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This paper compares syndromic surveillance and predictive weather-based models for estimating emergency department (ED)
visits for Heat-Related Illness (HRI). A retrospective time-series analysis of weather station observations and ICD-coded HRI
ED visits to ten hospitals in south eastern Ontario, Canada, was performed from April 2003 to December 2008 using hospital
data from the National Ambulatory Care Reporting System (NACRS) database, ED patient chief complaint data collected by
a syndromic surveillance system, and weather data from Environment Canada. Poisson regression and Fast Orthogonal Search
(FOS), a nonlinear time series modeling technique, were used to construct models for the expected number of HRI ED visits
using weather predictor variables (temperature, humidity, and wind speed). Estimates of HRI visits from regression models using
both weather variables and visit counts captured by syndromic surveillance as predictors were slightly more highly correlated with
NACRS HRI ED visits than either regression models using only weather predictors or syndromic surveillance counts.

1. Introduction

The morbidity and mortality associated with extreme heat
events such as those in Chicago in 1995 [1], Europe in 2003
[2–4], and California in 2006 [5] underscore the potential
impact of heat on population health. Threats of climate
change have raised public health concerns over extreme
heat events [6]. Preparing for extreme heat events and
monitoring their impact is therefore important to public
health authorities.

The formulation of public health heat response plans
should consider population-level responses to heat in addi-
tion to guidelines for safe individual-level heat exposure.
Both retrospective analysis of hospital records and real-time
surveillance of emergency department visits can provide
information on population-level heat response. Each has its
benefits and drawbacks.

Abstracted patient charts can provide accurate post-
diagnosis identification of heat-related hospital emergency

department visits. However, the delays in obtaining data
from this source can be over a year due to the time required
for abstraction of patient records, reporting, and dissemina-
tion. Sometimes only limited historical data are available for
analysis. Relying on the results of retrospective analyses to
inform heat response plans assumes a population’s response
to heat does not change over time, neglecting the possibility
of long-term acclimation [6]. Responses that occurred
historically may not be representative of future responses to
heat events if these future events have characteristics that
differ from those in the past, such as heat of higher intensities
or longer durations [7]. Furthermore, there is evidence that
the effects of heat on population health vary geographically
[8], raising concerns about the generalizability of study
results from other locations.

To overcome the limitations of an approach using only
retrospective analysis to inform public health heat responses,
real-time population-level heat-related illness (HRI) surveil-
lance could provide situational awareness, enabling better
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decisions to be made. However, there is a cost associated
with setting up and maintaining such systems, although the
economic benefit of heat watch and warning systems has
been argued [9]. Heat-related illness surveillance using emer-
gency department (ED) and emergency services dispatch
(911) has been suggested [10, 11]. Though not necessarily
a comprehensive measure of the complete impact of heat on
a population since it fails to capture all care sought for heat
illness, heat-related emergency department visits potentially
provide a timely indicator of its acute and serious effects.
Heat-related mortality has been shown to be correlated with
emergency department visits [12]. Since mortality can lag
acute heat effects [13] and information on cause of death
can take time to be established and disseminated, moni-
toring emergency department visits would be preferable to
monitoring mortality for surveillance purposes. Data from
hospitals can often be obtained electronically allowing them
to be monitored in real-time using syndromic surveillance
[11, 14]. There are unfortunately two potential problems
with using emergency department syndromic surveillance.
The first is misclassification of visits, a result of nonspecific
and nonsensitive syndrome definitions and the use of
prediagnosis information. This could lead to errors in visit
counts. The second is that such systems do not provide the
advance warning required for taking preventative actions.

Because of the complementary advantages and disad-
vantages of surveillance and population-level heat-response
models constructed from retrospective data on heat-related
emergency department visits, public health may consider
using both of these approaches. The objective of this
study was therefore to investigate and compare syndromic
surveillance of heat-related emergency department visits and
predictive models for heat-related emergency department
visits using weather variables as predictors constructed using
retrospective data in south eastern Ontario, Canada, from
2003 to 2008.

