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ABSTRACT 

As the device dimensions have reduced from micrometer to nanometer range, new bulk 

silicon devices are now facing many undesirable effects of scaling leading device engineers to look 

for new process technologies. Silicon-on-insulator (SOI) has emerged as a very promising 

candidate for resolving the major problems plaguing the bulk silicon technology. G4FET [G4FET] 

is a SOI transistor with four independent gates. Although G4FET has already shown great potential 

in different applications, the widespread adoption of a technology in circuit design is heavily 

dependent upon good SPICE (Simulation Program with Integrated Circuit Emphasis) models. 

CAD (Computer Aided Design) tools are now ubiquitous in circuit design and a fast, robust and 

accurate SPICE model is absolutely necessary to transform G4FET into a mainstream technology.  

            The research goal is to develop suitable SPICE models for G4FET to aid circuit designers 

in designing innovative analog and digital circuits using this new transistor. The first phase of this 

work is numerical modeling of the G4FET where four different numerical techniques are 

implemented, each with its merits and demerits. The first two methods are based on multivariate 

Lagrange interpolation and multidimensional Bernstein polynomial. The third numerical technique 

is based on multivariate regression polynomial to aid modeling with dense gridded data. Another 

suitable alternative namely multidimensional linear and cubic spline interpolation is explored as 

the fourth numerical modeling approach to solve some of the problems resulting from single 

polynomial approximation.   

The next phase of modeling involves developing a macromodel combining already existing 

SPICE models of MOSFET (metal–oxide–semiconductor field-effect transistor) and JFET 

(junction-gate field-effect transistor). This model is easy to implement in circuit simulators and 



v 

 

provides good results compared to already demonstrated experimental works with innovative 

G4FET circuits. The final phase of this work involves the development of a physics-based compact 

model of G4FET with some empirical fitting parameters. A model for depletion-all-around 

operation is implemented in circuit simulator based on previous work. Another simplified model, 

combining MOS and JFET action, is implemented in circuit simulator to model the accumulation 

mode operation of G4FET.  
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Chapter 1 – Introduction 

 

1.1 Motivation 

Transistor is the key active component in practically all modern electronics and it is 

considered as one of the greatest technological inventions of the 20th century [1].  The ability to be 

mass-produced using a highly automated process resulting in a very low per-transistor cost has 

cemented its supreme role in the modern world. The invention of the first transistor at Bell 

Laboratories was named an IEEE Milestone in 2009 [2]. Although the first patent of a field-effect 

transistor was filed in 1926 [3], the real world transistor revolution actually started with the 

invention of bipolar junction transistor in 1948 which revolutionized the field of electronics by a 

rapid replacement of vacuum tubes as active elements in electronic devices. In contrast to the 

bulky, unreliable and excessive power consuming electronic circuits made with vacuum tubes, 

transistors provided a low-power, lightweight, faster and reliable alternative. Although over a 

billion discrete transistors are produced every year [4], the vast majority of transistors are now 

produced in integrated circuits introduced in 1958 independently by Jack St. Clair Kilby [5] and 

Robert Norton Noyce [6].  The amazing technological advancements in the semiconductor 

industries have been dictated by the desire to achieve Moore’s law [7]. In 1965, Gordon Moore 

stated that the number of transistors in integrated circuit (IC) would double every year which he 

later, in 1975, revised as a doubling in every two years. Moore’s law has been the main driving 

factor during the last 50 years for the enhancement of device performances primarily through 

smaller feature size and larger chips. The cost per transistor and the switching power 
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consumption per transistor went down, while the memory capacity and speed went up. Over the 

years, transistor sizes have decreased from tens of microns in the early 1970s to 10 nanometers in 

2017 [8] with a corresponding million-fold increase in transistors per unit area as shown in Figure 

1.1. The vast majority of applications now has bulk silicon device as the active element in VLSI 

(very large scale integration) and ULSI (ultra large scale integration) circuits.  

 

 

Figure 1.1: Moore’s Law dictating transistor counts in microprocessor over the years [9]. 

 

 However, bulk silicon devices are now faced with some fundamental physical limits. Some 

of the non-idealities such as subthreshold conduction, gate oxide leakage and reverse-biased 

junction leakage can no longer be ignored since they can potentially consume more than half of 

the total power in modern high-performance VLSI chips [10]. The increase in doping 

concentration has reduced carrier mobility due to impurity scattering resulting in transconductance 

degradation. With the increased proximity of drain and source electrodes, drain has started to play 
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a vital role in channel formation causing the threshold voltage roll-off due to DIBL (drain induced 

barrier lowering) and a decrease in output resistance affecting analog circuit design. The scaling 

of switching time has slowed down since the interconnect capacitance has started to become a 

larger portion of total capacitance. With the very thin gate oxide of today, the leakage from 

quantum mechanical tunneling is increasing the power consumption and adversely affecting 

transistor operation. These problems are making conventional scaling less feasible as can be 

observed from the change of direction in ITRS road map from 2013 to 2015 in Figure 1.2. 

 

 

Figure 1.2: Change of direction in gate length scaling from 2013 to 2015 ITRS report [13]. 

 

Researchers have been looking for new process technologies which can solve the problems 

associated with bulk silicon scaling and enable the semiconductor industry to extend Moore’s law 

in the foreseeable future as shown in Figure 1.3. A promising candidate is silicon-on-insulator 

(SOI) technology with its long list of reported advantages[11]. It has a lower parasitic 

capacitance due to isolation from the bulk silicon resulting in lower power consumption at matched 

performance. SOI transistors have shown reduced short channel effect, better subthreshold swing 
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and the ability to handle higher voltage and higher temperature, compared to bulk CMOS [12]. 

Lower leakage currents due to isolation increases the power efficiency. It has a lower temperature 

dependence and is suitable for radiation hardened application with the need for reduced 

redundancy. It prevents latch-up by the complete isolation of the n- and p-well structures and 

enables implementation with a smaller chip area. Major companies, including IBM, AMD and 

Freescale, began manufacturing microprocessors using SOI substrates in the early 2000’s 

heralding its entrance into the mainstream semiconductor industry. 

 

 
 

Figure 1.3: Possible alternatives for extending Moore’s law [13]. 

 

In SOI technology, each transistor can have more than one gate. Experiments with different 

variations in gate configuration have been done and have resulted in a wide array of multi-gate 

transistors [14] such as  wrapped-gate transistor, “double-gate transistor, “FinFET, ‘tri(ple)-gate 

transistors’, ‘gate-all-around transistors’ etc. However, the number of independent gates can be 

extended to four in SOI technology and it was named MOSJFET [15] or four gate field effect 

transistor (G4FET) [16] . G4FET retains the advantages of SOI technology and offers exciting new 

opportunities for analog and mixed-signal applications, quaternary logic functions and 

electrostatically formed nanowire with superior conduction properties. 
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The widespread use of a technology in circuit design is heavily dependent upon good 

SPICE models for CAD tools which are now ubiquitous in circuit design. Sophisticated models 

for existing transistors integrated with CAD tools have enabled designers worldwide to design 

excellent circuits which are in a large part responsible for the technology boom of the last 50 years. 

Since G4FET is a relatively new technology, a fast, robust and accurate SPICE model is absolutely 

necessary for aiding circuit designers to transform G4FET into a mainstream technology. 

1.2 Research Goal 

The goal of this research effort is to develop robust, accurate and efficient SPICE model 

for G4FET and implement it as a circuit building block in commercial simulators. The existence 

of four independent gates makes this modeling work particularly challenging.  

     In this work, four different numerical models have been developed and implemented in 

commercial circuit simulator, each with its own pros and cons. The results have been compared 

with both TCAD Sentaurus from Synopsys® and with experimental results. In addition, a 

macromodel is developed combining already existing SPICE models of MOSFET and JFET. 

Moreover, two physics-based compact modeling approaches have also been adopted to model 

particularly useful conduction mechanisms. 

   The research goal can be summarized as developing the following models: 

1. Development and CAD implementation of four numerical models:  

A. Multivariate Lagrange interpolation polynomial model, 

B. Multidimensional Bernstein polynomial model, 

C. Multivariate regression polynomial model, 
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D. Multidimensional spline interpolation model. 

2. Development of a macromodel combining existing JFET and MOSFET models. 

3. Development of a physics-based compact model. 

1.3 Dissertation Overview 

This dissertation is divided into seven chapters. The limitation of bulk-CMOS technology 

and the need for multi-gate SOI technology are explained in Chapter 1. The evolution of G4FET 

and the necessity of suitable SPICE models are also discussed in Chapter 1. Previous analytical 

and modeling works on G4FET and other transistors are discussed in Chapter 2. The device 

structure and operating mechanism of G4FET are discussed in Chapter 3. The methodology and 

results of four numerical modeling approaches (Lagrange, Bernstein, Regression and Spline) are 

discussed in Chapter 4. The macromodel of G4FET combining existing transistor models is 

explored in Chapter 5. Two physics-based modeling approaches for SPICE implantation are 

discussed in Chapter 6. Conclusions and future works are summarized in Chapter 7. 
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Chapter 2 - Literature Review 

 

2.1 Previous Works on G4FET 

G4FET, a relatively new member in the SOI multi-gate device family, was first reported in 

2002 [15]. This unique SOI transistor combines MOSFET and JFET transistor actions in a single 

silicon body. Due to this combination of MOSFET and JFET functionality, this transistor was 

called a MOSJFET [15]. It was also named G4FET [16] since it has four independent functional 

gates. 

Extraction methods for threshold voltage, mobility and subthreshold swing in the linear 

region were demonstrated in [17]. The experimental results from a partially-depleted (PD)-SOI 

G4FET showed the dependence of these parameters on different gate biases. In addition to the 

experimental results, numerical simulation is important for understanding the several conduction 

mechanisms inside the transistor and 3-D simulations were performed to shed light on the role of 

multiple gates [18]. A non-uniform doping profile was used to reproduce the channel 

characteristics of fabricated devices.  

 In [19], various operation modes of G4FETs were analyzed based on measured current-

voltage, transconductance and threshold characteristics. The optimization of important device 

parameters such as threshold voltage, subthreshold swing, mobility using particular combination 

of gate biasing was also shown. Volume and interface conduction mechanism were clarified using 

numerical simulation. The unique ability of switching using any of its four independent gates was 

also discussed.  
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The charge coupling between front, back and lateral junction-gates was considered and a 

2-D analytical relationship for the fully-depleted body potential was derived in [20]. This work 

was extended in [21] and a closed form front-interface threshold voltage expression was derived 

as a function of the back and the lateral gate voltages for different back interface conditions such 

as accumulation, depletion and inversion. 

The subthreshold operating region of G4FET was explored in [22] and it showed better 

subthreshold swing compared to conventional bulk MOSFET. There is a flexibility of adjusting 

the subthreshold slope of MOS gates or junction-gates using the remaining gate biases. 

A very interesting application of G4FET is the formation of quantum wire. The quantum 

wire can be electrostatically formed when the conducting channel is surrounded by depletion 

regions induced by vertical MOS and lateral JFET gates [23]. In this unique conduction mechanism 

named depletion-all-around (DAA), majority carriers flow in the volume of the silicon film far 

from the silicon/oxide interfaces. The control of lateral gates on the conduction channel can be 

adjusted by changing biases on the vertical gates. There is a reduced sensitivity of the channel to 

the oxide and interface defects, low subthreshold swing, high gm/ID ratio, high mobility, low noise, 

and high immunity to ionizing radiation [24]. 

       The fully-depleted version of the G4FET was introduced and its characteristics were 

systematically investigated in [25]. This work demonstrates that the thinning-down of the silicon 

film enhances vertical coupling between the front and the back gates and reduces the horizontal 

coupling between the lateral gates. As a consequence, the direct influence of the lateral junction-

gates on the body potential distribution is reduced. 

The operation and performance of G4FET was presented from the low voltage to the high 

voltage regime [26]. Devices fabricated in 0.35 µm 3.3 V partially-depleted SOI process are shown 
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to have a breakdown voltage of 15 V, excellent subthreshold swing, and high mobility. Low-

frequency noise characteristics of G4FET were reported in [27]. A comparison of noise power 

spectral density between surface and volume conduction was presented and its dependence on 

biasing conditions was explored. A charge sheet model has been recently proposed to analyze the 

transistor characteristics of fully-depleted G4FETs [28]. Here, surface accumulation behavior, 

drain current and gate capacitance of fully-depleted G4FET are modeled analytically.  

In [29], a mathematical model is developed to determine the subthreshold swing of thin-

film fully-depleted G4FET. A mathematical model of potential distribution has been derived 

considering three dimensions of a fully-depleted p-channel G4FET in [30].  A physics-based 

mathematical model is proposed in [31] to determine the accumulation layer thickness in thin film 

fully depleted G4FETs. Another mathematical model is developed in [32] to determine the 3-D 

potential distribution of a fully-depleted G4FET.  Based on the exact solution of the Poisson 

equation, a new two-dimensional model of potential and threshold voltage for the fully-depleted 

G4FET was developed in [33]. 

 Several innovative analog and digital circuit applications of G4FET have been reported 

over the years. A complementary pair of G4FETs can exhibit negative differential resistance 

(NDR) due to the JFET functionality of its lateral gates. LC oscillator and Schmitt trigger circuits 

were experimentally demonstrated using G4FET NDR device [34]. 

G4FETs can operate under higher voltages compared to bulk silicon MOSFET counterparts 

using the same process technology. High voltage current mirror and differential amplifier based 

on G4FET were experimentally demonstrated in [35]. 

The four gates of G4FETs can be utilized to make innovative circuits with reduced 

transistor count. A novel four quadrant analog multiplier topology was demonstrated in [36] with 
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only four transistors at its core. Two different configurations, using different combination of gate 

inputs are shown. A G4FET based temperature-compensated voltage reference circuit, without the 

use of the standard bandgap architecture, was demonstrated using standard 3.3 V/ 0.35 µm 

partially-depleted PD-SOI process [37]. 

In the arena of digital circuits, the independent multi-gate functionality helps reduce the 

transistor count per logic function and enhances design flexibility.  Novel G4FET based logic-

circuits such as adjustable-threshold inverter, real-time reconfigurable logic gates and DRAM cell 

were experimentally demonstrated [38]. In [39], the G4FET was demonstrated as a universal and 

programmable logic gate that can lead to the design of more efficient logic circuits. A new full 

adder design based on the G4FET utilizing only three transistors and two inverters is proposed.  

The operation of the G4FET can be interpreted as a complex four-input switching process 

and can be used for the computation of multiple-input threshold logic functions using a single 

device. Leveraging these unique capabilities a novel threshold logic family capable of efficient 

computation of complex logic functions was reported recently [40]. 

2.2 Previous Works on Numerical Modeling 

Numerical models offer an alternative to the physics-based analytical models for rapid, 

accurate device modeling. The approach is to develop a methodology which takes measured or 

simulated data as input and then based on these empirical results, accurately reproduces the 

complex nonlinear behavior of the semiconductor devices. In most cases, they are equally 

applicable to different types of transistors such as MOSFET, MESFET, HEMT, DGFET etc. 

fabricated using various process technologies.  
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The most commonly used methods utilize look-up table and quadratic or higher order 

polynomials for interpolation between data points. The authors in [41] use a table-based approach 

for the empirical modeling of FETs in circuit simulators to address the specific requirements of 

analog circuit design, such as accuracy in reproducing small-signal parameters, large signal 

nonlinearities, subthreshold characteristics, substrate effects, short-channel effects, and voltage 

dependent capacitances. A table lookup model for MOSFETs consisting of a main table and a 

coarse 3-D sub-table to incorporate substrate effects. and a table to interpolate between channel 

length was implemented in SPICE 3 to overcome the inadequacies of analytical models in 

representing short channel effects [42].  

An approach to dynamic MOSFET modeling, which is especially suited for the simulation 

of low-voltage mixed signal circuits was reported [43]. The model is based on the interpolation of 

terminal charges and conductive currents with physically motivated functions such as piecewise 

polynomial and/or exponential splines based on transient current/voltage data obtained through 

measurement or simulation of the devices.  

 A general n-dimensional first order continuous table model was proposed in [44]. Each 

table model was shown to reproduce the exact behavior of the DC current expressions of two basic 

physical device models; the Ebers-Moll bipolar transistor model and the GLASMOST MOSFET 

model with high accuracy and less evaluation times than advanced physical CAD device models.   

Authors in [45] developed simple interpolation methods to construct any current table from 

a small basis set of tables for variation of width, length and temperature. Quadratic B-splines with 

not-a-knot boundary conditions were used for length and temperature interpolation, whereas 

simple scaling along with decomposition of channel was done for width variation to take narrow 

width non-idealities into consideration. 
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The table lookup approach was first applied for simulation of digital circuits in the timing 

simulator MOTIS [46], which has been developed at Bell Laboratories in 1975. The timing 

simulator provides timing information on the propagation of signals through MOS digital circuits.  

A  blending function combining exponential and polynomial interpolation for the accurate 

evaluation of the MOSFET drain current in the transition region between weak and strong 

inversions was implemented in [47]. This model offers several interpolation methods in the table 

model providing the model user with a flexibility to choose based on the required simulation speed, 

memory consumption and accuracy. Implementation of the model in circuit simulation showed 

good results in DC, transient, and AC analyses. 

Table data has also been used to model devices for RF simulation [48]. In this model, the 

device characteristics of GaAs FET devices are determined by state functions which define 

nonlinear relationships for the 3-terminal lumped elements. An array of s-parameters, measured 

over a wide range gate and drain biases, is used to determine these state functions. Good prediction 

of high-order harmonics has made this model suitable for RF simulations. 

In [49], this Bernstein approximation technique is extended to multidimensional variation 

diminishing interpolation and applied to DC current and intrinsic charge modeling of the MOSFET 

to increase simulation efficiency. Information about device operating point is extracted by 

functional reconstruction from stored data during transient simulation. The formulation of the 

numerical model preserves continuity and monotonicity facilitating the convergence in Newton-

Raphson algorithm for solving the differential circuit equations.  

Monotonic Piecewise Cubic Interpolation was used in [50] to determine the MOSFET   

operating point using stored table value generated by a 2-D device simulator. In [51], the  quadratic 

fits were used to model triode region whereas linear fits were used for the saturation region. 
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However, it resulted in a discontinuity in the device conductance during the transition from triode 

to saturation region.  

Authors in [52] used a tableau-style spline formulation using quadratic splines ensuring 

continuity of the function and its derivative and presented a new data-compression scheme for 

polynomial spline coefficient storage. The splines were optimized to reduce the number of 

segments and preserve the monotonicity of the model equations. 

A three dimensional table lookup MOSFET model was presented in [53] showing good 

accuracy and short computation time. A conversion table was adopted for logarithmic operation 

to capture the weak inversion effect with log-linear characteristics. In another work on table 

method [54], a methodology of generating compact and accurate first order table model for highly 

nonlinear multidimensional behavior was demonstrated. 

