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Abstract: To develop high-performance controllers for adaptive optics (AO) systems, it is

essential to first derive sufficiently accurate state-space models of deformable mirrors (DMs).

However, it is often challenging to develop realistic large-scale finite element (FE) state-space

models that take into account the system damping, actuator dynamics, boundary conditions,

and multi-physics phenomena affecting the system dynamics. Furthermore, it is challenging to

establish a modeling framework capable of the automated and quick derivation of state-space

models for different actuator configurations and system geometries. On the other hand, for accurate

model-based control and system monitoring, it is often necessary to estimate state-space models

from the experimental data. However, this is a challenging problem since the DM dynamics

is inherently infinite-dimensional and it is characterized by a large number of eigenmodes and

eigenfrequencies. In this paper, we provide modeling and estimation frameworks that address

these challenges. We develop an FE state-space model of a faceplate DM that incorporates

damping and actuator dynamics. We investigate the frequency and time domain responses

for different model parameters. The state-space modeling process is completely automated

using the LiveLink for MATLAB toolbox that is incorporated into the COMSOL Multiphysics

software package. The developed state-space model is used to generate the estimation data. This

data, together with a subspace identification algorithm, is used to estimate reduced-order DM

models. We address the model-order selection and model validation problems. The results of this

paper provide essential modeling and estimation tools to broad AO and mechatronics scientific

communities. The developed Python, MATLAB, and COMSOL Multiphysics codes are available

online.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Adaptive Optics (AO) is a widely used technology for improving the performance of optical

systems, such as telescopes, microscopes, free-space communication links, optical lithography

machines, high-power lasers, etc. [1]. The main components of AO control systems are

WaveFront Sensors (WFSs), controllers and Deformable Mirrors (DMs). A WFS is used to

measure the wavefront aberrations and on the basis of these measurements, a controller computes

control signals for DM actuators. The actuators deform the reflective surface of a DM in such

a way that the optical aberrations in the reflected wavefront are attenuated. A relatively recent

overview of the control aspects of AO systems is presented in [2]. Due to the need for higher

spatial and temporal correction performances of AO systems, the number and spatial resolution

of DM actuators are constantly increasing [1,3]. Thus, DMs in AO systems for extremely large

telescopes have hundreds or even thousands of spatially distributed actuators [3]. To maximize

the correction bandwidth of AO systems it is essential to develop sufficiently accurate models of

DMs, WFSs, and possibly of other processes that influence the AO dynamics, such as atmospheric

turbulence in the case of telescopes [2,4–6].
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There are various types of DM architectures and design concepts used in AO systems.

Depending on how the reflective surface is designed, we can distinguish between segmented,

faceplate, and membrane DMs [1,7,8]. Due to their widespread usage, in this manuscript, we

consider DMs with continuous faceplates. The results can easily be extended to other mirror

concepts. A typical continuous faceplate DMs is composed of a thin faceplate that is deformed

by spatially distributed actuators placed on its backside.

Modeling and control problems for large-scale DMs have been considered in [5,9–18].

Distributed control and estimation problems or problems of efficient implementation of control

and estimation algorithms for large-scale DMs and AO systems have been considered in [4,18–23].

Before these methods can be used, it is necessary to develop sufficiently accurate DM models.

Furthermore, it is preferable that these models are in a state-space form that can be used for the

design of advanced model-based control algorithms. Analytical mirror models that are based

on the biharmonic plate equation and its modifications have been developed in [7,10,11,24,25].

However, such first-principle approaches assume that all the geometrical and physical parameters,

as well as boundary conditions and multiphysics phenomena that describe the system dynamics,

are known a priori. However, all critical system parameters might not be known accurately, or

they vary with operational conditions. In these cases, the system model needs to be estimated

(identified) from the experimental data.

The problem of estimating DM model parameters, such as damping, has been considered

in [11]. However, this approach does not address the problem of selecting the model order.

Subspace Identification (SI) algorithms are powerful estimation methods that can estimate model

orders and state-space models by performing a few numerical steps, without the need to employ

complex optimization methods [26–28]. SI algorithms have been used in [29,30] to estimate

state-space models of thermally actuated DMs. An SI algorithm has also been used in [31] to

estimate a state-space model of a bimorph mirror. In [32], an SI algorithm has been used to

estimate a model of a DM with a small number of piezoelectric actuators. On the other hand,

in [9] tensor-based identification methods have been used to estimate AO models. However, to

the best of our knowledge, the potential of using SI algorithms for the estimation of large-scale

faceplate DM models has not been systematically investigated. The problems of estimating model

orders and state-space descriptions of faceplate DMs are challenging identification problems

mainly because the dynamics of these mirror types are inherently infinite-dimensional and

systems consist of large numbers of inputs and outputs. Furthermore, additional identification

challenges are imposed by the fact that the DM dynamics is characterized by a large number of

eigenmodes and eigenfrequencies (some of which are lightly damped).

