnetwork sends connection request packets to a remote

22

Table 1. Parameter definition for packet matching algorithm

Parameter Description

Out port list Ports on remote hosts that local hosts sends packets to

In port list Ports on the local hosts that are the destination port for received packets

Suspicious port list Ports that are suspicious or infected

β Average number of unique IPs contacted for a given port

N Instantaneous number of unique IPs contacted for a given port

δ Sensitivity parameter set to 3 in our implementation

α Weight for the moving average set to 0.125 in our implementation

host outside the subnetwork, the following method is called.

Out-Syn-packet()

• If the destination port is infected ?

– Drop packet.

• Else if the destination port is suspicious ?

– Add the destination IP to the list of Unique IPs associated with

this port

• Else

– Add the destination port to the outgoing port list.

– Forward the packet.

– If the destination port is in the incoming port list

* Add the port to the suspicious ports list

When a remote host outside the local subnetwork sends connection request packets to

a local host, the following method is called:

In-Syn-packet()

• If the destination port is infected ?

– Drop packet.

23

• Else if the destination port is suspicious ?

– Add the destination IP to the list of Unique IPs associated with

this port

• Else

– Add the destination port to the incoming port list.

– Forward the packet.

– If the destination port is in the outgoing port list

* Add the port to the suspicious ports list

The following method is called periodically.

Check-Infection()

• Loop through the list of suspicious ports

• If N > β × δ

– Mark this port as infected

• Else

– Update the moving average β = α × β + (1 − α) × N

– N = 0

2.3.4 DAW

The Distributed Anti-Worm architecture (DAW) [36], has been proposed as a distributed

solution with ISPs deploying the algorithm on edge routers. This algorithm relies on the

fact that the failure rate for a random scanning worm is much higher than that of a normal

well-behaved host.

A connection fails if the destination host does not exist (an ICMP Host Unreachable or

Network Unreachable packet is sent) or if the destination host does exist, but has no layer 4

24

Table 2. Parameter definition for the DAW algorithm

Parameter Description

size Size of the token bucket

tokens Number of tokens, initialized to the size

c Failure counter

f failure rate

β Weight for the moving average for the failure rate; set to 0.2 in our implementation

t Timestamp

λ Failure rate threshold

protocol accepting connections on the destination port (an ICMP Port Unreachable packet

is sent). In addition, a TCP reset packet will be sent if the destination host and port are

valid but the receiving application detects malformed data and closes the connection. In

the DAW algorithm, the failure rate is measured as the number of ICMP host, network, or

port unreachable messages and TCP resets per unit time. Clearly this algorithm assumes

that there is no filtering of ICMP or TCP reset packets by a firewall or gateway between the

source and destination. The algorithm has 2 components, the DAW agent that is deployed

on the edge routers and a management station that collects data from multiple agents. In our

simulations, we only consider the actions of individual agents and do not take collaboration

between agents into account. The basic principle is that if the connection failure rate of a

host exceeds a pre-configured threshold, the DAW agent will begin dropping some of the

connection requests from that host in order to keep its failure rate under the threshold.

2.3.4.1 Implementation Details

Table 2 shows the parameters used in the DAW algorithm. The following method is called

every time an indication of a failed connection is received.

Update-Failure-Rate-Record()

• tokens = tokens - 1

• c = c + 1

• If (c is a multiple of 10)

25

– f’ = 10 / (the current system clock - t)

– If (c == 10)

* f = f’

– Else

* f = β × f + (1 − β) × f ′

• t = the current system clock

Upon observation of a connection request from a host in the local subnetwork, the

following method is called.

Basic-Rate-Limit()

• δ = the current system clock - time

• tokens = min(tokens + δ × λ, size)

• time = the current system clock

• If (tokens ≥ 1)

– Forward the request

• Else

– Drop the request

2.3.5 TCP–ACK

In all the previously mentioned algorithms, we notice that the deployment cost is signif-

icant. Another problem is the amount of state the detection devices need to keep, which

grows exponentially with the number of hosts in the network. This motivates the design

of a stateless, low-cost and 0day ready worm containment algorithm. We introduce a new

method called TCP–ACK. The approach is simple, easy to deploy on a large scale, and

26

takes practically no resources. Our approach requires modifications to the protocol stack

for existing hosts connected to the Internet (i.e. Windows, Linux, MAC-OSX, etc.), which

can easily be accomplished using the security update mechanisms already in place for ex-

isting operating systems. With our modified protocol stack, any host receiving a TCP SYN

packet for a non-existent port will unconditionally send a SYN–ACK to the originator, in-

dicating that the connection has been accepted. The originator will then begin sending to

the same destination port data packets which are silently dropped.

To see the rationale behind our TCP–ACK approach, consider the actions by a normal

TCP worm without our approach in place. A TCP worm creates multiple threads (up to

some fixed limit) that attempt connection requests to random hosts. Without TCP–ACK, a

host that has no corresponding layer 4 protocol at the specified port will create an ICMP

port unreachable message, and the connecting thread receives an indication that the con-

nection has failed. Thus, in only one round–trip–time the worm has determined that the

target host and port is not vulnerable, and is free to try another one.

With TCP–ACK, the connection request to hosts that are not vulnerable (ie. those with

no protocol bound to the destination port) will act as if they are. At that point, the worm will

begin sending the payload packets which are silently dropped. From the worms perspective,

this appears as normal lost packets with the corresponding timeouts and retransmissions.

Instead of one round–trip–time per failed connection, the worm is tied up for several re–

transmission timeout periods which is substantially longer, potentially several minutes. The

net result is a decrease in the effective probing rate of the worm and a resulting decrease

in the rate of spread. If a large fraction of hosts on the Internet implement the TCP–ACK

mechanism, it will be nearly impossible for a TCP–style worm to effectively probe for

vulnerabilities.

We point out that LaBrea is an approach that is conceptually similar to ours. The

LaBrea [37] method uses un-allocated IP address space to create the same trap. In this

method, if the worm sends a SYN packet to an un-allocated address the LaBrea program

27

would reply with a SYN ACK with a window size of zero trapping that thread. However,

this approach requires substantial infrastructure enhancements at subnetworks in order to

forward the un–mapped IP addresses to some host to create and send the SYN–ACK. Fur-

thermore, worms can easily detect the window size of zero and simply ignore any SYN–

ACK with this signature. Our results also show that for any similar approach to work, the

number of addresses with the trap installed must be more than the number of the vulnerable

hosts. This means that in the case of LaBrea the ratio of unallocated addresses to real hosts

in a subnetwork has to be greater than one, which can not be used on a wide scale. In

contrast, our approach can be easily implemented on a wide scale simply by including it as

part of an operating system update.

2.4 Experimental Results

In this section, we describe the simulation experiments we used to measure the effective-

ness of each of the previously discussed detection algorithms and defenses. In addition

to measuring their effect on the overall worm spread rate, we also monitored the effect on

normal web browsing activity.

For the network topology model we created a topology consisting of about 9000 nodes

using 11 Random Tree topologies connected with a ring. There are a mix of parameters for

the random trees, as follows. We have 2 trees with fanout 8 and depth 5 allocating 4096

addresses each; 4 trees with fanout 4 and depth 5 allocating 256 addresses each; 4 trees

with fanout 8 and depth 4 allocating 512 addresses each; and one tree with fanout 16 and

depth 4 allocating 4096 addresses, for a total of 15,360 possible IP addresses. The tree

is populated with child probability such that we have only about 60% (on average) of the

possible 15,360 leaf nodes, or about an average of 9,000 leaf nodes in each simulation.

Since the random scanning of IP addresses is an essential feature of all worms, and since

the probability of a “correct guess” is a fundamental parameter in determining the worm’s

spreading rate, we have reduced the entire Internet IP address space down to the 15,360

28

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time (s)

No Containment
Virus Throttle

Counter Malice
Packet Matching

DAW

(a) cdf of response times

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 55 60 65 70 75 80 85 90 95 100

%
 o

f I
nf

ec
te

d
ho

st
s

Time (s)

No Containment
Virus Throttle

Counter Malice
Packet matching

DAW

(b) Worm spread

Figure 4. Effect of algorithms on the network for a UDP worm attack

possible addresses in our simulation. Thus the probability of guessing a “good” IP address

is approximately 60%.

For the worm parameters, we set the infection length to 500, the infection port to 1040,

the target vector to a uniform random generator spanning the defined address space. We

have set the UDP worm to have a scan rate of 100 probes per second, while the TCP worm

is set to have 3 simultaneous connections.

We conducted experiments by simulating a worm outbreak on the “ring–of–trees” net-

work described above and measured the overall rate of spread of the worm. In addition,

we monitored the web response time for normal web browsing actions. The web browser

model is that defined by Mah [34], and is the default web browser model in GTNetS . The

worm attack was not started in the simulations until time t = 50 seconds, to allow the web

browsing traffic to get started and reach steady state.

Figure 4a shows the effect of the different implementations of the discussed algorithms

on the web browsing response times when a UDP worm attacks the network. Figure 4b

shows their effect on the worm spread rate. Figures 5a,b shows the same results but for a

TCP worm.

Since some of the defenses look specifically for the TCP-SYN packet as an indication,

29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time (s)

No Containment
Virus Throttle

Counter Malice
Packet matching

DAW
TCP ACK r = 3

(a) cdf of response times

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 55 60 65 70 75 80 85 90 95 100

%
 o

f I
nf

ec
te

d
ho

st
s

Time (s)

No Containment
Virus Throttle

Counter Malice
Packet matching

DAW
TCP ACK r = 3

(b) Worm spread

Figure 5. Effect of algorithms on the network for a TCP worm attack

we modified those algorithms to treat a UDP packet as an infection attempt (since we had

no “normal” UDP traffic in these scenarios, this is a reasonable approach). We discuss the

implications of these results for each algorithm in the following sections.

2.4.1 Virus Throttle

The figures show that the throttle is capable of stopping the UDP worm spread in less

than three seconds for this small network. However, in this environment, nearly 60% of

vulnerable hosts are infected in that same time period. Moreover, this approach has a

significant impact on the normal web browsing activity, considerably increasing the average

web response time.

In the case of the TCP worm, the virus throttle approach fails to detect it or to cause

any significant reduction in its infection spread. Furthermore, we still notice a considerable

reduction in the performance of browsers in the network. This is due to the fact that the

throttle is slowing down infected hosts (all hosts in this case) both for the infection packets

and normal web browser connections, but the slow down is not significant enough to affect

the worm spread .

Some of the shortcomings in the practical implementation of this approach are:

1. It is host based, so there is a risk that the worm actually attacks the algorithm and

30

stops it from executing.

2. This approach is ineffective against slow spreading worms with spreading rates below

the threshold of detection

3. Deployment must be complete in order to attain good results, which means that de-

ployment cost is going to be high.

4. Complete blocking of the infected host would result in blocking non worm traffic

from that host as well.

2.4.2 CounterMalice

In our experiments for this approach, we placed the counter malice algorithm on each of

the first level routers in the random trees (the children of the root of each tree). Thus, each

counter malice process has a variable number of existing and non-existing hosts in the tree

below it.

From the performance figures, we can see that the performance is worse than the virus

throttle approach both for TCP and UDP worms. This is primarily due to the fact that the

counter malice algorithm can not detect infections within a subnet, since the detection is

on the gateway to other networks. Furthermore, once the counter malice algorithm begins

blocking actions it has a significant degradation on normal web browsing.

However, this approach does address some of the shortcomings of the throttle approach.

