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Abstract

In this paper we integrate at the tactical level two decision prob-

lems arising in container terminals: the berth allocation problem,

which consists of assigning and scheduling incoming ships to berthing

positions, and the quay crane assignment problem, which assigns to

incoming ships a certain QC profile (i.e. number of quay cranes

per working shift). We present two formulations: a mixed integer

quadratic program and a linearization which reduces to a mixed in-

teger linear program. The objective function aims, on the one hand,

to maximize the total value of chosen QC profiles and, on the other

hand, to minimize the housekeeping costs generated by transshipment

flows between ships. To solve the problem we developed a heuris-

tic algorithm which combines tabu search methods and mathematical

programming techniques. Computational results on instances based

on real data are presented and compared to those obtained through a

commercial solver.
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1 Introduction

Maritime transportation has gained a crucial role in the exchange of goods

between continents and containerization enforced this trend (UNCTAD,

2008). In order to cut down transportation costs, container traffic asks for

ultra-large containerships and thus for terminals with facilities and tech-

nologies able to handle them (mega-terminals), and for a maritime trans-

portation system which can reduce transportation costs. This system is

known as hub and spoke : deep sea containerships (mother vessels) oper-

ate among a limited number of transhipment terminals (hubs), and smaller

vessels (feeders) link the hubs with the other ports (spokes). The need

for an optimal management of logistic activities at modern container ter-

minals is well recognized. For an overview and classification of the various

equipments and decision problems in such systems, see Vis and de Koster

(2003), Steenken et al. (2004), Crainic and Kim (2007), Stahlbock and Voss

(2008), and Monaco et al. (2009).

This paper deals with the Tactical Berth Allocation Problem (TBAP)

with integrated quay crane assignment and quadratic yard costs in a trans-

shipment container terminal. It is well known that the Operational Berth

Allocation Problem, in the following referred to as BAP according to the

convention commonly adopted in the literature, consists of assigning and

scheduling ships to berthing positions along the quay, with the aim of min-

imizing ships’ turnaround time. In particular, the usual BAP planning

horizon covers just few days, say at most one week, due to the uncertain-

ties of maritime traveling times. Here, our specific motivation in building

a tactical version of BAP, is not simply the obvious one of considering a

longer planning horizon, say at least one week up to several weeks, but

mainly that of supporting decisions made by terminal managers in the

negotiation process with shipping lines. The terminal and the shipping

line negotiate the expected vessel handling time which depends upon the

number of assigned Quay Cranes (QCs) along a time axis. We indicate

as a QC profile the number of QCs available for the vessel at each time

step of its handling time, and we explicitly model as decision variables the

selection of QC profiles. Such integration enables terminal managers to
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evaluate how performance of the terminal change with the different service

intensity offered/required to/by the shipping lines. Therefore, negotiation

amounts to evaluate the impact on the performance of guaranteeing certain

QC profiles to the shipping lines, and, as a consequence, the main operat-

ing resources involved in this process are the berths and the quay cranes.

The last remark has provided strong motivation to build a model arising

from the integration, at the tactical level, of BAP with the Quay Crane

Assignment Problem. While this will be clarified later in the paper, as for

the remainder of the section we focus on the main features of TBAP in

comparison with BAP, assuming the reader be quite familiar with existing

BAP formulations.

Basically, both the tactical and the operational problems deal with as-

signing and scheduling ships to berthing positions, i.e. deciding where and

when the ships should moor. Both the TBAP and the BAP strives to

balance terminal costs and service quality. However, as already noted, the

different decisional levels and time frames induce different problems. In the

TBAP service quality depends upon the negotiation between the terminal

and the shipping lines regarding the terminal resources. A higher service

quality occurs when the terminal can accommodate shipping lines requests

in term of expected berthing times, and assigned quay cranes. In the BAP

service quality is measured by adherence to a schedule, e.g. ideally zero

waiting time to moor.

The TBAP, thanks to the longer planning horizon, can integrate ter-

minal’s costs in a more comprehensive way with respect to the BAP. In

a transshipment terminal, containers arrive and depart by vessels while

being temporarily stored in the yard. When unloading a vessel, the dis-

charged containers must be allocated to yard positions close enough to the

vessel berthing point in order to speed up the vessel handling. However,

when the departure position of a container is far from its yard position,

the container must be reallocated before the arrival of the outbound vessel.

Therefore, the yard management deals with a dynamic allocation of con-

tainers through their duration-of-stay inside the terminal, see Moccia et al.

(2009). The operational BAP considers this aspect penalizing mooring far

from the most favorable berth with respect to the yard positions of out-
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bound containers. It should be noted that is the tactical berth allocation

that determines the long-term favorite berth (home berth) for each vessel,

thus inducing container flows inside the yard. In the BAP the yard related

costs can be modeled by a vessel specific penalty function increasing from

the favorite berth. Such yard cost function simplifies the reality because

transshipment flows between incoming vessels are not captured. In fact,

the simultaneous assignment of vessels to berths would induce a quadratic

yard-related cost function. However, since the BAP planning horizon is

shorter than the average container dwell time inside the yard, the BAP

can assume that the majority of the outbound containers are already in

the yard, and disregard this quadratic effect. Instead, in the TBAP the

yard costs cannot be simplified by vessel specific cost functions, and the

quadratic term must be considered.

Vessel arrival times have different meanings in the operational and in

the tactical problems. In the TBAP shipping lines indicate time ranges

for the expected arrival times, e.g. Monday morning with a weekly fre-

quency. The tactical berth plan must accommodate for such arrival times

or an alternative agreement should be searched. In the BAP we assume

to know exactly vessel arrival times and a berth plan is drawn such that

the waiting times to moor are minimized. Service quality objectives are

usually achieved by imposing time windows for the berthing times that

begins at the expected arrival times. Synthetically, while the BAP focuses

on minimization of berth waiting times, in the TBAP we want to know if

accommodating a customer request is feasible and how it impacts on the

whole terminal performances such as yard costs and quay crane utilization.

The temporal aspect of the berth allocation problems depends not only

on arrival times but also on the expected handling times. Handling times

are influenced by many factors such as the amount of loading and unload-

ing containers, the distribution of these containers inside the vessels, the

number of quay cranes assigned to each work shift, etc. In fact, the ves-

sel handling does not decrease proportionally augmenting the number of

assigned quay cranes. This happens because of QC interferences due to

safety distance when moving along a unique rail. Of course, the distribu-

tion of work-load inside the vessel is relevant too: a balanced distribution
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is favorable to the deployment of more QCs. A detailed forecast can be

obtained by solving the Quay Crane Scheduling Problem (QCSP), see e.g.

Kim and Park (2004), and Moccia et al. (2006), which requires a consider-

able amount of data available few days before vessel arrival. Therefore, at

the operational level the forecast about the handling time becomes more

accurate as the berthing time approaches. The BAP, thus, assumes deter-

ministic handling times or, by integration with a QCSP module, chooses

between different loading and unloading plans. The TBAP, instead, deals

with the negotiation between the terminal and the shipping lines about

reserved assignment of quay cranes along work shifts. For a given amount

of requested quay crane hours it could be possible to propose different pro-

files. For example, assume that we have a request for a vessel that requires

six QCs work shifts and the customer acknowledges to evaluate both an in-

tensive QC profile (for example three QCs on two work shifts) and a longer

one (two QCs on three work shifts). The terminal managers want to know

the trade-off between the two profiles. The faster one will be likely more

satisfying for the customer because of the smaller handling time; on the

contrary, the slower one will put less pressure on the quay cranes availabil-

ity, which could be a bottleneck at some periods. However, the relations

are by far more complicated because if the quay cranes are not a limiting

factor on the vessel expected processing time, then a faster handling time is

advantageous for the terminal too because it augments berth availability.