Apart from the model estimation problems, when designing controllers and estimators we are

often faced with another important modeling problem that is often overlooked in the literature.

Namely, when all the system parameters are known, there is a need to automatically and quickly

derive Finite Element (FE) state-space models [33] of DMs for arbitrary system geometries,

actuator configurations, and boundary conditions.

In this manuscript, we develop a large-scale state-space FE model of a faceplate DM and its

actuators. We investigate both the frequency and time domain system responses for different

model parameters, such as damping and stiffness. We demonstrate that by using the LiveLink for

MATLAB toolbox, that is incorporated into the COMSOL Multiphysics software package, it is

possible to completely automatize the process of deriving large-scale FE state-space models. This

modeling framework can easily incorporate arbitrary geometries, various actuator configurations,

model damping, and actuator dynamics. Using the developed model as a data generating model,

we obtain sets of input-output data. Using these data sets and the SI algorithm, we estimate a

reduced-order DM model. We investigate how well the SI algorithm can be used to estimate

the dominant eigenvalues of the DM model and the model order. Furthermore, we investigate

and address a model overfitting problem, and perform the model validation on the basis of a
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correlation-based residual test. The results of this paper provide useful modeling and estimation

tools to broad AO and mechatronics scientific communities. The codes used to generate the

results in this paper are available online [34].

This paper is organized as follows. In Section 2 we present the DM and actuator models and

perform frequency domain and time domain analyses. In Section 3, we define a measurement

equation and a state-space model that is simulated to obtain the identification data. In Section 4,

we summarize the used SI algorithm and present the identification results. Finally, in Section 5,

we present conclusions. The summary of the symbols used in this paper is given in Table 1.

Table 1. Glossary of the main symbols used in the manuscript.

symbol explanation symbol explanation

Pi, i = 1, . . . , 5 faceplate domain points z ∈ Rn1 FE displacement vector

M1, M2, M3 ∈ Rn1×n1 mass, damping, stiffness u ∈ Rm vector of actuator forces

B1 ∈ Rn1×m FE control input matrix α, β Rayleigh damping parameters

δ logarithmic decrement ω, ζ frequency and damping ratio

η1 air density η2 amplitude of faceplate oscillation

η3 faceplate surface area η4 faceplate mass

za actuator displacement Fa actuator force

γm,γd actuator mass, damping γs, fA actuator stiffness, bandwidth

Cz ∈ Rr×n1 matrix mapping z to y y ∈ Rr Zernike coefficient output vector

w = [zT ÛzT ]T ∈ Rn global state vector wk discrete-time version of w

E, R ∈ Rn×n state-space matrices (w) T ∈ Rn×m input matrix (w)

Q ∈ Rr×n matrix mapping w to y yk ∈ Rr discrete-time version of y

A1 ∈ Rn×n state-space matrix (wk) B1 ∈ Rn×m input matrix (wk)

A ∈ Rs×s, B ∈ Rs×m identified system matrices s identified system state order

xk ∈ Rs identified state ek ∈ Rr innovation vector

K ∈ Rn×r Kalman gain p past window

Ã ∈ Rn×n Ã = A − KC N number of data samples

B̃ ∈ Rn×m B̃ = [B K] vk ∈ Rr+m vk = [uT
k

yT
k
]T

f future window l identification parameter

Y
(l)
p,p, V

(l)

0,p−1
data matrices M Markov parameter matrix

ˆ ”hat” notation for estimates U, Σ, V SVD matrices

∆̂, S1, S2 matrices used in SI smin, smax minimal and maximal state orders

ε model error y0,N , ŷ0,N lifted output, lifted estimated output

pmax maximal past window X̂
(l)
p,p estimated state matrix

h discretization constant

2. Modeling and analysis

In this section, we present the mirror model and perform eigenmode, eigenfrequency, and

time-domain studies. Furthermore, to improve the model realisticity, we also model the system

damping and actuator dynamics. The results presented in this section enable us to draw important

conclusions on the system dynamics and to properly choose system identification parameters.