Since it is not host based we do not need to deploy it on every host but rather just on the

routers. Also it can detect slow spreading worms as it does take into account the number

of hosts that do not respond to a connection request. But it has the additional shortcoming

of being unable to detect worm spread within a subnetwork. Unfortunately, it still has the

same detrimental effect on the normal web traffic as the virus throttle approach has.

31

2.4.3 Packet Matching

In our experiments for this approach, we placed the packet matching algorithm on each of

the first level routers in the random trees (the children of the root of each tree).

This approach is better than the previous two in that it blocks only certain port access

rather than all traffic from suspected host. This means that the infected host can still have its

normal traffic go through without any delays while the worm traffic is blocked or delayed.

Figure 5a shows that, for the TCP worm, the packet matching algorithm was able to

stop the worm infections very quickly and Figure 5b shows that the performance of the

web browsing activities improved by 20% because of the suppression of worm traffic.

Figure 4a shows that, for a UDP worm, the packet matching algorithm was not able

to stop the worm completely and the infections continued to spread until it reached 100%,

This is due to the dynamic threshold used in this approach in which a moving average is

calculated. This means that if the worm traffic was increasing slowly for a subnetwork such

that the average would also increase slowly, the worm would go undetected and would be

considered as normal traffic. We would expect a fixed threshold to perform better, but this

would require a customized threshold for each port depending on the application running on

that port and the expected level of activity on that port. Another issue is that if the infected

port had been the same as the web browser port (port 80) the detrimental effects would

be extremely severe, since this approach not only blocks the infected hosts, but the entire

subnetwork containing the infected host. This approach also has a similar drawback to the

counter malice approach in that it cannot detect or affect infections within a subnetwork.

2.4.4 DAW

In our experiments for this approach, we placed the DAW algorithm on each of the first

level routers in the random trees (the children of the root of each tree).

Figures 4 and 5 show that the DAW approach, with just the Basic-Rate-Limit method

applied, has almost no effect on worm spread in either the TCP or UDP worm cases. How-

ever, it has a significant impact on web response time resulting in more than 50% of all

32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time (s)

No Containment
r = 0.8

r = 1
r = 1.5

r = 2
r = 2.5

r = 3

(a) cdf of response times

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 55 60 65 70 75 80 85 90 95 100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time (s)

No Containment
r = 0.8

r = 1
r = 1.5

r = 2
r = 2.5

r = 3

(b) Worm spread

Figure 6. Effect of TCP–ACK on the network for TCP worm

requests failing to complete in seven seconds or less in the case of the UDP worm, and

20% failing in the TCP worm case. This approach also has the shortcoming of not being

able to detect or react to infections within a subnetwork.

The authors also provided two additional methods to be used for limiting the connection

requests, called the Temporal Rate-Limit Algorithm and the Spatial Rate-Limit Algorithm.

In the first algorithm they take into account the number of failed connections during an

entire day, as they state that a normal user may generate high failure rate in a short period

of time but that should not continue for 24 hours. However, an infected host would have

a high failure rate all the time. Thus they define another parameter Γ that represents the

threshold for failed connections in a day.

The second method takes into account the number of failed connections of the network

as a whole using collaborative methods between the DAW processes.

We modeled the first method but instead of a period of a day we defined for a period of

one minute and we set Γ to be equal to 30, meaning that we allow 30 failed connections in

one minute. The results are not shown here, but did not show any major improvement to

the BasicRateLimit method presented.

We did not model the second method as we are not taking into account collaborative

33

efforts between agents and the central station.

2.4.5 TCP–ACK

In our new TCP–ACK approach, we define r as the ratio between the number of nodes that

do not have an application associated with the worm infection port to the number of nodes

that have the vulnerable application. We further assume that all systems have the required

kernel patch to send the SYN-ACK in response to connection requests to non-existent ports.

Figure 5a shows that for the value of r = 3, the TCP worm is blocked completely.

Further, Figure 5b shows that the performance of the web browsers was improved, since our

approach does nothing to packets addressed to legitimate hosts and ports, and our approach

caused suppression of the worm traffic.

We also ran experiments on the network by varying the ratio r. Figure 6 shows that for

small values of r (0.8, 1) this method has no noticeable effect but by increasing r the effec-

tiveness of the TCP ACK algorithm increases until it is able to stop the worm completely

for r = 3 without any negative effect on the normal web traffic.

We point out that in our model the worm does not provide its own timeout period for

the hung connections to fail. We expect that experienced worm developers will become

aware of this defensive method and will provide some timeout period to terminate the

connection. Regardless, the timeout period must be much longer than the single round-

trip-time connection failure in present worms, and thus will still reduce the overall rate of

spread for TCP-style worms.

2.5 Large-scale Simulations

In this section we discuss the effect of large-scale topologies on worm spread and mea-

sure the simulator performance. We are using GTNetS running on a large Linux cluster

consisting of 16 machines running Red Hat Enterprise Linux AS release 4 (Nahant Update

5). Eight of the machines have four Intel(R) Xeon(TM) CPU 3.06GHz CPUs and 2 GB of

RAM each, the rest of the machines each have two Pentium III (Coppermine) 847.402MHz

34

Table 3. Parameter definition for large-scale simulation experiments

Parameter Description Base Case

Time of infection (sec) 10

Ratio of web servers 0.4

Ratio of web browsers 0.6

Maximum think time (sec) 10

Transport layer protocol UDP

Worm scan rate (per sec) 50

Worm target vector local scanning

Payload size (bytes) 500

Simulation time (seconds) 50

CPUs and 2 GB of RAM. The 16 machines are connected to each other via a Gigabit Eth-

ernet network.

We performed several simulation experiments. In each experiment we run the simula-

tor for 50 simulated seconds and measured the different parameters for worm spread and

background traffic as well as the time and memory required for the simulation. We have

40% of the active nodes working as web servers, whereas 60% working as web browsers.

In the first set of experiments we created a netwrok of 11000 nodes on one machine and

then distribute the same topology on a number of machines ranging from one to fifteen.

We measure the time taken and memory overhead for each experiment and calculate the

speedup for having parallel simulations. In the next set of experiments we fix the number

of machines to fifteen and increase the size of the topology. Table 3 represents some of the

parameters used in our simulation experiments.

Figure 7 shows the effect of the different containment strategies on the worm spread,

whereas Figure 8 shows the effect of them on background traffic. From the figures we see

similar results as before. We see that rate limiting is effective in stopping the worm, but it

also has a significant delaying effect on background traffic. From the figures we see that

with rate limiting only 70% of the web browsers are able to complete their sessions in less

than three seconds, as opposed to 100% when there is no containment. We can aslo see that

35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

%
 o

f i
nf

ec
te

d
ho

st
s

Time (s)

No containment
Rate limiting

Packet matching
DAW

Figure 7. Effect of containment strategies on worm spread

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Response time (s)

No containment
Rate limiting

Packet matching
DAW

Figure 8. Effect of containment strategies on background traffic

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10000 15000 20000 25000 30000 35000 40000 45000

N
um

be
r

of
 P

ac
ke

ts
 (

M
ill

io
ns

)

Number of nodes

(a) Number of packets transmitted increase

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10000 15000 20000 25000 30000 35000 40000 45000

N
um

be
r

of
 E

ve
nt

s
(M

ill
io

ns
)

Number of nodes

(b) Events increase

Figure 9. Effect of increasing topology size on simulator overhead

DAW has no measurable effect on stopping the worm, yet its effect on background traffic

is very large. This is because DAW relies on failed connections to detect the worm while

slowing down new connections, and failed connections are slower to detect. Finaly, we see

that packet matching has no harmful effect on background traffic, but it can not stop a fast

worm in time to prevent full infection.

Figure 9 gives a picture of the increased load for the simulator as the size of the topology

increases. We can see that the number of packets transferred and events are increasing

linearly with increasing topology size which is a good indication that we can simulate larger

topologies and can calculate the amount of processing power we need. Figure 10 shows

the increase in wallclock time to simulate 50 seconds of worm and background traffic as

we increase the topology size.

Figure 11(a) shows the cdf of web response times for a variable size of networks. In this

experiment we fixed the number of federates to ten and started increasing the topology size

from ten to forty thousand active nodes in the simulation. We can see from the figure that

as the size of the network increases, while keeping the ratio of web browsers and servers

constant, the number of active flows increases which in turn increases the contention on the

link. This increased contention is the cause of the drop in the web response times in the

37

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10000 15000 20000 25000 30000 35000 40000 45000

T
im

e
(h

ou
rs

)

Number of nodes

Figure 10. Effect of increasing topology size on time required to run the simulator

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Response time (s)

10k nodes
20k nodes
25k nodes
40k nodes

(a) cdf of web response times

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 10000 15000 20000 25000 30000 35000 40000 45000

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(s

ec
on

ds
)

Number of nodes

(b) Average web response time

Figure 11. Effect of increasing topology size on web traffic performance

38

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20

%
 in

fe
ct

ed
 h

os
ts

Time (s)

10k nodes
20k nodes
25k nodes
40k nodes

Figure 12. Worm spread as we increase the toplogy size

figure. Figure 11(b) gives the same conclusion by looking at the increase in the average

response time for web objects as the topology is increased.

Figure 12 shows the worm spread as we increase the topology size distributed on ten

federates. We can still see the effect of increased contention on the worm traffic. There

is a two seconds delay between the 10k and 40k node worm spread curves, which is a

considerable amount of time when we note that four seconds is all the time needed for

saturation for the 10k node simulation.

Figure 13 shows the effect of splitting the topology on a number of federates. We started

out by simulating 10k node topology on one machine, and then distributed that topology

on a number of machines up to 20. We can see that as we move from the sequential

simulation to parallel simulation we get a significant reduction in wallclock time spent for

the simulation. This is because of the memory overhead for the simulation which is about

1.3 GB, meaning that most of the time was spent doing memory operations. When we

remove some of that overhead by distributing the topology on five and ten machines we

can see an improvement on the time spent running the simulation. However when we split

39

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16 18 20

M
em

or
y

(M
B

)

Number of federates

(a) memory overhead per federate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(m

in
)

Number of federates

(b) time required to run the simulation

Figure 13. Effect of parallelism

the simulation to 20 machines, we see that the time rises again. This is because the overhead

of running parallel simulation and message passing between federates is now more than the

memory and processing overhead.

2.6 Conclusion

We have performed a detailed simulation-based study of the effectiveness of several pro-

posed worm detection and defensive methods, and have quantified the effect of these meth-

ods on normal web-browsing activities. Further, we introduced a new defensive mechanism

we call TCP–ACK, which is shown to be effective against worms using TCP connections

for payload propagation. We also presented large-scale simulations for worm spread and

background traffic with full-detail. We have shown the benefit of using parallel simulations

to speed up the experiments and to have larger topologies.

40

CHAPTER 3

DESIGN OF WORST CASE SCENARIOS

The study of worst case scenarios has received high interest from researchers. In [8] the

authors introduced some improvements to random scanning worms such as permutation

scanning, hit-list scanning, and flash worm.

In the hit-list scanning approach the worm author collects a list of potentially vulnerable

machines before the worm is released. The worm, when released onto an initial machine

on this hit-list, begins scanning down the list. When it infects a machine, it divides the

hit-list in half communicating half to the recipient worm and keeping the other half.

A variation on the hit-list scanning approach is the flash worm, which employs hit-list

scanning with a large scale list containing all the vulnerable hosts on the Internet. In [38]

the authors showed that such a worm can infect 95% of a population of one million hosts

in 510 milliseconds.