Similarly, customers can be extremely sensitive to faster handling times

regarding mother vessels and less demanding for feeders. It appears clear

that the so called Quay Crane Assignment Problem (QCAP), i.e. deciding

how many QCs to assign and for how long, has a relevant impact on the

berth allocation. In this work, we aim to combine berth allocation with

QCAP and solve this new integrated problem at the tactical level from

the point of view of a transshipment terminal. The purpose is to support

the terminal in its negotiation process with analytic tools and quantitative

results.

The remainder of this paper is organised as follows. A literature re-

view is provided in Section 2 while the problem description as well as two

formulations for the TBAP with QCs assignment are presented in Section
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3. Models’ validation and results obtained with a commercial solver are

illustrated in Section 4. The heuristics we propose to solve the TBAP is

described in Section 5 and computational results are discussed in Section

6. Finally, we draw our conclusions in Section 7.

2 Literature review

The operational berth allocation problem has received so far a larger at-

tention than the tactical one in the scientific literature. Therefore, our

literature review is mainly referred to the BAP. However, we point at the

shared issues between operational and tactical levels and we discuss in more

detail the articles relevant to the TBAP.

The BAP consists in allocating ships to berths along a time axis. Usual

side constraints are berth’s allowable draft (depth of the water), time win-

dows and priorities assigned to the ships, favorite berthing areas, etc. The

BAP can be modeled as a discrete problem if the quay is viewed as a finite

set of berths. In this case the berths can be described as fixed length seg-

ments, or, if the spatial dimension is ignored, as points. Continuous models

consider that ships can berth anywhere along the quay. While continuous

models are more realistic, discrete ones can be very useful to study relaxed

problems in order to devise efficient algorithms for them.

Imai et al. (2001) have proposed the Dynamic Berth Allocation Prob-

lem (DBAP) formulation in which the quay is represented as a finite set of

berthing points. This formulation is called “dynamic” as opposed to a pre-

vious one called the Static Berth Allocation Problem (SBAP), see (Imai

et al., 1997), which considers the case where all ships are already in the

port when the berths become available. The SBAP is solvable in polyno-

mial time with the Hungarian method since it is reducible to an assignment

problem. In their paper, the authors take advantage of this characteristic.

They propose a suitable Lagrangian relaxation for the DBAP where the

subproblem is an assignment problem. Their computational results show

that the DBAP is easy to solve as long as the instances are “close” to the

static case, in the sense that most ships are already in the port when the

berths become available. The objective function is the sum of the ship
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service times. As the authors point out, this objective function does not

consider ship priorities.

Nishimura et al. (2001) have presented a non-linear integer program

and a genetic algorithm based on a different representation of the spatial

dimension in which the quay is a collection of segments and up to two ships

can share the same segment at the same time if their lengths are compatible

with the length of the berth segment. Additional constraints relative to the

water depth of the berths are also introduced.

The DBAP formulation was extended in Imai et al. (2003) to consider

service priorities which are handled by introducing in the objective func-

tion a term corresponding to service time. Priorities, based for example on

volumes, can also be incorporated in the model. The resulting formulation

is non-linear. The authors show that with a suitable Lagrangian relaxation,

the subproblem becomes a quadratic assignment problem. Since this prob-

lem is not well solved by exact methods, the authors have developed a

genetic heuristics.

In Lim (1998) the quay is represented as a continuous line. A heuristics

solves the problem of deciding the berthing points given the berthing time

of the ships, assuming constant handling times. This approach does not

solve the general problem in which the berthing time is a decision variable

and the handling time varies along the quay.

Imai et al. (2005) address the continuous BAP with the purpose of

minimizing the total service time of ships, when handling time of a ship

depends on the quay location assigned to it. They present a heuristic

algorithm which solves the problem in two stages, by improving the solution

for the discrete case. Tests are performed on generated instances with quay-

length up to 1600m and up to 60 ships to be allocated.

Cordeau et al. (2005) consider both the discrete and the continuous

BAP. Two formulations and two tabu search heuristics are presented and

tested on realistic generated instances derived by a statistical analysis of

traffic and berth allocation data of the port of Gioia Tauro (Italy).

Moorthy and Teo (2006) address the design of a berth template, a tac-

tical planning problem that arises in transshipment hubs and concerns the

allocation of favorite berthing locations (home berths) to vessels which pe-
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riodically call at the terminal. The problem is modeled as a bicriteria op-

timization problem, which reflects the trade-off between service levels and

costs. The authors propose two procedures able to build good and robust

templates, which are evaluated by simulating their performances; robust

templates are also compared with optimal templates on real-life generated

instances. The paper approach builds on a heuristic algorithm for the BAP

presented in Dai et al. (2007).

Cordeau et al. (2007) can be regarded as introductory to the TBAP.

The paper deals with the Service Allocation Problem (SAP), a tactical

problem arising in the yard management of a container transhipment ter-

minal. A service, also called port route, is the sequence of ports visited

by a vessel. Shipping companies plan their port routes in order to match

the demand for freight transportation. A shipping company will usually

ask the terminal management to dedicate specific areas of the yard and the

quay (home berths) to their services. The SAP objective is the minimiza-

tion of container rehandling operations inside the yard choosing the home

berth for each service. The SAP is formulated as a Generalized Quadratic

Assignment Problem (GQAP, see e.g. Cordeau et al. (2006), and Hahn

et al. (2008)) with side constraints, and solved by an evolutionary heuris-

tics. The SAP can be seen as a relaxed TBAP when collapsing the temporal

dimension, and disregarding the choice of QC profiles. The SAP output

consists in reference home berths that planners consider when drawing the

berth template.

Imai et al. (2007) consider the case of indented berths, where multiple

small ships can be served by the same berth simultaneously. The problem is

formulated as an integer linear problem and solved by genetic algorithms.

Solutions are evaluated by comparing the indented terminal with a con-

ventional terminal of the same size: tests on generated instances show that

the total service time for all ships is longer in indented terminals, although

mega-ships are served faster.

Wang and Lim (2007) propose a stochastic beam search scheme for

the BAP. The implemented algorithm is tested on real-life data from the

Singapore Port Terminal (the size of instances is up to 400 vessels); it

outperforms state-of-the-art metaheuristics, providing better solutions in
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shorter running times.

Monaco and Sammarra (2007) propose a strong formulation for the dis-

crete BAP as a dynamic scheduling problem on unrelated parallel machines

and develop an efficient Lagrangian heuristic algorithm. Instances up to

30 ships and 7 berthing points are solved reaching near-optimal solutions

in short computational time.

The integration of berth allocation and quay cranes assignment has

received less attention in the scientific literature; however, a few studies on

this specific topic have been recently published.

Park and Kim (2003) have firstly integrated the BAP in the continuous

case with the QCAP, also considering the scheduling of quay cranes. The

integrated problem is formulated as an integer program and a two-phase

solution procedure is presented to solve the model. In the first phase,

the berthing time and position of vessels and the number of quay-cranes

assigned to each vessel at each time step are determined using Lagrangian

relaxation and a subgradient optimization technique; the objective is to

minimize the sum of penalty costs over all ships. In the second phase, cranes

are scheduled along the quay via dynamic programming, with the objective

of minimizing the number of setups. Up to 40 vessels are scheduled over

a time horizon of one week, with a berth of 1200m and 11 QCs available.