2.3 Previous Works on Macromodels 

 The number of elements in today’s integrated circuit can range from several dozens to 

hundreds of millions. If each individual element is modeled separately, the simulation run time 

will be prohibitively long. Macromodels are used to simplify circuits in a way so that the desired 

behavioral characteristics remain the same for all practical purposes while the computational time 

gets substantially reduced. 

Important circuit blocks like operational amplifiers and comparators are usually employed 

in simulators using their macromodels. The need for macromodel in IC subsystem design is 

discussed in [55]. The authors in [56] developed a macromodel for integrated circuit (IC) 

operational amplifiers (op amp) with an excellent pin-for-pin representation. The model uses 
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common elements available in most circuit simulators. This macromodel is a factor of more than 

six times less complex, an order of magnitude faster and less costly compared to op amp models 

at the electronic device level. 

Logic simulation and macromodels have also been developed for digital logic blocks ([57], 

[58]). A behavioral multiport macromodel for the input buffers of digital integrated circuits is 

presented in [59] which offers comparable accuracy and improved efficiency compared to the 

transistor-level models. A macromodel for integrated-circuit comparators, capable of providing up 

to an order of magnitude reduction in CPU time and matrix size for CAD, was reported in [60].  

A lumped parameter macromodel was derived from transistor characterization data to use 

in  SPICE analyses for predicting the single-event upset thresholds for Texas Instruments 

SIMOX( Separation by IMplantation of OXygen) SOI SRAMs [61]. 

Physico-chemical model of the ISFET (ion-sensitive field-effect transistor) was developed 

in [62] using a behavioral macromodel that can be used in commercial SPICE programs. The 

proposed macromodel was shown to operate satisfactorily even under subthreshold conditions. 

The main goal was to get rid of the drawbacks associated with developing built-in models such as 

the availability of the program source, a deep knowledge of the code subroutines and structure, 

and the requirement of compiling the entire program for a new model implementation. 

An empirical macromodel for a p-channel floating-gate MOS synapse transistor simulation 

consisting of a transistor and controlled sources was proposed in [63]. The model did not use the 

channel potential in its description enabling its application in any SPICE circuit simulator. 

In [64], an improved SPICE macro-model for the LDMOS (laterally diffused MOS) device  

was proposed with better performance compared to existing BSIM3 models in both DC and AC 

regions. Verilog-A modules consisting of standard elements make this model simulator 
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independent. The model used an adapted JFET to model the drift region resistance and shorted 

PMOS transistors for modeling the capacitance behavior of the drift region. SPICE macro-

modeling techniques have also been used in [65] for the compact simulation of single electron 

circuits. 

2.4 Previous Works on Physics-based Compact Modeling 

A number of works have been performed over the years on physics-based modeling of 

transistors. Gummel in [66] developed a model based on finite difference method for solving the 

model equations to provide information about internal parameters such as potential and electric 

field distribution along with terminal characteristics. This approach was modified in [67] using a 

new discretization technique for ensuring convergence. Building upon Scharfetter-Gummel 

algorithm, Slotboom [68] proposed a new model using two new artificial variables for linearization 

of the differential equations facilitating implementation in CAD programs. 

Early pioneers Pao and Sah came up with the classic double integral drain current 

expression and explored different characteristics of the transistor action [69, 70]. However, these 

formulas are computation intensive and CAD implementation required a simplified model. Brews 

in [71] proposed a charge sheet model which compresses the inversion layer into a conducting 

plane of zero thickness.  

With the scaling down of MOSFET, it gradually became apparent that in addition to linear 

and saturation regions, a third region of operation, namely, subthreshold conduction could no 

longer be ignored especially for low-leakage circuits. The subthreshold region is usually defined 

as the intermediate region between weak and strong inversion, where weak inversion starts when 
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the minority and the majority carrier concentrations at the surface are equal and the onset of strong 

inversion, typically known as threshold, occurs when the minority carrier concentration at the 

surface is equal to the majority carrier concentration in the bulk semiconductor. In [72], authors 

reconsidered the basic charge relationships to give a new formulation of the theory of the device 

for model characterization in a more general manner, and with greater accuracy than previously 

achieved. The contribution of the mobile channel charge to the silicon surface potential was taken 

into account and the model covered from sub-threshold to strong inversion conduction.  

In [73], the effect of drain voltage on the subthreshold operation as the channel length 

becomes shorter, the effect of substrate bias on both the shift in and the slope of the subthreshold 

curves, and the effect of temperature on the subthreshold current characteristics are discussed and 

incorporated into a one-dimensional model. In [74], the dependence of channel current in 

subthreshold operation upon drain, gate, and substrate voltages is formulated in another model. It 

also points out the fact that two-dimensional effects can cause dramatic increases in the drain 

conductance. In [75], an analytical model was presented for unifying the existing models for both 

short and long channel MOSFETs.  

Methods and results of a three-dimensional numerical model of small geometry MOSFETs 

were reported in [76]. The necessity of three-dimensional simulation as opposed to two-

dimensional calculations is discussed and size effects in short and narrow channel enhancement 

and depletion FETs are analyzed. In [77], two-dimensional simulations were used to determine the 

relationship between the drain-induced barrier lowering and the punchthrough and a quasi one-

dimensional Poisson equation was solved to find the onset voltage of the punchthrough . Also, a 

semi-empirical model, MOS3, was developed and installed into the circuit simulation program 

SPICE2.G. 
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Initially MOSFETs were not the first choice for analog circuit design. However, during the 

70’s, improved noise performance, device matching, and frequency response have resulted in 

analog MOSFET circuits with performance comparable to or better than that of bipolar 

counterparts. This required a better small signal model for CAD implementation and the authors 

in [78] presented a first-order and a second-order large signal MOSFET models and derived 

corresponding small signal models. The small-signal model parameters are related to operating-

point bias and the IC process used to fabricate the devices. 

The SPICE2 program provided three built-in MOS transistor models, known as the first 

generation models [79]. The first one is the Level-1 model with its fairly simple expressions similar 

to the often used square law current equation and is suitable for preliminary analysis. This is mostly 

based on the works of Shichman and Hodges [80].The Level-2 model dived deeper into detailed 

device physics but still had some problems with small geometry transistors and convergence 

issues. The Level-3 model was an attempt to merge physics-based approach with empirical 

parameter fitting and started the semi-empirical modeling approach for reproducing device 

characteristics. The authors in [81] developed the now famous ‘Berkeley Short-channel IGFET 

Model (BSIM)’ based  upon AT&T Bell Laboratories’ CSIM (Compact Short-channel IGFET 

Model) with substantial enhancements [82]. This was the beginning of the second generation of 

SPICE models. 

Among the factors influencing conduction, mobility and recombination-generation need to 

modeled appropriately for faithful reproduction of experimental data.  The dependence of carrier 

mobility on electric field, temperature and doping density has been analyzed by different authors. 

In [83], Canali et al. presented experimental data for electron and hole drift velocity in silicon for 
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high electric fields up to 6×104 V/cm and wide temperature range from 300 to 430 K and proposed 

an analytical expression based on curve fitting to describe the experimental data. An analytical 

expression of electron and hole mobilities in silicon based on experimental data was reported in 

[84] which is valid for wide range of temperature and doping concentration. 

 A concentration dependent mobility expression for different dopant materials such as 

boron, phosphorus and arsenic in silicon was proposed in [85]. A unified model known as 

‘University of Bologna mobility model’ was proposed by Reggiani [86, 87] incorporating 

dependences on doping, temperature and electric field. 

The carrier generation and recombination depend on temperature and carrier density. Hall 

[88] and Shockley-Read [89] independently established a universal expression for carrier-

recombination and generation. The dependence of carrier lifetime, the most important parameter 

for determining the rate of recombination-generation, on temperature and electric field was 

analyzed in [90].  

With the advent of silicon-on-insulator (SOI), new compact models exploring different 

flavors of this new technology were reported. In [91], a physics-based SPICE model called 

BSIMPD is developed for application of partially-depleted SOI technologies in deep-submicron 

CMOS designs. The model was developed on top of the industry-standard bulk-MOSFET model 

BSIM3v3 ensuring scalability and robustness while capturing SOI-specific dynamic behaviors 

such as built-in floating body, self-heating and body-contact models. 

Depending on dimension and bias, SOI MOSFET may operate in different modes i.e. body-

contacted mode, partially depleted mode and fully depleted mode. A model has to incorporate a 

smooth transition between the modes of operation. The authors in [92] describe a unified 

framework to model the floating-body effects of various SOI MOSFET operation modes. 
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A surface-potential based multi-gate FET (MG-FET) compact model called BSIM-MG 

was reported in [93] for mixed-signal design applications. This model included effect of finite 

body doping on the electrical behavior of MGFETs and used a field penetration length model for 

short channel effects. It also included several physical effects such as poly-depletion effect and 

quantum-mechanical effect (QME). The continuity of terminal currents and charges was ensured 

for mixed-signal design. The authors also reported a similar BSIMIMG model for independent 

multi-gate operation in [94]. 

A process/physics-based compact model for non-classical MOSFETs having ultra-thin Si 

bodies (UTB) is discussed in [95]. The discussed model is essentially a compact Poisson–

Schrodinger solver, including short-channel effects, and can be used for modeling nanoscale FD-

SOI MOSFETs and generic double-gate (DG) devices. 

An analytic potential compact model was developed for symmetric DG MOSFETs without 

the charge sheet approximation  to account for the “volume inversion” [96, 97]. A similar model 

has been developed for surrounding-gate (SG) MOSFETs [98]. Based on these works, a unified 

analytic drain–current model is presented for various kinds of multiple-gate (MG) MOSFETs, 

including quadruple-gate (QG), triple-gate (TG), Π-gate, and Ω-gate MOSFETs in [99].  

Recently, surface potential based modeling, namely SP and PSP models have gained 

prominence for accurate modeling of scaled down transistors. In [100], a symmetric linearization 

method was reported for developing a core compact model of certain multiple-gate transistors 

without  charge-sheet approximation resulting in a form very similar to a standard PSP MOSFET 

model. 

Authors in [101] reported a surface potential based approach for modeling partially-

depleted (PD) SOI MOSFET. This model retains the physics-based formulation and scalability of 
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standard PSP while capturing SOI specific effects by including floating body simulation capability, 

parasitic body currents and capacitances. It also included a body resistance for accurate 

characterization and simulation of body-contacted SOI devices. A complete surface-potential-

based compact model of dynamically depleted (DD) SOI MOSFETs was presented in [102]. 

EKV( Enz Krummenacher Vittoz) approach of device modeling [103] has also become 

popular over the years, especially for analog circuit design. In [104], a design oriented charge-

based model based on EKV formalism for undoped DG MOSFETs under symmetrical operation 

was presented.  
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Chapter 3 - Device Structure and Operating 

Mechanism of G4FET 

 

3.1 Multiple Independent Gate Silicon-On-Insulator (SOI) Transistor 

  G4FET is a multiple independent gate transistor fabricated in silicon-on-insulator (SOI) 

technology. In this technology, a layered silicon-insulator-silicon substrate is used in place of a 

conventional bulk silicon substrate. The addition of silicon dioxide as the insulator just above the 

substrate and below the top silicon layer provides better isolation, prevents latch-up and reduces 

parasitic capacitance. This oxide layer is called the buried oxide (BOX). The topmost thin film of 

silicon on top of the buried oxide is the active region where all devices are fabricated. This is called 

epi/top Si layer. The bottom thick silicon layer is called the substrate or handle wafer. Figure 3.1 

shows the layers of the SOI wafer. 

 

Si substrate

Buried oxide

Epi Si layer

 

Figure 3.1: Three layers of SOI wafer. 

 

 There are two types SOI wafers: 1) fully-depleted (FD) and 2) partially-depleted (PD) SOI. 

The difference lies in the thickness and the doping density of the top silicon layer. The film 



22 

 

thickness and the doping concentration in FDSOI is such that the film gets fully depleted without 

any biasing just due to work function difference, as shown in Figure 3.2.  
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Figure 3.2: Cross-sectional schematic of a fully-depleted (FD) SOI device. 

 

On the other hand, PDSOI has a slightly thicker Si film compared to FDSOI. Thus the epi 

silicon layer does not get fully depleted and there is a neutral region with mobile charge carriers 

at the center of the film as shown in Figure 3.3. 
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Figure 3.3: Cross-sectional schematic of a partially-depleted (PD) SOI. 

 

Since the top-gate needs to support less depletion charge in FDSOI, it can trigger a rapid 

increase in inversion charges and provide a higher switching speed. The depletion charge is limited 

by the buried insulator layer and this reduction in depletion capacitance results in a substantial 

improvement of the subthreshold swing that can go down to the minimum theoretical value of 60 

mV/decade for MOSFET at room temperature. The better subthreshold properties enable FD SOI 
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transistors to operate at lower gate bias with lower power consumption. Another short channel 

effect plaguing modern MOSFETs is threshold voltage roll off which is substantially reduced in 

FDSOI. However, PDSOI operates in an intermediate stage between the bulk and the FDSOI 

transistor. Its body is not fully depleted, but suitable biases applied at gate can deplete the entire 

body free of mobile carriers. In addition, PDSOI provides both volume and surface conduction. 

Therefore, depending on application, decision has to be made as to which one is more appropriate. 

3.2 G4FET Device Structure 

G4FETs can be fabricated using standard partially or fully-depleted SOI (PD/FD-SOI) 

process. It has four independent gates for modulating channel conduction. There are two lateral 

junction-gates which act like JFET gates and two vertical oxide gates which act like MOS gates. 

This transistor has also been called MOSJFET [15] since it combines both metal-oxide-

semiconductor field-effect transistor (MOSFET) and junction field-effect transistor (JFET) actions 

in a single silicon island.  

G4FET is a majority carrier device. A regular p-channel SOI MOSFET with two body 

contacts on the opposite sides of the channel works as a n-channel G4FET. The p+ doped source 

and drain of the MOSFET now function as lateral junction-gates. They are used like JFET gates 

to control the channel conduction width. The top oxide gate works like a classical MOS gate 

whereas the buried oxide along with the substrate biasing acts as a bottom-gate. These vertical 

gates are used to create the accumulation/depletion/inversion of free carriers in the silicon epi layer 

near the top and the bottom oxide interfaces. The body contacts are highly doped to make Ohmic 

contact with the channel and are used as the source and the drain for the n-channel G4FET. An 
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accumulation/depletion-mode n-channel G4FET is thus realized from an inversion-mode, p- 

channel MOSFET. Similarly, a p-channel G4FET can be constructed from a conventional SOI n-

channel MOSFET. Figure 3.4 shows the 3-D schematic structure of an n-channel G4FET. 

 The cross section and the top view of the device are shown in Fig 3.5(a) and Figure 3.5 (b), 

respectively. The channel length and the channel width of the SOI MOSFET become the channel 

width and the channel length of the G4FET, respectively. It is evident that no specialized 

fabrication procedure is necessary for this device.  

3.3 Principle of Operation  

The existence of four independent gates provides a multitude of possible combinations of 

gate biases, each giving rise to a unique conduction mechanism. The vertical gates can be 

inverted/depleted/ accumulated whereas the junction-gates are reverse biased in varying degrees 

for controlling the width of conduction channel. The flow of the drain current is perpendicular to 

the conventional MOSFET current flow. There can be three conduction paths, namely, 1) top 

surface conduction near gate oxide interface, 2) bottom surface conduction near buried oxide 

interface and 3) volume conduction inside the body away from vertical oxide interfaces. 

Depending on various applications, the specific components can be turned on or off using 

appropriate gate biases. In most application, the top-gate is accumulated and the transistor works 

as an accumulation mode MOSFET with two junction-gates providing JFET like control on the  

conduction channel. However, it is also possible to operate the vertical gates in depletion/inversion 

and this particular conduction mechanism, named depletion all around (DAA) has been shown to 

have very promising characteristics [24]. 
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Figure 3.4: 3-D Schematic of a G4FET structure. 
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Figure 3.5: G4FET structure: (a) cross section and (b) top view. 
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3.4 Effect of Gate Bias on Conduction Path  

Numerical simulation in TCAD Sentaurus is used to visually demonstrate the effects of 

different gate biases on the conduction path. A three dimensional n-channel G4FET structure is 

created using Sentaurus Structure Editor and simulated using Sentaurus Device. The cross section 

halfway along the channel length is used here to demonstrate the effect of lateral and vertical biases 

on conduction path. The channel conduction depends on the concentration of electrons inside the 

channel which is shifted by different gate biases. Here, VTG is the top-gate voltage, VBG is the 

bottom-gate voltage and VJG is the junction-gate voltage applied at both junction gates which are 

connected together. 

Figure 3.6 shows the electron concentration for keeping all the biases at 0 V. As the top-

gate goes from 0 to -3 V, as shown in Figure 3.7, the conduction region gets vertically pushed 

down. Similar effect is shown for bottom-gate inversion in Figure 3.8 where the channel gets 

vertically pushed up as bottom-gate is biased at -3 V. Figure 3.9 shows the combined inversion 

effect of vertical gates when a narrow wire like conduction path is created at the center away from 

both oxide surfaces. 

Figure 3.10 shows the effect of lateral depletion with both junction-gate reverse biased at 

-1 V. The channel now becomes narrower as lateral region near junction-gates gets depleted of 

free carriers. 

Figure 3.11 shows the effect of accumulation at top-gate when VTG = 3 V is applied. A thin 

layer of high electron density is formed near the oxide surface. Figure 3.12 shows the case when 

both the top and the bottom-gates are accumulated. In these two cases, the transistor provides both 

surface and volume conduction. 
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Figure 3.6: Electron density in the top silicon film at  VTG = 0 V, VBG = 0 V and VJG = 0 V. 

 

 

Figure 3.7: Electron density in the top silicon film  at  VTG = -3 V, VBG = 0 V, VJG = 0 V. 

 

 

Figure 3.8: Electron density in the top silicon film at VTG = 0 V VBG = -3 V VJG = 0 V. 
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Figure 3.9: Electron density in the top silicon film  at VTG = -3 V, VBG = -3 V, VJG = 0 V. 

 

 
Figure 3.10: Electron density in the top silicon film at VTG = 0 V, VBG = 0 V and VJG = -1 V. 

 

 

 
Figure 3.11: Electron density in the top silicon film  at  VTG = 3 V, VBG = 0 V and VJG = 0 V. 
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Figure 3.12: Electron density in the silicon film at VTG = 3 V, VBG = 10 V and VJG = 0 V. 

 

3.5 Chapter Summary 

This chapter describes the physical structure of a G4FET transistor and its formation from 

a conventional SOI MOSFET is outlined. The added flexibility of G4FET can be obtained without 

any significant modification in the conventional SOI technology. The multiple independent gates 

provide G4FET with several possible operating conditions which are explained with the aid of 

numerical simulation.   
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Chapter 4 - Numerical Modeling of G4FET 

 

4.1 Overview 

 Analytical models are important for understanding the underlying physics of the 

semiconductor devices. Nowadays, in the highly scaled down semiconductors, a number of 

physical phenomena, such as high-field mobility, carrier velocity saturation, gate oxide tunneling, 

drain induced barrier lowering and hot carrier effect dictate the semiconductor device 

characteristics. The physical phenomena are highly nonlinear in nature and their exact solution 

requires solving a set of coupled nonlinear differential equations, namely (i) Poisson, (ii) electron 

continuity and (iii) hole continuity equations. In today’s small dimensional structure, quantum 

mechanical effect also has to be taken into consideration requiring coupled solution of 

Schrodinger’s equation as well.  G4FET configuration requires a 3-D solution which makes it much 

harder and more time consuming. A closed form analytical expression, even in piecewise form, 

becomes almost impossible without a number of approximations.  

