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An improved SIRS model considering communication radius and distributed density of nodes is proposed. 
e proposed model
captures both the spatial and temporal dynamics of worms spread process. Using di�erential dynamical theories, we investigate
dynamics of worm propagation to time in wireless sensor networks (WSNs). Reproductive number which determines global
dynamics of worm propagation in WSNs is obtained. Equilibriums and their stabilities are also found. If reproductive number
is less than one, the infected fraction of the sensor nodes disappears and if the reproduction number is greater than one, the
infected fraction asymptotically stabilizes at the endemic equilibrium. Based on the reproduction number, we discuss the threshold
of worm propagation about communication radius and distributed density of nodes inWSNs. Finally, numerical simulations verify
the correctness of theoretical analysis.

1. Introduction

A sensor network is composed of hundreds or even thou-
sands of sensor nodes that are allowed randomdeployment in
inaccessible terrains or disaster relief operations [1]. Wireless
sensor networks (WSNs), as a kind of new information and
communication network, have gained worldwide attention
owing to their potential in civil and military applications, for
instance, intrusion detection, perimeter monitoring, infor-
mation gathering, and smart logistics support in an unknown
deployed area [2–4].

With widespread applications of WSNs, research on
WSNs has been a hot topic. Some methods have been
proposed for prolonging the lifetime of WSNs focusing on
energy consumption [5–7], device placement [8], and topol-
ogy management [9]. Because sensor nodes are constrained
sources, they have weak defenses and are attacking targets
for worms. Injecting malware into some nodes has become a
serious threat [10]. Recently, malicious codes targeting wire-
less devices have emerged, which can spread directly from
device to device using wireless communication technology,
such as Wi-Fi and Bluetooth [11–14]. For instance, computer
worm like Cabir uses the Bluetooth interface to spread among

cellphones, which means that worms have committed the
wireless domain and WSNs are also extremely vulnerable to
malware.

Actions of malicious objects on the Internet have been
studied by using epidemical models and have provided
insights for controlling worm prevalence in networks [15–
20]. In [15], the authors presented an E-mail virus model
that accounts for behaviors of E-mail users and analyzed
propagation features of E-mail viruses in di�erent network
topologies. In [16–20], the authors proposed epidemic mod-
els with time delay and analyzed dynamical features of worm
prevalence. To e�ectively defend against worm intrusions,
it is necessary to deeply understand dynamical features of
worm propagation in WSNs. Existing research prove that
epidemical models are valuable for portraying characteris-
tics of worm propagation. Since there is a basic similarity
between worm propagation through wireless devices and
traditional worm spread on the Internet, the epidemical
models extensively are applied to study worm spread in
WSNs by some researchers in recent years [11, 21–23]. In [21],
the authors proposed a SIRS malware propagation model
with feedback controller and analyzed Hopf bifurcation
dynamics ofmalware prevalence inmobile wireless networks.
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e authors in [22] presented an epidemic model with
vaccination compartment which captures both the spatial
and temporal dynamics of worm spread process, and some
mathematical analyses and numerical simulations were per-
formed based on this model. 
e common problem of the
above models is that the characteristics of wireless sensor
networks like energy consumption, communication radius,
and distributed density of nodes have not been considered in
models. In [11], the authors developed a mathematical model
for the propagation that incorporates important parameters
derived from the communication patterns of the protocol
under test. Based on this model, the authors analyzed the
propagation rate and the extent of spread of a malware over
typical broadcast protocols proposed in the paper. Wang and
Li derived an iSIR model describing the process of worm
propagation with energy consumption of nodes in WSNs
[23]. Numerical simulations are performed to observe the
e�ects of the network topology and energy consumption of
nodes on worm spread in WSNs. However, the authors have
not performedmathematical analyses based on thismodel. In
fact, key parameters of a�ectingworm spread can be found by
explicit mathematical analyses.

To better portrait the features of worm propagation in
WSNs, in this paper, we study the attacking behavior of
possible worms in WSNs by constructing an improved SIRS
epidemicmodel. In thismodel, the following three factors are
considered: (i) energy consumptions of nodes; (ii) communi-
cation radius of nodes; and (iii) distributed density of nodes
in WSNs. Based on this model, we analyze the stability of
worm prevalence through �nding the equilibriums of model.


e rest of this paper is organized as follows: in Section 2,
we analyze topology of WSNs and present the model for-
mulation. Section 3 derives the equilibriums of the model
and discusses the stability of worm propagation at the
equilibriums. In Sections 4 and 5, numerical simulations are
performed to verify the correctness of theoretical analyses
and some conclusions are given, respectively.