With respect to the problem formulation, authors take into account some

practical aspects such as favourite berthing positions of vessels, maximum

and minimum number of cranes to be assigned to each vessel, penalty costs

due to earlier or later berthing time, and later departure time (with respect

to previously committed time).

Meisel and Bierwirth (2006) investigate the simultaneous allocation of

berths and quay cranes, focusing on the reduction of QCs idle times, which

significantly impact on terminal’s labor costs. A heuristic scheduling algo-

rithm based on priority-rules methods for the resource-constrained project

scheduling is proposed and tested on six instances, based on real data,

which consider up to 18 vessels to be served in two days. Preliminary re-

sults, compared to the manually generated schedules which have been used

in practice, are encouraging. In this approach, each vessel represents an ac-

tivity which can be performed in 8 different modes, each mode representing
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a given QC-to-Vessel assignment over time. The concept of “mode” seems

analogous to the concept of profile we have introduced so far; however, no

detailed description of these modes is available in the paper.

Imai et al. (2008) address the simultaneous berth-crane allocation and

scheduling problem, taking into account physical constraints of quay cranes,

which cannot move freely among berths as they are all mounted on the same

track and cannot bypass each other. A MIP formulation which minimizes

the total service time is proposed and a genetic algorithm-based heuristics

is developed to find an approximate solution. Computational experiments

have been performed on generated instances, which consider between 34

and 88 ships calling over a period of one week, with 4-5 berths and between

8 and 18 QCs available. As authors recognize, the relationship between the

number of cranes and the handling time is not investigated in the paper;

indeed, a reference number of cranes needed by each ship is assumed to be

given as input of the problem.

Meisel and Bierwirth (2009) study the integration of BAP and QCAP

with a focus on quay cranes productivity. An integer linear model is pre-

sented and a construction heuristics, local refinement procedures and two

meta-heuristics are developed to solve the problem. Authors compare their

approach to the one proposed by Park and Kim (2003) over the same set

of instances and they always provide better solutions. More complex in-

stances are generated, taking into account a time horizon of one week, a

berth length of 1000m and 10 QCs available to serve up to 40 vessels. Ves-

sels are divided in 3 classes (Feeder, Medium and Jumbo) with different

technical specifications and cost rates. Only small instances (20 vessels) are

near-optimally solved by a commercial solver, whereas the proposed heuris-

tics perform relatively well also on bigger instances. An analysis of quay

crane’s productivity losses, mainly due to interference among QCs and to

the distance of the vessel berthing position from the yard areas assigned

to this vessel, is also presented and their impact on the terminal’s service

cost is evaluated.
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3 Mathematical Models

In this section we firstly provide a compact description of the problem and

motivate our modeling choices; in particular, in Section 3.1, we illustrate

the concept of QC assignment profiles. In Section 3.2 we provide additional

details regarding yard costs related to transshipment flows among ships.

The described cost figures and operational parameters were provided by

the Medcenter Container Terminal (MCT), port of Gioia Tauro, Italy. We

then present a mixed integer quadratic programming formulation (MIQP)

for the TBAP with integrated QCs assignment in Section 3.3, as well as a

linearization of the MIQP model which reduces to a mixed integer linear

program (MILP) in Section 3.4.

With respect to the BAP, we consider the discrete case. As announced

in Section 1, the fundamental modeling tool of our formulation is the so-

called quay crane profile, intended as the number of quay cranes assigned to

the ship at each time step. Given n ships and m berths, we aim to assign,

over a certain time horizon, a home berth and a QC profile to each ship as

well as schedule incoming ships according to time windows on their arrival

time and on berths’ availabilities, in order to, on the one hand, maximize

the total value of chosen QC assignment profiles and, on the other hand,

minimize the housekeeping costs generated by transshipment flows between

ships.

The integrated problem presents increased complexity because the ship

handling time is not constant but depends on the number of quay cranes

assigned to the ship. With respect to the classical BAP, this implies addi-

tional decision variables and constraints.

3.1 QC assignment profiles

The use of QC profiles to handle the assignment of quay cranes to ships is

firstly motivated by the practice: at the tactical level and, in particular, in

the context of a negotiation process between the terminal and the shipping

companies, terminal’s managers need to be aware of the trade-off among

the different QC profiles they may propose to the counterpart.

Concerning the mathematical model, the concept of QC profiles presents
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several advantages with respect to the ability to capture real-world issues

and with respect to the control that the terminal can have on several aspects

during the optimization process. These are the main reasons why we have

explicitly introduced this feature in the formulation.

We assume to have a set of feasible QC profiles Pi for every ship i ∈ N,

which are defined by the terminal according to the specific amount of QC

hours requested by the ship (and usually legally bound by contracts) as well

as internal rules and good practices related to the efficiency of operations

in the terminal.

Our approach differs from the traditional modeling choice present in

the literature, e.g. Park and Kim (2003), Imai et al. (2008), Meisel and

Bierwirth (2009), which usually assigns quay cranes hour by hour, without

any control on the final outcome in terms of QC profiles, according to their

models. As mentioned, the concept of “mode” in Meisel and Bierwirth

(2006) is somehow similar to our concept of QC profile, but the authors do

not provide enough details to allow comparisons.

For a given vessel, feasible QC profiles usually vary in length (number

of shifts) as well as in the distribution of QC cranes over the active shifts,

in order to ensure the requested amount of QC hours.

Some operational constraints, which are usually not taken into account

by other models, can be directly integrated in the definition of the set

of feasible profiles. A common rule, for instance, is that quay cranes are

assigned to vessels and placed on the corresponding quay segment shift by

shift: this means that a quay crane cannot be moved from one vessel to

another at whatever moment, but only between two shifts. This constraint

can be easily handled by forcing profiles to maintain exactly the same

number of quay cranes during a shift. Another good practice is to keep

the distribution of quay cranes as much regular as possible among active

shifts; a variance of one or at most two QCs can be considered acceptable,

although high variability should be avoided as much as possible. Also this

feature can be included in our profile set definition easily.

In addition to these general rules, the terminal can manage more di-

rectly some priority-related issues. Since the set of feasible QC profiles is

defined for every ship, managers can assign different minimum and maxi-
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mum handling times not only depending on the ship’s size and the traffic

volume but also depending on the ship’s relative importance for the ter-

minal. This also applies for the minimum and maximum number of quay

cranes allowed to be assigned to a given ship. We would like to remark

that this is an important advantage provided by our approach, compared

to other models in the literature where handling time is either considered

an input of the problem or barely controlled by time windows on the ves-

sel’s arrival and departure, in addition to some priority-related weights in

the objective function, which usually aim to serve faster vessels with high

priority. Furthermore, each QC profile has an associated “value” which re-

flects technical aspects such as the resources utilized by the profile itself but

which is also computed by taking into account the specific vessel which will

use the profile; in other words, the same QC profile i.e. same length and

QCs distribution over time, can have different values associated to different

ships, according indeed to their priority or importance.

With respect to productivity losses due to quay cranes interference,

recently studied by Meisel and Bierwirth (2009), we can easily include this

feature in the definition of the feasible set of profiles. Indeed, we can use

the approach suggested by the authors to compute, for each profile, the

actual quay crane productivity instead of the theoretical one.