This chapter introduces the Compact Flash (CFlash) worm that is a variant of the flash

worm. In this approach the worm does not send the actual list of addresses to its chil-

dren, rather it sends a smaller version of the address list represented by relative offsets of

the addresses to each other. Thus the worm is capable of spreading even faster than its

predecessor.

The remainder of this chapter is organized as follows. Section 3.1 discusses worst

case scenarios and motivates the rest of this chapter. Section 3.2 provides some related

work and a description of the flash worm. Section 3.3 describes the CFlash worm and its

implementation in GTNetS. Section 3.4 gives a basis for the evaluation of the flash and

CFlash worms as implemented in GTNetS. In Section 3.5 the results are provided. Section

3.6 gives the conclusions of this chapter.

41

3.1 Motivation

Internet worms have demonstrated that they are serious security risks in recent years. The

Code Red worm attack in 2001 infected 360,000 hosts in 14 hours [2]. The direct costs

of recovering from this epidemic (including subsequent strains of Code Red) have been

estimated to be in excess of $2.6 billion [9]. The Slammer worm outbreak in January 2002

infected 90% of its vulnerable hosts (75,000) in less than 10 minutes [4], the estimated

loss is about $1 billion [39]. In August 2003 the Blaster worm was estimated to have

infected more than 500,000 systems worldwide and the cost to North American companies

was $1.3 billion [39]. However, a more recent report showed that the number of infections

was between 8 million and 16 million systems [40], marking the Blaster worm as the most

widely spread worm to date. The Witty worm in 2004 had a malicious payload that targets

firewalls. Not only did it spread to additional hosts, but it also formatted a portion of the

hard drive of the infected host [41]. A worst-case worm could cause an excess of $50 billion

in direct economic damage by attacking widely spread applications [42]. Moreover, the

worm can infect critical systems as when the Slammer worm crashed the Ohio nuke plant

network [43]. The damage caused by attacks on such critical systems is unmeasurable.

The design and development of automated systems to counter the worm threat is a major

investment in terms of research and cost. This makes the study of worst case scenarios

crucial in determining the cost/benefit of such an investment. One of the most dangerous

types of worm attacks is one that is able to infect all the vulnerable population before any

detection algorithm is able to detect it. In this chapter we present a simulation study of the

fastest known worm (flash worm) and show some improvements that cause it to become

even faster and hence more dangerous.

3.2 Related Work

There have been several studies on how to increase the speed of worm attacks and most

of them focused on better target selection strategies. There are some optimizations to the

42

random scanning method, such as those discussed in [44] and [8]. These include localized

scanning (Code Red II [45]), where the worm chooses to infect a random address from

within the same class B or class A address space with higher probability than other non-

local addresses. This uses the intuition that if a vulnerable host is found, then there is a

high probability that there are other vulnerable hosts in the same local network.

Another optimization is hit-list scanning, where the attacker collects a list of known

vulnerable hosts on the Internet before releasing the worm. The worm chooses victims

from this list and assigns the newly infected host a subset of the list to continue the spread.

A third optimization is permutation scanning where all the worm instances share a

common pseudo random permutation of the IP address space. With this approach, there

is less chance that different worm instances will choose the same victim, thus leading to

faster infection spread. This way worms will not spend a lot of time in scanning the same

host multiple times. In a permutation scan the already infected host responds differently

than a potential target as a way of telling the worm that it is already infected. When the

worm detects that it scanned an already infected machine it realizes that another worm

already scanned this portion of the address space so it chooses a new random starting point

and proceeds from there. This way coordination is imposed on the worm and needless

reinfections are removed. A combination of hit-list and permutation scanning can create

what is termed a Warhol worm [8], which is capable of attacking most vulnerable targets

in less than 15 minutes.

The flash worm was first introduced in [8]. In that work the authors described hit-list

scanning in the following manner: “Before the worm is released, the worm author collects

a list of say 10,000 to 50,000 potentially vulnerable machines, ideally ones with good net-

work connections. The worm, when released onto an initial machine on this hit-list, begins

scanning down the list. When it infects a machine, it divides the hit-list in half, commu-

nicating half to the recipient worm, keeping the other half.” This approach clearly aims at

separating the scanning phase from the infection phase of the worm. The worm typically

43

spends most of the time in searching for vulnerable hosts so by doing this separation the

infection phase can be very fast. Also this separation keeps the worm undetected till in-

fection time because usually a worm outbreak is detected when large number of hosts start

to exhibit the same scanning behavior suddenly. So by doing the scanning from one or a

small number of hosts, the scanning will probably go undetected.

According to the authors of the flash worm, the hit-list can be generated using one or

several of the following techniques:

• Stealthy scans. A fast scan of the whole Internet would be unlikely to attract atten-

tion. However, for attackers wishing to be very careful, a randomized stealthy scan

taking several months would not be detected.

• Distributed scans. An attacker can scan the Internet using a few already-compromised

“zombies.”

• DNS searches. A list of domains can be assembled and the DNS can then be searched

for the IP addresses of mail servers or web servers.

• Spiders. Web-crawling techniques are similar to search engines and they are used in

order to produce a list of most Internet-connected web sites.

• Public surveys. For many potential targets, there might be surveys available listing

them, such as the Netcraft surveys [46].

• Just listening. Some applications, such as peer-to-peer networks, wind up advertising

many of their servers. Similarly, many previous worms effectively broadcast that the

infected machine is vulnerable to further attacks.

The flash worm works by forming a hit-list that contains all the vulnerable hosts in

the Internet. The mechanics of splitting the list with every child can be represented by a

logical tree (Figure 14), where a node at each level infects its descendants and divides the

44

list of vulnerable IP addresses among them. The logical tree can be k-way (meaning each

instance infects k other hosts). The number of generations (layers in the tree) to infect N

vulnerable hosts is O(logk N). The total infection time is bound by this number multiplied

by the time required to infect a generation. The authors observe that a Flash worm that has

a hit-list of most servers with the relevant service open to the Internet in advance of the

release of the worm appears able to infect almost all vulnerable servers on the Internet in

less than 30 seconds.

Initial list

1/4 initial list 1/4 initial list 1/4 initial list 1/4 initial list

1/2 initial list 1/2 initial list

Figure 14. The logical tree for the flash worm

In a later work [38] the authors revisited their calculations and concluded that to infect

95% of a one million host topology it only takes 510 milliseconds. The parameters used to

achieve that speed were:

• The logical tree has 3 layers with 9260 secondary nodes infecting 107 addresses each

for a total of 1000080.

• The root node is chosen to have a high bandwidth (750 Mbps.)

• The distribution of link delays is calculated from the round-trip (RTT) measurements

in CAIDA’s skitter datasets [47].

The authors also note that one of the main drawbacks of the flash worm is the lack of

robustness when the list of vulnerable addresses is imperfect. Since the list is assembled in

45

advance and networks constantly change, the list is likely to be out of date by the time the

worm is released. This has two effects, some vulnerable hosts may not be on the list which

means that the worm will not reach full saturation. More seriously, some addresses may

turn out to be invulnerable to the worm and if such hosts are on the head of the tree they

would prevent all the addresses under them from getting infected and this would be more

serious in deep trees. The authors in [38] studied this problem and suggested solutions to

deal with it as will be shown in section 3.3.1.

3.3 Compact Flash

The list of vulnerable IP addresses across the Internet can be huge. For instance, according

to the Netcraft survey for May 2005 there are about 43 Million Apache web servers and 12

Million Microsoft web servers [46]. This means that in the case of a 0-day vulnerability

assuming that over 80% will be vulnerable, there will be about 35 Million vulnerable hosts

running the Apache server application. The size of the list will therefore be 140 MBytes (4

bytes per address). Even if the root node had the assumed high bandwidth of 750 Mbps, it

would require at least 1.5 seconds just to transfer that list to the first layer children. With

that large amount of traffic, the probability of being noticed is increased therefore for an

attacker who wishes to achieve optimum speed it is very important to reduce the size of

that list as much as possible. By using the Compact Flash (CFlash) approach it is possible

to reduce that size by a factor of 1/4 to 1/2, meaning that the size would then be 35 to 70

MBytes.

The CFlash worm has the same structure as the flash worm except that the list of IP

addresses is represented by the relative offsets rather than the actual IP addresses. It can be

argued that if the offsets are small enough (less than 256), then the list can be reduced to a

quarter of its original size as each IP address takes four bytes of storage, whereas the small

offset can take one byte. However, this is not a very practical assumption as it is almost

certain that there will be two consecutive IP addresses that are separated by more than one

46

byte offset. To deal with this problem two special characters are defined: “two-byte-offset”

and “four-byte-offset” and assigned the values 0xff and 0xfe, respectively.

When the CFlash worm receives the list representing the vulnerable hosts, it calculates

the next victim by adding the first offset to its own IP address and takes a chunk of the offset

list and sends it to that new victim. If it encounters 0xff or 0xfe, it skips that character and

reads the next two or four bytes to determine the correct offset. The size of the chunk to

send to the new victim depends on the number of children for that worm (i.e. the fan out

for the logical tree). The size of the vulnerable hosts list is now reduced by a factor of 1/2

to 1/4, however, this does not necessarily increase the worm speed by an order of two or

four. The reason being that the worm speed is not only dependent on the packet size but on

link-delays as well. The worm speed (for one generation) is proportional to the following:

S peed ∝ 1
packetsize/BW+linkdelays

This imposes an upper bound on the increase of the speed that might occur by packet

size reduction of 1/linkdelays. Moreover, if the linkdelays are much more than the packetsize/BW,

then the linkdelays term becomes the dominant term and improvement from packet size re-

duction is minimized as will be shown in section 3.5

The algorithm for the CFlash processing is as follows:

• Initialize current IP = our own IP

• Initialize victim IP = our own IP

• The worm receives the list of offsets representing the vulnerable IP addresses

– Read the size of the main list

– child list size = main list size / number of children

– for i = 0:number of children

* copy the ithchild list size from the main list into the ith child list

* victim IP = current IP + ith offset

47

* update the current IP by adding up all the offsets in the child list

* Send the child list along with its size to the victim IP

3.3.1 Resilience to Imperfect Maps

As we discussed before, one of the main drawbacks of the Flash worm technique is that

the initial list of the vulnerable hosts’ IP addresses has a good chance of being inaccurate,

because the formation of that list is done before the worm starts spreading and the state of

the vulnerable population could have changed by the time the worm starts its spread. This

can happen in one of the following ways:

• Removal or patching of vulnerable hosts from the network.

• False positives resulting from the use of some worm defenses like TCP-ACK [48].

• The possibility of some hosts having dynamic IP addresses.

The authors of the flash worm [38] studied this problem and presented two solutions.

The first solution is to have a form of an acknowledgment from the child to its parent by

adding the address of the parent to the child list. If that acknowledgment is not received

after a certain period of time another child is chosen from the child list and another packet

is sent to the new host with the same child list. This clearly would complicate the code for

the worm and would require too many timers and data structures to handle a high number

of children cases and to keep state information. The second approach is to add redundancy

in infecting hosts, meaning that the child list is sent to more than one host in the list.

Figure 15(a) shows the case of a binary tree, where at each level a node infects its own two

descendants and then sends worm copies to the two descendants of its sibling, just in case

the sibling turned out to be invulnerable. The effect of this is to make it less likely that a

portion of the tree will fail.