Numerical modeling is another way of device modeling that gets rid of the above-

mentioned problems. Different numerical methods have been explored over the years for modeling 

devices based on available data and are discussed in section 2.2. In this work, four different 

numerical models have been developed and implemented in commercial simulators for modeling 

G4FETs. These methods are: 1) multivariate Lagrange interpolation polynomial model, 2) 

multidimensional Bernstein polynomial model, 3) multivariate regression polynomial model and 

4) multidimensional linear and cubic spline interpolation model and are described in the following 

sections. 



31 

 

4.2 Numerical Method 1 (Multivariate Lagrange Interpolation 

Polynomial Model) 

The first numerical model is the multivariate Lagrange interpolation polynomial which was 

proposed in [105]. Available data from TCAD simulation and experimental results have been used 

to develop numerical models for capturing the current-voltage (I-V) characteristic of a G4FET.  

Given a set of distinct points (xi,yi), there is a unique polynomial of the least degree which, at each 

point xi, provides the corresponding value yi. This interpolating polynomial can be evaluated using 

Lagrange polynomial, Neville’s algorithm or Newton polynomial. A single expression is derived 

for predicting the device characteristics over the entire region of device biasing inside the 

interpolation range. 

4.2.1 Model Formulation 

The model formulation involves determining a polynomial for fitting a set of chosen data 

points. Both simulation and experimental results are used for obtaining these training data set. For 

this one-dimensional case, a polynomial f(x) of degree m is developed, such that,    𝑦𝑖 = 𝑓(𝑥𝑖)                (4.1) 

for a chosen set of (m+1) data points (x0,y0),….(xi,yi),….,(xm,ym). Here, f(x) is the desired 

interpolation polynomial and the data points are called the node points for interpolation. 

The Lagrange interpolation polynomial is denoted by L(x) with degree m which satisfies 

the condition that L(xi) = yi for i = 0, 1, …, m. It can be written as a linear combination of basis 

polynomials, li(x) as,  

L(x) = ∑ 𝑙𝑖(𝑥)𝑦𝑖𝑚𝑖=0               (4.2) 
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where, the Lagrange basis polynomial li(x) is given by, 𝑙𝑖(𝑥) = (𝑥−𝑥0)(𝑥−𝑥1)…(𝑥−𝑥𝑖−1)(𝑥−𝑥𝑖+1)…(𝑥−𝑥𝑚)(𝑥𝑖−𝑥0)(𝑥𝑖−𝑥1)…(𝑥𝑖−𝑥𝑖−1)(𝑥𝑖−𝑥𝑖+1)…(𝑥𝑖−𝑥𝑚)   = ∏ (𝑥−𝑥𝑗)(𝑥𝑖−𝑥𝑗)𝑚𝑗=0,𝑗≠𝑖                                       (4.3)                       

The form of basis polynomial indicates that at each interpolating point x = xi, li(x) = 1 and 

all the other basis polynomials lj(x) = 0 (j ≠ 𝑖). Consequently, at each node point xi, L(xi) = yi, and 

error at node point becomes zero which is a very desirable property of Lagrange polynomial. The 

basis polynomial does not depend on the dependent variable.  

The Lagrange polynomial can be extended for two dimensional cases as follows,   𝐿(𝑥, 𝑦) = ∑ 𝑙𝑖(𝑥)(∑ 𝑙𝑗(𝑦)𝑓(𝑥𝑖, 𝑦𝑗)𝑗𝑖 )                           (4.4)        

where, the basis polynomials li(x) and lj(y) are expressed as shown in Equation (4.3). This 

demonstrates that the Lagrange polynomial can be written in a recursive fashion. For more than 

two variables, the Lagrange polynomial can be expanded in the same manner as in Equation (4.4). 

For four independent variables, it can be written as, 𝐿(𝑢, 𝑣, 𝑤, 𝑥) = ∑ 𝑙𝑖(𝑢)(∑ 𝑙𝑗(𝑣)(∑ 𝑙𝑘(𝑤)(∑ 𝑙𝑙(𝑥)𝑓(𝑢, 𝑣, 𝑤, 𝑥))))𝑙𝑘𝑗𝑖                   (4.5) 

If the variables (u, v, w and x) in equation (4.5) are replaced with VDS (drain-to-source 

voltage), VTS (top-gate-to-source voltage), VBS (bottom-gate-to-source voltage), and VJS (junction-

gate-to-source voltage), the drain current can be expressed in the form of Lagrange polynomials 

as follows, 

𝐼𝐷𝑆(𝑉𝐷𝑆, 𝑉𝑇𝑆, 𝑉𝐵𝑆, 𝑉𝐽𝑆) =  ∑ 𝑙𝑖(𝑉𝐷𝑆)(∑ 𝑙𝑗(𝑉𝑇𝑆)(∑ 𝑙𝑘(𝑉𝐵𝑆)(∑ 𝑙𝑙(𝑉𝐽𝑆)𝑓(𝑉𝐷𝑆, 𝑉𝑇𝑆, 𝑉𝐵𝑆, 𝑉𝐽𝑆))))𝑙𝑘𝑗𝑖                (4.6) 

Interpolating polynomial is susceptible to Runge’s phenomenon i.e. oscillation, especially 

at the edges of an interval which increases in magnitude with polynomials of high degree over a 

set of equidistant interpolation points. The oscillation can be minimized by using nodes that are 
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distributed more densely towards the edges of the interval. One possible choice for generating non- 

uniform grid for this purpose is using Chebyshev nodes. 

  For nth order interpolation between an arbitrary interval [a,b], Chebyshev node xi (i = 

0,1,2,…,n) is defined as, 𝑥𝑖 = 12 (𝑎 + 𝑏) + 12 (𝑏 − 𝑎)cos (2𝑖−12𝑛 𝜋)           (4.7) 

For the variable of the highest order, available data points closest to Chebyshev nodes have 

been used for the development of Lagrange model instead of a uniform node set. 

    The order of the Lagrange polynomial is represented by the highest power of the 

independent variable and depends on the number of data points taken corresponding to that 

variable. If the order of an independent variable x is denoted by Ox and the number of sample 

points used for interpolation is nx then, 𝑂𝑥 = 𝑛𝑥 − 1                         (4.8)  

In this work, polynomial models are used for at most four variable functions. If the order 

of the variables VDS, VTG, VBG, VJG are ODS, OTG, OBG and OJG, respectively, then the total number 

of terms (Nterms) in the final expression will be,  𝑁𝑡𝑒𝑟𝑚𝑠 = (𝑂𝐷𝑆 + 1)(𝑂𝑇𝐺 + 1)(𝑂𝐵𝐺 + 1)(𝑂𝐽𝐺 + 1)         (4.9) 

The number of required additions and multiplications for evaluating the polynomial for a 

particular set of VDS, VTS, VBS, and VJS will dictate the speed of the circuit simulation. If the total 

number of additions/subtractions is Nadd and the total number of multiplications is Nmul then, 𝑁𝑎𝑑𝑑 = (𝑂𝐷𝑆 + 1)(𝑂𝑇𝐺 + 1)(𝑂𝐵𝐺 + 1)(𝑂𝐽𝐺 + 1) − 1 = 𝑁𝑡𝑒𝑟𝑚𝑠 − 1               (4.10) 

and 

  𝑁𝑚𝑢𝑙 = (𝑂𝐷𝑆+1)(𝑂𝑇𝐺+1)(𝑂𝐵𝐺+1)(𝑂𝐽𝐺+1)(𝑂𝐷𝑆+𝑂𝑇𝐺+𝑂𝐵𝐺+𝑂𝐽𝐺)2 − 𝑁𝑎𝑑𝑑                 (4.11) 
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which, after minor algebraic simplification becomes, 

  Nmul = 𝑁𝑡𝑒𝑟𝑚𝑠 × ((∑ 𝑂𝑖    )𝑖=𝐷𝑆,𝑇𝐺,𝐵𝐺,𝐽𝐺 /2 -1) +1                              (4.12) 

This dependence dictates that the complexity of the model will increase with an increase 

in the order which will reduce the simulation speed and increase the memory requirement. 

4.2.2 Model Validation 

G4FET models based on Lagrange polynomial are developed from experimental and 

TCAD Sentaurus training data for both p-channel and n-channel transistors. The order of the 

polynomial is determined by the number of data points used to develop the model. Then the model 

is validated using a comparison of current-voltage characteristics between another set of test data 

and model prediction.  

4.2.2.1 An n-Channel G4FET Simulated with TCAD Sentaurus (Device 1) 

   An n-channel G4FET was designed and simulated in TCAD Sentaurus. Table 4.1 gives the 

device geometry, doping levels and biasing conditions applied in generating the training data. 

Here, VJG is the voltage applied at both left and right junction-gates. The junction-gates were tied 

together during the simulations. The training data are used to develop a Lagrange polynomial 

model of the drain current, ID as a function of four independent variables VDS, VTG, VBG and VJG 

according to the method described in section 4.2.1. The order of top-gate voltage VTG, bottom-gate 

voltage VBG and junction-gate voltage VJG are chosen to be 5, 5 and 10, respectively. 
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Table 4.1: Geometry, Doping and Biasing for an n-Channel G4FET 
Geometry (µm) Doping Concentration (cm-3) Terminal Voltage (V) 

Length 1.5  Epi silicon 2.0x1017 

(Phosphorus) 

Top-gate 

(VTG) 

0 to 5 V in 0.5 V 

increment 

Width 0.4  Poly gate  1020 (Boron) Bottom-gate 

(VBG) 

0 to -15 V in 3 V 

decrement 

Gate oxide 

thickness 

.01  Both 

junction-

gate 

2.0x1020 (Boron) Left junction-

gate (VJG) 

0 to -5 V in 0.5 

V decrement 

Buried oxide 

thickness 

0.1  Source 1020 (Phosphorus) Right junction-

gate (VJG) 

0 to -5 V in 0.5 

V decrement 

Active epi silicon 

layer thickness 

0.1  Drain 1020 (Phosphorus) Drain  sweep 

(VDS) 

0 to 5 V in 0.05 

V increment 

   

The drain current versus the drain-source voltage and the corresponding relative errors 

from TCAD data and Lagrange model are shown in Figures 4.1 and 4.2, respectively for a test 

biasing condition (VBG = 0 V, VTG = 3.5 V and VJG = 0 V). The effect of model order on predictive 

accuracy is shown by changing the order of VDS from 5 to 25. The Chebyshev nodes for different 

orders are shown in the independent axis. The extrapolation of model behavior outside the 

modeling range is also shown. As evident from this figure, the accuracy improves with the increase 

in the order resulting in a reduction in mean relative error.  

In Figure 4.3, the junction-gate voltage, VJG has been varied from 0 to -4 V with the top-

gate voltage fixed at 3.5 V and for each of the junction-gate bias TCAD data and model predictions 

are superimposed. The order of VDS is chosen to be 8 and from the corresponding mean relative 

error, it is shown that the model fits reasonably well for all the isolines. 
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Figure 4.1: Drain current versus drain-source voltage from TCAD data and Lagrange 

model for different orders of VDS for an n-channel G4FET. 

 

 
Figure 4.2: Relative errors between TCAD data and Lagrange model for different orders 

of VDS for an n-channel G4FET. 
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Figure 4.3: Isolines of test data and model for different junction-gate voltages ranging from 

-4 V to 0 V in 1 V increment with order of VDS fixed at 8. 

 

4.2.2.2 Experimental Data from an n-Channel G4FET (Device 2) 

Device 2 is an n-channel transistor and has been fabricated in a conventional partially-

depleted SOI (PDSOI) technology. The width and length of the device are 0.4 µm and 0.9 µm, 

respectively. Lagrange polynomial interpolation is used to model the current-voltage 

characteristics of the device from experimental data. 

For the model development, the drain source voltage VDS was fixed at 50 mV, the bottom-

gate voltage VBG was swept from -5 V to 5 V in 2 V increment, the junction-gate voltage was swept 

from -4 V to -1 V in 1 V increment while the top-gate voltage was swept from -3 V to 3 V in 0.05 

V increment. Both junction-gates were tied together for all the measurements. The developed 

Lagrange polynomial model of the drain current, ID as a function of three independent variables 

VTG, VBG and VJG, based on this data, was then tested against a different set of experimental data.  
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Figure 4.4: Drain current versus top-gate voltage from experimental data and Lagrange 

model for different orders of VTG for an n-channel G4FET (Device 2). 
 

 

 

 
Figure 4.5: Relative errors in model prediction for different orders of VTG for an n-channel 

G4FET (Device 2). 
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For a particular test bias (VBG = 0 V, VDS = 50 mV and VJG = -1 V), the drain current versus 

the top-gate voltage and the corresponding relative errors are shown in Figure 4.4 and Figure 4.5, 

respectively. Here, the order of VTG has been changed from 4 to 10 while keeping the order of VBG 

and VJG fixed at 5 and 3, respectively. The model shows excellent fit with the test data, especially 

for order 7 or higher. 

In Figure 4.6, isolines for different bottom-gate voltage VBG are shown with their respective 

relative errors. Here, VBG has been changed from -4 V to 4 V in 2 V increment and for its five 

different values, model predictions are superimposed on experimental data. The mean error for 

each biasing condition indicates excellent fitting.  

4.2.2.3 A p-Channel G4FET Simulated Using TCAD Sentaurus (Device 3) 

   A p-channel G4FET has been designed using TCAD Sentaurus. The device geometry, the 

doping levels and the biasing conditions used for model development are shown in Table 4.2. 

 

 
Figure 4.6: Comparison between isolines of test data and Lagrange model for different 

bottom-gate voltages ranging from -4 V to 4 V in 2 V increment with the model order for VTG 

fixed at 7 (Device 2). 
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Table 4.2: Geometry, Doping and Biasing for a p-Channel G4FET 
Geometry (µm) Doping Concentration (/cm3) Terminal Voltage (V) 

Length 1.5 Epi silicon 2.0×1017 (Boron) Top-gate 

(VTG) 

0 to -5 V in 

0.5 V 

decrement 

Width 0.4 Poly gate 1020 (Phosphorus) Bottom-gate 

(VBG) 

0 to 15 V in 

3 V 

increment 

Gate oxide 

thickness 

.005 Both 

junctions 

2.0×1020 

(Phosphorus) 

Left junction-

gate(VJG) 

0 to 5 V in  

0.5 V 

increment 

Buried oxide 

thickness 

0.1 Source 2.0×1020 (Boron) Right 

junction-gate 

(VJG) 

0 to 5 V in 

0.5 V 

increment 

Active epi 

silicon layer 

thickness 

0.1 Drain 2.0×1020  (Boron) Source-drain  

sweep (VSD) 

0 to 5 V in 

0.05 V 

increment 

 

Here, VJG stands for the voltage applied at both the junction-gates since the junction-gates 

were tied together for all the simulations. Based on the TCAD data, the Lagrange polynomial 

model is developed for the drain current, ID as a function of four independent variables VSD, VTG, 

VBG and VJG following the method described in section 4.2.1. Here, the order of VTG, VBG and VJG 

are kept fixed at 4. The order of VSD has been swept from 5 to 10 to observe the effect of order on 

model accuracy. The developed model was then validated against a set of test data. The drain 

current versus the source-drain voltage and the corresponding relative errors are shown in Figure  
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Figure 4.7:  Drain current versus source-drain voltage from TCAD data and Lagrange 

model for different orders of VSD for a p-Channel G4FET (Device 3). 

 

 
Figure 4.8: Relative errors between TCAD data and Lagrange model for different orders 

of VSD for a p-channel G4FET (Device 3). 
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Figure 4.9: Drain current versus source-drain voltage for different junction-gate voltages 

ranging from 0 V to 4 V in 1 V increment and corresponding mean relative error (Device 3). 

 

4.7 and 4.8, respectively for a particular test bias (VBG = 0 V, VTG = -3.5 V and VJG = 1 V). It is 

evident from these figures that as the order of the model is increased, the error is reduced and the 

approximation gets better. The rate of improvement gradually slows down with an increase in the 

model order. 

Figure 4.9 shows isolines for five different values of junction-gate bias VJG. The top and 

bottom-gate bias are fixed at -3.5 V and 0 V, respectively while the junction-gate bias is swept 

from 0 to 4 V. The model order for VSD is fixed at 8 and the corresponding mean error for each 

isoline demonstrates good fitting. 

 

4.2.2.4 Experimental Data from a p-Channel G4FET (Device 4) 

A p-channel G4FET was fabricated in a conventional 0.35 µm partially-depleted SOI 

(PDSOI) technology with a width of 0.35 µm and a length of 3.4 µm. For the model development, 

the source-drain voltage VSD was fixed at 50 mV, the bottom-gate voltage VBG was fixed at 0 V, 

the junction-gate voltage VJG was swept from 4 V to 0 V in -0.4 V decrement and the top-gate 
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voltage was swept from -3.3 V to 0 V in 0.003 V increment. Based on this data, the Lagrange 

model of the drain current, ID as a function of two independent variables VTG and VJG is developed 

and then tested against a different set of experimental data. The drain current versus the top-gate 

voltage and the corresponding relative errors for a particular test bias (VSD = 50 mV, VBG = 0 V, 

VJG = 1.4 V) are shown in Figure 4.10 and Figure 4.11, respectively. Here, the order of VJG is kept 

fixed at 10 and the order of VTG has been increased from 4 to 10. 

Isolines for different junction-gate bias, VJG are shown in Figure 4.12. Here, VJG has been 

changed from 0.6 to 1.8 V in 0.4 V increment. The current decreases as the reverse bias in junction-

gate increases. The small mean errors for all the isolines demonstrate good fitting with the data. 

 

 
Figure 4.10: Comparison of ID-VTG between experimental data and Lagrange model for 

different orders of VTG for a p-Channel G4FET (Device 4). 
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Figure 4.11: Relative errors between experimental data and Lagrange model for different 

orders of VTG for a p-Channel G4FET (Device 4). 

 

 
Figure 4.12:  Isolines of test data and model (10th order VTG ) for different junction-gate 

voltages ranging from 0.6 V to 1.8 V in 0.4 V increment arranged from top to bottom  (Device 4). 
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4.2.2.5 Incorporation of Device Geometry 

The effect of device geometry can be incorporated in these models by considering width 

and length as independent variables in addition to the bias voltages. An n-channel G4FET was  

simulated in TCAD Sentaurus for different widths (W) and lengths (L) with W being swept from 

0.25 µm to 0.5 µm and L being swept from 0.8 µm to 1.8 µm, respectively. 