It is also worth a remark concerning the time: in our model the time

horizon, and thus every working shift, is discretized in time steps and we

allow a profile to start at every time step of the shift. However, since we

assume that a vessel starts to be operated when it arrives at the port, the

starting time of the profile assigned to the vessel by any feasible solution

must comply with the arrival time of the vessel itself at the port (which is

also a decision variable of the problem).

In order to improve understanding of the QC profile concept, and its

relation with the integration between Berth and QC Allocation planning,

we provide in Fig. 1 an example of such plan referred to the scheduling

and assignment of 5 vessels to 3 berths over a time horizon of 8 working

shifts. The example can be read very easily. Consider, for instance, the

Ship 1: it berths at shift 1, and three QCs are allocated to it for carrying

out operations during the same shift; next, at working shifts 2 and 3, Ship 1
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Figure 1: Example of a Berth & Quay Cranes Allocation Plan.

remains berthed, but one QC is de-allocated, with only two QCs remaining

allocated to the ship. At the end of shift 3 operations terminate and the

ship is released. Of course, analogous comments hold for the other 4 ships.

Finally, as for the value of each QC profile, it should be noted that

the terminal faces different customer sensitivities to the QC intensity of

contracted profiles. In fact, given two reference profiles, one for mother

vessels and one for feeders, the added value of shortening the same handling

time by selecting a more QC intensive profile is higher (double as order of

magnitude) for a mother vessel than for a feeder. Furthermore, the feasible

profiles span different ranges for the two classes of vessels: with respect to

the same reference handling volume, we can have acceptable profiles which

are slower for the feeders than for a mother vessel. Fig. 2 illustrates these

patterns assuming that the reference profile extends on five work shifts (30

hours) for a mother vessel and on three work shifts (18 hours) for a feeder.

We remark that for privacy reasons, the actual monetary figures cannot be

presented, hence the picture has only a qualitative meaning.
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Figure 2: QC profile range and value variation according to the han-

dling time and class of vessel.

3.2 Transshipment-related yard costs

When loading (or unloading) a vessel the containers must be at (or allo-

cated to) yard positions close enough to the vessel berthing point in or-

der to speed up the vessel handling. Usually, at the Medcenter Container

Terminal (MCT) of the port of Gioia Tauro, a yard position is evaluated

as satisfyingly close to a berth if the distance along the quay axis is less

than 600 meters. We remark that this maximal close distance value can

be lowered for higher priority workloads. Furthermore, when we estimate

yard-related transshipment costs induced by berth allocation, we do not

consider the real yard position of the loading and unloading containers. In

fact, we assume that the expected travelled distance along the quay axis is

given by the distance between the incoming and outgoing berths. If this

distance is lower than the threshold value of 600 meters, then a container

will likely move from the quay to its assigned yard position when unload-
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ing and from this yard position to the quay when loading. However, in a

large transshipment terminal, such as the one at the Gioia Tauro port, the

distance between the unloading berth and the loading one is often larger

than 600 meters. Therefore, containers are moved before the arrival of the

outgoing vessel from their current yard positions to new ones closer to the

outgoing berth. This process is called housekeeping and requires a ded-

icated management in order to accommodate operational constraints like

the capacity of the yard positions, the maximum container handling work-

load for a given work shift, etc. A rule motivated by cost minimization

enforces that whenever the distance along the quay axis is larger than 1100

meters, the yard-to-yard transfer is operated by deploying multi trailer ve-

hicles instead of straddle carries. Therefore we have a yard cost function

that depends upon the distance between the incoming and outgoing berths

according to three transport modalities:� the distance is below 600 meters: no housekeeping is performed, the

unitary transport cost, euro/(meter x container), depends upon strad-

dle carriers cost figures only;� the distance is between 600 and 1100 meters: a housekeeping process

is activated by deploying straddle carriers only, however we face a

transport cost larger than in the previous distance range;� the distance is larger than 1100 meters: the housekeeping is performed

by using the less expensive multi trailer vehicles (higher capacity than

the straddle carriers).

The qualitative pattern of this piecewise linear cost function is given in

Fig. 3, where we indicate by SC the direct transfer with straddle carriers,

by HK SC the housekeeping with straddle carriers, and by HK MT the

housekeeping with multi trailer vehicles.

3.3 MIQP Formulation

In this section we present a mixed integer quadratic programming formu-

lation for the TBAP with QCs assignment. Input data for this problem are:
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Figure 3: Yard costs according to the distance between the incoming

and outgoing berths.

N set of vessels, with |N| = n;

M set of berths, with |M| = m;

H set of time steps (each time step h ∈ H is submultiple of the work shift length);

S set of the time step indexes {1, ..., s̄} relative to a work shift; s̄ represents the

number of time steps in a work shift;

Hs subset of H which contains all the time steps corresponding to the same time

step s ∈ S within a work shift;

Ps
i set of feasible quay crane assignment profiles for the vessel i ∈ N when vessel

arrives at a time step with index s ∈ S within a work shift;

Pi set of quay crane assignment profiles for the vessel i ∈ N, where Pi = ∪s∈SP
s
i ;

t
p
i handling time of ship i ∈ N under the QC profile p ∈ Pi expressed as multiple

of the time step length;

v
p
i the value of serving the ship i ∈ N by the quay crane profile p ∈ Pi;

q
pu
i number of quay cranes assigned to the vessel i ∈ N under the profile p ∈ Pi

at the time step u ∈ (1, ..., t
p
i ), where u = 1 corresponds to the ship arrival time;

Qh maximum number of quay cranes available at the time step h ∈ H;

fij number of containers exchanged between vessels i, j ∈ N;

16



dkw unit housekeeping cost between yard slots corresponding to berths k, w ∈ M;

[ai, bi] [earliest, latest] feasible arrival time of ship i ∈ N;

[ak, bk] [start, end] of availability time of berth k ∈ M;

[ah, bh] [start, end] of the time step h ∈ H.

We define a graph Gk = (Vk, Ak) ∀k ∈ M, where Vk = N∪{o(k), d(k)},

with o(k) and d(k) additional vertices representing berth k, and Ak ⊆
Vk × Vk. The following decision variables are defined:� xk

ij ∈ {0, 1} ∀k ∈ M, ∀(i, j) ∈ Ak, set to 1 if ship j is scheduled after

ship i at berth k, and 0 otherwise;� yk
i ∈ {0, 1} ∀k ∈ M, ∀i ∈ N, set to 1 if ship i is assigned to berth k,

and 0 otherwise;� γh
i ∈ {0, 1} ∀h ∈ H, ∀i ∈ N, set to 1 if ship i arrives at time step h,

and 0 otherwise;� λ
p
i ∈ {0, 1} ∀p ∈ Pi, ∀i ∈ N, set to 1 if ship i is served by the profile

p, and 0 otherwise;� ρ
ph
i ∈ {0, 1} ∀p ∈ Pi, ∀h ∈ H, ∀i ∈ N, set to 1 if ship i is served by

profile p and arrives at time step h, and 0 otherwise;� Tk
i ≥ 0 ∀k ∈ M, ∀i ∈ N, representing the berthing time of ship i at

the berth k, i.e. the time when the ship moors;� Tk
o(k) ≥ 0 ∀k ∈ M, representing the starting operation time of berth

k, i.e. the time when the first ship moors at the berth;� Tk
d(k) ≥ 0 ∀k ∈ M, representing the ending operation time of berth k,

i.e. the time when the last ship departs from the berth.
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The TBAP with QC assignment can therefore be formulated as follows:

max
∑

i∈N

∑

p∈Pi

vp
i λp

i −
1

2

∑

i∈N

∑

k∈M

yk
i

∑

j∈N

∑

w∈M

fijdkwyw
j (1)

s.t.
∑

k∈M

yk
i = 1 ∀i ∈ N, (2)