This approach has the problem that now the list has to be carried on for two layers

rather than just one in the original design. This is because now each node has to know

48

(a) Scheme I (b) Scheme II

Figure 15. Two schemes for doubling up worm delivery resilience

the addresses of the descendants of its siblings and also has to send the proper address list

to those descendants. However, the same idea can be applied in a more efficient manner.

Figure 15(b) shows the same case of the binary tree but now, at each level, a node infects

its own two descendants as well as the next address in each of its descendant’s list. The

effect of this would still make it less likely that a portion of the tree will fail, as now both

chosen hosts (the original descendant and its first descendant) have to be invulnerable for

the nodes under them not to get infected.

If we assume that the vulnerability ratio is p then in our simple 3 layer tree model for a

leaf node to get infected, the leaf node and its parent should be vulnerable. The probability

for a leaf node to get infected is thus p2 (p raised to the power of the number of layers -

1). This shows that for a list that is 50% accurate only 25% of it will get infected, meaning

that 50% of the vulnerable hosts will not get infected (the remaining 25%).

This added redundancy causes the worm to be more resilient to imperfect maps because

of the fact that now for a certain node in the list to not get infected the two chosen parents

have to be invulnerable, which has less probability of occurring. In this case for a leaf node

to get infected either one of its parents could be vulnerable (2p(1 − p)) or both of them

49

are vulnerable (p2) and the leaf node has to be vulnerable as well, thus now the probability

of a leaf node to get infected is 2p2(1 − p) + p3 after expansion it would be 2p2 − p3. In

that case if the list was 50% accurate then the infection would be 37.5%, meaning that only

12.5% vulnerable hosts from the original list will not get infected (25% of the vulnerable

hosts will not get infected.)

3.3.2 Simulation Model

The flash and CFlash worms are modeled using GTNetS as application layer objects with

the following parameters:

• Layer4proto, the layer 4 protocol object to be associated with the worm (either UDP

or TCP.)

• Fanout, the maximum number of children for each parent node in the logical tree.

• Vulhosts, the list of vulnerable IP addresses known to this worm.

• Infected, a flag indicating if this node is infected or not.

• Vulnerable, a flag indicating if this node is vulnerable to the worm attack or not.

• Node, the attached host node.

• InfectionPort, the port which has the vulnerable application running on it.

• TotalInfected, the number of infected hosts.

• TotalVulnerable, the number of vulnerable hosts.

• PayloadSize, the size of the infectious payload.

The processing of the flash worm is in the following manner:

• The worm receives the list of vulnerable hosts’ IP addresses

– Read the size of the main list

50

– child list size = main list size / number of children

– for i = 0:number of children

* copy the ith child list size from the main list into the list of

the ith child

* victim IP = first IP in the child list

* Send the child list along with its size to the victim IP

3.4 Experimental Setup

The experiments were conducted using the random tree topology [13]. The random tree is

a tree topology with the addition of a random probability factor that determines if a child

node should be created or not, which leads to the presence of holes in the IP address space,

leading to a more realistic representation of the network.

In this work there is a difference between the logical tree and the physical tree. The

logical tree is the tree representing the hierarchy of infection from parent to child nodes

regardless of how they are actually connected in the network, whereas the physical tree is

the chosen topology structure that connects the hosts with actual links.

The logical topology for the Flash and CFlash worms is a three-layer tree with a max-

imum of 1000 children under each parent node. The layer4proto is set to UDP, and the

PayloadSize is set to 400 bytes. The basic setup for all the experiments is that the topol-

ogy is generated with different parameters settings (bandwidth of links, time delay, and

vulnerability) and we start the worm infection and then measure the spread rate.

The physical topology for the experiments consists of 24 random trees connected to-

gether using a ring topology. Each tree has an address space of 65 k and an average of 45

k real nodes. The total topology size is thus about one million leaf nodes. The size of the

list of IP addresses for the Flash worm is 4.119 MBytes; by using the offsets technique the

size becomes 1.03 MBytes. The bandwidth of the connecting ring links is fixed at 1 Gbps.

In the next section we discuss the results of our simulation experiments.

51

(a) High bandwidth links (b) low bandwidth links

Figure 16. Worm spread for the flash and Compact flash (CFlash) worms

3.5 Results

3.5.1 Effect of Varying Bandwidth

In this section the effect of varying bandwidth of the links in the trees is examined. For

the high bandwidth case (Figure 16(a)) the experiments show that for a one million node

topology the flash worm took 340 milliseconds to infect 95% and 413 milliseconds for full

infection, while the CFlash worm took 290 milliseconds to infect 95% and 380 milliseconds

for full infection. That is, a difference of 30-50 milliseconds is observed because of the size

reduction of the list of vulnerable IP addresses by using the CFlash worm. In that case small

improvement is observed because the high bandwidth caused the packet − size/BW term

to be negligible compared to the link − delays term.

The same experiment was carried out on low bandwidth links as shown in Figure 16(b)

and it can be observed in that case that the speed difference between the flash and the

CFlash worms is much bigger (about 3 seconds difference for total infection). In this case

the CFlash worm is more than 3 times faster than the flash worm.

Figure 17 shows the effect of having different bandwidth settings for the connecting

links in the trees for the CFlash worm, with a fixed time-delay of 10ms. It is clear that

the slope of the infection curve is reduced with reduction of available bandwidth, this is

52

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

%
 o

f I
nf

ec
te

d
ho

st
s

Time (s)

1Mbps
2Mbps
4Mbps

10Mbps

(a) Worm spread

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
fo

r
to

ta
l i

nf
ec

tio
n

(s
)

BW (Mbps)

(b) Time for total infection

Figure 17. Effect of varying bandwidth of links on the worm spread and infection time

probably due to saturation of the links which is clearer for low bandwidth as the worm

spread is not exponential anymore and it tends to be linear.

3.5.2 Effect of Varying Link-delays

Another set of experiments shows the effect of varying the link delays on the speedup for

the CFlash worm relative to the flash worm. Figure 18 shows the worm spread for the Flash

and CFlash worms for different time-delay links with 10 Mbps bandwidth of connecting

links. It can be observed that the increase in speed is higher in case of the low time delay

of links compared to when the time delay of links is high.

Figure 19 shows the effect of having different time-delay settings for the connecting

links in the trees on the worm spread and infection time for the CFlash worm with fixed

bandwidth of 10 Mbps. It is clear that the slope of the infection curve remains the same but

the curve shifts to the right with increase in the time delay of the links.

3.5.3 Resilience to Imperfect Maps

In this section we study the effect of having inaccurate maps to represent the vulnerable IP

addresses.

Figure 20 shows the simulation results for 20 experiments using different values for the

53

Figure 18. Worm spread for the flash and Compact flash (CFlash) worms for different time-delay links

vulnerability ratio and measuring the infection percentage for the original case with single

infection. The same figure also shows the effect of the added redundancy by using double

infections.

It is clear that when the vulnerability ratio is low, the worm spread fails to infect all the

vulnerable population. Even with 50% vulnerability, we see that only 30% of the vulnerable

hosts (30% of 50% of one million = 150 k out of 500 k vulnerable hosts) are infected. In

these tests if the tree was a deep tree (less number of children and more layers), then the

effect of the map being inaccurate would be more severe meaning that even with slight

inaccuracy the infection would fail to spread to most of the vulnerable hosts.

3.6 Conclusions

It has been shown that by efficiently decreasing the size of the packets sent by the flash

worm, the worm can be sped up further, leading to the possibility of infecting a one million

54

(a) Worm spread

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
fo

r
to

ta
l i

nf
ec

tio
n

(s
)

Time delay (ms)

(b) Time for total infection

Figure 19. Effect of varying time-delay of links

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

%
 o

f I
nf

ec
te

d
ho

st
s

Vulnerability

single infection
double infection

Figure 20. Varying the vulnerability of hosts in the initial list using single and double infections

host population in less than 400 milliseconds for high bandwidth links. The improvement is

clearer in the low bandwidth case where the CFlash worm becomes three times faster than

the flash worm. This main idea can be extended by using compression and decompression

55

of the address list at the infected hosts. A detailed study of the benefit of reduced size

against the cost of increased complexity needs to be carried out to determine the optimum

size of the infection packets.

This high speed of infection shows that no human counter-measure can stop the worm

in time, and even automatic mitigation techniques with time delays over 400 milliseconds

are not efficient in stopping that worm once it starts spreading. The only hope of countering

such an attack is to stop this kind of worm in the scanning phase before it starts to spread.

56

CHAPTER 4

MODELING AND SIMULATIONS OF MANET WORMS

The effect of worms on a Mobile Ad-hoc Network (MANET) topology is more serious

than on a computer network because of the resource constrained nature of such a network.

According to the recent DARPA BAA Defense Against Cyber Attacks on MANETS [49],

“One of the most severe cyber threats is expected to be worms with arbitrary payload that

can infect and saturate MANET based networks on the order of seconds.”

A MANET is a self-configuring network of mobile nodes that act as routers and hosts,

and are connected by wireless links. The topology of MANETs is arbitrary and dynamic.

MANETs can operate in a standalone fashion, or may be connected to the Internet. Be-

cause of the fact that MANETs require minimal configuration and are quickly and easily

deployed, they are suitable for emergency situations like disaster–relief, military appli-

cations, and emergency medical situations. These applications make MANETs attractive

targets for cyber–attacks and make the development of counter–measures paramount.

We developed an analytical model for the TCP worm spread in the MANETs environ-

ment. The results show that this model matches the results of the packet- level simulation

in most cases except when the probability of buffer overflow is high.

The rest of the chapter is organized as follows. Section 4.1 discusses some challenges

for worm modeling in MANETS and motivates the rest of the chapter. Section 4.2 gives a

brief overview of related work. Section 4.3 describes the TCP worm model that we devel-

oped to describe salient aspects of the TCP worm propagation with the wireless MANET

environment. Section 4.4 describes the simulation experiments that were conducted to

validate our model. Section 4.5 provides the results and their discussion. Finally, the con-

clusions of the chapter are provided in the end.

57

4.1 Motivation

The modeling of TCP behavior in the MANET topology is very challenging. This is be-

cause the wireless medium is very different from wired networks. Fu et al. [50] studied

how TCP behaves in a multihop wireless network that uses the IEEE 802.11 protocol for

medium access. They noted that multihop wireless networks have several charachteristics

different from wired networks. 1) Packets may be dropped because of buffer-overflow or

link-layer contention. 2) The wireless medium is a scarce shared resource. They showed

that there is a special window size at which TCP delivers best throughput. However, TCP

does not operate arround that window size, and typically grows its average window size

much larger; this leads to increased packet loss and decreased throughput. They also noted

that network overload is specified by wireless link contention and not because of buffer

overflow. They also showed that as the offered load increases, the link contention drop

probability also increases but saturates eventually.

Morever, there are yet even more characteristics about MANET that makes it more

different from the Internet.

• Small scale: The MANET network is usualy in the range of hundereds to thousands

of nodes.

• Application distribution: The Internet has large variations in the applications and op-

erating systems running on end hosts. On the other hand, all hosts in the MANET

usually run the same operating system and applications. This means that worm in-

fections spread at a faster rate in this kind of environment.

All this suggests that the models developed for worm propagation on the Internet are

not suitable for the representation of worm outbreaks in the MANET environment. There-

fore, more studies about this specific problem are needed to develop accurate mitigation

techniques for this critical environment. This chapter studies the problem of TCP worm

spread in the MANET environment and builds a simple analytical model that compares

58

well to simulation results.