2.1. Faceplate model and analysis

We consider a circular mirror with a diameter of 1[m]. The mirror thickness is 0.002[m]. The

mirror is made of ZERODUR, with the density, Young’s modulus, and Poisson’s ratio equal
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to 2530[kg/m3], 9.03 · 1010[Pa], and 0.24, respectively. We assume a rectangular actuator

configuration. The mirror deformation is modeled using the Kirchhoff-Love theory of plates

[35]. There are three degrees of freedom: the out-of-plane displacement and two displacements

of shell normals. We assume that the outer mirror edges are clamped. We assume that there are

no initial deformations and that initial velocities of the material points are zero. A discretized

mirror model is obtained using the Finite Element (FE) method implemented in the COMSOL

Multiphysics software. Figure 1(a) shows the mirror geometry and the FE mesh. To quantify

the faceplate dynamics, we first perform the frequency response analysis. We assume that a

harmonic point load of the amplitude of 1[N] is acting at the point P1 = (−0.15,−0.15). We

calculate the magnitude responses at the points P1 and P2 = (0, 0). The magnitude responses

are shown in Figs. 1(b) and (c). While interpreting the results, it should be kept in mind that

COMSOL Multiphysics artificially introduces structural damping in order to approximate the

natural frequencies. To test the solution convergence and to obtain a more accurate results mesh

refinement technique should be used. To further characterize the mirror model, we perform the

modal analysis. The first few eigenfrequencies (natural frequencies) with the corresponding

eigenmodes are shown in Fig. 2.

Fig. 1. (a) The FE mesh with the mesh quality. The magnitude response observed at (b) the

point P1 and (c) the point P2. For the calculation of the magnitude responses, we assume

that the harmonic force of the amplitude of 1 [N] is acting at the point P1.

Fig. 2. The first few eigenfrequencies and the corresponding eigenmodes of the faceplate.
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2.2. Damping and actuator modeling

To obtain a more realistic model, we incorporate the system damping and actuator dynamics in

the DM model. In addition, we analyze their effects on the system dynamics. The discretized FE

model has the following form [33]:

M1Üz +M2 Ûz +M3z = B1u, (1)

where Mi ∈ R
n1×n1 , i = 1, 2, 3, are the FE matrices, B1 ∈ Rn1×m is the control input matrix,

z = z(t) ∈ Rn1 is the discretized displacement vector, t is time, u ∈ Rm is the control input

vector containing actuator forces (that will be defined in the sequel), Ûz and Üz denote the first and

second time derivatives. The mass M1, damping M2, stiffness M3, and B1 model matrices are

exported from the COMSOL Multiphysics environment to the MATLAB environment by using

the LiveLink interface. Furthermore, the complete modeling procedure is parametrized using the

LiveLink interface. An explanation of the LiveLink codes used to generate the models in this

manuscript is presented in [36]. The codes used in this manuscript are available online [34].

The system damping depends on the DM concept and the actuator type and it positively

influences the system stability. For DM designs with gaps between the faceplate and the back

plate, the damping is provided by air trapped in gaps [37–40], and the surrounding air. We refer

to this damping as the global damping. For plates oscillating in an air environment, it has been

experimentally shown that damping depends on the amplitude and is a nonlinear function of the

surface area [41]. Furthermore, the damping also originates from the faceplate internal structural

damping and mechanical connections used as constraints [41]. In [41] it has been shown that for

systems with a relatively large ratio of area to mass, the air damping is an order of magnitude

greater than other damping sources. The local actuator damping also plays an important role

in overall system damping. We refer to this damping as the local damping. The local actuator

damping can be passive or active. For example, passive damping can be provided by fluid trapped

between moving parts of voice-coil actuators [39,42]. The active damping can be achieved by

using a local feedback update from a local position sensor [43,44].

Rayleigh damping method. The global actuator damping and in some cases the local actuator

damping (for actuators with stiffness smaller than the faceplate stiffness) can be incorporated

into the model using the Rayleigh method [45]. This method is based on modal system analysis

and it selects the damping matrix as follows [45]: M2 = αM1 + βM3, where α, β ∈ R are the

parameters that are determined by solving the following system of equations (for more details see

Chapter 9 in [45]):

α + βω2
1 = 2ω1ζ1, α + βω2

2 = 2ω2ζ2, (2)

where ωi, i = 1, 2, are the eigenfrequencies and ζi, i = 1, 2, are the damping ratios which are

considered as constants. Since the air damping is more dominant than the structural damping, we

estimate the air damping using the approach experimentally verified in [41]. The damping ratio is

determined by ζ = 1/
√

1 + (2π/δ)2, δ = 22η1η2η
4/3

3
/η4, where δ is the logarithmic decrement,

and the variables η1, η2, η3, and η4 are air density, amplitude of oscillation, faceplate surface

area, and faceplate mass, respectively, expressed in U.S. customary units. For the atmospheric

pressure and for η2 = 12[µm] [17,46], we obtain ζ = 0.03. We solve the system in Eq. (2) for