Based on these data, multivariate Lagrange polynomial model is developed for drain 

current as a function of W, L and VDS. Then the model was verified against a test device within this 

geometry range. Figure 4.13 and Figure 4.14 show the current-voltage characteristics and 

corresponding relative error for different model orders. 

 

 

Figure 4.13: Comparison of drain current versus drain-source voltage between TCAD data 

and Lagrange model of test geometry for different orders. 
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Figure 4.14: Relative errors between TCAD data and Lagrange model of test geometry for 

different orders. 

 

4.2.2.6 First Order Characteristics i.e. Transconductance and Drain Output 

Resistance 

First order characteristics such as transconductance and drain output resistance are crucial 

for transient simulation in SPICE simulators. In Figure 4.15, the transconductance versus the top-

gate voltage is shown for Device 4 using different orders of the Lagrange model. Output drain 

resistance versus drain-source voltage for Device 1 is shown in Figure 4.16 for different orders of 

the Lagrange model where the y axis is shown in logarithmic scale. As these figures show, an 

increase in the model order improves the first order matching. 

4.2.3 Implementation in Circuit Simulator 

Based on the multivariate Lagrange polynomial model, both n-channel and p-channel 

G4FET SPICE models have been developed. G4FET has been modeled as a behavioral current  
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Figure 4.15: Comparison of gm – VTG between experimental data and Lagrange model for different 

orders of VTG for a p-channel G4FET (Device 4). 

 

 

Figure 4.16: Comparison of rout - VDS between TCAD data and Lagrange model for 

different orders of VDS for an n-channel G4FET (Device 1). 
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source between the drain and the source terminals and its current is modeled as a function of the 

terminal voltages VTS, VBS, VJS and VDS (Figure 4.17) and implemented as a sub-circuit. This block 

can be implemented in a SPICE simulator for simulating any circuit containing both n-channel and 

p-channel G4FETs.The developed model has also been implemented in CadenceTM which uses 

Spectre simulator. The behavioral model for CadenceTM implementation is written in Verilog A. 

Most simulators use Newton-Raphson algorithm which requires continuous functions with 

continuous first derivatives. Since Lagrange polynomials are infinitely continuous, they satisfy 

 

Table 4.3: Computational Complexity of Lagrange Model 

Device 1(n-channel G4FET) 

Order of 

VDS 

Total 

Number of 

Terms 

(Nterms) 

Total Number of 

Required Addition/ 

Subtraction (Nadd) 

Total Number of 

Required 

Multiplication 

(Nmul) 

   4 1125 1124 10126 

5 1350 1349 12826 

6 1575 1574 15751 

7 1800 1799 18901 

8 2025 2024 22276 

9 2250 2249 25876 

10 2475 2474 29701 

Device 3 (p-channel G4FET) 

Order of   

VSD 

Total 

Number of 

terms 

(Nterms) 

Total number of 

required addition/ 

subtraction (Nadd) 

Total number of 

required 

multiplication 

(Nmul) 

4 625 624 4376 
5 750 749 5626 
6 875 874 7001 
7 1000 999 8501 
8 1125 1124 10126 
9 1250 1249 11876 
10 1374 1374 13751 
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Figure 4.17: Behavioral model of an n-channel G4FET.   

 

these requirements nicely. The computational complexity for the host simulator program depends 

heavily on the evaluation of the polynomial model for each set of four terminal voltages. A list of 

required terms, additions and multiplications for the developed model for Device 1 (n-channel 

G4FET) and Device 3 (p-channel G4FET) is shown in Table 4.3. The order of the independent 

variables VTG, VBG and VJG are 4, 8 and 4, respectively for Device 1 while for Device 3 all three 

variables have a fixed order of 4. The increase in order usually (but not always) improves the 

accuracy but it comes with sharp increase in computational cost as evident from Table 4.3. 

4.2.4 Results from G4FET Circuit Simulation 

A negative differential resistance (NDR) circuit has been simulated with the developed 

model. The schematic of the conventional, two-terminal NDR device, known as “lambda diode” 

[106], is shown in Figure 4.18(a). The G4-NDR is obtained by replacing the JFETs with 

complementary G4-FETs as shown in Figure 4.18(b) with the junction-gates being tied together. 
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a 

                         

b 

Figure 4.18: (a) A conventional two-terminal JFET NDR device, (b) a four-terminal G4FET 

NDR device. 

 

G4FET NDRVn Vp

V

I

 
Figure 4.19: A simplified symbol of G4FET NDR.                                      

 

This innovative NDR device has four terminals, the extra two-terminals being the top-gates 

of the n-channel and the p-channel G4FETs, driven by the voltages Vn and Vp, respectively. A 

simplified schematic is shown in Figure 4.19. In the conventional lambda structure, the NDR 

parameters such as peak/valley voltages and peak current are functions of the pinch-off voltages, 

VT and the transconductance, gm of each JFET which are fixed for a chosen pair of JFETs. 

However, in the G4FET, VT  and gm with respect to the junction-gates can be modulated by the 

MOS front gate. As a result, the parameters of a G4-NDR device can be controlled by both Vn and 

Vp, which leads to a significant improvement in functionality compared to the lambda diode. 
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Figure 4.20: An LC oscillator using G4-NDR. 

 

A G4-NDR loaded with an LC tank works as an LC oscillator (Figure 4.20). In [34], this 

oscillator has been demonstrated with VDD = 3.3 V, L = 0.4 mH, C = 110 pF, fout = 768 KHz, and 

Vout,pp = 2.5 V. This circuit has been simulated with the developed SPICE model and the result is 

shown in Figure 4.21. The simulated oscillator output has a 2.47 V peak-to-peak amplitude with a 

frequency of 769 kHz compared to the experimental result of 2.5 V peak-to-peak amplitude with 

a frequency of 768 kHz with a relative error of 1.2 % in signal amplitude. 
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Figure 4.21: (a) Output from SPICE simulator (769 kHz signal with 2.47 Vp-p amplitude), 

(b) experimental result (768 kHz with 2.5 Vp-p amplitude). 
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4.3 Numerical Method 2 (Multidimensional Bernstein Polynomial 

Model) 

 Although Lagrange polynomials reproduce zeroth order characteristics such as I-V 

characteristics reasonably well, they do not always preserve the shape of the function with 

adequate precision which can cause problems while incorporating the model into a circuit 

simulator. One possible alternative is to use Bernstein polynomial instead of Lagrange polynomial. 

4.3.1 Model Formulation 

    To capture the current-voltage characteristic of a G4FET, Multivariate Bernstein 

polynomials are used to derive the numerical models from the available data set. Bernstein 

polynomial of degree n associated with function f(x) on interval [a, b] is defined as, 𝐵𝑛(𝑓; 𝑥) = 1(𝑏−𝑎)𝑛 ∑ (𝑛𝑖 )(𝑥 − 𝑎)𝑖(𝑏 − 𝑥)𝑛−𝑖𝑓(𝑥𝑖)𝑛𝑖=0               (4.13) 

where (𝑛𝑖 ) is the binomial coefficient and,  𝑥𝑖 = 𝑎 + 𝑖(𝑏−𝑎𝑛 ), i = 0,1,2, …, n         (4.14) 

is an evenly distributed set of points in the interval [a, b]. 

Equation (4.13) can be re-written as, 𝐵𝑛(𝑓; 𝑥) = ∑ 𝐵𝑛,𝑖𝑓(𝑥𝑖)𝑛𝑖=0                                                                                             (4.15) 

where Bn,i = Bernstein Basis Polynomial = 
1(𝑏−𝑎)𝑛 ∑ (𝑛𝑖 )(𝑥 − 𝑎)𝑖(𝑏 − 𝑥)𝑛−𝑖𝑛𝑖=0                        
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Bernstein polynomial is not an interpolating function. Rather it is an approximation of the 

function f(x) and with the increase in degree n, it converges uniformly to f(x). The extension to 

multidimensional case is similar to the Lagrange method described in section 4.2.1. 

The modeling procedure starts with a set of available data from either an experiment or a 

simulation. The basis polynomial for each independent variable is calculated using equation (4.15) 

and then these polynomials are inserted into equation (4.6).  

4.3.2 Model Validation 

G4FET models based on multivariate Bernstein polynomial approximation are developed 

from experimental and TCAD Sentaurus training data for both n-channel and p-channel transistors. 

The order of the polynomial is determined by the number of data points used to develop the model. 

Then the current-voltage characteristics predicted by the model are validated against another set 

of test data. 

4.3.2.1 An n-Channel G4FET Simulated Using TCAD Sentaurus (Device 1) 

An n-channel G4FET has been designed using TCAD Sentaurus. The device geometry, 

doping levels and biasing conditions are given in Table 4.1. VJG is the voltage applied at both 

junction-gates. Based on the I-V data obtained from TCAD, Bernstein polynomial models are 

developed for the drain current, ID as a function of four independent variables VDS, VTG, VBG and 

VJG following the method described in section 4.3.1. The order of VDS has been changed to observe 

the effect of the order on the model accuracy. 
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 For a test biasing condition (VBG = 0 V, VTG = 3.5 V and VJG = 0 V), the drain current versus 

the drain-source voltage characteristics and the corresponding relative errors are shown in Figure 

4.22 and Figure 4.23, respectively. As these figures show, the increase in model order reduces 

error and improves the approximation. Although the accuracy is less than its Lagrange counterpart, 

it is better at preserving monotonicity of the function. The Chebyshev interpolation nodes are 

shown in the independent axis. The extension of the model behavior outside the data range is also 

shown. 

 

 

Figure 4.22: Drain current versus drain-source voltage from TCAD data and Bernstein 

model for different orders of VDS in an n-channel G4FET (Device 1). 
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Figure 4.23: Relative errors between TCAD data and Bernstein model for different orders 

of VDS for an n-channel G4FET (Device 1). 

 

4.3.2.2 Experimental Data from an n-Channel G4FET (Device 2) 

Multivariate Bernstein polynomial was used to model an n-channel G4FET from 

experimental data. The device was fabricated in a conventional partially-depleted SOI (PDSOI) 

technology with a width of 0.4 µm and a length of 0.9 µm. Both junction-gates were tied together 

for simplicity.  

The biasing condition for obtaining training data set was described in section 4.2.2.2. The 

developed Bernstein polynomial model of the drain current, ID as a function of three independent 

variables VTG, VBG and VJG was then tested against a different set of experimental data. For a 

particular test bias (VBG = 0 V, VDS = 50 mV and VJG = -1 V), the drain current versus the top-gate 

voltage and the corresponding relative errors are shown in Figure 4.24 and Figure 4.25, 

respectively. The Chebyshev nodes are used as interpolation sites and they are shown in the 

independent axis.  
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Figure 4.24: Drain current versus top-gate voltage from experimental data and Bernstein 

model for different orders of VTG for an n-channel G4FET (Device 2). 

 

 

 
Figure 4.25: Relative errors between experimental data and Bernstein model for different 

orders of VTG for an n-channel G4FET (Device 2). 
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4.3.2.3 A p-Channel G4FET Simulated Using TCAD Sentaurus (Device 3) 

A p-channel G4FET has been designed using TCAD Sentaurus. The device geometry, the 

doping levels and the biasing conditions used for model development are shown in Table 4.2. Here, 

VJG stands for the voltage applied at both the junction-gates since the junction-gates were tied 

together for all the simulations. Based on the TCAD data, the Bernstein polynomial model is 

developed for the drain current, ID as a function of four independent variables VSD, VTG, VBG and 

VJG following the method described in section 4.3.1. The order of VSD is varied to observe the 

effect of order on model accuracy. The drain current versus the source-drain voltage and the 

corresponding relative errors are shown in Figure 4.26 and Figure 4.27, respectively for a particular 

test bias (VBG = 0 V, VTG  = -3.5 V and VJG  = 1 V).  

 

 
Figure 4.26:  Comparison of ID-VSD between TCAD data and Bernstein model for different 

orders of VSD for a p-channel G4FET (Device 3). 
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Figure 4.27: Relative errors between TCAD data and Bernstein model for different orders 

of VSD for a p-channel G4FET (Device 3). 

 

It is evident from these figures that as the order of the model is increased, the error is 

reduced and the approximation gets better.  The Chebyshev nodes are used as interpolation sites 

and are shown in the independent axis. The model is extrapolated to show its operating behavior 

outside the modeling range. 

4.3.2.4 Experimental Data from a p-Channel G4FET (Device 4) 

A p-channel G4FET was fabricated in a conventional 0.35 µm partially-depleted SOI 

(PDSOI) technology with a width of 0.35 µm and a length of 3.4 µm. The source-drain voltage 

VSD was fixed at 50 mV, the bottom-gate voltage VBG was fixed at 0 V, the junction-gate voltage 

VJG was swept from 4 V to 0 V in -0.4 V decrement and the top-gate voltage was swept from -

3.3V to 0 V in 0.003 V increment. The Bernstein polynomial model of the drain current, ID as a 

function of two independent variables VTG and VJG is developed using these training data and tested 

against a different set of experimental data.  
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Figure 4.28: Comparison of ISD-VTG between experimental data and Bernstein model for 

different orders of VTG for a p-channel G4FET (Device 4). 

 

 

 

 
Figure 4.29: Relative errors between experimental data and Bernstein model for different 

orders of VTG for a p-channel G4FET (Device 4). 
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The drain current versus the top-gate voltage and the corresponding relative errors for a 

particular test bias (VSD = 50 mV, VBG = 0 V, VJG = 0.6 V) are shown in Figure 4.28 and Figure 

4.29, respectively. Here, the order of VTG has been increased from 4 to 10 to observe the effect of  

order on model accuracy. As the figures show, the model accuracy improves with an increase in 

the order of the independent variable. 

 

4.3.2.5 Incorporation of Device Geometry 

The geometrical features such as width and length of the transistors can be considered as 

independent variables and by including these variables in the final drain current expression in 

addition to the bias voltages, their effect, can be incorporated in the model. Here, an n-channel 

G4FET was designed and simulated in TCAD Sentaurus with width (W) swept from 0.25 µm to 

0.5 µm in 0.05 µm increment and length (L) swept from 0.8 µm to 1.8 µm in 0.2 µm increment.  

A Bernstein polynomial model for drain current as a function of W, L and VDS is developed 

based on these data. The model is verified against a test device within the training geometry range 

and the results are shown in Figure 4.30 and Figure 4.31. Here, the top-gate voltage is kept fixed 

at 4 V, the width and the length are 0.35 µm and 1.5 µm, respectively. The figures demonstrate a  

substantial reduction in error with the increase in the model order. 

4.3.2.6 First Order Characteristics i.e. Transconductance and Drain Output 

Resistance 

Although the Bernstein models of the same order have less accuracy compared to the 

Lagrange models, they are better in preserving the shape of the function i.e. concavity/convexity, 
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Figure 4.30: Drain current versus drain-source voltage from TCAD data and Bernstein 

model of different orders for test geometry. 

 

 

 
Figure 4.31: Relative errors between TCAD data and Bernstein model for test geometry. 
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monotonicity etc. and provide better first order characteristics such as transconductance and drain 

output resistance which play an important role in SPICE circuit simulators. A comparison between 

experimental data and Bernstein model for the transconductance versus top-gate voltage for 

Device 4 is shown in Figure 4.32. Here, bottom-gate voltage, source-drain voltage and junction-

gate voltage are fixed at 0 V, 50 mV and 0.6 V respectively.  

A comparison between TCAD data and different orders of Bernstein model for drain output 

resistance versus drain-source voltage for Device 1 is shown in Figure 4.33 where the vertical axis 

is shown in logarithmic scale. Here, the bottom-gate voltage, the top-gate voltage and the junction-

gate voltage are fixed at 0 V, 3.5 V and 0 V, respectively.   

 

 
Figure 4.32: Transconductance versus top-gate voltage from experimental data and 

Bernstein model for different orders of VTG for a p-channel G4FET (Device 4). 
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Figure 4.33: Output resistance versus drain-source voltage from TCAD data and Bernstein 

model for different orders of VDS for an n-channel G4FET (Device 1). 

 

4.4 Numerical Method 3 (Multivariate Regression Polynomial Model) 

In the previous two methods described in section 4.2 and 4.3, the increase in accuracy 

requires a denser grid resulting in a higher order Lagrange/ Bernstein model with concomitant 

slowing down of simulation speed. In addition, model terms are fixed, cannot be simplified and 

allow only integer exponents. One way of solving these problems is the use of multivariate 

regression analysis. In this approach, the order of the final model does not solely depend on the 

number of sample points. Model developer has the flexibility of picking specific model terms and 

consequently, with some prior knowledge of device behavior, model can be simplified to a great 

extent. Besides, non-integer exponents can be implemented as well. 

4.4.1 Model Formulation 

In this approach, a polynomial regression model is first chosen consisting of suitable model 

terms. Then the coefficients of this regression model are estimated for least square error. The total 



64 

 

number of terms in the model is chosen by user, not predetermined by the number of sample points. 

This model also allows non-integer exponents. With some prior knowledge of the expected 

behaviour of the devices, simplified model can be developed. 

The coefficients of a polynomial regression model are calculated using traditional linear 

least squares techniques. Once the multivariate polynomial model has been specified, the problem 

is broken down to the estimation of the vector x for the linear system of equations as follows, 

                      A*x = y         (4.16) 

where A is the matrix of model terms of independent variables evaluated at chosen data points, x 

is the vector of unknown coefficients and y is the vector of known dependent variable. 

For this estimation to have a unique solution, the matrix A should be both nonsingular and 

have more rows than columns. Problems with fewer rows than columns are underdetermined and 

one needs to acquire more data if the number of data points is fewer than the coefficients to be 

estimated. 

Assuming that A is an m×n matrix, with m>n, this system can be solved through different 

approaches. A pivoted QR decomposition is used in this work which is quite efficient and 

numerically stable. 

The order of the regression polynomial is represented by the highest power of the 

independent variable. It can be chosen by the model developer corresponding to that variable, 

independent of the number of data points taken. If the order of the variables VDS (drain to source 

voltage), VTS (top-gate voltage), VBS (bottom-gate voltage) and VJS (junction-gate voltage) are ODS, 

OTS, OBS and OJS, respectively, then the total number of terms (Nterms) in the final expression will 

be,  𝑁𝑡𝑒𝑟𝑚𝑠 = (𝑂𝐷𝑆 + 1)(𝑂𝑇𝑆 + 1)(𝑂𝐵𝑆 + 1)(𝑂𝐽𝑆 + 1)        (4.17) 
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The number of required additions and multiplications for evaluating the model polynomial 

for a particular set of model terms containing VDS, VTS, VBS, and VJS will dictate the speed of the 

circuit simulation. If the total number of additions/subtractions is Nadd and the total number of 

multiplications is Nmul then, 𝑁𝑎𝑑𝑑 = (𝑂𝐷𝑆 + 1)(𝑂𝑇𝑆 + 1)(𝑂𝐵𝑆 + 1)(𝑂𝐽𝑆 + 1) − 1 = 𝑁𝑡𝑒𝑟𝑚𝑠 − 1      (4.18) 

Nmul = 𝑁𝑡𝑒𝑟𝑚𝑠 × ((∑ 𝑂𝑖    )𝑖=𝐷𝑆,𝑇𝑆,𝐵𝑆,𝐽𝑆 /2 -1) +1        (4.19) 

Due to this dependence, the complexity of the model will increase with an increase in the 

order resulting in a slowdown of the simulation speed. With prior knowledge of the device 

characteristics, the model developer may select a few model terms of suitable orders for capturing 

essential behavior without choosing all possible combinations of model terms up to a given order 

and substantially reduce the complexity of the model. 