∑

j∈N∪{d(k)}

xk
o(k),j = 1 ∀k ∈ M, (3)

∑

i∈N∪{o(k)}

xk
i,d(k) = 1 ∀k ∈ M, (4)

∑

j∈N∪{d(k)}

xk
ij −

∑

j∈N∪{o(k)}

xk
ji = 0 ∀k ∈ M, ∀i ∈ N, (5)

∑

j∈N∪{d(k)}

xk
ij = yk

i ∀k ∈ M, ∀i ∈ N, (6)

Tk
i +

∑

p∈Pi

t
p
i λ

p
i − Tk

j ≤ (1 − xk
ij)M ∀k ∈ M, ∀i ∈ N, ∀j ∈ N ∪ {d(k)},(7)

Tk
o(k) − Tk

j ≤ (1 − xk
o(k),j)M ∀k ∈ M, ∀j ∈ N, (8)

aiy
k
i ≤ Tk

i ∀k ∈ M, ∀i ∈ N, (9)

Tk
i ≤ biy

k
i ∀k ∈ M, ∀i ∈ N, (10)

ak ≤ Tk
o(k) ∀k ∈ M, (11)

Tk
d(k) ≤ bk ∀k ∈ M, (12)

∑

p∈Pi

λp
i = 1 ∀i ∈ N, (13)

∑

h∈Hs

γh
i =

∑

p∈Ps
i

λ
p
i ∀i ∈ N, ∀s ∈ S, (14)

∑

k∈M

Tk
i − bh ≤ (1 − γh

i )M ∀h ∈ H, ∀i ∈ N, (15)

ah −
∑

k∈M

Tk
i ≤ (1 − γh

i )M ∀h ∈ H, ∀i ∈ N, (16)

ρ
ph
i ≥ λ

p
i + γh

i − 1 ∀h ∈ H, ∀i ∈ N, ∀p ∈ Pi, (17)

∑

i∈N

∑

p∈Pi

h∑

u=max{h−t
p
i
+1;1}

ρ
pu
i q

p(h−u+1)

i ≤ Qh ∀h ∈ Hs̄, (18)
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xk
ij ∈ {0, 1} ∀k ∈ M, ∀(i, j) ∈ Ak, (19)

yk
i ∈ {0, 1} ∀k ∈ M, ∀i ∈ N, (20)

γh
i ∈ {0, 1} ∀h ∈ H, ∀i ∈ N, (21)

λ
p
i ∈ {0, 1} ∀p ∈ Pi, ∀i ∈ N, (22)

ρ
ph
i ∈ {0, 1} ∀p ∈ Pi, ∀h ∈ H, ∀i ∈ N, (23)

Tk
i ≥ 0 ∀k ∈ M, ∀i ∈ N ∪ {o(k), d(k)}. (24)

The objective function (1) maximizes the sum of the values of the cho-

sen quay crane assignment profiles over all the vessels and simultaneously

minimizes the yard-related housekeeping costs generated by the flows of

containers exchanged between vessels. Constraints (2) state that every

ship i must be assigned to one and only one berth k. Constraints (3) and

(4) define the outgoing and incoming flows to the berths, while flow conser-

vation for the remaining vertices is ensured by constraints (5). Constraints

(6) state the link between variables xk
ij and yk

i , while precedences in every

sequence are ensured by constraints (7) and (8), which coherently set time

variables Tk
i . Time windows on the arrival time are stated for every ship

by constraints (9) and (10), while time windows on berths’ availabilities

are stated by constraints (11) and (12). Constraints (13) ensure that one

and only one QCs profile is assigned to every ship. Constraints (14) define

the link between variables γh
i and λp

i while constraints (15) and (16) link

binary variables γh
i to the arrival time Tk

i . Observe that constraints (10)

imply Tk
i = 0 when ship i ∈ N does not moor at berth k ∈ K. Variables

ρ
ph
i are linked to variables λ

p
i and γh

i by constraints (17): in particular, ρ
ph
i

is equal to 1 if and only if λ
p
i = γh

i = 1. Finally, constraints (18) ensure

that, at every time step, the total number of assigned quay cranes does not

exceed the number of quay cranes which are available in the terminal.

To better illustrate capacity constraints (18), we come back to the ex-

ample shown in Fig. 1, which refers to the scheduling and assignment of

|N| = 5 vessels to |M| = 3 berths over a time horizon of |H| = 8 time steps.

Here we assume that a time step corresponds to one working shift. From

the plan we can infer the following non-zero data:

19



i = 1 ρ
p1
1 = 1 t

p
1 = 3 q

p1
1 = 3, q

p2
1 = 2, q

p3
1 = 2

i = 2 ρ
p5
2 = 1 t

p
2 = 4 q

p1
2 = 4, q

p2
2 = 4, q

p3
2 = 5, q

p4
2 = 5

i = 3 ρ
p2
3 = 1 t

p
3 = 2 q

p1
3 = 4, q

p2
3 = 5

i = 4 ρ
p6
4 = 1 t

p
4 = 3 q

p1
4 = 3, q

p2
4 = 3, q

p3
4 = 3

i = 5 ρ
p3
5 = 1 t

p
5 = 5 q

p1
5 = 3, q

p2
5 = 3, q

p3
5 = 3, q

p4
5 = 2, q

p5
5 = 2

For each time step h = 1, ...8, the corresponding constraint in (18) counts

the number of active quay cranes. Let us consider the case h = 3: the

index u changes its range for each vessel, because, starting from h = 3, it

goes backwards until the beginning of the profile. Therefore we have:
i = 1 u = 1, 2, 3

i = 2 u = 1, 2, 3

i = 3 u = 2, 3

i = 4 u = 1, 2, 3

i = 5 u = 1, 2, 3

We remark that vessels i = 2, 4 do not contribute to the sum, since ρ
pu
2 =

ρpu
4 = 0 ∀u = 1, 2, 3 and this is coherent with the plan. For the remaining

vessels, ρ
pu
i is not zero only for one value u∗:

i = 1 u∗ = 1 =⇒ q
p(3−1+1)

1 = q
p3
1 = 2

i = 3 u∗ = 2 =⇒ q
p(3−2+1)

3 = q
p2
3 = 5

i = 5 u∗ = 3 =⇒ q
p(3−3+1)

5 = q
p1
5 = 3

Therefore the sum in (18) reduces to:

q
p3
1 + q

p2
3 + q

p1
5 = 2 + 5 + 3 = 10

which is indeed the total number of quay cranes which are active at time

step h = 3.

Finally, we observe that the TBAP formulation (1)–(24) can be inter-

preted as a Multi-Depot Vehicle Routing Problem with Time Windows

(MDVRPTW), see e.g. Cordeau et al. (2005), with an additional quadratic

component in the objective function and side constraints.