ζ = ζ1 = ζ2 = 0.03, ω1 = 190[rad/s], and ω2 = 314[rad/s]. The solution is α = 7.1024 and

β = 1.19 · 10−4. Next, we compute a frequency response of the Rayleigh damped model. We

insert a harmonic point load of 1[N] at the point P1, and observe the responses at the points P1

and P2. Figure 3 shows the magnitude responses of the Rayleigh damped model. For comparison,

we show the magnitude responses of the faceplate without damping. Due to the introduced

damping, the eigenmodes and eigenfrequencies are complex and we omit them.

Damping through actuator dynamics and actuator model. The local damping and actuators

can be modeled as mass-spring-damper systems. This approach is widely used in literature
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Fig. 3. The effect of introduced air damping by using the Rayleigh method. A harmonic

force is applied at the point P1. The response observed at (a) P1 and at (b) P2.

for modeling linearized electromechanical and piezo-stack array actuators, see for example

[15,24,42,46–48]. Mass-spring-damper systems are good first approximations of the actuator

dynamics and can model various actuator configurations and structures. The LiveLink codes used

in the paper can easily be modified to take into account other, possibly nonlinear actuator models.

We incorporate models of electromechanical actuators (voice coils) in our model. The presented

modeling approach can be applied to actuators with moving rods attached to the faceplate [48,49]

or to actuators with permanent magnets attached to the faceplate [42,50]. The actuator stiffness

can be tuned during the design phase, and is provided by an elastic suspension [49] or using

some other mechanisms. We assume that the damping is provided by internal viscous damping

(passive) [39,42]. Also, the approach can easily be modified to take into account the active

damping established by feedback from local position sensors [43,48]. The actuator model is

γmÜza + γdÛza + γsza = Fa, where γm, γd, and γs, are the actuator mass, damping, and spring

constant, za is the displacement of the actuator, and Fa is the electromagnetic force developed by

the voice coil. We assume that za is equal to the local out-of-plane faceplate deformation. In our

simulations, the local actuator dynamics is coupled with the plate model with global damping

introduced by the Rayleigh method. The actuator forces Fa are entries of the vector u in Eq. (1).

On the basis of the actuator stiffness, we can distinguish between the force and displacement

actuators [15,24,51]. The stiffness of the force actuators is generally smaller than the stiffness

of the plate. The stiffness of the displacement actuators (piezoelectric actuators for example)

is equal to or larger than the faceplate stiffness [15,24]. Voice coil actuators can be designed

such that they are force (more often) and displacement actuators (in some cases). On the other

Fig. 4. The eigenfrequencies and eigenmodes of the DM for several values of the actuator

stiffness. The upper (lower) row shows the first (second) eigenfrequencies and eigenmodes.

The results are generated for the actuator spacing of 0.1[m] and actuator mass of 0.1[kg].
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hand, piezoelectric actuators are often designed as displacement actuators. For clarity, we

first investigate the influence of the actuator stiffness on the eigenfrequencies and eigenmodes.

We assume an actuator spacing of 0.1[m] and actuator mass of 0.1[kg]. This produces a total

of 69 actuators inside of the circular mirror aperture. Figure 4 shows the first and second

eigenfrequencies and eigenmodes for different values of the actuator stiffness constant. As

expected, the global frequencies increase with increased stiffness and the eigenmodes transition

from the global modes to the modes with localized structures. This is in accordance with the

results reported in [49]. Furthermore, as the stiffness increases, we observed that the modes tend

to cluster around localized frequencies.

Next, we combine damped faceplate model with actuator models. We consider two actuator

types, referred to as Actuator 1 and Actuator 2 in the text. The parameters of Actuator 1 are

γm = 0.1[kg], γd = 40[Ns/m], and γs = 40 · 103[N/m]. The damping ratio of this actuator is

ζA1 = 0.39 and the bandwidth is fA1 = 138[Hz]. The parameters of Actuator 2 are γm = 0.1[kg],

γd = 50[Ns/m], and γs = 100 · 103[N/m]. The damping ratio of this actuator is ζA2 = 0.25

and the bandwidth is fA2 = 236.2670[Hz]. The actuator bandwidth can be increased by local

feedback [10,15], and this can be incorporated in our modeling approach. Since an estimate of

the faceplate stiffness is 5 · 105[N/m] [52], Actuator 1 (Actuator 2) is a force (displacement)

actuator. Depending on the actuator structure and purpose, as well as on the desired control

bandwidth, a variety of actuators with different dynamical parameters have been described in the

literature [10,15,43,49]. The actuator dynamical parameters used in this manuscript are selected

such that they are within the range of values reported in the literature for voice-coil actuators.