2. The Proposed Model

2.1. System Description. Wemodel a wireless sensor network
composed of�nodes.
enodes are uniformly distributed in� × � area (nodes average density is � = �/�2) and the wire-
less communication range of every node is �. 
e topological
structure of a WSN is shown in Figure 1.

Based on the existing ��� epidemic model [24, 25], the
nodes in WSNs are classi�ed into three states:

(i) Susceptible state (�): nodes in �have not been infected
byworms, and these nodes are vulnerable toworms in
WSNs.

(ii) Infected state (�): nodes have been infected by worms
and have the ability to infect other nodes in WSNs.

(iii) Recover state (�): nodes have installed a detection
tool that can identify and remove worms, or nodes
have installed a so�ware patch to eliminate the node
vulnerability exploited by worms.
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Figure 1: 
e topology structure of a WSN.
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Figure 2: Transition relationship of states of nodes.

We consider the following state transitions among these
three states:

(i) Users may immunize their nodes with countermea-
sures in states � and � with probabilities 	 and 
,
respectively.

(ii) As the energy of nodes is exhausted, some nodes
become dead nodes with probability �.

(iii) Infected nodes � infect susceptible � with e�ective
infection rate �.

(iv) Some recovered nodesmay become susceptible nodes
with probability .

Transition relationships among node states are described in
Figure 2.

2.2. Model Derivation. 
e communication area of a node is
denoted by ��, and the density of susceptible nodes in a unit
area inWSNs is denoted by�(�).
en the following equations
hold:

� (�) = � (�)�2 ,�� = ��2,�� (�) = ��� (�) .
(1)
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From (1), we can get

�� (�) = ��2 � (�)�2 . (2)

According to state transition relationships in Figure 2, the
mathematical model of worm propagation in WSNs can be
derived as follows:

�� (�)�� = �� − ��2�2 �� (�) � (�) − (� + 	) � + �,�� (�)�� = ��2�2 �� (�) � (�) − (� + 
) �,�� (�)�� = 	� + 
� − (� + ) �.
(3)

For convenience, let

� = ��2�2 �. (4)


en, system (3) can be written as

���� = �� − �� (�) � (�) − (� + 	) � + �,
���� = �� (�) � (�) − (� + 
) �,���� = 	� + 
� − (� + ) �.

(5)

3. Stability Analysis of Equilibriums

In this section, we will �nd the equilibriums of system (5) and
investigate their stability. 
e equilibriums of system (5) are
given by solutions of

�� − �� (�) � (�) − (� + 	) � + � = 0,�� (�) � (�) − (� + 
) � = 0,	� + 
� − (� + ) � = 0. (6)

Let ��(�)�(�) − (� + 
)� = 0 (the second equation of (6)); we
have �∗ = 0 or �∗ > 0 and �∗ = (� + 
)/�. For the case of�∗ = 0, we have worm-free equilibrium

�0 = (�∗0 , �∗0 , �∗0 ) = ( (� + )� +  + 	�, 0, 	�� + ) . (7)

For the case of �∗ > 0, we have endemic equilibrium

�∗ = (�∗1 , �∗1 , �∗1 ) = (� + 
� ,
� (� + )� − (� + 
) (� +  + 	)� (� +  + 
) , 	�∗1 + 
�∗1� +  ) . (8)

Let

�0 = � (� + )(� + 
) (� +  + 	)�. (9)

Notably, the endemic equilibrium is meaningful only if �0 >1.
3.1. Worm-Free Equilibrium and Its Stability

Lemma 1. �eworm-free equilibrium is locally asymptotically
stable if �0 < 1 and unstable if �0 > 1.
Proof. According to �0 = (((� + )/(� +  + 	))�, 0, 	�/(� +)), the characteristic equation of system (5) at worm-free
equilibrium �0 is
det(−(� + 	) − � −��∗0 0 �� − (� + 
) − � 0	 
 (� + ) − �)= 0,

(10)

which is equivalent to[��∗0 − (� + 
) − �]⋅ [�2 − (2� +  + 	) � + �2 + � + �	] = 0. (11)

Equation (11) has a characteristic root �1 = ��∗0 − (� + 
) =(� + 
)(�0 − 1) and the roots of equation

�2 + (2� +  + 	) � + �2 + � + �	 = 0. (12)

Obviously, in accordance with the relationship between
roots and coe�cients of quadratic equation, there is no
positive real part characteristic root of (12). Hence, when�0 <1, (11) has no positive real root, and worm-free equilibrium�0 is locally asymptotically stable. When �0 > 1, (11) has a
positive root; thus, worm-free equilibrium �0 is an unstable
saddle-point.