4.4.2 Model Validation 

        Current-voltage data for different bias values have been gathered from both experiment 

and TCAD Sentaurus for both p-channel and n-channel G4FET transistors. Models for these 

devices are formulated using multivariate regression polynomial model. Then the current-voltage 

characteristics predicted by the model are tested against another set of test data. 

4.4.2.1 An n-Channel G4FET Simulated Using TCAD Sentaurus (Device 1) 

Device 1 is an n-channel G4FET designed and simulated using TCAD Sentaurus. The 

device geometry, the doping levels and the biasing conditions are shown in Table 4.1. Based on 

the I-V data extracted from TCAD, a multivariate regression polynomial model is developed for 
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the drain current, IDS as a function of four independent variables VDS, VTG, VBG and VJG following 

the method described in section 4.4.1. Different values are used for the order of VDS and VBG in the 

model equation to observe the effect of varying order on model accuracy. For a particular bias 

(VBG = 0 V, VTG = 2.25 V and VJG = -1 V), the drain current versus the drain-source voltage 

characteristics and the corresponding relative error are shown in Figure 4.34 and Figure 4.35, 

respectively.  The order of VTG and VJG are kept fixed at 4, the order of VBG is chosen to be 3 and 

the order of VDS is changed from 6 to 10 to show the effect of increasing order on model 

characteristics. Figure 4.35 demonstrates that the error is decreasing from 0.90738% to 0.88305% 

to 0.84004% as we increase the order from 6 to 8 to 10. For Figure 4.36 and Figure 4.37, the order 

of bottom-gate voltage has been changed from 3 to 4. In Figure 4.38, isolines are shown for 

different values of VJG ranging from 0 V to -4 V, where the order of four independent variables,  
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Figure 4.34: Comparison of IDS-VDS between TCAD data and regression model for different 

orders of VDS with order of VBG fixed at 3 for an n-channel G4FET. 
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Figure 4.35: Relative error between TCAD data and regression model for different orders 

of VDS with VBG fixed at 3 for an n-channel G4FET. 
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Figure 4.36: Comparison of IDS-VDS between TCAD data and regression model for different 

orders of VDS with order of VBG fixed at 4 for an n-channel G4FET. 
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Figure 4.37: Relative error between TCAD data and regression model for different orders 

of VDS with order of VBG fixed at 4 for an n-channel G4FET. 
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Figure 4.38: Comparison between isolines of test data and regression model (order of VDS, 

VBG, VTG, VJG respectively 10, 4, 5 and 5) for different junction-gate voltages ranging from -4 V to 

0 V in 1 V increment arranged from bottom to top. 
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VDS, VBG, VTG and VJG are kept as 10, 4, 5 and 5, respectively, in the model equation. From the 

graph and the values of corresponding mean relative error, it is clear that the model fits reasonably 

well for all the isolines. 

4.4.2.2 Experimental Data from an n-Channel G4FET (Device 2) 

An n-channel G4FET was fabricated in a conventional partially-depleted SOI (PDSOI) 

technology with a width of 0.4 µm and a length of 0.9 µm. The experimental data acquired from 

this device is used to generate regression polynomial model. Here again, both junction-gates are 

tied together for simplicity.  

For data generation, the top-gate voltage VTG was swept from -3 V to 3 V in 0.05 V 

increment, the junction-gate voltage VJG was swept from -4 to -1 V in 1 V increment and the 

bottom-gate voltage VBG was swept from -5 V to 5 V in 2 V increment. The drain-source voltage, 

VDS was fixed at 50 mV. Based on this data, a regression polynomial model is used to express the 

drain current, ID as a function of three independent variables VTG, VBG and VJG. The model was 

then tested against a different set of experimental data.  

Figure 4.39 to Figure 4.42 show the drain current versus the top-gate voltage and the 

corresponding relative error for a particular test bias (VBG = 0 V, VDS = 50 mV and VJG = -1 V). 

Here, the order of VTG and VBG are varied for observing the effect of model order on accuracy. As 

expected, the error is reduced with an increase in the model order. Figure 4.43 shows the isolines 

for different VBG values with corresponding relative error. The order of variables VBG, VTG and VJG 

are selected as 3, 8 and 2, respectively for creating the isolines. The graph and the values of relative 

error show that the model agrees reasonably well with experimental data. 
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Figure 4.39: Comparison of IDS-VTG between experimental data and regression model for 

different orders of VTG with the order of VBG and VJG fixed at 2.  
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Figure 4.40:  Relative error between experimental data and regression model for different 

orders of VTG with the order of VBG and VJG fixed at 2. 
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Figure 4.41: Comparison of IDS -VTG between experimental data and regression model for 

different orders of VTG with the order of VJG and VBG fixed at 2 and 4, respectively. 
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Figure 4.42:  Relative error between experimental data and regression model for different 

orders of VTG with the order of VJG and VBG fixed at 2 and 4, respectively. 
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Figure 4.43: Comparison between isolines of test data and regression model (order of VBG, 

VTG, VJG respectively 3, 8 and 2) for different bottom-gate voltages ranging from -4 V to 4 V in 2 

V increment arranged from bottom to top. 

 

4.4.2.3 A p-Channel G4FET Simulated Using TCAD Sentaurus (Device 3) 

A p-channel G4FET has been built and simulated with TCAD Sentaurus. The device 

geometry, the doping levels in different regions and the biasing conditions used for model 

development are given in Table 4.2. Here, VJG stands for the voltage applied at both the junction-

gates since the junction-gates were tied together for all the simulations. Based on the I-V data 

extracted from TCAD, a multivariate regression polynomial model is developed for the drain 

current, ID as a function of four independent variables VSD, VTG, VBG and VJG.  

A set of independent test data is used to validate the developed model. The drain current 

versusthe source-drain voltage and the corresponding relative error are shown in  

Figure 4.44 to Figure 4.47, for a particular test bias (VBG = 0 V, VTG = -2.25 V and VJG = 2 

V). Here, the order of VBG and VJG are kept fixed at 4 and 5, respectively. The order of VSD has 
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been changed from 6 to 10 and the order of VTG has been changed from 4 to 5 to observe the effect 

of order on model accuracy.  

Isolines for different values of VJG are shown in Figure 4.48. In this figure, the order of 

VSD, VBG, VTG and VJG have been chosen to be 10, 4, 5 and 5, respectively. The top-gate and the 

bottom-gate are biased at -2.25 V and 0 V, respectively. The junction-gate voltage is swept from 

0 V to 4 V. From the graph and the corresponding mean relative error values, it is clear that the 

model matching is quite good for different biasing conditions. 
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Figure 4.44:  Comparison of ISD-VSD between TCAD data and regression model for 

different orders of VSD with order of VTG fixed at 4 for a p-channel G4FET. 
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Figure 4.45: Relative error between TCAD data and regression model for different orders 

of VSD with order of VTG fixed at 4 for a p-channel G4FET. 
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Figure 4.46:  Comparison of ISD-VSD between TCAD data and regression model for 

different orders of VSD with order of VTG fixed at 5 for a p-channel G4FET. 
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Figure 4.47: Relative error between TCAD data and regression model for different orders 

of VSD with order of VTG fixed at 5 for a p-channel G4FET. 
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Figure 4.48: Comparison between isolines of test data and regression model for different 

junction-gate voltages ranging from 0 V to 4 V in 1 V increment (Device 3). 
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4.4.2.4 Experimental Data from a p-Channel G4FET (Device 4) 

Device 4 is a p-channel G4FET fabricated in a conventional 0.35 µm partially-depleted SOI 

(PDSOI) technology with a width of 0.35 µm and a length of 3.4 µm. Experimental source-drain 

current data were acquired for a range of biasing conditions.  The source-drain voltage VSD was 

fixed at 50 mV, the bottom-gate voltage VBG was fixed at 0 V, the junction-gate voltage VJG was 

swept from 4 V to 0 V in -0.4 V decrement and the top-gate voltage VTG was swept from -3.3 V to 

0 V in 0.033 V increment. Using these data, a regression polynomial model is developed to express 

the source-drain current, ISD as a function of two independent variables VTG and VJG. The model is 

then verified against a different set of test data. The source-drain current versus the top-gate voltage 

and the corresponding relative error for a particular test bias (VSD = 50 mV, VBG = 0 V, VJG = 1 V) 

are shown in Figure 4.49 to Figure 4.52. Here, the order of VJG and VTG are varied to show the 

effect of order on model accuracy. 

Figure 4.53 shows isolines for different values of VJG with the order of VTG and VJG fixed 

at 9 and 6, respectively. The bottom-gate voltage and the source-drain voltage are fixed at 0 V and 

50 mV. The junction-gate bias is swept from 0.2 V to 1.4 V in 0.4 V increment. As evident from 

the graphs and corresponding errors, the regression model matches very well with experimental 

data for all the isolines. 
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Figure 4.49: Comparison of ISD-VTG between p-G4FET experimental data and regression 

model for different orders of VTG with the order of VJG fixed at 3. 
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Figure 4.50: Relative error between p-G4FET experimental data and regression model for 

different orders of VTG with the order of VJG fixed at 3. 
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Figure 4.51: Comparison of ISD-VTG between p-G4FET experimental data and regression 

model for different orders of VTG with the order of VJG fixed at 6. 
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Figure 4.52: Relative error between p-G4FET experimental data and regression model for 

different orders of VTG with the order of VJG fixed at 6. 
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Figure 4.53: Comparison between isolines of test data and regression model for different 

junction-gate voltages ranging from 0.2 V to 1.4 V in 0.4 V increment (Device 4). 

 

4.4.2.5 Modeling of Device Geometry 

  Geometric dimensions i.e. width, length and epi silicon thickness of G4FET can be treated 

as independent variables similar to the terminal voltages. Then the resulting regression model will 

include additional model terms including geometric variables. Here, an n-channel G4FET I-V data 

is obtained from TCAD Sentaurus for different widths (W) and lengths (L) with W and L being 

swept from 0.25 µm to 0.5 µm and from 0.8 µm to 1.8 µm, respectively. Then multivariate 

regression polynomial model is used to develop an expression for drain current as a function of 

VDS, W and L. 

This model is validated using data from a different test device within the training geometry 

range. The current-voltage characteristics and corresponding relative errors are shown in Figure 

4.54 and Figure 4.55. The top-gate bias is fixed at 4 V and length and width are chosen to be 1.5 

µm and 0.35 µm. Isolines for different width are shown in Figure 4.56. The mean relative error 

shows good matching for all the isolines.  
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Figure 4.54: Comparison of drain current versus drain-source voltage between TCAD data 

and regression model for different orders of VDS for test geometry. 
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Figure 4.55: Relative errors between TCAD data and regression model for different orders 

of VDS for test geometry. 

 



81 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Drain-Source Voltage, VDS  (V)

0

20

40

60

80

100

120

140

160

180

D
ra

in
 C

u
rr

en
t,

 I
D

S
 (

A
)

V
TG

 = 4 V

W = 0.3 to 0.5 µm 

L = 1.5 µm

TCAD DATA for  W= 0.3 µm  

Model with Mean  Error: 1.2779%

TCAD DATA for  W= 0.35 µm

Model with Mean  Error: 0.65542%

   TCAD DATA for  W= 0.4 µm

Model with Mean  Error: 2.3677%

TCAD DATA for  W= 0.45 µm

Model with Mean  Error: 0.52768%

TCAD DATA for  W= 0.5 µm

Model with Mean  Error: 1.1504%

 

Figure 4.56: Comparison between TCAD data and regression model of isolines for 

different widths ranging from 0.3 to 0.5 µm in .05 µm increment arranged from bottom to top. 

 

4.4.2.6 First Order Characteristics (Device Transconductance and Drain 

Output Resistance) 

To show the continuity and smoothness of current-voltage curve, plots of first order 

characteristics such as transconductance and drain output resistance are shown in Figure 4.57 and 

Figure 4.58, respectively. Figure 4.57 shows a comparison between the experimental data and the 

regression model of different orders for transconductance versus top-gate voltage for Device 4. 

Figure 4.58 shows the drain output resistance versus the drain-source voltage for different model 

orders with vertical axis in logarithmic scale. 
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Figure 4.57: Comparison of gm–VTG between experimental data and regression model for 

different orders of VTG and VJG for a p-channel G4FET (Device 4). 

 

 

 

Figure 4.58: Comparison of rout - VDS between TCAD data and regression model for 

different orders of VDS and VBG for an n-channel G4FET (Device 1). 
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4.4.3 Circuit Simulator (SPICE and SpectreTM) Implementation  

Models of both n-channel and p-channel G4FETs have been created using multivariate 

regression polynomial for circuit simulator implementation. G4FET transistor has been modelled 

as a sub-circuit containing a behavioural current source between its drain and source terminals and 

its current is modelled as a function of the terminal voltages VTS, VBS, VJS and VDS (Figure 4.17). 

This block can be implemented in a SPICE simulator for simulating any circuit using G4FET. 

Here, the junction-gates are tied together for simplicity. 

The developed model has also been implemented in CadenceTM which uses SpectreTM 

simulator. The behavioral model for CadenceTM implementation has been written in Verilog A. 

 

Table 4.4: Computational Complexity of Regression Model 
Order of 

VDS 

Order of 

VBG 

Total Number of 

Terms (Nterms) 

Total Number of 

Required Addition/ 

Subtraction (Nadd) 

Total Number of 

Required 

Multiplication (Nmul) 

4 3 500 499 3251 

6 3 700 699 5251 

8 3 900 899 7651 

4 5 750 749 5626 

6 5 1050 1049 8926 

8 5 1350 1349 12826 

 

Most simulators solve a system of circuit equations using Newton-Raphson algorithm 

which requires a continuous function with continuous first derivative. The regression polynomial 

is infinitely continuous and it satisfies these requirements nicely. The computational burden on the 
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host simulator program depends heavily on the evaluation of the regression polynomial for each 

set of four terminal voltages. A list of required terms, additions and multiplications for the 

developed model for Device 1 (n-channel G4FET) is shown in Table 4.4. Here, the order of the 

independent variables VTG and VJG are kept fixed at 4.  An increase in order usually improves the 

accuracy accompanied with a sharp increase in computational cost as evident from Table 4.4. 

4.4.4 Results from G4FET Circuit Simulation  

The developed model is used to simulate two circuits containing G4FETs. The first one is 

a LC oscillator using negative differential resistance (NDR) circuit made of G4FETs.  It was 

described in section 4.2.4. A G4-NDR with a LC tank load works as an LC oscillator (Figure 4.20). 

This oscillator circuit has been previously demonstrated [34] with VDD = 3.3 V, L= 0.4 mH, C = 

110 pF.   

 

 

a 

 

b 

Figure 4.59: (a) Output from SPICE simulator, (b) experimental result. 

 

    The developed model is written in VerilogA to simulate this circuit using SPECTRETM 

simulator in CadenceTM and the result is shown in Figure 4.59. It shows good agreement with the 

experimental result [35]. The simulated oscillator output has 2.54 V peak-to-peak amplitude with 
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a frequency of 763 kHz compared to the experimental result of 2.5 V peak-to-peak amplitude with 

a frequency of 768 kHz with a relative error of 1.6 % in amplitude. 

 

VDD

IBIAS

VIN+ VIN-Q1 Q2

Q5Q6

Q3 Q4

VOUT

 

Figure 4.60: Schematic of high voltage G4FET differential amplifier (Q 1,2: 0.3 µm 

×10/2.4 µm, VJG = 0 V, VBG =0 V; Q 3,4: 0.35 µm ×2 /10 µm, VJG = 0 V, VBG = 0 V; Q 5,6: 0.3 

µm×10/2.4 µm, VJG =VDD, VBG = 0 V). 

 

The second circuit is a high voltage differential amplifier first demonstrated in [36]. It is 

simulated using a SPICE simulator. Compared to regular MOSFETS, G4FETs can sustain much 

higher voltages in the same process technology. The circuit has a current mirror for biasing, 

designed using two n-channel G4FETs and a differential pair, implemented using a pair of n- 

channel G4FETs. A pair of p-channel G4FETs is used as active load. The schematic is shown in 

Figure 4.60. Here, the junction-gates are connected together and shown as a single gate and the 

unused bottom-gate is not shown for simplification.  
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The high voltage (HV) differential amplifier in [36] is used in a non-inverting unity gain 

configuration to an input of 1 V peak-to-peak square wave of 1 KHz frequency. The circuit has 

been simulated with the developed regression model and the result in Figure 4.61 with an output 

of 0.97 Vp-p shows good agreement with the experimental result of 1 Vp-p with a relative error of 

3%. 

 

 

Figure 4.61:  Output of G4FET Differential amplifier (0.97 Vp-p compared to experimental 

value of 1 Vp-p) in non-inverting unity gain configuration (VDD = 10 V, Vin = 1 Vp-p square wave 

with 6 V offset). 

 

4.5 Numerical Method 4 (Multidimensional Linear and Cubic Spline 

Interpolation Model) 

Spline interpolation is a special case of interpolation where the interpolant is a piecewise 

polynomial called spline. This method is often preferable to interpolation using a single high 

degree interpolant polynomial used in the previous three model derivations. For a regular 

monotonic data set, low degree spline polynomials can reduce error and avoid Runge's 

phenomenon i.e. occurrence of oscillation between points, especially at the boundary, when high 

degree polynomials are used. In this section, multidimensional linear and cubic spline polynomials 
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are used for the model development. Multivariate spline formulation has been chosen for modeling 

G4FET since it can ensure continuity of the function and its derivatives, retain monotonicity, 

provide accurate results and can be developed from measured or simulation data without difficult 

analytical expression [107, 108]. 

4.5.1 Model Formulation  

4.5.1.1 Linear Spline Model 

Given n points in the plane, (xk, yk), k = 1,2, . ., n with distinct xk’s, there is a unique 

polynomial in x of degree less than n whose graph passes through the points. If two successive 

points are (xk,yk) and (xk+1, yk+1), then the kth interval between these two points can be interpolated 

using a straight line. Therefore, for n data points, we will have n-1 piecewise straight lines. Three 

quantities, k, s and δ are now defined. The interval index k is such that, xk ≤ x < xk+1. The local 

variable, s is s = x – xk. The first divided difference is δk = (yk +1 − yk)/(xk +1 − xk). The interpolant 

can be written in terms of these quantities as,  

P(x) = yk + sδk                                    (4.20)  

The piecewise linear interpolant is simple to develop but it has a first order continuity 

problem. It is a continuous function of x, but its first derivative, P′(x), is not continuous. The 

derivative has a constant value, δk, on each subinterval and jumps at the breakpoints. Hence, 

instead of linear spline, most popular spline applications use piecewise cubic spline interpolation 

polynomials with continuous derivatives. 
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4.5.1.2 Cubic Spline Model 

 Let, hk denote the length of the kth subinterval i.e. hk = xk+1− xk; then, δk = (yk +1 − yk)/ hk. 