The damping values are chosen such that they are within the range of damping values reported

Fig. 5. (a,c) The global deformation and (b,d) step responses. The results shown in (a,b)

are generated for Actuator 1 model and in (c,d) are generated for Actuator 2 model. In both

cases, the force of 3[N] is acting at the point P5 = (−0.2,−0.2).

Fig. 6. The magnitude responses of the system models. The red line (”Rayleigh+stiffness”)

corresponds to a system model obtained by coupling the damped faceplate model (Rayleigh

damping) with actuators spaced at 0.1[m], actuator mass of m = 0.1[kg], stiffness of

4·103[N/m], and zero damping. The black line (”Rayleigh+full actuator model”) corresponds

to a system model obtained by coupling the damped faceplate model (Rayleigh damping)

with Actuator 1 model. The harmonic force of 1[N] is acting at P5 = (−0.2,−0.2) (forces of

other actuators are zero). The responses are observed at (a) P5 and (b) P2 = (0, 0).
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for (10 − 100) · 10−6[m] gaps, see Fig. 8 in [42]. Actuator 1 (Actuator 2) stiffness is selected

such that it is a force (displacement) actuator. The mass is chosen such that it corresponds to the

mass of a cylindrical object with the diameter of 0.03[m], the height of 0.02[m], that is made

of iron. Furthermore, we have chosen the mass and stiffness parameters such that the actuator

open-loop frequency response is similar to the one shown in Figs. 3 and 4 in [15] (where we have

neglected the suction cup effect). The approach presented in this paper is general and applicable

to arbitrary values of system parameters.

Figure 5 shows the global steady-state mirror deformation and step responses, respectively,

at different points for the two actuators. In both cases, the force of 3[N] is acting at the point

P5 = (−0.2,−0.2). Figure 6 shows the magnitude responses for Actuator 1 model when a

harmonic force is acting at the point P5.

3. Measurement equation and data generating model

In this section, we introduce a measurement equation and a data-generating model. By simulating

the data-generating model, we obtain the estimation data set that is used in Section 4 to identify

the model.

The displacement vector z in Eq. (1) is usually not completely observable. This important

modeling fact is often overlooked in the literature. First of all, among all the components

of the vector z, only the out-of-plane components can be directly observed. Secondly, only

a deformation of a portion of the mirror top surface can be directly observed. That is, the

measurement radius is smaller than the total DM radius. In our case, the measurement radius is

0.4[m] (the total DM radius is 0.5[m]). This deformation can be directly or indirectly observed

using various devices and techniques, such as for example, using WFSs or interferometers [4].

We express these displacements (belonging to the measurement area) in the Zernike basis [53].

Our approach can easily be modified such that the deformation is expressed using some other

basis functions. Consequently, our measurement equation has the following form:

y = Czz, (3)

where y ∈ Rr is the output vector that consists of the first r Zernike coefficients (that are functions

of time), and the matrix Cz ∈ Rr×n1 is a matrix that maps the surface deformations into the

Zernike coefficients. The model in Eq. (1) and the measurement equation in Eq. (3) can be

written in the descriptor state-space form [54]:

E Ûw = Rw + Tu, y = Qw, (4)

where w ∈ Rn, n = 2n1, and the matrices E ∈ Rn×n, R ∈ Rn×n, T ∈ Rn×m, and Q ∈ Rr×n are

defined as follows:

w =



z

Ûz


, E =



I 0

0 M1


, R =



0 I

−M3 −M2


, T =



0

B1


, Q =

[
Cz 0

]
. (5)

In practice, the measurement data is obtained at the equidistant discrete-time instants. Conse-

quently, it is more convenient to express Eq. (4) in the discrete-time domain. Due to its stability

and robustness, we use the backward Euler discretization method to obtain a discrete-time

model [55,56]. Let h and k denote a discretization constant (period) and a discrete-time instant,

respectively (t = hk, where k = 0, 1, 2, . . .). Then, the discretized model has the following form:

wk = A1wk−1 + B1uk, yk = Qwk, (6)

where wk ∈ Rn is the approximation of the vector w, A1 =
(
E − hR

)−1
E, and B1 = h

(
E − hR

)−1
T .
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The model in Eq. (6) represents the data generating model. Since we do not have access to an

experimental setup, by simulating the data generating model for chosen initial conditions and

input sequences, we obtain the identification input-output data. Then, from this input-output data,

we want to estimate a state-space model that reproduces as accurately as possible the input-output

behavior of the data generating model. In Section 4, we solve this problem and present the

identification results.