A question facing those developing heat response plans
is what set of environmental variables or heat measures is
best used for issuing warnings and for building models that
might predict the expected number of individuals affected
by heat-related illness. The direct effects of heat at the
level of the individual have been extensively studied, both
through physical modeling of heat exchange [15, 16] and
physiological studies [17]. These studies indicate that the
heat removed through the evaporation of perspiration and
the effects of radiant sources of heat (e.g., the sun) play
significant roles in the heat stress experienced by an individ-
ual. Therefore, in addition to the ambient air temperature,
measures of heat exposure should consider the effects of sun,
humidity, and wind. A variety of measures of heat exposure
that combine these effects have been created and used to
develop occupational health and safety exposure guidelines
and public health heat warning thresholds including the
heat index, humidex (a measure similar to the heat index
used in Canada), and wet bulb globe temperature (WBGT)
[15, 16, 18]. This study explores the question of which
weather variables appear to have population-level signifi-
cance rather than a priori selecting one of these exposure
measures.

Studies of the population-level effects of heat suggest the
existence of lagged relationships between heat exposure and
illness or mortality, meaning that exposure over and up to
several days in advance may impact the development of heat
illness or be associated with heat-related mortality [8, 13].
Nonlinear and threshold effects have also been suggested
[8, 19]. Population-level acclimation, through mechanisms
such as behavioral (e.g., increased use of air conditioning)
or physiological adaptation, and survivorship biases may
seasonally modify population-level effects of heat [6, 8].
Because of the potential importance of these factors, this
study uses nonlinear time series modeling techniques that
allow the influence of lagged, nonlinear, and threshold effects
of weather variables on heat-related illness to be captured.

To summarize, the objectives of the paper are (1) to
construct predictive models for estimating heat-related visits,
(2) to develop a simple syndrome definition for syndromic
surveillance of heat-related visits, and (3) to compare
the predictive models and syndrome definition to a gold
standard measure of heat-related visits (NACRS).

2. Methods

2.1. Study Design. The study used an ecologic retrospec-
tive time-series analysis of heat-related hospital emergency
department visits to ten hospitals across four health unit
jurisdictions in south eastern Ontario, Canada, and weather
data from five weather stations in the same area operated by
Environment Canada from April 1, 2003 to December 31,
2008. The area covered included Peterborough in the west to
Brockville in the east to Bancroft in the north to Lake Ontario
in the south. Together these health units had a combined
population of approximately 655 000, or roughly 5% of the
2006 Ontario population [20]. Only hospitals in the study
area for which emergency department chief complaint data
and National Ambulatory Care Reporting System (NACRS)
data were available were included.

2.2. Outcome Definition and Measurement. Hospital emer-
gency department visits were obtained from the NACRS
database. All hospitals in Ontario are required to submit
information on emergency department visits to the Cana-
dian Institute for Health Information (CIHI) for inclusion in
NACRS. The information in this database includes reasons
for the visit, abstracted from patient charts and coded using
the International Classification for Disease, 10th revision,
Canadian Enhancement (ICD10-CA) coding system. CIHI
routinely assesses the quality of data in this database using a
number of methods [21]. Because it provides information on
the post-diagnosis reason for visit, the NACRS data set was
considered to reflect the true reason for visit and therefore
served as a gold standard for the actual number of heat-
related emergency department visits. Fields used from the
NACRS database included ICD-10CA coded reason for visit,
institution visited, age, sex, date of visit, partial postal code,
and a nonidentifying encounter number that could be used
to identify visits for the same individual on the same day,
thereby preventing duplicate counting.
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Chief complaint at time of patient registration at the
emergency department was obtained for the hospitals
included in the study. When an individual presents to
the emergency department, the triage nurse enters a short
(approximately five to ten word) free-text description of the
patient’s chief complaint before the patient is diagnosed and
treated. This information, visit date and time, age, gender,
and partial postal code are sent from hospitals to a central
database for use in a real-time syndromic surveillance sys-
tem. This system has been described in detail elsewhere [22].

Previous epidemiological studies suggest that medical
conditions that appear to be associated with hospital visits
(admissions as well as to emergency departments) for heat-
related illness include not only its direct effects but also
malaise [11], some renal conditions [4, 5, 11], electrolyte and
fluid imbalance [3, 5, 11], diabetes [5, 11], chronic respira-
tory conditions, cardiovascular disease, and cerebrovascular
disease [4, 5, 8, 23, 24]. Heat has been associated with
increased mortality for many of these conditions [4, 13,
23] and physiological evidence substantiates many of these
associations [17]. However, because a large proportion of
emergency department visits for many of these conditions
are likely not heat-related, we defined heat-related illness as
only those visits directly attributed to heat: ICD-10CA codes
T67.0-T67.9, X30 [10], accepting the limitation that this may
underestimate the true number of heat-related emergency
department visits.