Let, dk denote the slope of the interpolant at xk i.e. dk= P′(xk).  

The cubic spline polynomial on the interval xk ≤ x ≤ xk+1, can be written in terms of local 

variables s = x – xk and h = hk as, 

P(x) = 3ℎ𝑠2 − 2𝑠3ℎ3 𝑦𝑘+1 + ℎ3−3ℎ𝑠2+2𝑠3ℎ3 𝑦𝑘 + 
𝑠2(𝑠−ℎ)ℎ2  𝑑𝑘+1 + 𝑠(𝑠−ℎ)2ℎ2  𝑑𝑘     (4.21) 

This is a cubic polynomial that satisfies four interpolation conditions; two on the function 

values and two on the derivative values so that, 

P(xk) = yk, P(xk+1) = yk+1, P′(xk)= dk, P′(xk+1) = dk+1 

Now the values of dk’s can be estimated to make sure that second derivative is also 

continuous and this added constraint leads to the condition ℎ𝑘𝑑𝑘−1 + 2(ℎ𝑘−1 + ℎ𝑘)𝑑𝑘 + ℎ𝑘−1𝑑𝑘+1 = 3(ℎ𝑘δ𝑘−1 + ℎ𝑘−1δ𝑘)                           (4.22) 

If knots are equally spaced, equation (4.22) becomes 𝑑𝑘−1 + 4𝑑𝑘 + 𝑑𝑘+1 = 3δ𝑘−1 + 3δ𝑘                               (4.23) 

The above approach applied at each interior knot xk, k = 2, . . , n -1 will provide n −2 

equations involving the n unknowns dk. A different “not-a-knot” approach is used near the ends of 

the interval. A single cubic polynomial is used on the first two subintervals, x1 ≤ x ≤ x3, and on the 

last two subintervals, xn-2 ≤ x ≤ xn. With the two end conditions included, n linear equations result 

in n unknowns. Solution of this system of linear equation gives the desired estimates of dk. 

The same analysis can be extended for multiple dimensions using tensor product 

formulation. The interpolated value at a desired point is based on a cubic interpolation of the values 

at neighbouring knot points in each respective dimension. Any number of variables can be chosen 
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for multidimensional spline interpolation. In this work, VDS (drain-source voltage), VTG (top-gate 

voltage), VBG (bottom-gate voltage), VLJG (left junction-gate voltage) and VRJG (right junction-gate 

voltage) have been used as independent terminal voltages for spline interpolation. Also, the 

geometric variables W (width) and L (length) are included in one model as independent variables 

to show the inclusion of device geometry in the modeling process. Of course, depending on the 

application, one might choose to use the same modeling approach using different variables such 

as terminal capacitances, temperature etc. 

4.5.2 Model Validation 

Experimental and TCAD Sentaurus data of the current-voltage characteristics have been 

obtained for both p-channel and n-channel G4FET transistors. Spline interpolation technique has 

been used on these data to model corresponding devices. Predictions from the model are then tested 

against another set of test data.  

4.5.2.1 An n-Channel G4FET Simulated Using TCAD Sentaurus (Device 1) 

  Device 1 is an n-channel G4FET created in TCAD Sentaurus. Table 4.1 includes the 

information pertinent to test data i.e. device geometry, the doping levels and the biasing conditions 

for this device. Lateral junction-gates are tied together for this validation and VJG here denotes the 

common voltage applied at both junction-gates. Multivariate linear spline and cubic spline models 

for device 1 have been generated using these I-V data extracted from TCAD. Here, the drain 

current, IDS is a function of four independent variables VDS, VTG, VBG and VJG.   
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    In Figure 4.62 and Figure 4.63, isolines are shown for different values of junction-gate 

voltages ranging from -4 V to 0 V, while keeping the bottom substrate voltage VBG fixed at 0 V 

and top-gate voltage fixed at 2.25 V for linear and cubic spline model, respectively. The reverse 

bias depletion from junction-gate reduces conduction channel width as well as increases effective 

top-gate threshold voltage. Thus, the drain current gradually decreases as this reverse bias 

increases on the junction-gates. The bottom-gate is depleted and the top-gate is accumulated for 

this bias. Therefore, the current is mostly due to an accumulated n-channel near the top oxide gate 

surface. From the graph and the values of corresponding mean relative error, it is clear that the 

model fits reasonably well for all the isolines. A comparison between Figure 4.62 and Figure 4.63 

shows a significant improvement in the accuracy at the cost of additional computational 

complexity, as we move from linear to cubic spline. 

 

 

Figure 4.62: Comparison between isolines of test data and linear spline model (Device 1) 

for different junction-gate voltages ranging from -4 V to 0 V in 1 V increment.  

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

D
r
a
in

 C
u

r
r
e
n

t,
 I

D
S

 (
A

)

 = 0 V

 = 2.25 V

VJG  = 0 to -4 V

TCAD DATA for  VJG= -4 V

Model  Mean  Error: 1.3221%

Model  Mean  Error: 0.94259%

Model  Mean  Error: 0.69242%

Model  Mean  Error: 0.52051%

TCAD DATA for  VJG =0V

Model  Mean  Error: 0.38965%

TCAD DATA for  VJG= -3 V

TCAD DATA for  VJG= -2 V

TCAD DATA for  VJG= -1 V

Drain-Source Voltage, V
DS

 (V)

VTG

VBG



91 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

45

D
r
a
in

 C
u

r
r
e
n

t,
 I

D
S

 (
A

)
Model  Mean  Error: 0.06987%

Model Mean  Error: 0.028512%

Model Mean  Error: 0.029615%

TCAD DATA for  VJG = -1 V

Model Mean  Error: 0.03397%

Model  Mean  Error: 0.03449%

V
BG

 = 0 V

V
TG

 = 2.25 V

VJG  = 0 to -4 V

TCAD DATA for  VJG = 0 V

TCAD DATA for  VJG = -4 V

TCAD DATA for  VJG = -2 V

TCAD DATA for  VJG = -3 V

Drain-Source Voltage, V
DS

 (V)
 

Figure 4.63: Comparison between isolines of test data and cubic spline model (Device 1) 

for different junction-gate voltages ranging from -4 V to 0 V in 1 V increment. 

 

4.5.2.2 Experimental Data from an n-Channel G4FET (Device 2) 

         A conventional partially-depleted SOI (PDSOI) technology was used to manufacture an n-

channel G4FET with a width of 0.4 µm and a length of 0.9 µm. The experimental current-voltage 

data from this device is used to build a linear and a cubic spline interpolation models. The lateral 

junction-gates are tied together with a common voltage.  

The test data was generated with the top-gate voltage VTG being swept from -3 V to 3 V in 

0.05 V increment, the bottom-gate voltage VBG being swept from -5 V to 5 V in 2 V increment, the 

junction-gate voltage VJG being swept from -1 to -4 V in 1 V decrement and the drain-source 

voltage, VDS was fixed at 50 mV. Spline interpolation technique is then used to model IDS as a 

function of three independent variables VTG, VBG and VJG. A set of experimental data using different 

biasing conditions within the training data range is used for model verification. 

Figure 4.64 and Figure 4.65 show the isolines for different VBG values with corresponding 

relative error for linear spline and cubic spline model, respectively. The junction-gates are reverse 
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biased at -1 V and drain-source voltage, VDS is kept 50 mV. The bottom-gate voltage is swept from 

-4 V to 4 V in 2 V increment. The range of the top-gate voltages starts with inversion, goes through 

depletion and ends in strong accumulation. The graphs and the values of relative error show 

reasonably good agreement between the model prediction and the experimental data for both linear 

spline and cubic spline models. 

 

 

Figure 4.64: Comparison between isolines of test data and linear spline model (Device 2) 

and relative error for varying bottom-gate voltages from -4V to 4V in 2V increment arranged from 

bottom to top. 
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Figure 4.65: Comparison between isolines of test data and cubic spline model (Device 2) 

and relative error for varying bottom-gate voltages from -4 V to 4 V in 2 V increment arranged 

from bottom to top. 

 

4.5.2.3 A p-Channel G4FET Simulated with TCAD Sentaurus (Device 3)  

Device 3 is a p-channel G4FET built and simulated with TCAD Sentaurus. The biasing 

voltages used for model development along with the device geometry and the doping levels in 

different regions are given in Table 4.2. Here, VJG is the voltage applied at both the junction-gates. 

Linear and cubic spline models have been used on these I-V data to develop drain current, ISD as a 

function of four independent variables VSD, VTG, VBG and VJG. A set of test data taken under 

different bias conditions is used for validation of the developed model. 

Isolines of drain current versus source-drain voltage for different values of VJG are shown 

in Figure 4.66 and Figure 4.67 for linear and cubic spline model, respectively. The top- and the 

bottom-gate were biased at -2.25 V and 0 V, respectively. The current gradually decreases as the 

reverse bias increase at the junction-gates from 0 V to 4 V. From the graphs and the corresponding  
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Figure 4.66: Comparison of ISD - VSD between TCAD test data and linear spline model (Device 3) 

for different junction-gate voltages ranging from 0 V to 4 V. 
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Figure 4.67: Comparison of ISD - VSD between TCAD test data and cubic spline model (Device 3) 

for different junction-gate voltages ranging from 0 V to 4 V.  
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mean relative error values, it is clear that the model prediction is quite good and a significant 

accuracy improvement can be observed going from linear to cubic spline model. 

4.5.2.4 Experimental Data from a p-Channel G4FET (Device 4) 

A p-channel G4FET fabricated in a conventional 0.35 µm PDSOI technology with a width 

of 0.35 µm and a length of 3.4 µm is used as the fourth device for model verification. The source-

drain voltage VSD was fixed at 50 mV, the bottom-gate voltage VBG fixed at 0 V and the junction-

gate voltage VJG was changed from 4 V to 0 V in -0.4 V decrement and the top-gate voltage VTG 

was swept from -3.3 V to 0 V in 0.033 V increment. Based upon these data, linear and cubic spline 

models are developed to express the source-drain current, ISD as a function of two independent 

variables, VTG and VJG. An independent set of test data is then used to test the predictive ability of  
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Figure 4.68: Comparison between test data and linear spline model isolines (Device 4) for 

variation in junction-gate voltages from 0.2 V to 1.8 V in 0.4 V increment arranged from top to 

bottom. 
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Figure 4.69: Comparison between test data and cubic spline model isolines (Device 4) for 

variation in junction-gate voltages from 0.2 V to 1.8 V in 0.4 V increment arranged from top to 

bottom. 

 

this model. Figure 4.68 and Figure 4.69 show the isolines for five different reverse bias junction-

gate voltage ranging from 0.2 V to 1.8 V for linear and cubic spline model, respectively. Here, the 

source-drain voltage and the bottom-gate voltage were fixed at 50 mV and 0 V, respectively. The 

graphs and corresponding mean relative errors show that the matching between the model and the 

test data is quite good for all the isolines. 

 4.5.2.5 Incorporation of Device Geometry 

Spline model can be extended to include additional variables like geometric dimensions 

i.e. width, length and epi silicon thickness. This extended model including variations in device 

geometry provides highly desired flexibility to a circuit designer. Here, an n-channel G4FET with 

the same doping conditions and epi silicon thickness as Device 1 was designed in TCAD Sentaurus 

and current-voltage characteristics were measured for different widths (W) and lengths (L) with W 
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and L being swept from 0.25 µm to 0.5 µm and from 0.8 µm to 1.8 µm, respectively. Using these 

data, cubic spline models are developed to find drain current as a function of VDS, W and L. 

A different test device inside the training geometry range was used to verify the model. 

Figure 4.70 shows the comparison between the test data and the cubic spline model for different 

widths. As evident from the figure, the matching is quite good across different geometries. 
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Figure 4.70: Comparison between TCAD data and cubic spline model of isolines for 

different widths ranging from 0.3 to 0.5 µm in .05 µm increment arranged from bottom to top. 

 

4.5.2.6 Validation of First Order Characteristics i.e. Device Transconductance 

and Output Drain Resistance 

First order characteristics such as transconductance and drain output resistance are crucial 

for ensuring the continuity and smoothness of I-V characteristics. Plots of transconductance and 

drain output resistance are shown in Figure 4.71 and Figure 4.72, respectively for cubic spline 

model. Here, the vertical axis is in logarithmic scale. As evident from these figures, the cubic  
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Figure 4.71: Comparison of gm – VTG between TCAD data and cubic spline model for an 

n-channel G4FET (Device 1). 
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Figure 4.72:  Comparison of rout – VDS between TCAD data and cubic spline model for an 

n-channel G4FET (Device 1). 
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spline interpolation is reasonably accurate in retaining the first order characteristics which renders 

this model particularly suitable for analog circuit simulation. 

4.5.3 Implementation in Circuit Simulator 

Multivariate linear and cubic spline models of G4FETs have been implemented in a circuit 

simulator. The model represents G4FET transistor as a dependent current source between the drain 

and the source terminals and its current is controlled by the terminal voltages VTS, VBS, VLJS, VRJS 

and VDS ( Figure 4.73). This block is implemented using VerilogA in CadenceTM for circuit 

simulation using SPECTRETM simulator. Other variables such as device geometric parameters or 

temperature can also be included in the model.  
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Figure 4.73:  Behavioral model of an n-channel G4FET for spline interpolation. 

 

The performance and convergence of the simulation rely heavily on the continuity of 

function values and their first derivatives. The defining model equation of an element has to ensure 

that the transition between different operating regions does not compromise this continuity. In 

addition, the resulting equations have to preserve monotonicity so that no part of the equation 
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results in non-physical outcome such as negative conductance. These negative slope regions pose 

difficult problems for small-signal and DC transfer analysis which are extensively used in analog 

circuit design.  The cubic spline model with continuity up to second order solves these problems 

and hence it is particularly suitable for this implementation. All the circuit simulation results in the 

following section are generated using this model.    

 4.5.4 Results from G4FET Circuit Simulation 

The developed model is used to simulate three innovative G4FET circuits which are 

described in the following sections.  

4.5.4.1 Negative Differential Resistance (NDR) LC oscillator: 

The first implementation is an LC oscillator using negative differential resistance (NDR) 

circuit made of G4FETs. This circuit was described in section 4.2.4. 

 

 

a 

 

b 

Figure 4.74(a) Output from circuit simulator, (b) experimental result. 
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     Figure 4.20 shows a G4-NDR connected to a LC tank load which works as an LC oscillator. 

It was experimentally demonstrated [34] with VDD = 3.3 V, L= 0.4 mH, C = 110 pF. The models, 

developed using multivariate cubic spline, are implemented in VerilogA for circuit simulation 

using SPECTRETM simulator in CadenceTM and the result is shown in Figure 4.74(a). The 

simulated oscillator output has 2.46 V peak-to-peak amplitude with a frequency of 761 kHz 

compared to the experimental result of 2.5 V peak-to-peak amplitude with a frequency of 768 kHz 

with a relative error of 1.6 % in amplitude. 

4.5.4.2 High Voltage Differential Amplifier 

G4FETs are capable of handling much higher voltages compared to regular MOSFETS 

using the same process technology. The second circuit utilizes this capability to build a high 

voltage differential amplifier [36]. The circuit was described in section 4.4.4.  
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Figure 4.75: Output of amplifier (1.03 Vp-p compared to experimental value of 1 Vp-p) in 

non-inverting unity gain configuration (VDD = 10 V, Vin = 1 Vp-p square wave with 6 V offset). 

 

The high voltage differential amplifier in [36] works as a non-inverting unity gain amplifier 

to a square wave input of 1 KHz frequency and 1 Vp-p amplitude. The circuit has been simulated 
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with the cubic spline interpolation being used for modelling both n-channel and p-channel G4FETs. 

The result in Figure 4.75 with an output of 1.03 Vp-p is reasonably close to the experimental result 

of 1 Vp-p with a 3% relative error.  

4.5.4.3 Four-Quadrant Analog Multiplier: 

The independent multi-gate current modulation capability of G4FET can be used to design 

analog multiplier with only four transistors at its core. Two different configurations were 

experimentally demonstrated in [36]. Both of them have multiplier core made of four G4FETs 

biased by a constant current sink and loaded by same resistors RL which convert the differential 

output current to a differential output voltage. However, the input is different for these two cases. 

As shown in Figure 4.76, configuration 1 has one input Vin1 at the top-gate and other input Vin2 at 

the junction-gates, which are tied together. In configuration 2, shown in Figure 4.77, the junction-

gates are independent and two differential input voltages Vin1 and Vin2 are connected to  two lateral 

junction-gates, whereas the top-gate, in this configuration, is biased at a constant voltage. 

Figure 4.78 and Figure 4.79 show DC transfer characteristics for configuration 1 and 2, 

respectively. For different Vin2, Vin1 is swept between -1.5 and 1.5 V and the corresponding 

simulation results qualitatively match with the experimental outputs. The linearity is maintained 

for different input conditions and the gain is very similar. Table 4.5 and Table 4.6 show a 

comparison between the experimental results and the simulation output for configuration 1 and 

configuration 2, respectively. The model is developed based on TCAD data, which causes some 

deviation from measurement results. 
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Figure 4.76: Configuration 1 of analog multiplier using G4FET. 
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Figure 4.77: Configuration 2 of analog multiplier using G4FET. 
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Figure 4.78: DC transfer characteristics for configuration 1 (W = 0.35 µm, L = 10 µm, VDD 

= 10 V, Ibias = 15 µA, Vbias1 = 1.7 V, Vbias2 = -1.8 V, RL = 500 kΩ); (a) measurement results 

reproduced from [37], (b) simulation results using cubic spline model. 
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(b) 

Figure 4.79: DC transfer characteristics for configuration 2 (W = 0.35 µm, L = 5 µm, VDD 

= 5 V, Ibias = 10 µA, Vbias1 = 0 V, Vbias2 = -3 V, RL = 500 kΩ); (a) measurement results reproduced 
from [37], (b) simulation results using cubic spline model. 
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Table 4.5: Comparison Between Experimental and Simulation Results for DC Transfer 

Characteristics of Configuration 1 

Vin2 

(V) 

Peak-to-Peak Variation in 

Vout (V) Relative 

Error (%) Experimental 

Results 

Simulation 

Results 

-1.5 0.911 0.965 5.927552 

-1 0.594 0.615 3.535354 

-0.5 0.281 0.298 6.049822 

0 0 0 0 

0.5 0.273 0.298 9.157509 

1 0.544 0.602 10.66176 

1.5 0.813 0.909 11.80812 

 

Table 4.6: Comparison Between Experimental and Simulation Results for DC Transfer 

Characteristics of Configuration 2 

Vin2 

(V) 

Peak-to-Peak Variation in Vout 

(V) Relative 

Error (%) Experimental 

Results 

Simulation 

Results 

-1.5 0.408 0.374 8.333333 

-1 0.274 0.251 8.394161 

-0.5 0.139 0.125 10.07194 

0 0 0 0 

0.5 0.129 0.124 3.875969 

1 0.265 0.247 6.792453 

1.5 0.398 0.361 9.296482 

 



107 

 

 

(a) 

 

0 5 10 15 20 25 30 35 40 45 50

Time (ms)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

O
u

tp
u

t
 V

o
lt

a
g
e
(V

)

 

(b) 

Figure 4.80: Product of a 20 Hz, 1 Vp-p sinusoidal-wave with 500 Hz, 1 Vp-p square-wave 

(W = 0.3 µm x 10, L = 2.4 µm, VDD = 3.5 V, VSS = -3.5 V, Ibias = 35 µA, Vbias1 = 2 V, Vbias2 = -2.5 

V, RL = 100 kΩ); (a) measurement results, (b) simulation results using cubic spline model. 
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(b) 

Figure 4.81:  Product of a 10 Hz, 4 Vp-p triangular-wave with 200 Hz, 4 Vp-p square-wave 

(W = 0.35 µm, L = 5 µm, VDD = 5 V, Ibias = 15 µA, Vbias1 = 0 V, Vbias2 = -3.5 V, RL = 200 kΩ); (a) 
measurement results, (b) simulation results using cubic spline model. 
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Figure 4.80 shows the result for configuration 1 as an analog multiplier where the inputs 

are a 20 Hz, 1 Vp-p sinusoidal-wave and a 500 Hz, 1Vp-p square-wave. The simulation result using 

the cubic spline model in Figure 4.80(b) shows good matching with the experimental result in 

Figure 4.80(a). The peak-to-peak output voltage in simulation is 1.0176 V compared to the 

measurement result of 1 V, with a relative error of 1.76 %. 