4. Subspace identification

In this section, we first formulate the target model that we want to estimate and then summarize

the identification algorithm. At the end of the section, we present the identification results.

Our main goal is to estimate a Kalman innovation state-space model [26,57] that approximates

the input-output behavior of Eq. (6). The Kalman innovation state-space model has the following

form:

xk+1 = Axk + Buk + Kek, yk = Cxk + ek, (7)

where xk ∈ Rs is the state vector that is a (lower-dimensional and projected) estimate of the

state wk of the data generating model in Eq. (6), ek ∈ Rr is the innovation vector, A ∈ Rs×s,

B ∈ Rs×m, and K ∈ Rs×r are the system matrices. The parameter s is an estimate of the state

order n of the data generating system in Eq. (6). Equation (7) is generic in the sense that through

the innovation vector ek and the matrix K it implicitly models the measurement noise and the

process disturbances [26]. In this way, we can incorporate the measurement noise and process

disturbances (or stochastic unmodeled dynamics) that always affect the DM dynamics.

Formally speaking, the identification problem is to estimate the model order s, and the system

matrices A, B, K, and C of the state-space model in Eq. (7), from the set of the observed

input-output data {y0, u0, y1, u1, . . . , yN , uN}.

We use a Subspace Identification (SI) algorithm presented in [58] and briefly summarized in

[57] to estimate the model.

4.1. Subspace identification algorithm

To state the SI algorithm, we introduce the following notation. Let dk ∈ Rg be an arbitrary

g-dimensional vector. For two arbitrary positive integers c and q, c ≤ q , the notation dc,q defines

the (q − c + 1)g dimensional vector

dc,q =

[
dT

c dT
c+1

. . . dT
q

]T

. (8)

The vector dc,q is called the lifted vector of the vector dk. Similarly, for positive integers c, q, l,

c<q<l, the notation D
(l)
c,q denotes a ((q − c + 1)g) × (l + 1) matrix

D
(l)
c,q =

[
dc,q dc+1,q+1 . . . dc+l,q+l

]
. (9)

Let D be an arbitrary matrix, and let c and q, c<q, be two integers. The notation D(c : q, :)

denotes a new matrix composed of the rows c, c + 1, . . . , q of the matrix D. Similarly, the notation

D(:, c : q) denotes a matrix composed of the columns c, c + 1, . . . , q of the matrix D.

The model in Eq. (7) can be written as follows

xk+1 = Ãxk + B̃vk, yk = Cxk + ek, (10)

where Ã = A − KC, B̃ =
[
B K

]
, vk =

[
uT

k
yT

k

]T

, and vk ∈ Rr+m.

To formulate the SI algorithm, we need to introduce two parameters that are selected by users.

They are the past window p and the future window f . The identification algorithm consists of the

following steps.
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(1) Choose the parameter p (see the comments below the algorithm description). Let the

parameter l be selected as follows l = N − p − 1. Estimate the matrix M ∈ Rr×(r+m)p of the

Markov parameters [58] by solving the following least-squares problem

min
M

Y (l)
p,p −MV

(l)

0,p−1


2

F
, (11)

where the matrices Y
(l)
p,p and V

(l)

0,p−1
are constructed using the vectors yk and vk, respectively,

and the notation in Eqs. (8) and (9). The solution is given by

M̂ = Y
(l)
p,p

(
V
(l)

0,p−1

)T (
V
(l)

0,p−1

(
V
(l)

0,p−1

)T )−1
. (12)

(2) Choose the parameter f = p and form the matrix ∆̂ ∈ Rrf×p(r+m) defined as follows

∆̂ =



M̂
[
0r×(r+m) M̂

(
:, 1 : (p − 1)(r + m)

) ]

[
0r×2(r+m) M̂

(
:, 1 : (p − 2)(r + m)

) ]

...
[
0r×(f−1)(r+m) M̂

(
:, 1 : (p − f + 1)(r + m)

) ]



. (13)

where 0i×j is an i × j matrix of zeros. Compute the Singular Value Decomposition (SVD)

[26] of the matrix product ∆̂ · V
(l)

0,p−1

∆̂ · V
(l)

0,p−1
= UΣVT , (14)

(3) Choose the state order s (see the comments below the algorithm description) and compute the

estimated state sequence matrix X̂
(l)
p,p ∈ Rs×(l+1) as follows X̂

(l)
p,p = Σ(1 : s, 1 : s)1/2V(1 : s, :).