3.4 MILP Formulation

The quadratic objective function (1) can be linearized by defining an ad-

ditional decision variable zkw
ij ∈ {0, 1} ∀i, j ∈ N, ∀k, w ∈ M, which is equal
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to 1 if yk
i = yw

j = 1 and 0 otherwise. Variables zkw
ij are linked to variables

yk
i by the following additional constraints:

∑

k∈K

∑

w∈K

zkw
ij = gij ∀i, j ∈ N, (25)

zkw
ij ≤ yk

i ∀i, j ∈ N, ∀k, w ∈ M (26)

zkw
ij ≤ yw

j ∀i, j ∈ N, ∀k, w ∈ M (27)

where gij is a constant which is equal to 1 if fij > 0 and 0 otherwise.

TBAP can therefore be formulated as a mixed integer linear program

as follows:

max
∑

i∈N

∑

p∈Pi

v
p
i λ

p
i −

1

2

∑

i∈N

∑

j∈N

∑

k∈M

∑

w∈M

fijdkwzkw
ij (28)

s.t. (2) − (24) , (25) − (27).

4 Model validation

In this section we describe the validation process of our models. We firstly

illustrate how realistic test instances have been generated and we then

present results obtained through a commercial solver.

4.1 Generation of test instances

Our tests are based on real data provided by MCT. We had access to his-

torical berth allocation plans and quay cranes assignment plans concern-

ing about 60 vessels per week over a time horizon of one month; specific

information on vessels such as the arrival time and the total number of

containers to be handled were also provided. Furthermore, data referring

to the flows of containers exchanged between ships as well as a study on

the yard-related transshipment costs were available.

Instances generated to validate our models rely on these real data. The

quay, which is 3395 m long, is partitioned in 13 berthing points, which are

equipped with 25 quay cranes (22 gantry cranes and 3 mobile cranes). The

matrix of distances [dkw] is a 13x13 matrix which takes into account the
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costs estimated by the terminal to move containers between two berthing

positions. Several matrices of flows [fij] are generated accordingly to the

distributions of containers reported on the historical data. As usual, we

distinguish between feeders and mother vessels: the traffic volume is mostly

influenced by the proportion between these two classes, since mother vessels

present a number of loading/unloading containers in average higher than

feeders. Time windows for the ships’ arrival are generated accordingly to

the historical data. Berths are assumed to be available for the whole time

horizon, which we set to one week. A working day is divided in 4 shifts of

6 hours each, for a total of 56 time steps of 3 hours.

The sets of feasible profiles have been synthetically generated in ac-

cordance with operational rules and good practices in use at the MCT

terminal. As illustrated in Table 1, we fix a set of parameters for each ship

class to which a profile must comply with in order to be feasible: namely,

the minimum and the maximum number of QCs to be assigned to each

vessel per shift as well as the minimum and the maximum handling time

(HT) allowed for each class. We consider a crane productivity of 24 con-

tainers per hours and we therefore obtain, per each class, a minimum and

a maximum number of containers (column “volume” in the table): vessels’

traffic volumes must comply with these ranges, according to the class they

belong to. Furthermore, for all classes, a variation of at most 1 QC is al-

lowed between a shift and the subsequent; profiles can start either at the

beginning of the shift or in the middle of the shift.

Once the whole feasible set has been generated for each class, profiles are

assigned to vessels accordingly to the QC hours they need to be operated.

At this point, a monetary value is associated to the couple (vessel,profile)

with respect to the number of containers to be handled. This value is

then adjusted by taking into account the profile’s length and the utilized

Class min QC max QC min HT max HT volume (min,max)

Mother 3 5 3 6 (1296, 4320)

Feeder 1 3 2 4 (288, 1728)

Table 1: Parameters for the profile set’s generation.
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resources with respect to the average case.

To validate our model, we considered 6 classes of instances:

- 10 ships and 3 berths, 1 week, 8 quay cranes;

- 20 ships and 5 berths, 1 week, 13 quay cranes;

- 30 ships and 5 berths, 1 week, 13 quay cranes;

- 40 ships and 5 berths, 2 weeks, 13 quay cranes;

- 50 ships and 8 berths, 2 weeks, 13 quay cranes;

- 60 ships and 13 berths, 2 weeks, 13 quay cranes.

For each class, we generated 12 instances, with high (H) and low (L) traffic

volumes. Each scenario is tested with a set of p̄ = 10, 20, 30 feasible profiles

for each ship. We remark that, by construction, instances of size p̄ = 10

are included in instances of size p̄ = 20, which are included in instances

of size p̄ = 30. Thus, any feasible solution for p̄ = 10 is also feasible for

p̄ = 20, 30 and so on.

4.2 Computational results

The MIQP and MILP formulations have been tested with CPLEX 10.2,

with emphasis on the feasibility of the solution.

Time limit for instances 10x3 is 1 hour; instances 20x5 and 30x5 have

a time limit of 2 hours; instances 40x5, 50x8, 60x13 have a time limit of 3

hours.

Results are illustrated in Table 2. We report only instances for which

CPLEX has found a feasible solution, at least. Surprisingly, no feasible

solution was found for classes 30x5, 50x8 and 60x13; however, an upper

bound is always provided.

The objective function value is scaled to 100 with respect to the upper

bound via the formula:

scaled obj =
obj ∗ 100

UB
(29)
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10x3 10x3

Instance MILP MIQP Instance MILP MIQP

H1_10 99.17 98.90 L1_10 97.68 100.00

H1_20 97.91 97.96 L1_20 100.00 99.76

H1_30 97.98 98.76 L1_30 98.64 99.99

H2_10 98.87 99.26 L2_10 98.82 99.63

H2_20 96.97 96.91 L2_20 99.42 99.06

H2_30 96.79 - L2_30 99.08 100.00

20x5 40x5

Instance MILP MIQP Instance MILP MIQP

H1_10 94.33 - L1_10 94.92 -

H1_20 93.74 - L1_20 94.47 -

H2_10 93.52 96.66 L2_20 94.93 -

L2_10 93.87 96.74 L2_30 94.61 -

Table 2: Scaled objective function of the best feasible solutions found

by CPLEX in the allowed time limit.

A value of 100 means that the solution is certified to be optimal.

With respect to class 10x3, 3 out of 12 instances are solved at optimum;

both MILP and MIQP formulations provide near-optimal solutions, with

an average of 98.44 and 99.11 respectively.

With respect to class 20x5, a feasible solution is found for 4 instances

out of 12 with the MILP formulation, while, using the MIQP formulation,

we get a feasible solution only for 2 instances. The quality of the solution

is lower, with an average of 93.87 for MILP and of 96.70 for MIQP.

Class 40x5 is only solved using the MILP formulation; a feasible solution

is found for 4 instances out of 12, with an average quality of the solution

of 94.73.

With respect to the upper bounds, we remark that the MILP formula-

tion provides far better upper bounds than MIQP, as illustrated in Table

3.