4.2 Related Work

Several studies were carried out to analyze and model the propagation of computer worms

in digital communication networks. In [5] the authors present the different kinds of worms

depending on their scanning strategies, worm carrier mechanism, possible payload and

plausible attackers who would employ such a worm. In [8] the authors provide an exten-

sive investigation into the mechanisms of worm propagation and their performance. They

also provide some improvements for the worms and the effort needed to mitigate worm

propagation throughout the Internet.

Zou et. al. [51], studied the Code Red worm outbreak and provided an analysis of its

propagation by accounting for two factors: i) the dynamic countermeasures taken by ISPs

and users, and ii) the slowed infection rate due to the rampant propagation of the worm

causing congestion and troubles to some routers. They derived a general Internet worm

model called the two-factor worm model.

The most relevant work to this chapter is [52] and [53]. In [52] the authors investigated

the impact of communications and mobility effects on worm propagation mechanisms in

MANETs, where they found that network delays and channel congestion had a large im-

pact on the UDP-based worm propagation behavior. They also provided a set of relatively

simple analytical models that reproduced these communications. In [53] the authors dis-

cussed the effect of mitigation techniques on the UDP-based worm spread in MANETs

and provided analytical models and simulation experiments to validate their findings. The

authors represented the mitigation technologies as having a constant detection time repre-

sented by a lifetime parameter of the worm, after which the worm dies and stops infection

of other hosts. These studies were limited to UDP worms. In this chapter we extend their

simulation models to be used in GTNetS and to include TCP style worms in MANETs as

well.

59

4.3 The TCP Worm Propagation Model

Here we extend that prior analysis to the investigation of TCP-based worms; the previ-

ous work focused on UDP-based worms. Our investigations involve extensive, high fi-

delity simulations of TCP-based worms using the Georgia Tech Network Simulator (GT-

NetS) [14]. Further, we develop and investigate a model of the TCP worm propagation in

MANETs. The model results are compared against the simulation experiments. The model

is an extension to the Standard Epidemic Model, which is

di(t)

dt
= βi(t)[1 − i(t)] (1)

where i(t) is the probability of nodal infection at time t, and β is the rate at which a given

infected node is successful in infecting other susceptible nodes.

For a simple, UDP-based flash worm, β is generally set to the product of: i) the inverse

of the UDP packet transmission time onto the communication interface of the infected

host, times ii) the probability that the packet is addressed to a susceptible host, times iii)

the probability that the UDP packet is not lost in transit due to network congestion. The

first term is simply proportional to the communications line speed divided by the size of

the single UDP packet. The second term is usually taken as the ratio of the susceptible

host population divided by the entire address space, assuming a worm which implements

a random address search strategy. Zou et. al. [51], have suggested that the last term be

approximated by [1− i(t)/N]η where η is a fitting parameter. This term estimates the proba-

bility of packet receipt success at the susceptible host under conditions of buffer overflows

within the network.

For a TCP-based worm, β must assume a somewhat different form for two reasons: i)

the rate at which an infected node can transmit the worm to other nodes is related to the

number of simultaneous TCP connections divided by the mean time for a TCP connection

to transmit the worm payload, and ii) network congestion does not decrease the probability

of receipt of the payload at the susceptible host, but instead congestion slows the time

60

to transmit the payload due to bandwidth competition. Bandwidth competition can slow

the TCP transmit times due to increased bandwidth sharing and increased packet losses.

Therefore, we investigate a TCP model which accounts for bandwidth sharing and includes

mechanisms within the underlying 802.11 Link and Physical layers which cause packet

discards at higher loads.

We first investigate the performance of TCP worm propagation through analytic mod-

els. Our analytic modeling describes the 802.11 wireless MANET as residing in one of

two states; a low load state where the number of TCP flows in the network is relatively

small and a higher load state where the number of TCP flows is moderate to high. In the

state with a small number of flows we develop a bandwidth sharing expression for β which

accounts for a slowing of the worm propagation due to competition for the radio channel

bandwidth, without however causing significant packet losses. In the state with moderate

number of TCP flows we develop a model which accounts for high probabilities of packet

discards due to collisions and 802.11 retry limits, but not due to buffer overflows. This

follows the work of Fu, et al., [50] who found that 802.11 networks settle into a state where

the nodal probability of packet losses becomes flat as more and more transmitters (or flows)

are added to the network. In fact, we see this same effect in our simulation modeling and

find that the transition between the low number of flows state and the moderate to high

number of flows state occurs at a very small value for the probability of nodal infection,

i.e., around 0.1.

4.3.1 Low Number of Flows

This model applies to small values for the probability of nodal infections.

61

Define:

i(t) = probability of infection

b = bandwidth of the radio channel

(Bps)

d = nodal density (nodes/sq.meter)

r = radio range of the channel (me-

ters)

c = radio interference range factor

n(t) = mean number of infected neigh-

bors

α = (zero load) TCP throughput in

proportion to the channel band-

width

Assuming perfect sharing of channel bandwidth during the transmission of a TCP worm

payload, the channel bandwidth is partitioned equally to each of the neighboring TCP trans-

missions. Thus, the portion of the channel bandwidth available to each TCP transmission

is

b̄ =
b

(n(t) + 1)
(2)

Assuming uniform placement of nodes in the MANET, we write

b̄ =
b

[πd(r(1 + c))2i(t) + 1]
(3)

So, we consider each infected node seeing a time varying available bandwidth due to in-

creasing probability of infection over time. The Standard Epidemic Model becomes

di(t)

dt
= β(t)i(t)[1 − i(t)] (4)

where β is now time dependent.

For a single threaded TCP operation, as modeled in our simulation studies discussed

below, let τtcp be the average TCP throughput for the transmission of the worm payload.

Then, the time to transmit the TCP worm payload is

ttcp =
Pw

τtcp

(5)

62

where Pw is the payload size of the worm. From the above, modified Standard Epidemic

Model, β(t) is

β(t) =
1

ttcp(t)
=
τtcp(t)

Pw

(6)

and

τtcp(t) = αb̄(t) (7)

where α is the proportion of the available channel bandwidth that a TCP connection is able

to obtain under zero load situations, see, e.g., [54] [55] and [56]. Hence, α is a function of

the mean number of hops across the MANET, the packet size, etc. We assume that α is a

constant with respect to time. Inserting these expressions into the above Epidemic Model

yields

di(t)

dt
=

[

αb

Pw(1 + πd(r(1 + c))2i(t))

]

i(t)[1 − i(t)] (8)

This expression is comparable to the expression for the UDP-based Flash worm pro-

posed by Zou et. al., [51]

di(t)

dt
= β[1 − i(t)]ηi(t)[1 − i(t)] (9)

These equations are different because they consider the different effects of network con-

gestion. Our TCP worm model is predicting a diminishing TCP throughput due to channel

sharing at higher infection probabilities. While Zou et al.’s model is predicting a decreas-

ing probability of end-to-end packet delivery success due to buffer overflow under increased

network competition at higher infection probabilities.

4.3.1.1 Analytic Results

In this section we investigate the analytic solution to our TCP worm model given in Eq.(8).

Following the method of factoring used to solve the Standard Epidemic Model of Eq.(1),

we rewrite Eq.(8) as

di(t)

dt
= γlowi(t)

[

1 − i(t)

1 + θi(t)

]

(10)

63

where γlow = αb/Pw and θ = πd(r(1 + c))2. We factor this expression into

(1 + θi(t))

[

1

i(t)
+

1

1 − i(t)

]

di(t) = γlowdt (11)

Integrating both sides of this equation and rearranging terms yields

i(t)

i(o)

[

1 − i(o)

1 − i(t)

]1+θ

= eγlowt (12)

or

i(t)

[1 − i(t)]1+θ
= g(i0)eγlowt (13)

where

g(i0) =
i0

[1 − i0]1+θ
(14)

Here i0 = i(t = 0). This is as far as we can get in writing the explicit solution to our TCP

model. For general values of θ, we cannot solve this expression for i(t). However, when

θ = 1, 2 or 3 this expression represents a quadratic, cubic or quartic expression in i(t),

respectively. For other values of θ, i.e., θ real or θ > 3, no known explicit solutions exist.

For θ = 0, Eq.(13) reduces to

i(t) =
g(i0)eγlowt

[1 + g(i0)eγlowt]
(15)

This is the well known solution to the Standard Epidemic Model. For θ = 1, Eq.(13)

reduces to

i(t) =
1 + 2g(i0)eγlowt ±

√

1 + 4g(i0)eγlowt

[2g(i0)eγlowt]
(16)

The upper solution, obtained by choosing the upper plus sign, is a non-physical solution re-

sulting in the probability of infection exceeding unity. The lower, i.e., minus sign, solution

is the physical solution. In comparison with the previous θ = 0 solution, this expression

demonstrates the slowing effects of bandwidth competition in the network. Solutions are

also possible for θ = 2 and 3, but due to space limitations we do not present these here.

We can determine the general asymptotic behavior of i(t) as t → ∞ from Eq.(13). The

right hand side of Eq.(13) clearly approaches infinity as t → ∞. This implies that the left

64

hand side of Eq.(13) also approaches infinity, which can only happen if i(t → ∞) = 1.

Also, by writing i(t) ≈ 1 − ǫ where for large t, ǫ << 1, we can perform an expansion of

Eq.(13) in terms of ǫ. This yields the follow expression for i(t → ∞),

lim
t→∞

i(t) ≈ 1 − g−1/(1+θ)e−γlowt/(1+θ) + ... (17)

Clearly, the larger θ is, the slower is the convergence of i(t) toward unity, reflecting that fact

that greater bandwidth competition is slowing the propagation of the TCP-based worm.

Finally, we can analyze Eq.(13) in the context of determining the time for the infection

to reach a given percentage of infection, e.g., 50% of the population, t1/2. Substituting

i(t1/2) = 1/2 into Eq.(13), we get

t1/2 = γ
−1
low(θln2 − lng) (18)

where γlow = αb/Pw which is the mean time for a host to transmit the worm payload under

conditions of no bandwidth competition. In time units of γlow, we expand out the above

expression to yield

t′1/2 = πd[r(1 + c)]2ln2 − ln

(

i0

1 − i0

)

(19)

So, for a given initial condition, t′1/2 increases linearly with the mean number of neighbors

within radio range, e.g., dπ[r(1 + c)]2.

While it is interesting that results for the asymptotic behavior is available, we will

find that in 802.11 wireless networks with TCP worms, the results of this low load model

will apply only for very small probabilities of infection, i.e., i(t) < 0.2. We now turn our

attention to the derivation of a TCP worm propagation model for moderate to high numbers

of TCP flows.

4.3.2 Moderate to High Number of Flows

We rely on the fact, shown in [50], that the network saturates as the number of TCP flows

increases. In this saturated state, many of the network performance characteristics become

independent of further increases in the number of TCP flows. This allows us to derive a

65

simple relationship between the TCP throughput versus the number of TCP flows in the

network.

In this saturated state, the per node packet loss rate becomes a fixed constant indepen-

dent of further increases in the number of TCP flows. Furthermore, the packet loss rate is

a result of collisions due to hidden terminal issues and not buffer overflow. In fact, they

show that the mean buffer occupancy in this saturated state is extremely low and they find

that little, if any, packets are lost through buffer overflow as verified through simulation

studies. In 802.11 networks, nodes will discard a data packet in the event that the node has

attempted to send an RTS seven times without success. Here seven is a default parame-

ter of the Medium Access Control (MAC) protocol. Hence, packets handled by the nodes

are either transmitted to the next hop or are discarded due to a failure of the node to gain

access to the channel after seven attempts. The explanation for the network saturation is

that as the number of flows increases, the number of “backlogged nodes”, i.e., those nodes

with packets to transmit, quickly approaches N, the total number of nodes in the network.