(4) From the matrix X̂
(l)
p,p construct the matrices X̂

(l−1)

p+1,p+1
and X̂

(l−1)
p,p (to define these vectors we

use the notation introduced in Eq. (9)). Using the vector vk construct the matrix V
(l−1)
p,p .

Construct the matrix S1 and compute the matrix S2

S2 = X̂
(l−1)

p+1,p+1
ST

1

(
S1ST

1

)−1
, S1 =



X̂
(l−1)
p,p

V
(l−1)
p,p


. (15)

The system matrices are estimated as follows

ˆ̃A = S2(:, 1 : s), B̂ = S2(:, s + 1, s + m), Ĉ = Y
(l)
p,p

(
X̂
(l)
p,p

)T (
X̂
(l)
p,p

(
X̂
(l)
p,p

)T )−1
,

K̂ = S2(:, s + m + 1 : s + m + r), Â = ˆ̃A + K̂Ĉ.
(16)

where the notation ˆ[·] denotes estimates of the matrices in Eqs. (7) and (10).

Choice of the parameters p and s. The parameter p is the number of past measurements that need

to be taken such that the effect of the system unknown initial state on the current system state can

be neglected. The more stable the system is, the smaller is the value of p. However, we do not

know this parameter a priori. Usually, a relatively good estimate of p is obtained by minimizing a

measure based on the Akaike Information Criterion (AIC) [57], that roughly speaking, provides a
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trade-off between the number of model parameters and the goodness of fit. However, to estimate

the past window using this method, we need to compute M̂ in Eq. (12) a large number of

times for increasing values of p = 1, 2, 3, . . . , pmax. Due to the model large-scale nature, and a

relatively high computational complexity of computing M, this approach is not feasible for large

values of pmax. Consequently, in this manuscript, we compute a sequence of the solutions, where

pmax is a relatively small number (in our case pmax = 10). One of the approaches to reduce the

computational burden of the SI method is to use the recursive implementation [59], and it will be

explored in future publications. For every value of the past window p = 1, 2, . . . , pmax, and for

every value of the state order s that is in the interval smin, smin + 1, . . . , smax, where smin and smax

are minimal and maximal state orders selected by the user, we estimate a model. The best model

order s, and consequently, the best model among all the models, is the model that produces the

smallest validation error or the Variance Accounted For (VAF) that are explained in the sequel.

In some cases, the model order s can be selected by visually inspecting the singular values in the

matrix Σ in Eq. (14). A wide gap in singular values usually indicates a model order [26].

Data Generation and Input Sequences. By simulating the data generating model in Eq. (6)

for two independent input sequences and two random initial conditions, we generated two data

sets. For both sets, the input sequences {uk} are white noise sequences. Similarly, the initial

states are normal random vectors. In both cases, the simulated outputs yk are corrupted by white

measurement noise. In this way, we generate two input-output sequences {uk, yk}. The first

sequence, referred to as the identification data set, is used to identify the model, and the second

sequence, referred to as the validation data set, is used to validate the model using the procedure

explained in the sequel.

Model validation. Using the input sequence that is used to generate the validation data set, we

simulate the identified model (determined by the parameters p and s), to obtain the simulated

output sequence. The identified model is simulated in open-loop, that is by setting ek = 0 in

Eq. (7). To perform the simulations, we need to estimate an initial state of the identified model.

This has been done using the validation data set and by using a simple least-squares approach

explained in [57]. The model error is defined by ε =
y0,N − ŷ0,N


2
/
y0,N


2
, where y0,N is the

lifted output sequence of the validation data-set and ŷ0,N is the vector composed of the simulated

outputs of the identified system (we are using the notation introduced in Eq. (8)). Using the

validation data we also compute a VAF measure that additionally quantifies the final model

estimation quality. For the definition of VAF see [26].

Once the final model has been estimated, we further analyze its quality using a residual

correlation analysis [57]. On the basis of the error between the output sequence of the identified

model and the output sequence in the validation data set, we estimate cross-correlation matrices

and perform a white-noise hypothesis test. In the ideal case, the error should have the properties

of a white-noise sequence. Consequently, we test the error sequence under the white-noise

hypothesis. A detailed procedure is explained in [57].