Results clearly show that the problem is difficult to solve as-it-is already
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30x5 60x13

Instance MILP UB MIQP UB Instance MILP UB MIQP UB

H1_10 1 754 291 2 288 451 H1_10 3 227 542 5 939 357

H1_20 1 754 633 2 288 793 H1_20 3 228 422 6 038 925

H1_30 1 754 669 2 288 829 H1_30 3 228 709 5 941 943

H2_10 1 708 485 2 256 299 H2_10 3 130 833 5 965 539

H2_20 1 709 020 2 256 834 H2_20 3 131 431 5 966 137

H2_30 1 709 230 2 257 044 H2_30 3 131 677 5 966 383

L1_10 1 420 485 1 787 983 L1_10 3 014 276 5 668 646

L1_20 1 420 713 1 817 824 L1_20 3 014 877 5 669 247

L1_30 1 420 819 1 842 700 L1_30 3 015 054 5 669 424

L2_10 1 613 252 1 948 130 L2_10 3 084 415 5 749 854

L2_20 1 613 769 1 973 914 L2_20 3 085 121 5 750 560

L2_30 1 613 805 2 008 053 L2_30 3 085 364 5 750 803

Table 3: Upper bounds provided by CPLEX using MILP and MIQP

formulations.

on small instances. CPLEX or any other commercial solver are not a viable

way to solve TBAP with quadratic costs, especially on bigger instances like

those we expect to have in a tactical problem. We therefore developed a

heuristic algorithm, which is illustrated in the next section.

5 A bi-level heuristics for TBAP

Our heuristic algorithm is organized in two stages: firstly, we identify a

set of a QC profiles for the ships; secondly, we solve the resulting berth

allocation problem for the given QC assignment. This procedure is repeated

for several sets of QC profiles, which are chosen, iteration by iteration, using

the traditional reduced costs arguments of mathematical programming. A

scheme of the heuristic algorithm for TBAP is outlined in Fig. 4.

The initial step consists in assigning a QC profile to each ship. The

maximum value profiles are chosen (ties are broken arbitrarily). This is

equivalent to assign binary values to variables λ such that equations (13)
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Algorithm 1: TBAP Bi-level Heuristics

Initialization : Assign a QC profile to each ship.

repeat

1. solve BAP via tabu search;

2. update the QC profiles’ assignment by using reduced costs.

until stop criterion ;

Figure 4: Scheme of the heuristic algorithm for TBAP.

are satisfied. Once the first QC assignment has been done, the bi-level

procedure starts.

Given a profiles’ assignment, the TBAP reduces to the berth allocation

problem, with additional constraints due to the QC total capacity. We de-

veloped a tabu search algorithm which solves the BAP, aiming to minimize

the yard-related transshipment housekeeping cost:

1

2

∑

i∈N

∑

k∈M

yk
i

∑

j∈N

∑

w∈M

fijdkwyw
j (30)

We remark that we take into account only the quadratic term of the

TBAP objective function in (1) since, for a given QC profiles’ assignment,

the total value of profiles is constant. The tabu search algorithm for the

BAP is illustrated in Section 5.1.

The new set of profiles is then determined using the reduced costs of

variables λ, whose estimation is illustrated in Section 5.2.

5.1 Tabu search for BAP

Our tabu search heuristics is an adaptation of the one of Cordeau et al.

(2005) for the BAP. However, while in Cordeau et al. (2005) the function

to be minimized is the weighted sum for every ship of the service time
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in the port, our heuristics minimizes the yard-related housekeeping costs

generated by the flows of containers exchanged between vessels. Another

difference is the handling of the side constraints concerning the QC avail-

ability: indeed, for a given assignment of QC profiles (vector λ), our tabu

search must take into account the QC capacity constraints (18).

Denote by S the set of solutions that satisfy constraints (2) – (9) and

(11). The heuristics explores the solution space by moving at each itera-

tion from the current solution s to the best solution in its neighborhood

N(s). Each solution s ∈ S is represented by a set of m berth sequences

such that every ship belongs to exactly one sequence. This solution may,

however, violate the time window constraints associated with the ships and

the berths, and the QC availability. The time window constraint on ship i

on a berth k is violated if the arrival time Tk
i of the ship is larger than the

time window’s upper bound bi. Berthing before ai is not allowed; in other

words, Tk
i ≥ ai. Similarly, the time window of berth k is violated when

the completion time of a ship i assigned to berth k is larger than the berth

time window’s upper bound bk.

Let c(s) denote the cost of solution defined in (30), and let w1(s) denote

the total violation of ship’s time window constraints, equal to the sum of

the violations on the n ships. We indicate as w2(s) the total violation of

berth’s time window constraints, equal to the sum of the violations on the

m berths. Finally, let w3(s) be the total violation of QC availability for each

time step of the planning horizon. Solutions are then evaluated by means of

a penalized cost function f(s) = c(s)+α1w1(s)+α2w2(s)+α3w3(s), where

the α values are positive parameters. By dynamically adjusting the value

of these parameters, the relaxation mechanism facilitates the exploration of

the search space and is particularly useful for tightly constrained instances.

The tabu search method is based on the definition of attributes used to

characterize the solutions of S. They are also used to control tabu tenures

and to implement a diversification strategy. An attribute set B(s) = {(i, k):

ship i is assigned to berth k} is associated to each solution s ∈ S. The neigh-

borhood N(s) of a solution s is defined by applying a simple operator that

removes an attribute (i, k) from B(s) and replaces it with another attribute

(i, k ′), where k6=k ′. When ship i is removed from berth k, the sequence
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is simply reconnected by linking the predecessor and successor of the ship.

Insertion in sequence k ′ is then performed between two consecutive ships

so as to minimize the value of f(s). When a ship i is removed from berth

k, its reinsertion in that berth is forbidden for the next θ iterations by

assigning a tabu status to the attribute (i, k).

An aspiration criterion allows the revocation of the tabu status of an

attribute if that would allow the search process to reach a solution of smaller

cost than that of the best solution identified having that attribute. To

diversify the search, any solution s ∈ N(s) such that f(s) ≥ f(s) is penalized

by a factor proportional to the addition frequency of its attributes, and by

a scaling factor. More precisely, let ξik be the number of times attribute

(i, k) has been added to the solution during the process and let ζ be the

number of the current iteration. A penalty p(s) = βc(s)ξik/ζ is added to

f(s). The scaling factor c(s) introduces a correction to adjust the penalties

with respect to the total solution cost. Finally, the parameter β is used to

control the intensity of the diversification. These penalties have the effect

of driving the search process toward less explored regions of the search

space. For notational convenience, assume that p(s) = 0 if f(s) < f(s).

In order to to generate a starting solution, the algorithm assigns the

ships to the berths at random. This initial solution is constructed by

relaxing the time window and QC availability constraints, and therefore

it is usually infeasible. However, this is not an issue for the tabu search

heuristics.

The search starts from this initial solution and selects, at each iteration,

the best non-tabu solution s ∈ N(s). After each iteration, the value of

parameters α1, α2, and α3 are modified by a factor 1 + δ, where δ >

0. For example, if the current solution is feasible with respect to ship’s

time window constraints, the value of α1 is divided by 1 + δ; otherwise,

it is multiplied by 1 + δ. Analogously for the berth’s time window and

QC availability constraints, i.e. parameters α2 and α3, respectively. This

process is repeated for η iterations and the best feasible solution s∗ is

updated throughout the search.
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5.2 Profile update via mathematical programming

The profiles’ updating procedure relies on the MILP formulation for TBAP

illustrated in Section 3.4. The basic idea of this step is to use the informa-

tion of reduced costs in order to be able to update vector λ of QC profiles’

assignment in a smart way.