Once in this state, the network performance saturates in terms of the packet loss rate and

the overall network throughput. This behavior does not change as further increases in the

number of TCP flows occur. We observe this fact in our simulations.

Figure 4.3.2 shows the results of a typical simulation run where we plot the total number

of packet discards in the network versus time. Here we see that at around 50 seconds

into the simulation, the rate of packet discards becomes flat, independent of increasing the

number of TCP flows into the network. The results for this plot are for a worm payload

size of 400 Kbytes and are to be compared to the propagation results shown in Figure 23

below. There we see that the probability of infection in the network at a simulation time

of 50 seconds is less than 0.2. This is an extremely low probability of infection for the

network to enter into this relatively static, high packet loss state.

66

Figure 21. Example packet discard results from simulation traces for a TCP worm with payload of 400

Kbytes.

67

Define:

p = the nodal packet loss probability

u = the nodal packet processing rate

m = the number of “backlogged” nodes

f = the number of flows in the MANET

l = the mean number of hops per path

The TCP flows are generated by our TCP worm, and hence we have that f = N × i(t).

In order to estimate the dependence of m on f let us assume the following model. At a

minimum, m ≥ f , because by definition each flow has a different source node in our worm

model. Furthermore, because each flow on average makes l hops through the network, we

know that m is greater than f . In fact, we can estimate the probability that a node is not

backlogged given f as follows. As previously stated, at least f nodes are backlogged, one

for each flow. Of the remaining N − f nodes, imagine that each flow randomly travels over

l nodes. Hence,

Pr{node not backlogged| f f lows} =

(

N − f − l

N − f

) f

(20)

Given that f nodes are backlogged as sources of the f flows and the remaining nodes are

backlogged according to one minus the probability in the above equation, we have that

m = f + (N − f)

1 −

(

N − f − l

N − f

) f

(21)

This functional relationship between m and f shows that the network soon becomes sat-

urated as the number of flows are randomly increased within the network. In fact, our

simulation studies, indicate that this occurs when i(t) is much less than 0.2.

Figure 22 shows a high level view of the network in this saturated state. We now analyze

the relationship of the per flow throughput across the saturated network versus increased

number of flows in terms of a simple flow model. The figure shows f flows entering the

network on the left hand side and exiting the network on the right hand side. In the saturated

68

Figure 22. A stationary network flow model to derive the TCP throughput dependence upon number

of flows.

state, the network is characterized by p, the per node packet loss rate which is independent

of f in the saturated state. Furthermore, we define u as the per node packet processing rate,

where packet processing includes both the time to successfully transmit a packet to the next

node as well as the time to fail to transmit a data packet because of a failure to gain access

to the channel and hence ending up discarding the packet. In the saturated network state, u

is also independent of the number of active flows in the network.

Finally, because network routing is independent of network load, we know that the

mean path length, l, is also independent of the number of flows. So the quantities p, u

and l, characterizing aspects of the network performance are independent of the number of

flows when the network reaches the saturated state.

Let fr,in be the average flow rate into the network for a single flow, and let fr,out be the

average flow rate out of the network for a single flow. Given that each flow traverses (on

average) l hops in the network and that each node has an average packet loss rate of p which

is independent of the number of flow, we have that

fr,out = fr,in(1 − p)l (22)

Therefore, the per flow loss rate is

p f low = fr,in − fr,out = fr,out

(

1

(1 − p)l
− 1

)

(23)

69

Equating the total network packet loss rate for N nodes and for f flows we get

N × u × p = f × p f low (24)

or

fr,out =
up(1 − p)l

i(t)(1 − (1 − p)l)
(25)

where we have used the fact that f = N × i(t).

4.3.2.1 Analytic Results

Previously we argued that β in the Standard Epidemic Model (SEM) was given by τtcp/Pw,

where τtcp is the time dependent TCP throughput and Pw is the fixed worm payload size.

When the 802.11 network is in the saturated state we have derived an expression for the

flow rate per TCP flow in the network, Eq.(25) above. Assuming this is roughly equal to

the TCP throughput, we get the following result for β(t),

β(t) =
τtcp

Pw

=
up(1 − p)l

Pwi(t)(1 − (1 − p)l)
=
γsat

i(t)
(26)

and the corresponding SEM becomes

di(t)

dt
= γsat[1 − i(t)] (27)

This expression has a simple solution, given by

is(t) = 1 − (1 − i∗)e−γsatt (28)

where we have defined (or labeled) is(t) as the evolution of the probability of worm infec-

tion when the network is in the saturated state, and we have indicated the solution’s initial

condition as i∗, which we also define as the transition point between the low load network

behavior and the network moderate load behavior.

4.3.3 Combined Results

We now combine our results for the low load and the moderate to high load regimes.

Eq.(10) for the low load regime was

di(t)

dt
= γlowi(t)

[

1 − i(t)

1 + θi(t)

]

f or i < i∗ (29)

70

Eq.(27) for the moderate to high load regime was

di(t)

dt
= γsat[1 − i(t)] f or i > i∗ (30)

Let us define i∗ as the value of the infection probability where the transition from low load

behavior to saturated network behavior occurs. Of course, in reality this is a smooth transi-

tion, but for our purposes we assume a specific transition value for the infection probability.

We can pick the transition point, i.e., i∗, as a fitting parameter which is chosen to best fit the

simulation data. Alternatively, we could specify that the transition point occurs where the

respective β values from the two models are equal. That is, we define the β value such that

β ≈ min{βlow, βsat} (31)

and the transition value occurs when βlow = βsat or

γlow

1 + θi∗
=
γsat

i∗
(32)

This yields

i∗ =
γsat

γlow − γsatθ
(33)

We will consider the first approach in our comparisons to simulation results below.

Note, our combined TCP model makes the following assumptions:

• A single threaded TCP operation.

• A throughput model for the time to transmit the TCP worm payload, which assumes

a large payload in relation to the TCP segment size in the network.

• Sufficient nodal density and radio transmission range to maintain connectivity across

the MANET cluster.

• No background traffic.

It is relatively straightforward to incorporate the effects of multi-threaded TCP operation.

Work to relax the assumption of large payloads may not be extremely useful because we

71

Table 4. Parameter definition for simulation experiments.

Parameter Description Range Base Case

Number of hosts 50-150 50

Initial population size 1-20 1

Transport layer protocol TCP TCP

Simultaneous connections 1 1

Range of vulnerable Addresses 50 - 500 50

Transmission Rate (Mbps) 0.1 - 2.0 2.0

Time delay(µ seconds) 2 2

Transmission range (m) 100 - 500 250

Area of topology (m2) 1000 1000

Payload size (Kbytes) 0.4 - 4000 4

Simulation time (seconds) 200 200

would expect that most TCP worms have relatively large payloads. It may be possible

to incorporate topological effects into our models to account for probabilities of island

formation at low densities and or small radio range, although we have not investigated this

to date. We plan to investigate improvements to our model relaxing these assumptions in

future studies.

4.3.4 Numerical Results

Even though a general, explicit solution to Eqss (29) and (30) is not known, it is certainly

easy to numerically integrate these expressions for i(t). Therefore, we wrote a PERL script

to numerically integrate Eqs. (29) and (30). We integrated the expression for i(t) for a

number of cases, based upon the parameter set given in Table 4.3.3. These correspond to

a set of simulation studies discussed in the next section. For our purposes, Eqs. (29) and

(30) contain several fitting parameters, i.e., α, γhigh and i∗. The parameter α is interpreted

as the proportion of available channel bandwidth that a TCP connection is able to obtain

under zero load situations. It is well known that TCP throughput decreases exponentially

as a function of the number of hops in the wireless network due to self interference [56].

In fact in typical situations, it is not unusual to find that α < 0.1. We choose α in order

to fit the simulation results for the smaller load cases and found that a value of α = 0.068

does a good job. The parameter i∗ represents the probability of infection value where the

72

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
nf

ec
te

d
no

de
s

Time (s)

400 bytes
4000 bytes

40000 bytes
400000 bytes

4000000 bytes

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f I
nf

ec
te

d
ho

st
s

Time (s)

400 bytes
4000 bytes

40000 bytes
400000 bytes

4000000 bytes

Figure 23. The TCP Model results (top) for various worm payload sizes compared with simulation

results (bottom).

73

wireless network transitions from the low load to the moderate to high load state. From

the simulation results on packet discards and propagation results, we find that i∗ = 0.1

is a reasonable value for this parameter. Finally, the parameter γhigh is a fairly complex

function of nodal packet processing and transmission rate, nodal packet discard probability

and mean path length in the MANET, see, i.e., Eq.(26). Hence we varied this parameter

until we found reasonable fit to the simulation results discussed below. We found that

γhigh = 600 gave reasonable fitting results. We used these values below in our comparison

of modeling to simulation results.

As an example, Figure 23 shows the results of the TCP worm model for various TCP

worm payload sizes, ranging from a low of 400 bytes to a high of four million bytes. For

each run, the other parameters for the model, as identified in Table 4.3.3 remained fixed.

It can be seen that the model does a good job in qualitatively representing the simulation

results. We discuss in detail below the simulation modeling and results.

4.4 Simulation

In this section, we present the simulation experiments conducted using the Georgia Tech

Network Simulator (GTNetS).

GTNetS has an application that models the spread of a computer worm. The worm

is designed as an application that exists on all susceptible nodes, which is listening on

a specific port for incoming packets. When the worm application receives the infectious

packet it is activated and starts choosing targets to send infectious packets to them.

There are different models for worms as discussed in [57]. The models include a num-

ber of parameters that specify the behavior of the worm :

• Transport protocol: The underlying transport protocol used by the worm, which can

be either UDP or TCP. UDP worms do not wait for any acknowledgment from the

target, while the TCP worms require a three–way handshake (SYN/SYN–ACK/ACK)

before it can send its payload.

74

• Infection length: The size of the exploitation data that the worm needs to send to a

host in order to infect it.

• Infection port: The transport layer port that exhibits the security vulnerability that is

to be exploited.

• Target vector: The algorithm used by the worm to determine the IP address of a new

victim. This can be either uniform, local preference or sequential scanning.

• Scan rate: The rate at which UDP worms send infection packets.

• Scan range: The range of addresses the worm chooses from.

• Connections: The number of simultaneous connections attempts used by TCP worms.

The MANET nodes are initially arranged in a rectangular grid, where they are uni-

formly placed across the grid. For our mobility studies, the Random Waypoint model was

used to describe the motion of the nodes during the propagation of the TCP-based worm

through the MANET.

Table 4.3.3 defines our baseline MANET TCP worm simulation model parameters.

4.5 Results

In our experiments we create the MANET topology and set the simulation parameters ac-

cording to Table 4.3.3 baseline case. We then start the worm infection in the initial popula-

tion and measure its spread against time for varying one parameter at a time and compare

the average of the results of 30 runs with the output of the TCP worm model described in

Section 4.3.

Figure 23 shows the results of varying the TCP payload size. Here it is clear that for

payload sizes in excess of 4 Kbytes, the worm propagation soon congests the capacity of

the radio links and the rate of spread decreases dramatically. Also apparent is the fact

that for small payloads, the time for the worm to overrun the entire network is extremely

75

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
nf

ec
te

d
no

de
s

Time (s)

2 Mbps
1.6 Mbps
0.8 Mbps
0.4 Mbps
0.2 Mbps

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f I
nf

ec
te

d
ho

st
s

Time (s)

2 Mbps
1.6 Mbps
0.8 Mbps
0.4 Mbps
0.2 Mbps

Figure 24. The TCP Model results (top) for various transmission rates with simulation results (bottom).