4.2. Identification results

The codes used in this paper are available online [34]. We obtain the identification results

assuming Actuator 1 model with actuator spacing of 0.1[m] and with the parameters defined

in Section 2.2. The model has m = 69 actuators and r = 32 Zernike coefficient outputs. The

data-generating model order is n = 4878. The discretization constant is h = 1 · 10−4[s]. This

value of the discretization constant is chosen by analyzing the step responses presented in Fig. 5.

We want to ensure that we have 15-20 samples during the rise time, but at the same time we do not

want to select too many samples that can negatively affect the model identifiability, see [26,57]

for more details on the selection of the discretization (sampling time) constant. The identification

and validation input sequences are equal to normal white noise sequences with zero mean and

unit variance. The initial states for the identification and validation are normal random vectors
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with zero means and variances of 0.1. The proposed approach can also be applied to mirrors

with larger actuator numbers. We have created such models and they are available online [34].

First, we test the SI method performance when the outputs of the data generating model are

not corrupted by the measurement noise. We set p = 8 and N = 1200. Figure 7(a) shows the

singular values of the matrix ∆̂ · V
(l)

0,p−1
in Eq. (14). Figure 7(b) shows the validation error ε

(introduced in the previous subsection) and VAF for different model orders s . To test how well

the SI method can estimate the eigenvalues of the matrix A1 of the data-generating model in Eq.

(6), we compute the eigenvalues of the matrix Â of the identified model and compare them with

the eigenvalues of the matrix A1. The results are shown in Fig. 8. The results presented in Fig. 8

demonstrate that the SI method is able to relatively accurately estimate the dominant eigenvalues.

Fig. 7. (a) Singular values. (b) VAF and errors for different values of the state order - s.

The outputs are not corrupted by measurement noise.

Fig. 8. Eigenvalues of the matrices Â (identified model) and A1 (real system-data generating

model in Eq. (6)) for estimated state orders of s = 10, s = 50, s = 150, and s = 200, from

left to right, respectively. The results are generated for N = 1200, past and future windows

of 8. The outputs are not corrupted by measurement noise.

Next, we test the performance of the SI algorithm when the measurements are corrupted by

noise. The approximate value of the Signal to Noise Ratio (SNR) is 20. The identification and

validation data sets consist of N = 2500 discrete-time samples. Figure 9 shows the error and

VAF for several model orders and past windows. A relatively long computational time of the

SI method prevents us from testing the method for larger values of p and for more realizations

of the measurement noise. A remedy for this is to use the recursive SI algorithms. We see

that by increasing the past window p we can improve the identification results. The overfitting

phenomenon probably occurs for large values of p.

Figures 10(a)–(c) show the outputs (Zernike coefficients) of the data generating model and

the identified model. The results are generated for p = 10 and s = 300. Figures 10(d)–(f) show

the correlations between the entries of the residual vectors. The red dashed lines denote 5%

confidence intervals for the white-noise hypothesis test. The percentages of entries in plots (d),

(e), and (f) that exceed this limit are 5.8%, 6%, and 8%. This indicates that there is a small
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Fig. 9. (a) The identification error and (b) VAF in the case of the measurement noise. The

results are generated for SNR of 20.

correlation between the residuals, and this can be completely eliminated by increasing p, however,

at the expense of the increased computational complexity.

Fig. 10. (a-c) The output of the identified (predicted output) and the data generating model

(true output), in the case of measurement noise. (d)–(f) Correlations of the entries of the

residual vectors (sequence). The notation (i, j) is the correlation value between the ith and

jth entry of the residual vector.

Figure 10 further confirms the good performance of the SI algorithm. We can see that

the data-generating model can be relatively accurately estimated even in the presence of the

measurement noise. The accuracy can be further improved by increasing the past window p.

5. Conclusion

In this paper, we have presented state-space modeling and estimation approaches for faceplate

Deformable Mirrors (DMs) used in Adaptive Optics (AO) systems. We have shown that by using

the Finite Element (FE) method and the LiveLink for COMOSL Multiphysics package, we are

able to automatize the derivation of DM state-space models. Furthermore, we have shown how

to incorporate damping and actuator dynamics in such a model. This modeling framework can

easily handle complex geometries and different actuator configurations. Using this model and

the subspace identification methods, we have shown that it is possible to accurately estimate

reduced-order state-space models of DMs. The future research directions will be oriented toward

decreasing the computational complexity of the subspace identification algorithm and toward

experimental verification of the used methods.
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