Configuration 2 was also used as an analog multiplier with two different input signals; a 

10 Hz, 4 Vp-p triangular-wave and a 200 Hz, 4 Vp-p square-wave. Configuration 2 has a reduced 

gain compared to configuration 1, but it has a higher input voltage swing capability. Figure 4.81(a) 

and Figure 4.81(b) show the experimental and the simulation results, respectively. As the figures 

show, there is a reasonable agreement between the experimental and the simulation results. The 

peak-to-peak output voltage in simulation is 0.3101 V compared to the measurement result of 0.3 

V, with a relative error of 3.37 % 

4.6 Chapter Summary 

In this chapter, four different numerical models of G4FET transistor are developed and their 

validity for current-voltage characteristics prediction and circuit simulator implementation is 

demonstrated. This provides circuit designers with a potential tool to design new and efficient 

circuits with G4FETs. A total number of seven variables, including the four independent gate 

voltages and geometric parameters have been used in different phases of model implementation 

showing the flexibility of this modeling approach. Other variables such as height of epi-silicon 

layer, terminal capacitances, temperature etc. can be incorporated using these methods to extend 
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model’s functionality. The explored modeling approaches are not restricted to G4FET or SOI 

transistors and  may be used to model any new multi-gate device.  
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Chapter 5 - Macromodel of G4FET 

 

5.1 Motivation 

The numerical models, as described in chapter 4, work well inside the operating range used 

for model development. However, owing to five independent terminals, the resulting expression 

gets cumbersome as more accuracy is desired. The inclusion of geometric variables and terminal 

capacitances as independent variables would significantly increase computational cost. Inclusion 

of other variables such as epi silicon thickness, temperature etc. would increase model complexity 

furthermore. A simplified model based on device operating principle and existing SPICE models 

can be helpful to circumvent most of these problems. G4FET was also called MOSJFET [15] for 

combining the functionality of MOSFET and JFET transistors. Since, well developed robust, fast 

and reliable models of both MOSFET and JFET transistors are already available, a macromodel 

combining these existing models is desirable from a circuit designer’s perspective. 

5.2 Model Formation 

G4FET combines MOS and JFET actions by supporting both surface and volume 

conduction. The top and the bottom oxide gates provide MOS action whereas the lateral junction-

gates work like JFET. The threshold voltage of the top and the bottom-gates are influenced by the 

junction-gate voltage. It can be considered as a combination of two MOSFETs (surface 

conduction) working in parallel with a JFET (volume conduction).  

The analytical relationship between the junction-gates and the oxide gates has been derived 

in [21]. Let the top-gate threshold voltage be VTH and the bottom-gate voltage causing the onset 
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of accumulation and inversion at the bottom-gate are 𝑉𝐵𝐺𝑎𝑐𝑐   and 𝑉𝐵𝐺𝑖𝑛𝑣, respectively. Some of the 

terms used in the model are introduced below: 

Junction-gate capacitance, 𝐶𝐽𝐺 = 𝜀𝑆𝑖 𝑤⁄  Top oxide capacitance,  𝐶𝑜𝑥1 = 𝜀𝑜𝑥 𝑡𝑜𝑥1⁄  Bottom oxide capacitance, 𝐶𝑜𝑥2 = 𝜀𝑜𝑥 𝑡𝑜𝑥2⁄  

 

Three constants based on device geometry, α, β and γ are defined as,  

 𝛼 = 2√2tanh (2√2𝑡𝑆𝑖𝑊 ) 𝛾 = 2√2sinh (2√2𝑡𝑆𝑖𝑊 ) 
𝛽 = 𝛾𝐶𝐽𝐺 𝐶𝑜𝑥1⁄1 + 𝛼𝐶𝐽𝐺 𝐶𝑜𝑥2⁄  

Other terms include, 𝜑𝐹 = −𝑉𝑇ln (𝑁𝑑𝑛𝑖 ) 𝜑𝑏 = 𝐸𝑔2 + 𝑉𝑇ln (𝑁𝑑𝑛𝑖 ) 𝑉𝑃 =  𝜑𝑏 −  𝑞𝑁𝑑𝑊28𝜀𝑆𝑖   
 

Here, W is the width of the transistor, tsi is the silicon film thickness, tox1 is the top oxide 

thickness, tox2 is the buried oxide thickness, VT = kT/q is the thermal voltage, Nd is the donor 

concentration in the body, ni is the intrinsic carrier concentration, εsi is the permittivity of silicon, 

and εox is the permittivity of silicon dioxide. 

 

The onset voltage of accumulation and inversion for the bottom-gate, 𝑉𝐵𝐺𝑎𝑐𝑐 and 𝑉𝐵𝐺𝑖𝑛𝑣, can 

be expressed [21] as, 
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𝑉𝐵𝐺𝑎𝑐𝑐 = 𝑉𝐹𝐵2 +  (𝛾 − 𝛼) 𝐶𝐽𝐺𝐶𝑜𝑥2 (𝑉𝐽𝑆 − 𝑉𝑃)           (5.1) 

 𝑉𝐵𝐺𝑖𝑛𝑣 = 𝑉𝐹𝐵2 + (1 + 𝛼 𝐶𝐽𝐺𝐶𝑜𝑥2) 2𝜑𝐹 − (𝛾 − 𝛼) 𝐶𝐽𝐺𝐶𝑜𝑥2 (𝑉𝑃) + (1 + 𝛾𝐶𝐽𝐺/𝐶𝑜𝑥2)𝑉𝐽𝐺     (5.2) 

 

The back gate may be accumulated, depleted or inverted. When the bottom-gate is in 

inversion i.e. 𝑉𝐵𝐺 <  𝑉𝐵𝐺𝑖𝑛𝑣,  𝑉𝑇𝐻 =  𝑉𝐹𝐵1 −  𝛾 ( 𝐶𝐽𝐺𝐶𝑜𝑥1) (2𝜑𝐹 + 𝑉𝑃) − 𝛼 ( 𝐶𝐽𝐺𝐶𝑜𝑥1) (𝑉𝐽𝐺 − 𝑉𝑃)                    (5.3) 

    

When the bottom-gate is depleted i.e. 𝑉𝐵𝐺𝑖𝑛𝑣 < 𝑉𝐵𝐺 <  𝑉𝐵𝐺𝑎𝑐𝑐,  𝑉𝑇𝐻 =  𝑉𝐹𝐵1 − 𝛽(𝑉𝐵𝐺 − 𝑉𝐹𝐵2) +  (𝛾 − 𝛼) ( 𝐶𝐽𝐺𝐶𝑜𝑥1 + 𝛽 𝐶𝐽𝐺𝐶𝑜𝑥1) (𝑉𝐽𝐺 − 𝑉𝑃)                          (5.4) 

 

When the bottom-gate is in accumulation i.e. 𝑉𝐵𝐺 >  𝑉𝐵𝐺𝑎𝑐𝑐, 

 𝑉𝑇𝐻 =  𝑉𝐹𝐵1 + (𝛾 − 𝛼) ( 𝐶𝐽𝐺𝐶𝑜𝑥1) (𝑉𝐽𝐺 − 𝑉𝑃)                                                                     (5.5) 

Here, VFB1 and VFB2  are the flat band voltages of the top-gate and the bottom gates, respectively.  

   Based on the above relationships among different gates, a macromodel is created 

combining the MOSFET and the JFET models. However, accumulated back gate provides a shunt 

leakage conduction path which is undesirable for most practical applications. Therefore, it is 

assumed that the back gate is never accumulated and the condition for depleted or inverted back 

surface is considered. In the model, the top conduction is modeled using a MOSFET and the 

volume conduction is modeled using a JFET. However, instead of a constant threshold MOSFET, 

the subcircuit allows for threshold voltage modification using the relationship described above.  

5.3 CAD Implementation for Circuit Design 

Six different analog and digital circuits have been simulated using the macromodel. These 

include 1) negative differential resistance circuit, 2) high voltage differential amplifier, 3) four-
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quadrant analog multiplier, 4) multiple threshold inverter, 5) G4FET as a universal and 

programmable logic gate and 6) G4FET full adder circuit. 

5.3.1 Negative Differential Resistance Circuit: 

Complementary G4FETs can be combined to work as a negative differential resistance 

block as described in section 4.2.4. Figure 4.20 shows a G4-NDR connected to a LC tank load 

which works as an LC oscillator. It was experimentally demonstrated with VDD = 3.3 V, L= 0.4 

mH, C = 110 pF [34]. The simulation output is 2.45 Vp-p compared with the experimental result of 

2.5 Vp-p with a relative error of 2 % as shown in Figure 5.1.. The extra two terminals, Vn and Vp 

provide additional functionality and are used for amplitude modulation as shown in Figure 5.2. 
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Figure 5.1: Output of NDR LC oscillator; (a) measurement result, (b) simulation result. 
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Figure 5.2: Amplitude Modulated(AM) signal; (a) measurement result, (b) simulation 

result. 

 

5.3.2 Differential Amplifier: 

G4FET can be used to build high voltage differential amplifier circuit. This circuit, 

described in section 4.4.4, was simulated using the macromodel. The simulation result is shown in 

Figure 5.3. The output of the non-inverting amplifier is 0.98 V peak-to-peak compared to the 

experimental result of 1 V peak-to-peak with a 2% relative error. 
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Figure 5.3: High voltage differential amplifier output from the macromodel simulation. 

 

5.3.3 Four Quadrant Analog Multiplier : 

A four-quadrant analog multiplier is a very interesting application of G4FET where the 

multiplier core has been shown to be built with only four transistors. Two configurations of these 

circuits and their working mechanisms were described in section 4.5.4.3.  

The macromodel was used to simulate both the configurations. DC transfer characteristic 

for configuration 1 and configuration 2 are shown in Figure 5.4 and Figure 5.5, respectively. The 

measurement results are shown in Figure 5.4 (a) and simulation results obtained using the 

macromodel are shown in Figure 5.4 (b). Table 5.1 and Table 5.2 give a quantitative comparison 

between measurement and simulation results for configuration 1 and 2, respectively.  

Figure 5.6 shows the result for configuration 1 as an analog multiplier where the inputs are 

a 20 Hz, 1 Vp-p sinusoidal-wave and a 500 Hz, 1 Vp-p square-wave. The simulation result using the 

macromodel in Figure 5.6 (b) shows good matching with the experimental result in Figure 5.6(a). 

The peak-to-peak output voltage in simulation is 1.0025 V compared to the measurement result of 

1 V, with a relative error of 0.25 %. 
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Figure 5.4: DC transfer characteristics for configuration 1 (W = 0.35 µm, L = 10 µm, VDD 

= 10 V, Ibias = 15 µA, Vbias1 = 1.7 V, Vbias2 = -1.8 V, RL = 500 kΩ); (a) measurement results 
reproduced from [7], (b) simulation results using the macromodel. 
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Figure 5.5: DC transfer characteristics for configuration 2 (W = 0.35 µm, L = 5 µm, VDD = 

5 V, Ibias = 10 µA, Vbias1 = 0 V, Vbias2 = -3 V, RL = 500 kΩ); (a) measurement results reproduced 
from [7], (b) simulation results using the macromodel. 
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Table 5.1: Comparison Between Experimental and Simulation Results (Macromodel) for 

DC Transfer Characteristics of Analog Multiplier (Configuration 1) 

Vin2 (V) 

Peak-to-Peak Variation in Vout (V) 

Relative Error 

(%) 
Experimental Results Simulation Results 

-1.5 0.911 0.892 2.08562 

-1 0.594 0.594 0 

-0.5 0.281 0.297 5.69395 

0 0 0 0 

0.5 0.273 0.297 8.791209 

1 0.544 0.594 9.191176 

1.5 0.813 0.892 9.717097 

 

Table 5.2: Comparison of Experimental and Simulation Results (Macromodel) for DC 

Transfer Characteristics of Analog Multiplier (Configuration 2) 

 

Vin2 (V) 

Peak-to-peak variation in Vout (V) 

Relative error (%) 

Experimental results Simulation results 

-1.5 0.408 0.361 11.51961 

-1 0.274 0.241 12.0438 

-0.5 0.139 0.12 13.66906 

0 0 0 0 

0.5 0.129 0.12 6.976744 

1 0.265 0.241 9.056604 

1.5 0.398 0.361 9.296482 
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(b) 

Figure 5.6: Product of a 20 Hz, 1 Vp-p sinusoidal-wave with 500 Hz, 1Vp-p square-wave (W 

= 0.3 µm x 10, L = 2.4 µm, VDD = 3.5 V, VSS = -3.5 V, Ibias = 35 µA, Vbias1 = 2 V, Vbias2 = -2.5 V, 

RL = 100 kΩ); (a) measurement results, (b) simulation results using the macromodel. 
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Figure 5.7:  Product of a 10 Hz, 4 Vp-p triangular-wave with 200 Hz, 4 Vp-p square-wave 

(W = 0.35 µm, L = 5 µm, VDD = 5 V, Ibias = 15 µA, Vbias1 = 0 V, Vbias2 = -3.5 V, RL = 200 kΩ); (a) 
measurement results, (b) simulation results using the macromodel. 
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Configuration 2 was also used as an analog multiplier with two different input signals; a 

10 Hz, 4 Vp-p triangular-wave and a 200 Hz, 4 Vp-p square-wave. This configuration has a reduced 

gain compared to configuration 1, but it has a higher input voltage swing capability. Figure 5.7(a) 

and Figure 5.7(b) show the experimental and the simulation results, respectively. As the figures 

show, there is a reasonable agreement between the experimental and the simulation results. The 

peak-to-peak output voltage in simulation is 0.294 V compared to the measurement result of 0.3 

V, with a relative error of 1.95 %. 

 

5.3.4 Multi-Threshold Inverter: 

G4FET can be used to build interesting digital circuits as well. The multiple gates offer 

plenty of opportunities for innovative digital designs. In [38], a multi-threshold inverter has been 

demonstrated. The schematic is shown in Figure 5.8. The top-gate works as a conventional MOS 

gate whereas the junction-gate bias is used to change the threshold of the inverter. Three different 

thresholds for different junction-gate combinations are obtained. The macromodel reproduces the 

results in [38] quite well as shown in Figure 5.9. Different threshold curves for varying the 

junction-gate voltages are shown as A, B and C.  

5.3.5 Universal and Programmable Gate: 

G4FET can be used as a real-time reconfigurable logic gate as demonstrated in [38]. The 

schematic of a programmable logic gate is shown in Figure 5.10. Here, the left and the right 

junctions act as inputs and the top-gate acts as controller. Based on the value of the top-gate 
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Figure 5.8: Schematic of a multi-threshold Inverter. 
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Figure 5.9: Output of a multi-threshold inverter. 
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voltage, this can function as either NAND or NOR gate. Hence, in principle, G4FET is a universal 

gate, since any logic function can be computed using it. 

Figure 5.11 shows the results for a programmable gate using the macromodel. The output 

is a NAND function, Vout = 𝑉𝑅𝐽𝐺 . 𝑉𝐿𝐽𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , when VINV,A < VTG = 0.9 V< VINV,B . The output is a NOR 

function, Vout = 𝑉𝑅𝐽𝐺 + 𝑉𝐿𝐽𝐺̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, when VINV,B < VTG = 1.2 V< VINV,C. The results show excellent 

matching with the experimental results reported in [38]. 

 

TG

LJG

RJG

Programmable 

Gate

output

 
 

Figure 5.10: Symbol of a G4FET programmable gate. 

 

5.3.6 Full Adder: 

A full adder circuit was demonstrated in [39] using only 3 G4FET transistors and 2 

inverters. This drastically reduces the number of transistor count and paves the way for more 

compact arithmetic logic operation circuits. Figure 5.12 shows the schematic of the proposed 

design. The circuit has been simulated using the macromodel and the output is shown in Figure 

5.13. The full adder functionality for all the possible combinations from the truth table in Table 

5.3 is demonstrated. 
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Figure 5.11: Output of a programmable gate. 
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Figure 5.12: Schematic of the G4FET full adder. 
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Figure 5.13: Output from the full adder. 

 

 

Table 5.3: Truth Table of a Full Adder 

a b cin Sum cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 
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5.4 Chapter Summary 

The macromodel of G4FET captures some of the underlying physics of G4FET operation 

and effectively combines MOSFET and JFET functionalities into a single model. The existence of 

robust, stable and accurate of MOSFET and JFET SPICE models facilitate faster implementation 

in circuit simulator. The model has been successful in reproducing a number of experimental 

G4FET circuits; both analog and digital. In this work, the macromodel has been developed with 

Level 1 and Level 2 SPICE models. Further improvement can be accomplished using BSIM model 

with optimized parameters.  
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Chapter 6 – Physics-Based Compact Model of G4FET 

 

6.1 Motivation 

 A fully physics-based model of a transistor requires solving a system of coupled non-linear 

differential equations. This quickly becomes impractical for simulating modern integrated circuits 

with a large number of transistors for the steep rise in cost in terms of speed and memory 

requirements. However, a simplified model, based on suitable assumptions, with minimum number 

of fitting parameters, can be readily implemented in circuit simulators. As outlined in section 2.4, 

a lot of works has gone into this approach of transistor modeling. G4FET, with its four independent 

gates, provides different operating regions depending on its gate biases and thus, developing a 

compact model becomes very challenging. Based on its working mechanism and desired operating 

region, two models with their CAD implementation are described in this chapter.  