76

short. This is one of the reasons the DARPA program in [49] was so concerned about worm

attacks against tactical MANETs. As mentioned before, the analytic modeling compares

well with the simulation results shown in Figure 23.

Figure 24 shows the results of the TCP worm model and simulations after varying the

transmission rate of the wireless channel, ranging from 0.1 Mbps to 2.0 Mbps. It is clear

from the figures that as the transmission rate decreases the worm spread flattens due to

saturation of the network and the infection growth tends to become linear. The model does

a very good job in qualitatively representing the simulation results.

Figure 25 shows the results of the TCP worm model and simulations after varying

the initial infected population size, ranging from 1 to 20 nodes. The model does a good

job in qualitatively representing the simulation results. The results show as expected that

with increasing the initial population, the worm spread rate is increased. The increase is

not as significant as might be expected because this is a low scanning worm (only one

simultaneous connection).

Figure 26 shows the results of the TCP worm model and simulations after varying the

radio range of the nodes, ranging from 100 meters to 500 meters. It is clear from the

simulation results that for low radio ranges some of the nodes can not communicate with

each other and therefore the final infection probability is very low. To confirm this, in

Figure 27 we show the topology plots of a set of random node placements in our 1000 by

1000 meter grid for various values of the radio range. In these plots, the circles around a

node have a radius equal to one half the value of the radio range. Hence, two nodes have

direct radio contact if their circles overlap. Here we clearly see that for radio ranges less

than 250 m, there is a high probability that the network breaks up into smaller, disconnected

clusters. As the radio range increases to 250 meters the final infection probability improves,

afterwords the increase in radio range has a negative effect on the worm spread due to

more bandwidth competition between nodes. The TCP worm model captures the effect

of bandwidth competition and packet discards for topologies where the network remains

77

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
nf

ec
te

d
no

de
s

Time (s)

20 nodes
15 nodes
10 nodes
5 nodes
2 nodes
1 node

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f I
nf

ec
te

d
ho

st
s

Time (s)

20 nodes
15 nodes
10 nodes
5 nodes
2 nodes
1 node

Figure 25. The TCP Model results (top) for various initial population size with simulation results (bot-

tom).

78

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
nf

ec
te

d
no

de
s

Time (s)

250 m
300 m
500 m

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f I
nf

ec
te

d
ho

st
s

Time (s)

250 meters
300 meters
500 meters
200 meters
150 meters
100 meters

Figure 26. The TCP Model results (top) for various radio ranges with simulation results (bottom).

79

Figure 27. MANET topologies for various values of the radio range. The upper left plot results from

r = 100m, the upper right from r = 150m, the lower left from r = 200m and the lower right from

r = 250m.

connected with a high probability. But the model breaks down at low radio ranges where

connectivity begins to break down.

Figure 28 shows the results of the TCP worm model and simulations after varying

the number of nodes (nodal density). The simulation results show the effect of increased

contention with increasing nodal density, which results in an increase in the packet drop

rate.

Figure 29 shows the results of the simulations after varying the routing protocol used.

Three different routing protocols were used in these experiments; DNVR [58], DSR [59],

and AODV [60]. It is clear from the figures that for our experiments there is no significant

difference in the performance of these routing protocols. We did not provide a comparison

to the analytic model for this case. This is because there is nothing in the analytic modeling

that would suggest significant differences between the performance of the various routing

protocols.

80

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
nf

ec
te

d
no

de
s

Time (s)

50 nodes
100 nodes
150 node

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f I
nf

ec
te

d
ho

st
s

Time (s)

50 nodes
100 nodes
150 nodes

Figure 28. The TCP Model results (top) for various number of nodes with simulation results (bottom).

81

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f I
nf

ec
te

d
ho

st
s

Time (s)

AODV
DNVR

DSR

Figure 29. The simulation results for varying the routing protocol

4.6 Conclusion

We have presented a study of TCP worm propagation in MANETs. We investigated the im-

pact of payload size, channel bandwidth, initial infection probabilities, packet discards due

to collisions in the wireless channel, radio range and routing protocols on the effectiveness

of the worm propagation. Previous studies have proposed analytical models of UDP-based

worm propagation in MANETs. We developed an analytical model of TCP-based worm

propagation in MANETs and showed that the model compares well to our simulation re-

sults. The model captures the effects of variable payload sizes (for large payloads), channel

bandwidths, initial conditions, and radio range. The model does not include topological

considerations and hence does not predict situations where the MANET becomes discon-

nected due to either low nodal densities or short radio ranges.

The model relies on the fact that the wireless network exists in one of two states; a low

load state where packet discards are rare and the TCP flows share channel bandwidth and

a moderate to high load state where the nodal packet discard probability is flat with respect

to increases in the number of flows. This effect was discovered by Fu, et al., [50], and is

82

confirmed by our simulation results.

83

CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis provides contributions in the field of modeling and simulations of worm traffic

and mitigation algorithms. We first evaluated several proposed mitigation algorithms and

introduced our own mitigation technique that addressed some of the limitations of these

algorithms. The second contribution was the design of the Compact Flash worm that can

saturate a one million node topology in less than 400 milliseconds. The third contribution

was the development of an analytical model for representing TCP worm traffic in a MANET

environment.

5.1 Evaluation of Contemporary Worm Defense Strategies

In chapter 2 we introduced simulation models that can represent several mitigation tech-

niques. We used these models in GTNetS to study a number of the proposed mitigation

algorithms. Our study is different from other studies in that we take into account the effect

of the mitigation algorithms on normal background traffic. The idea is that a successful

mitigation algorithm should not stop or delay in any way normal traffic.

We studied four different mitigation algorithms, namely: Virus Throttle, CounterMal-

ice, Packet Matching and DAW. Our results showed that rate limiting algorithms (Virus

Throttle and CounterMalice) are very effective in stopping worm traffic, however they also

have a noticeable effect on normal traffic. The DAW algorithm proved to be ineffective in

stopping our worm traffic and yet it caused significant delays on normal traffic. The Packet

Matching algorithm performed well on slow scanning worms with no noticeable effect on

normal traffic. One disadvantage that all these algorithms have is the high cost of deploy-

ment, whether this cost is represented by the number of machines running the algorithm or

the amount of processing/memory the algorithm requires. As an example the Virus Throttle

approach is a host based approach, which means it has to be implemented on every host

84

on the network to have the desired results of stopping the worm. Implementing the same

algorithm on the network level solves the problem of deployment, but it introduces higher

complexity and exponential increase in memory requirement. Another disadvantage is that

all of those algorithms are reactive, meaning that they have to detect the worm presence

before they can start their limiting actions. This is in fact a necessity for those detection

algorithm so as not to affect normal traffic. However, the time required for detection gives

a fast worm ample opportunity to saturate the network.

To solve these problems a stateless algorithm is needed, which means its memory re-

quirement is minimal. The algorithm must be 0day ready, i.e. a proactive solution that

slows down worm scans from the first attempt. These requirements are met with our TCP-

ACK algorithm. The TCP-ACK algorithm requires that any host receiving a TCP SYN

packet for a non-existent port to unconditionally send a SYN–ACK to the originator, in-

dicating that the connection has been accepted. The originator will then begin sending to

the same destination port data packets, which are silently dropped. This means that the

originator will consider the dropped packets as lost in transmission and will keep on re-

transmitting them for a long time before dropping this connection. Even if the originator

is using multiple TCP threads for scanning, the TCP-ACK would significantly limit the

number of threads, causing the worm spread to slow down considerably. The TCP-ACK

algorithm also requires high deployment ratios to be effective, but this does not represent

any significant cost because of its stateless nature. The TCP-ACK can be easily installed

on all hosts on the network by updating the protocol stack using the security update mech-

anisms already in place for existing operating systems.

We believe that our studies will be very useful for the evaluation of proposed mitigation

techniques under various network conditions. Such studies can not be done using analytical

models as the complexity of the various network parameters makes it very hard to capture

using simple equations.

Our research was addressing campus sized networks in the order of few thousands

85

nodes. We did have several large-scale experiments but only upto 50 thousand nodes.

The level of detail in our simulations prevented us from scaling to Internet size topology.

To address the scaling issue, the study of fluid models could prove to be very useful for

representing background traffic [61, 62, 63, 64]. Another possible extension to this research

is the study of a more diverse representation of background traffic in the Internet, i.e. peer-

to-peer, voice, and other forms of traffic that are emerging alongside web traffic. Another

area of research is a better representation of the topology of the Internet.

5.2 Design of Worst Case Scenarios

In chapter 3 we studied one of the fastest known worms, namely the flash worm. We also

proposed a modification to the address list representation that would make it even faster.

We called the new version of the worm CFlash or Compact Flash worm. The CFlash worm

has the same structure as the flash worm except that the list of IP addresses is represented

by the relative offsets rather than the actual IP addresses. We have developed simulation

experiments for a million node topology with full packet-level detail and tested the CFlash

worm under various network conditions. Our studies showed that such a worm can infect

a one million-node topology in under 400 millisecond. This alarming speed shows that

no human response can stop this worm in time. This also presents a tight requirement

for response time in automated defenses. We believe the only hope for stopping such a

worm is in the list formation phase, which requires collaboration between various anomaly

detectors on the Internet to signal an alarm whenever a strong correlation is found regarding

suspicious source IP addresses.

Several areas need more careful consideration:

• The effect of having a more realistic topology representing the Internet.

• The effect of containment strategies attempting to delay or stop the worm spread.

• The effect of background traffic.

86

• Studying real worm outbreak cases and comparing the effect of having a CFlash

worm instead in those cases.

5.3 Modeling and Simulations of MANET Worms

In chapter 4 we studied TCP worm propagation in a MANET environment. We have de-

veloped an analytical model which closely matches our detailed simulations results. The

model captures the effects of variable payload sizes, channel bandwidths, initial conditions,

and radio range.

The model relies on the fact that the wireless network exists in one of two states; a

low load state where packet discards are rare and the TCP flows share channel bandwidth

and a moderate to high load state where the nodal packet discard probability is flat with

respect to increases in the number of flows. We have developed models for each of these

two states and combined them to produce the final model. The model was compared to

simulation results for a number of experiments with different payload sizes, radio ranges,

and bandwidth settings. All the simulation results compares very well to the model results

except for very low radio range or low nodal densities, which results in having disconnected

regions in our topology. One extension to this research is to relax some of the assumptions

of the analytical model to account for probability of island formation due to low radio

range or low nodal density. Another possible extension is the study of the effect of normal

background traffic on our model. Also, the simulation part can show the effect of mobility

on the worm performance, for this purpose, the modified random waypoint model [65] for

mobility needs to be implemented in GTNetS .

We believe that our studies will aid in the design of efficient counter measures for

worm attacks in MANETs. Further studies of worm propagation and mitigation in the

challenging networking environment afforded by MANETs is required. In future studies we

hope to further quantify the behavior of TCP-based worms and to investigate the efficiency

of specific worm mitigation technologies.

87

REFERENCES

[1] D. Seeley, “A tour of the worm,” in Proceedings of the winter USENIX Conference,

(San Diego, CA, USA), pp. 287–304, January 1989.