Furthermore, the following theorem holds.

�eorem 2. �e worm-free equilibrium is globally asymptoti-
cally stable if �0 ≤ 1.
Proof. From the �rst equation of system (5)̇� (�) ≤ (� + )� − (� +  + 	) �. (13)
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us, �(�) ≤ (� + )�/(� +  + 	) + (�(0) − (� + )/(� +  +	))exp[−(� +  + 	)�]. When � → ∞, we obtain� (�) ≤ � + � +  + 	�. (14)

Consider a Lyapunov function� (�) = $ (�) ,�̇ (�) = �� (�) � (�) − (� + 
) � (�)
≤ [� � + 	� + 	 + � − (� + 
)] � (�)
= 1� + 
 (�0 − 1) � (�) ≤ 0.

(15)

So, we prove that worm-free equilibrium �0 is globally
asymptotically stable.

3.2. Endemic Equilibrium and Its Stability. Now, we inves-
tigate the local stability of endemic equilibrium �∗. 
e
characteristic equation of system (5) at endemic equilibrium�∗ is
det(−��∗1 − (� + 	) − � −��∗1 ��∗1 ��∗1 − (� + 
) − � 0	 
 (� + ) − �)= 0,

(16)

which is equivalent to�3 + �0�2 + �1� + �2 = 0, (17)

where �0 = 3� +  + 	 + ((� + )/(� +  + 
))�, �1 = (� +)[2� + 
 + ((� + )/(� +  + 
))�] + �	 + �2�∗1 �∗1 , and �2 =��(� + )(�∗1 − �∗1 ) + �(� + 
)(� +  + 	) + ��(
�∗1 − 	�∗1 ).
Obviously, �0 > 0, �1 > 0, �2 > 0, and �0�1 −�2 > 0. According to the theorem of Routh-Hurwitz [26, 27],

it follows that the roots of (17) have negative real parts.

erefore, the endemic equilibrium is locally asymptotically
stable.

From the above discussion, we can summarize the follow-
ing conclusion.

Lemma 3. If �0 > 1, then endemic equilibrium is locally
asymptotically stable.

Note that the number of nodes in WSNs is relatively
stable; that is, at time �, the number of nodes �(�), �(�), and�(�) in states �, �, and �, respectively, satis�es� (�) + � (�) + � (�) = �. (18)

Hence, the dynamics of system (5) is equivalent to the
following system:�� (�)�� = (� + 	)� − �� (�) � (�) − (� + 	 + ) � (�)

− � (�) ,�� (�)�� = �� (�) � (�) − (� + 
) � (�) .
(19)

Clearly, when �0 > 1, system (19) has a unique positive
equilibrium �∗(�∗1 , �∗1 ), where(�∗1 , �∗1 )

= (� + 
� , � (� + )� − (� + 
) (� +  + 	)� (� +  + 
) ) . (20)

Now, we state and prove a result on the global stability of the
endemic equilibrium (�∗1 , �∗1 ) of system (19).

�eorem 4. When �0 > 1, the endemic equilibrium (�∗1 , �∗1 )
of system (19) is globally asymptotically stable.

Proof. Consider the following Lyapunov function [28]:

� (�) = ∫�
�∗1

* − �∗1* �* + ∫�
�∗1

* − �∗1* �*. (21)


e time derivative of �(�) along the solution of system (19)
is given by

�̇ (�) = (� − �∗1� ) �� + (� − �∗1� ) �� = (1 − �∗1� )⋅ [(� + )�
− �� (�) � (�) − (� +  + 	) � (�) − � (�)] + (1
− �∗1� ) [�� (�) � (�) − (� + 
) � (�)] ≤ (1 − �∗1� )⋅ [(� + )�
− �� (�) � (�) − (� +  + 	) � (�)] + (1 − �∗1� )⋅ [�� (�) � (�) − (� + 
) � (�)]
= − (� + )� ��∗1 (�∗1� − 1)2 ≤ 0.

(22)


e proof is completed.

Remark 5. By 
eorem 4, we obtain that �0 > 1; then
endemic equilibrium �∗ of system (5) is globally asymptoti-
cally stable.