Let s∗ = [x̄, ȳ, T̄ ] be the BAP solution provided by tabu search for a

given QC profile assignment λ̄. in particular, we are interested in reduced

costs of variables λ, which we denote λ̃. We remark that a BAP solution plus

a QC assignment represent a feasible solution for TBAP. At each iteration,

we solve the linear relaxation of the MILP formulation, with the additional

constraints:

x̄ − ǫ ≤ x ≤ x̄ + ǫ (31)

ȳ − ǫ ≤ y ≤ ȳ + ǫ (32)

T̄ − ǫ ≤ T ≤ T̄ + ǫ (33)

λ̄ − ǫ ≤ λ ≤ λ̄ + ǫ (34)

As remarked, e.g., by Desrosiers and Lübbecke (2005), the shadow prices

of constraints (31)–(34) are the reduced costs of original variables x, y, T

and λ. We therefore identify the λ
p
i variable with the maximum reduced

cost and we assign this new profile p to ship i. If all reduced costs are

non-positive or other stopping criteria as maximum number of iterations

or time limit are reached, the procedure terminates.

A tabu mechanism has been implemented in order to prevent insisting

on the same ship; the length of this tabu list has been fixed to 0.5n× p̄.

It may happen that the tabu search returns a BAP solution which is

infeasible for TBAP with respect to time windows and/or the QC avail-

ability. In this case the profiles’ update via mathematical programming

cannot be performed. We therefore update the set of profiles by randomly

assigning a new QC profile to each ship.
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6 Computational results

The heuristics has been implemented in C++ using GLPK 4.31 and tested

on the same set of instances illustrated in Section 4.

Experiments have been run for n × p̄ iterations and a time limit of

1 hour for classes 10x3, 20x5, 30x5 and 3 hours for classes 40x5, 50x8,

60x13. The initialization assigns the best value profile to each ship. Ties are

broken arbitrarily. The internal tabu search has a maximum of η = 30×n

iterations, and the other parameters are set as follows:� θ : tabu duration equal to ⌊7.5 log n⌋;� β : diversification intensity parameter equal to 0.015
√

nm;� δ : penalty adjustment parameter equal to 2.

Results are compared to the best solution found by CPLEX for either

the MILP or MIQP formulation and illustrated in Tables 4, 5 and 6. The

heuristics is able to find feasible solutions in 70 out of 72 instances, whereas

CPLEX succeeds at that only on 20 instances, the smaller ones. The two

instances where the heuristics fails at finding a feasible solution are charac-

terized by an high number of profiles per vessel (p̄ = 30). We observe that

with a lower number of profiles per vessel (p̄ = 10, and p̄ = 20) the heuris-

tics always succeeds in reaching feasibility. Furthermore, our algorithm is

up to 2 order of magnitude faster, especially on small instances.

Class 10x3 is the only one where CPLEX performs slightly better than

the heuristics, with an average of 99.00 and 98.59, respectively, and 3 op-

timums found by CPLEX. However, the heuristics is much faster, solving

the problem in less than 30 seconds against the time limit of 1 hour set for

CPLEX.

Class 20x5 is always solved by the heuristics in less then 5 minutes,

with an average quality of the solution of 97.29, while CPLEX only solves

4 instances out of 12, in 2 hours, with lower quality (95.37 on average).

Remarkably, our heuristics performs very well also on the instances of

bigger size, where CPLEX generally fails. For the solved instances the qual-

ity of the solutions is always greater than 94.11 (instance 60x13:H2_20),

with an average value of 96.06.

30



10x3 20x5

Instance CPLEX HEUR Time (sec) Instance CPLEX HEUR Time (sec)

H1_10 99.17 98.52 7 H1_10 - 97.26 81

H1_20 97.96 98.36 15 H1_20 94.33 97.19 172

H1_30 98.76 98.33 27 H1_30 93.74 97.37 259

H2_10 99.26 98.92 7 H2_10 - 97.27 82

H2_20 96.97 98.48 16 H2_20 96.66 97.38 173

H2_30 96.79 98.17 28 H2_30 - 97.26 274

L1_10 100.00 99.12 6 L1_10 - 97.30 74

L1_20 100.00 99.01 15 L1_20 - 97.25 158

L1_30 99.99 98.29 26 L1_30 - 97.06 254

L2_10 99.63 98.92 6 L2_10 - 97.55 80

L2_20 99.42 98.68 15 L2_20 96.74 97.39 170

L2_30 100.00 98.22 27 L2_30 - 97.25 295

Table 4: Heuristics computational results on classes 10x3 and 20x5.

30x5 40x5

Instance CPLEX HEUR Time (sec) Instance CPLEX HEUR Time (sec)

H1_10 - 95.67 340 H1_10 - 97.38 1104

H1_20 - 95.31 677 H1_20 - 97.38 2234

H1_30 - 95.54 1009 H1_30 - 97.25 3387

H2_10 - 95.88 316 H2_10 - 97.40 1095

H2_20 - 95.81 684 H2_20 - 97.33 2198

H2_30 - 95.30 969 H2_30 - 97.27 3296

L1_10 - 96.55 324 L1_10 94.92 97.41 1421

L1_20 - 96.43 652 L1_20 94.47 97.14 2996

L1_30 - 96.18 966 L1_30 - 96.20 4862

L2_10 - 95.68 308 L2_10 - 97.41 1382

L2_20 - 95.12 614 L2_20 94.93 97.34 3144

L2_30 - - 920 L2_30 94.61 96.60 4352

Table 5: Heuristics computational results on classes 30x5 and 40x5.
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50x8 60x13

Instance CPLEX HEUR Time (sec) Instance CPLEX HEUR Time (sec)

H1_10 - 96.52 3291 H1_10 - 95.40 6332

H1_20 - 96.37 6020 H1_20 - 95.07 10809

H1_30 - 96.21 9432 H1_30 - 94.76 10807

H2_10 - 96.03 3066 H2_10 - 95.54 6397

H2_20 - 95.64 6180 H2_20 - 94.11 10803

H2_30 - 95.16 9501 H2_30 - - 10806

L1_10 - 95.97 2752 L1_10 - 95.67 5807

L1_20 - 96.04 6467 L1_20 - 95.40 10803

L1_30 - 95.80 9119 L1_30 - 94.45 10806

L2_10 - 96.18 3157 L2_10 - 95.63 5986

L2_20 - 95.96 5857 L2_20 - 95.64 10809

L2_30 - 96.27 8783 L2_30 - 95.34 10804

Table 6: Heuristics computational results on classes 50x8 and 60x13.

7 Conclusions and future work

We have studied the integration, at the tactical level, of the berth alloca-

tion problem with the assignment of quay cranes from the point of view of

a container terminal, in the context of a negotiation process with shipping

lines. We have characterized this new decision problem and illustrated the

concept of QCs assignment profiles. Two mixed integer programming for-

mulations have been presented, with a quadratic and a linearized objective

function respectively. Both models have been validated on instances based

on real data using a commercial solver. These tests show that the problem

is hardly solvable already on small instances; hence we have tackled the

computational complexity of TBAP by devising a bi-level heuristic algo-

rithm able to provide good feasible solutions in a reasonable amount of

time.

As a next step, we are interested in obtaining good upper bounds on

the optimal solution. Decomposition methods seem to be a promising way

to face the problem. In fact, we are considering a reformulation based on
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Dantzig-Wolfe decomposition and column generation, and an incremental

approach based on Lagrangian dual, in order to exploit the structure of

TBAP and its relation with the BAP formulation, aiming at saving com-

putational time by solving subproblems via inexact or truncated methods.

With respect to the application, we remark that the main contribution is

represented by the simultaneous control of the terminal on critical resources

such as berths and quay cranes, in addition to the added value given by

the integration, in a more direct way, of different terminal’s costs.
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