[2] D. Moore, C. Shannon, and J. Brown, “Code-red: a case study on the spread and

victims of an internet worm,” in Proceedings Internet Measurement Workshop (IMW),

(Marseille, France), November 2002.

[3] E. J. Aronne, “The nimda worm: An overview,” tech. rep., SANS, October 2001.

[4] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “In-

side the slammer worm,” IEEE Magazine of Security and privacy, vol. 1, pp. 33–39,

July/August 2003.

[5] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy of com-

puter worms,” in Proceedings of the 2003 ACM CCS workshop on Rapid Malcode

(WORM’03), (Washington, DC, USA), pp. 11–18, 2003.

[6] “W32/gnuman.worm.”

[7] M. Kern, “Re: Codegreen beta release.”

[8] V. P. Stuart Staniford and N. Weaver, “How to 0wn the internet in your spare time,”

in Proceedings of the 11th USENIX Security Symposium, (San Francisco, CA, USA),

August 2002.

[9] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet quarantine: Require-

ments for containing self-propagating code,” in Proceedings IEEE INFOCOM, (San

Francisco, CA, USA), March 2003.

[10] J. O. Kephart and S. R. White, “Measuring and modeling computer virus prevalence,”

in Proceedings of the 1993 IEEE Symposium on Security and Privacy, (Washington,

DC, USA), p. 2, 1993.

[11] H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Review, vol. 42,

pp. 599–653, October 2000.

[12] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early warning for

internet worms,” in CCS ’03: Proceedings of the 10th ACM conference on Computer

and communications security, pp. 190–199, ACM Press, 2003.

[13] G. F. Riley, M. I. Sharif, and W. Lee, “Simulating internet worms,” in Proceedings

of The IEEE Computer Society’s 12th Annual International Symposium on Model-

ing, Analysis, and Simulation of Computer and Telecommunications Systems (MAS-

COTS’04), (Volendam, The Netherlands), pp. 268–274, October 2004.

88

[14] G. F. Riley, “The Georgia Tech Network Simulator,” in Proceedings of the ACM SIG-

COMM workshop on Models, methods and tools for reproducible network research,

pp. 5–12, ACM Press, 2003.

[15] A. Wagner, T. D. bendorfer, B. Plattner, and R. Hiestand, “Experiences with worm

propagation simulations,” in WORM’03: Proceedings of the 2003 ACM workshop on

Rapid Malcode, pp. 34–41, ACM Press, 2003.

[16] M. Liljenstam, D. M. Nicol, V. H. Berk, and R. S. Gray, “Simulating realistic network

worm traffic for worm warning system design and testing,” in WORM’03: Proceed-

ings of the 2003 ACM workshop on Rapid Malcode, pp. 24–33, ACM Press, 2003.

[17] J. Cowie, A. Ogielski, and D. Nicol, “The SSFNet network simulator.” Software on-

line: http://www.ssfnet.org/homePage.html, 2002. Renesys Corporation.

[18] H.-A. Kim and B. Karp, “Autograph: toward automated, distributed worm signature

detection,” in SSYM’04: Proceedings of the 13th conference on USENIX Security

Symposium, (Berkeley, CA, USA), pp. 19–19, USENIX Association, 2004.

[19] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham,

“Vigilante: end-to-end containment of internet worms,” in SOSP ’05: Proceedings

of the twentieth ACM symposium on Operating systems principles, (New York, NY,

USA), pp. 133–147, ACM Press, 2005.

[20] S. P. Chung and A. K. Mok, “Allergy attack against automatic signature generation.,”

in RAID (D. Zamboni and C. Krgel, eds.), vol. 4219 of Lecture Notes in Computer

Science, pp. 61–80, Springer, 2006.

[21] B. M. J. W. L.Todd Heberlein, Gihan V. Dias. Karl N. Levitt and D. Wolber, “FA

Network Security Monitor,” in 1990 IEEE Symp. Research in Security and Privacy,

(Oackland, California), pp. 296–304, May 1990.

[22] J. Twycross and M. M. Williamson, “Implementing and testing a virus throttle,” in

Proceedings of the 12th USENIX Security Symposium, (Washington, D.C., USA),

pp. 285–294, August 2003.

[23] C. Wong, C. Wang, D. Song, S. Bielski, and G. R. Ganger, “Dynamic quarantine of

internet worms,” in DSN ’04: Proceedings of the 2004 International Conference on

Dependable Systems and Networks (DSN’04), (Washington, DC, USA), p. 73, IEEE

Computer Society, 2004.

[24] S. Staniford, “Containment of scanning worms in enterprise networks,” Journal of

Computer Security, to appear 2004.

[25] D. Whyte, E. Kranakis, and P. C. van Oorschot, “DNS-based detection of scanning

worms in an enterprise network,” in Proceedings of the 12th Network and Distributed

System Security Symposium (NDSS), pp. 181–195, February 2005.

89

[26] P. C. v. O. David Whyte and E. Kranakis, “Detecting intra-enterprise scanning worms

based on address resolution.”

[27] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer

Networks (Amsterdam, Netherlands: 1999), vol. 31, no. 23–24, pp. 2435–2463, 1999.

[28] S. Schechter, J. Jung, and A. W. Berger, “Fast Detection of Scanning Worm Infec-

tions,” in 7th International Symposium on Recent Advances in Intrusion Detection

(RAID), (French Riviera, France), September 2004.

[29] A. Wagner and B. Plattner, “Entropy based worm and anomaly detection in fast ip

networks,” in WETICE ’05: Proceedings of the 14th IEEE International Workshops

on Enabling Technologies: Infrastructure for Collaborative Enterprise, (Washington,

DC, USA), pp. 172–177, IEEE Computer Society, 2005.

[30] S. Sellke, N. B. Shroff, and S. Bagchi, “Modeling and automated containment of

worms.,” in DSN, pp. 528–537, 2005.

[31] S. McCanne and S. Floyd, “The LBNL network simulator.” Software on-line:

http://www.isi.edu/nsnam, 1997. Lawrence Berkeley Laboratory.

[32] S. Bertolotti and L. Dunand, “Opnet 2.4: an environment for communication network

modeling and simulation,” in Proceedings of the European Simulation Symposium,

October 1993.

[33] “Intrusion detection and prevention: protecting your network from attacks.”

http://www.ncasia.com/security/ NetScreen IDP WP.pdf.

[34] B. A. Mah, “An empirical model of http network traffic,” in Proceedings of IEEE

INFOCOMM, pp. 592–600, 1997.

[35] X. Chen and J. Heidemann, “Detecting early worm propagation through packet

matching,” Tech. Rep. ISI-TR-2004-585, USC/Information Sciences Institute, Febru-

ary 2004.

[36] S. Chen and Y. Tang, “Slowing down internet worms,” in Proceedings of the 24th

International Conference on Distributed Computing Systems (ICDCS’04), (Tokyo,

Japan), March 2004.

[37] T. Liston, “Labrea project,” 2001.

[38] S. Staniford, D. Moore, V. Paxson, and N. Weaver, “The top speed of flash worms,” in

WORM ’04: Proceedings of the 2004 ACM workshop on Rapid malcode, pp. 33–42,

ACM Press, 2004.

[39] J. Swartz, “Cops take a bite, or maybe a nibble, out of cybercrime,” USA TODAY,

September 2003.

[40] R. Lemos, “Msblast epidemic far larger than believed,” CNET News.com, April 2004.

90

[41] C. Shannon and D. Moore, “The spread of the witty worm,” tech. rep., CAIDA, April

2004.

[42] N. Weaver and V. Paxson, “A worst-case worm,” in Proceedings of the Third Annual

Workshop on Economics and Information Security (WEIS’04), 2004.

[43] K. Poulsen, “Slammer worm crashed ohio nuke plant network,

http://www.securityfocus.com/news/6767 (oct/2008).”

[44] N. Weaver, “Potential strategies for high speed active worms: A worst case analysis.”

http://www.cs.berkeley.edu/∼nweaver/ worms.pdf, March 2002.

[45] R. Russell and A. Mackie, “Code red worm ii analysis report,” tech. rep., SecurityFo-

cus, August 2001.

[46] Netcraft, “Netcraft web server survey,” http://www.netcraft.com/survey, March/2005.

[47] CAIDA, “Skitter datasets,” http://www.caida.org/tools/measurement/skitter,

March/2005.

[48] M. Abdelhafez and G. Riley, “Evaluation of worm containment algorithms and their

effect on legitimate traffic,” in IWIA’05: Third IEEE International Workshop on In-

formation Assurance, pp. 33–42, March 2005.

[49] Ghosh and A.K., “How to 0wn the internet in your spare time,” in Proceedings of the

11th USENIX Security Symposium, (San Francisco, CA, USA), August 2002.

[50] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The impact of multihop

wireless channel on tcp throughput and loss,” in IEEE Infocomm 2003, August 2003.

[51] C.C.Zou, W.Gong, and D. Towsley, “Code red worm propagation modeling and analy-

sis,” in In Proceedings of the 9th ACM Conference on Computer and Communications

Security, pp. 138–147, November 2002.

[52] R. G. Cole, “Initial studies of worm propagation in manets,” (Orlando, FL, USA),

2004.

[53] R. G. Cole, N. Phamdo, M. A. Rajab, and A. Terzis, “Requirements on worm mit-

igation technologies in manets,” in PADS ’05: Proceedings of the 19th Workshop

on Principles of Advanced and Distributed Simulation, (Washington, DC, USA),

pp. 207–214, IEEE Computer Society, 2005.

[54] G. Holland and N. Vaidya, “Analysis of tcp performance over mobile ad hoc net-

works,” in Mobicom, 1999.

[55] S. Papanastasiou, M. Ould-Khaoua, and L. Mackenzie, “On the evaluation of tcp in

manets,” in Proceedings of the International Workshop on Wireless Ad Hoc Networks,

May 2005.

91

[56] D. D. perkins and H. D. Hughes, “Tcp performance in mobile ad hoc networks,” in

Proceedings of the Intl. Symp. on Perf. Eval. of Computer and telecommunications

Systems, July 2001.

[57] M. I. Sharif, G. Riley, and W. Lee, “Simulating internet worms,” in Proceedings of the

Twelvth International Symposium on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems (MASCOTS’04), 2004.

[58] Y. Lee and G. Riley, “Dynamic nix-vector routing for mobile ad hoc networks.,”

in IEEE Wireless Communications and Networking Conference (WCNC 2005), Mar

2005.

[59] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless net-

works,” Mobile Computing, pp. 153–181, 1996.

[60] C. E. Perkins and E. M. Royer, “Ad hoc on-demand distance vector routing.,” in Pro-

ceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications,

pp. 90–100, Feb 1999.

[61] B. Liu, D. R. Figueiredo, Y. Guo, J. Kurose, and D. Towsley, “A study of networks

simulation efficiency: Fluid simulation vs. packet-level simulation,” in Proceedings

of the 20th Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM’01), April 2001.

[62] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong, “Fluid simulation of large scale

networks: issues and tradeoffs,” in Proceedings of PDPTA’99, June 1999.

[63] D. Nicol, M. Goldsby, and M. Johnson, “Fluid-based simulation of communication

networks using ssf,” in Proceedings of 1999 European Simulation Symposium, June

1999.

[64] B. Melamed, S. Pan, and Y. Wardi, “Hybrid discrete-continuous fluid-flow simula-

tion,” in Proc. of the SPIE International Symposium on Information Technologies and

Communications (ITCOM 01), Aug 2001.

[65] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harmful,” in INFO-

COM, 2003.

92