4. Worm Propagation Threshold Analysis and
Numerical Simulations

We have proved that the basic reproductive number �0
equaling zero is the threshold whether worms are eliminated.
When �0 ≤ 1, worms in WSNs can be eliminated, and
system (5) will stabilize at worm-free equilibrium. When�0 > 1, worms in WSNs will exist consistently, and system
(5) will stabilize at the endemic equilibrium. For verifying
the correctness of theoretical analysis, we perform worm
propagation threshold analyses and numerical simulations
from the following two sides.
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Figure 3: Simulation results of di�erent communication radius of nodes: (a) � = 0.1; (b) � = 0.3; (c) � = 0.8; and (d) � = 1.
4.1. Communication Radius of Nodes �. Let �0 = (�(� +)/(� + 
)(� +  + 	))� = 1; we can get the threshold
of worm propagation about communication radius of nodes�� = �√(� + 
)(� +  + 	)/��(� + )�; that is, when � ≤ ��,�0 ≤ 1, according to 
eorem 2, worms in WSNs can be
eliminated, and system (5) will stabilize at the worm-free
equilibrium; when � > ��, �0 > 1, according to Remark 5,
worms in WSNs will exist consistently, and system (5) will
stabilize at the endemic equilibrium.

We choose a set of simulation parameters as follows:� =1000, � = 10, � = 0.001, � = 0.0003, 	 = 0.001,  = 0.0003,
and 
 = 0.002. By calculation, we have �� = 0.7506. Initial
values of susceptible, infected, and recovered nodes in WSNs

are �(0) = 990, �(0) = 10, and �(0) = 0. When � takes
di�erent values, simulation results are depicted in Figures
3(a)–3(d).

When � = 0.1 < �� and � = 0.3 < ��, Figures 3(a) and 3(b)
show that system (5) stabilizes at worm-free equilibrium.
e
simulation results are consistent with
eorem 2.

When � = 0.8 > �� and � = 1 > ��, Figures 3(c) and 3(d)
show that system (5) stabilizes at the endemic equilibrium.
Simulation results are consistent with Remark 5.

4.2. NodesDistributedDensity�. Let�0 = (�(�+)/(�+
)(�+ + 	))� = (��2�(� + )/(� + 
)(� +  + 	))� = 1; we can get
the threshold of worm propagation about node distributed
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Figure 4: Simulation results of di�erent nodes density: (a) � = 2.5; (b) � = 1.6; (c) � = 6.944; and (d) � = 10.
density �� = (� + 
)(� +  + 	)/��2�(� + ). When � < ��,�0 ≤ 1, system (5) has only a worm-free equilibrium and is
globally asymptotically stable; when � > ��, �0 > 1, system
(5) has an endemic equilibrium besides the worm-free equi-
librium, and endemic equilibrium is globally asymptotically
stable.

We choose a set of simulation parameters as follows:� =1000, � = 1,� = 0.001,� = 0.0003,	 = 0.001,  = 0.0003, and
 = 0.002. By calculation, we get �� = 5.6345. Initial values
of system (5) are set as �(0) = 990, �(0) = 10, and �(0) = 0.
When � = 20, 25, 12, and 10, we can get � = �/�2 = 2.5,1.6, 6.944, and 10. Simulation results are depicted in Figures
4(a)–4(d).

When � = 2.5 < �� and � = 1.6 < ��, Figures
4(a) and 4(b) indicate that system (5) stabilizes at the worm-
free equilibrium, and worm propagation is controlled �nally.
Simulation results are consistent with theoretical analysis.

When � = 6.944 > �� and � = 10 > ��, Figures 4(c)
and 4(d) show that the trajectories converge to the endemic
equilibrium.
e conclusions agree with theoretical analysis.

5. Conclusions

In this paper, we have proposed an improved SIRS model
for analyzing dynamics of worm propagation in WSNs. 
is
model can describe the process of worm propagation with
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the energy consumption and di�erent distributed density
of nodes. Based on this model, a control parameter �0
that completely determines the global dynamics of worm
propagation has been obtained by the explicit mathematical
analyses. From 
eorems 4 and 2, we learn out that worm
will be controlled in WSNs when �0 < 1, and they will
be prevalent otherwise. Finally, based on �0, we discuss the
threshold of worm propagation about communication radius
and distributed densities of nodes inWSNs. Numerical simu-
lations verify the correctness of theoretical analysis. Research
results show that decreasing the value of communication
radius or reducing distributed density of nodes is an e�ective
method to prevent worms spread in WSNs. Research of
this paper provides the theoretical basis for predicting and
controlling worm propagation in WSNs. It is worth pointing
out that we do not consider physical e�ects like “collisions”
and heterogeneous distribution of nodes on infection rate
when modeling, which is our focus in the future.
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