6.2 Depletion All Around (DAA) Model 

For a particular range of gate biases, G4FET offers a conduction mechanism known as 

depletion-all-around (DAA) operation. When the top- and the bottom-gates are either depleted or 

inverted, a narrow wire like conduction path is formed in the center of the channel surrounded on 

all sides by depletion regions which is graphically illustrated in Figure 3.9. This operation 

mechanism provides many benefits such as high mobility, high transconductance, better 

subthreshold properties, excellent radiation hardness and high gm/Id ratio. A CAD implementation 

is done based on the physical modeling outlined in [24]. 
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6.2.1 Model Formulation 
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Figure 6.1: Schematic of the cross-section of a G4FET in depletion all around operation. 

 

When the transistor is operating in DAA mode above threshold and in non-saturation, the 

vertical and the horizontal depletion regions surround a conduction path of area A in the center. 

The depletion widths induced by the front and the back gates are denoted by yd1 and yd2, 

respectively. The lateral depletion width is denoted by xd, assuming equal voltage applied at both 

junctions. The center conduction path A is a neutral region where the carrier density, n can be 

assumed to be equal to body doping density, ND. The lateral and the vertical depletion depths can 

be expressed [109] as, 

𝑥𝑑 = √2𝜖𝑆𝑖(𝑉−𝑉𝐽𝐺+𝜑𝑏)𝑞𝑁𝐷                                                                                                       (6.1) 

The vertical depletion widths for surface depletion are, 

𝑦𝑑1 = ( 𝜖𝑆𝑖𝐶𝑜𝑥1) [−1 + √1 + 2𝐶𝑜𝑥12 (𝑉−𝑉𝑇𝐺+𝑉𝐹𝐵1)𝑞𝑁𝐷𝜖𝑆𝑖 ]                                                                        (6.2) 
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𝑦𝑑2 = ( 𝜖𝑆𝑖𝐶𝑜𝑥2) [−1 + √1 + 2𝐶𝑜𝑥22 (𝑉−𝑉𝐵𝐺+𝑉𝐹𝐵2)𝑞𝑁𝐷𝜖𝑆𝑖 ]                                                                 (6.3) 

The vertical depletion widths for surface inversion can be expressed as, 

 𝑦𝑑1,2 = √2𝜖𝑆𝑖(𝑉−𝑉𝐽𝐺−2𝜑𝐹)𝑞𝑁𝐷                                                                                                    (6.4) 

Cox1 and Cox2 are the capacitances of the front gate oxide and the buried oxide, respectively; 𝜑𝐹 is the body Fermi potential, V is the channel potential varying between drain and source, ND is 

the body doping concentration, 𝜖𝑆𝑖 is the permittivity of Silicon and VFB1,2 are the flat band voltages 

of the top- and the bottom-gates, respectively. 

The inversion threshold for the top- and the bottom-gates can be formulated [109] as, 

𝑉𝑇1 = 𝑉𝐹𝐵1 + (2𝜑𝐹 + 𝑉𝐽𝐺) − 2𝜖𝑆𝑖𝑞𝑁𝐷(𝑉−𝑉𝐽𝐺−2𝜑𝐹)𝐶𝑜𝑥1                                                           (6.5) 

𝑉𝑇2 = 𝑉𝐹𝐵2 + (2𝜑𝐹 + 𝑉𝐽𝐺) − 2𝜖𝑆𝑖𝑞𝑁𝐷(𝑉−𝑉𝐽𝐺−2𝜑𝐹)𝐶𝑜𝑥2                                                           (6.6) 

Then the drain current can be expressed [24] as,  𝐼𝐷 = 𝑞𝜇𝑛𝑁𝐷𝐿 ∫ 𝐴(𝑉)𝑑𝑉𝑉𝐷0                                                                                                     (6.7) 

In the ideal case with no interaction between the lateral and the vertical gates, the 

conduction area, A would be simply (𝑊 − 2𝑥𝑑)(𝑡𝑆𝑖 − 𝑦𝑑1 − 𝑦𝑑2). However, due to the charge 

sharing between the lateral and the vertical gates, the area A is elliptical which is a little less than 

this rectangular area. The exact calculation, based on maintaining charge neutrality in the region 

requires solving two dimensional Poisson equation which is not feasible for CAD implementation. 

An empirical fitting parameter, 𝛿 can be used to account for this change in shape from rectangular 

to elliptical to express A as, 𝐴 = (𝑊 − 2𝑥𝑑)(𝑡𝑆𝑖 − 𝑦𝑑1 − 𝑦𝑑2) − 𝛿 ∗ 2𝑥𝑑 ∗ (𝑦𝑑1 + 𝑦𝑑2)        (6.8) 
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This model is implemented in CadenceTM using VerilogA. The integral is evaluated using 

the loop functionality with trapezoidal rule and is valid for non-saturation. With the increase in 

channel potential, the sectional area A gradually decreases and after it becomes zero, equation 6.7 

is no longer applicable. The channel gets pinched-off and the transistor enters into saturation where 

the current remains the same.   

6.2.2 Model Validation 

The current-voltage characteristics is validated against TCAD data from [24]. The 

junction-gates are tied together and keeping two gate biases fixed, the third bias is changed and 

the resulting matching is shown. 

In Figure 6.2, both the top- and the bottom-gate voltages are fixed at 0 V and the junction 

bias is changed from 0 to -1.5 V. The same procedure is done in Figure 6.3, except the bottom-

gate voltage is changed to -3 V. 

In Figure 6.4, the junction- and the bottom-gate voltages are fixed at 0 V and -3 V. The 

top-gate bias is changed from 0 V to -3 V. The same procedure is done in Figure 6.5, except the 

junction-gate voltage is changed to -1.5 V. In Figure 6.6, the bottom-gate is swept while keeping 

both the top-gate and the junction-gate fixed at 0 V. The mean relative error suggests reasonably 

good matching for different bias conditions.   
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Figure 6.2: Comparison between test data and model for different junction-gate voltages, 

with both the top-gate and the bottom-gate biased at 0 V. 

 

 

Figure 6.3: Comparison between test data and model for different junction-gate voltages, 

with the top-gate and the bottom-gate biased at 0 V and -3 V, respectively. 
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Figure 6.4: Comparison between test data and model for different top-gate voltages, with 

the junction-gate and the bottom-gate biased at 0 V and -3 V, respectively. 

 

 

Figure 6.5: Comparison between test data and model for different top-gate voltages, with 

the junction-gate and the bottom-gate biased at -1.5 V and -3 V respectively. 
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Figure 6.6:  Comparison between test data and model for different bottom-gate voltages, 

with both the junction-gate and the top-gate biased at 0 V. 

 

6.3 Front Surface Accumulation Model 

For many applications of G4FET such as analog multiplier, high voltage differential 

amplifier etc. the front surface needs to be accumulated and in that case, the accumulation layer 

adjacent to front gate oxide-semiconductor surface provides most of the current. The depletion all 

around model is not suitable for this operation.  

In this section, a method is developed for emulating the behavior of a G4FET working in 

this front surface accumulation mode using an accumulation mode MOSFET with a threshold 

voltage dependent on other gate biases. The volume conduction is also included using a JFET like 

conduction path. 
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6.3.1 Model Formulation   

A number of terms is used in developing the model and most of these terms were introduced 

in section 5.2. The bottom-gate may be accumulated, depleted or inverted. However, the 

accumulated back gate provides a shunt leakage conduction path which is undesirable for most 

applications. Therefore, it is assumed that the back gate is never accumulated and only the 

condition for depleted or inverted back surface is considered. For these conditions, the top-gate 

accumulation threshold voltage, VTH can be modeled as a function of other gate biases [21]. 

When the bottom-gate is in inversion i.e. 𝑉𝐵𝐺 <  𝑉𝐵𝐺𝑖𝑛𝑣  

   𝑉𝑇𝐻 =  𝑉𝐹𝐵1 −  𝛾 ( 𝐶𝐽𝐺𝐶𝑜𝑥1) (2𝜑𝐹 + 𝑉𝑃) − 𝑇𝐻𝑚𝑜𝑑 ∗ 𝛼 ( 𝐶𝐽𝐺𝐶𝑜𝑥1) (𝑉𝐽𝐺 − 𝑉𝑃)       (6.9) 

    

When the bottom-gate is depleted i.e. 𝑉𝐵𝐺𝑖𝑛𝑣 < 𝑉𝐵𝐺 <  𝑉𝐵𝐺𝑎𝑐𝑐  𝑉𝑇𝐻 =  𝑉𝐹𝐵1 − 𝛽(𝑉𝐵𝐺 − 𝑉𝐹𝐵2) +  𝑇𝐻𝑚𝑜𝑑 ∗ (𝛾 − 𝛼) ( 𝐶𝐽𝐺𝐶𝑜𝑥1 + 𝛽 𝐶𝐽𝐺𝐶𝑜𝑥1) (𝑉𝐽𝐺 − 𝑉𝑃)         (6.10) 

An extra parameter, ‘THmod’, standing for ‘threshold modifier’, is included for empirical 

fitting. The accumulation mode MOSFET Drain-current expression IDM is similar to Shichman-

Hodges equation [80] with some modification. 

For triode region i.e. VDS < VTG –VTH, 𝐼𝐷𝑀 = 𝐾𝑝(1 + 𝑊𝑚𝑜𝑑 ∗ 𝑉𝐽𝐺) ∗ ( 1(𝑉𝑇𝐺 − 𝑉𝐹𝐵1)𝜃) ((𝑉𝑇𝐺 − 𝑉𝑇𝐻)𝑉𝐷𝑆 − 12  𝑉𝐷𝑆2 ) (1 + 𝜆𝑀 ∗ 𝑉𝐷𝑆)    (6.11) 

For saturation region i.e. VDS ≥ VTG –VTH,  𝐼𝐷𝑀 = 12 𝐾𝑝(1 + 𝑊𝑚𝑜𝑑 ∗ 𝑉𝐽𝐺) ( 1(𝑉𝑇𝐺 − 𝑉𝐹𝐵1)𝜃) (𝑉𝑇𝐺 −  𝑉𝑇𝐻)2 (1 + 𝜆𝑀 ∗ 𝑉𝐷𝑆)              (6.12) 

The additional parameters are Wmod (junction-gate affect in conduction area shrinkage), θ 

(vertical field mobility affect) and 𝜆𝑀 (channel length modulation). 
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Similarly, there are two equations based on linear and saturation region for drain current 

IDJ in JFET [110]. For linear region,                 𝐼𝐷𝐽 = (2𝐼𝐷𝑠𝑠𝑉𝑃2 )(𝑉𝐽𝐺 −  𝑉𝑃 − 12 𝑉𝐷𝑆)𝑉𝐷𝑆(1 + 𝜆𝐽 ∗ 𝑉𝐷𝑆)           (6.13)            

 

For saturation region,                 𝐼𝐷𝐽 =  𝐼𝐷𝑠𝑠(1 − 𝑉𝐽𝐺𝑉𝑃 )2(1 + 𝜆𝐽 ∗ 𝑉𝐷𝑆)                               (6.14) 

 

Here, IDSS is the maximum saturation current and 𝜆𝐽 is the channel length modulation 

parameter for JFET. Then, the total drain-source current of the G4FET will be, 𝐼𝐷𝑆 = 𝐼𝐷𝑀 + 𝐼𝐷𝐽                                                                                                          (6.15) 
 

6.3.2 Model Validation 

For different top-gate bias, the junction-gate voltage has been swept from -3 V to 0 V and 

the resulting drain current versus drain-source voltage model data is tested against TCAD 

simulation data. In Figure 6.7, the top-gate voltage is fixed at 2.5 V and the junction-gate voltage 

is swept from -3 V to 0 V. The maximum error in this range is from VJG = -1 V with 5.5825 %. In 

Figure 6.8, the top-gate bias is moved up to 3 V resulting in increased current for all four different 

junction-gate biases. The mean error has improved for this bias condition with the maximum error 

of 4.77 %. 

In Figure 6.9, the top-gate voltage is biased at 3.5 V and the junction-gate is varied from -

3 V to 0 V. The fit is reasonably good with the maximum error occurring for VJG = 0 V with 4.6941 

%. The isolines for different junction-gate bias for VTG = 4 V is shown in Figure 6.10. The matching 

is similar as the previous figure with the maximum error of 4.842 % occurring at the junction-gate 

bias of 0 V. Figure 6.11 shows the isolines for 4.5 V at top-gate when the front surface is very  
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Figure 6.7: Comparison between isolines of test data and model for different junction-gate 

voltages, with the top-gate and the bottom-gate biased at 2.5 V and 0 V, respectively. 

 

 

Figure 6.8: Comparison between isolines of test data and model for different junction-gate 

voltages, with the top-gate and the bottom-gate biased at 3 V and 0 V, respectively. 
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Figure 6.9: Comparison between isolines of test data and model for different junction-gate 

voltages, with the top-gate and the bottom-gate biased at 3.5 V and 0 V, respectively. 

 

 

Figure 6.10: Comparison between isolines of test data and model for different junction-

gate voltages, with the top-gate and the bottom-gate biased at 4 V and 0 V, respectively. 
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Figure 6.11: Comparison between isolines of test data and model for different junction-

gate voltages, with the top-gate and the bottom-gate biased at 4.5 V and 0 V, respectively. 

 

strongly accumulated. The matching is slightly worse compared to Figure 6.8 and Figure 6.9 with 

the maximum error of 5.1643 %. 

6.4 Chapter Summary 

Two compact models of G4FET based on different gate biasing conditions are implemented 

in circuit simulator. The first model is built upon the working principle when the transistor is biased 

to operate in depletion-all-around condition. The second model is used to predict the transistor 

characteristics when the top-gate is accumulated, which is also used in several G4FET applications. 

The same approach can be taken to develop higher order models with more fitting parameters for 

further improvement of the accuracy. 
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Chapter 7 - Conclusion and Future Work 

 

7.1 Original Contributions 

G4FET is a relatively new member of the silicon-on-insulator family and was first reported 

in 2002 [15]. Several works have been done so far to model the working mechanism of the device. 

In [21], the threshold potential of the top-gate was derived as a function of remaining gate voltages 

with full depletion approximation and an assumption of parabolic potential distribution between 

lateral gates. A charge control method was used in [24] to derive the drain current equation under 

depletion all around operation using a single fitting parameter. A surface potential based non-linear 

solution of drain current and gate capacitance was formulated in [28] for accumulated top-gate 

condition.  

However, to really utilize the novel properties of G4FET, a suitable SPICE model is 

essential. Until now, no significant work has been done for SPICE implementation of G4FET. This 

work includes three different approaches towards modeling G4FET for circuit implementation. 

The first approach is numerical modeling, which uses experimental data for determining a reliable 

expression for device characteristics. Four different approaches have been outlined, each with its 

own merits and demerits.  

The first approach is a multivariate Lagrange polynmial interpolation model in which 

Chebyshev nodes are used to improve the accuracy and reduce oscillation. The second numerical 

model is based on multidimensional Bernstein polynomial approximation. This approach is not as 

accurate as Lagrange’s method, but it is better at preserving shape of the original data, which may 

be significant for some analog applications.  
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 However, both these models have one problem. The order of the model increases with 

chosen data points which make the dual requirement of good accuracy and small computational 

time very difficult to achieve. The third method provides a solution in the form of multivariate 

regression polynomial model. Both n-channel and p-channel transistors have been modeled using 

the method and verification with experimental data using circuit implementation is also 

demonstrated. 

 The last numerical method is the multivariate linear and cubic spline interpolation model. 

The first three numerical methods use a single polynomial to represent the entire biasing region of 

the transistor. However, single polynomials are prone to sudden oscillation and local noise or 

irregularities can affect global behavior. Spline or piecewise interpolation solves these problems. 

Both linear and cubic spline models are used in this work to develop the model. Cubic spline 

models are used in several circuit implementations.  

 Apart from numerical modeling, a different macromodel approach is also pursued. This 

approach originates from the observation that G4FET combines MOSFET and JFET action in a 

single silicon body. Therefore, already existing standard SPICE models of MOSFET and JFET are 

combined in a subcircuit with suitable modification to emulate G4FET characteristics. This model 

is easily implemented in circuit simulator, quite fast and has successfully reproduced the results 

from a multitude of experimentally demonstrated analog and digital circuits. 

The third approach was CAD implementation of simplified physics-based compact model. 

Two such models are shown. The first work is based on the analytical work in [24] and covers the 

biasing condition known as depletion all around. However, it is limited to this biasing regime and 

not applicable for situation where the top-gate is accumulated with available surface conduction. 

This mode of operation is very useful in certain applications such as analog multiplier, high voltage 
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differential amplifier etc. A second model compact model combining basic MOSFET and JFET 

equations with suitable fitting parameters is proposed to account for surface accumulation 

behavior.  

Therefore, the original contributions of this research can be summarized as: 

 Successful SPICE implementation of G4FET model and verification using 

experimental results.  

 Model formulation and SPICE implementation of four different numerical models 

for G4FET, namely, 1) multivariate Lagrange polynomial interpolation model, 2) 

multivariate Bernstein polynomial approximation model, 3) multivariate regression 

polynomial model and 4) multivariate linear and cubic spline interpolation model. 

 Development of a macromodel of G4FET combining existing models of MOSFET 

and JFET transistors and implementation in circuit simulator for simulating 

innovative analog and digital circuits. Model verification using comparison 

between simulation and experimental results. 

 Development of two simplified physics-based compact models for CAD 

implementation suitable for different biasing conditions. Verification of the current 

voltage characteristics using comparison between TCAD data and model 

prediction.  

7.2 Dissertation Summary 

The main goal of this work was to develop SPICE models for G4FET. Three different 

approaches have been adopted to achieve this goal. The first approach is the numerical method 
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which constitutes the bulk of this work. This approach is used to develop four different numerical 

models for both n-channel and p-channel G4FET from both TCAD and experimental data which 

are implemented in circuit simulator. The second approach uses a macromodel combining 

MOSFET and JFET models based on the underlying physical operation of G4FET. This model has 

been implemented in circuit simulator and successfully reproduces results from several innovative 

analog and digital applications. The third approach involves developing two simplified compact 

models with suitable model parameters to account for two different operating conditions of G4FET. 

  The challenges associated with extreme scaling of bulk silicon MOSFET has driven 

researchers to look for ‘end-of-roadmap’ devices. G4FET with its unique configuration and 

functionality may prove to be a suitable transistor for the next generation circuit design. SPICE 

models developed in this work can help designers to come up with innovative circuits with higher 

speed, smaller footprint and lower power consumption. 

7.3 Future Works 

Different modeling approaches have been developed and implemented in this dissertation. 

Still, there is room for further contributions in the CAD model development of a G4FET. Some 

possible future works are mentioned below: 

1. Extending the numerical models to include temperature, terminal capacitance, epi silicon 

thickness, noise model etc. 

2. Inclusion of higher level MOSFET and JFET models in the macromodel for better 

accuracy. 
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3. A physics-based compact model valid under all possible operating conditions with 

suitable parameter extraction methodology.   
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