2.3. Exposure Measurement. Many measures of heat expo-
sure have been developed: heat index [15, 25], humidex
(Canada) [15, 25], and Wet Bulb Globe Temperature
(WBGT) [15]. Because these measures combine different
weather variables (some or all of temperature, humidity,
wind speed, and solar radiation), and different weightings of
each of these variables, this study considered each weather
variable separately. This avoided any prior assumptions
about the relative importance of individual weather variables
in the exposure.

Hourly measurements of weather were obtained from
Environment Canada for five weather stations located across
Southeastern Ontario near the hospitals included in the
study. Measurements included temperature, dew point,
pressure, and wind speed. Unfortunately, a direct measure of
solar radiation was not available, and therefore this variable
was not considered in this study. Maximum, minimum,
and average daily values of the temperature, dew point,
wind speed, were calculated from the data from each of the
five weather stations over the 24-hour period for each day.
Missing observations were omitted from these calculations.
The average value of the variables across weather stations
was used in the analysis. In order to assess the error in doing
this, variation in each variable across weather stations was
calculated.

The humidex (HU) and heat index (HI), also referred to
as apparent temperature, can be calculated as [15, 25]:

HU = Ta + 0.5555(w − 10),

HI = −2.719 + 0.994Ta + 0.016(D)2,

(1)

where Ta is the air temperature in ◦C (shielded from ambient
radiation), D is the dew point in ◦C, and w is the vapour
pressure of water in hPa given below.

Maximum water vapor pressure, w, was derived from
maximum dew point by

w = 6.11e5417.7530((1/273.16)−((1/273.16+D))). (2)

This variable can be considered a transformation of dew
point, and may be more directly related to the effects of
humidity on an individual’s experience of heat [25, 26]. It
was considered as a measure of humidity in the analysis.

2.4. Analysis. The association between visit counts, maxi-
mum temperature, average wind speed, and maximum water
vapor pressure were assessed using a Poisson regression
model accounting for possible overdispersion using SAS
software. Same-day measurements of weather variables
were examined in the Poisson regression model; lagged
effects were not considered. Interactions were also not
considered. Predictor variables in the model included an
indicator variable differentiating spring and early summer
(April/May/June) from other months of the year to investi-
gate the possibility of acclimation over the period of one year.
This choice was informed by preliminary exploratory analy-
ses that had included a separate indicator variable for each
month and by the hypothesis that acclimation may affect the
response to heat. An indicator variable for weekends was also
included in the model to control for the effects of the weekly
pattern of emergency department visits [27].

Investigating the possibility of lagged and nonlinear
relationships, threshold effects, and interactions between
weather predictors in modeling their association with heat-
related emergency department visit counts requires consider-
ing a large number of possible candidate terms in a regression
model. To address this challenge, a method developed for
nonlinear time-series modeling, Fast Orthogonal Search
(FOS), was employed [28] (details of the method are given
in this reference and not repeated here). This technique
allows the construction of a very flexible nonlinear model
describing the relationship between heat-related emergency
department visits and weather variables by selecting terms
from a potentially very large set of candidate terms. The
objective is similar to forward selection in regression, except
that the FOS algorithm implicitly expresses the selected
candidate terms as a set of orthogonal functions. The
reduction in mean square error associated with selecting
any given candidate is found without having to actually
find the orthogonal functions. FOS also allows the model
coefficients for the selected terms to be found without
finding these orthogonal functions. This minimizes the
required computation and allows a large set of candidate
terms (tens to hundreds of thousands) to be rapidly searched,
which would otherwise require lengthy computation time.

The FOS model can be expressed as

y[n] =
M
∑

m=0

ampm[n] + e[n], (3)
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where n is the time index, am is a scalar coefficient, e[n]
represents the error, and pm[n] is a selected candidate
function.

The method is potentially useful in examining the rela-
tionship between the time series of heat-related emergency
department visits and environmental variables because in
addition to handling nonlinearity and lagged effects, it allows
threshold effects to be included in the candidate set. For
example, if we only expect values of temperature over 25◦C
to be relevant, a function describing a step occurring at that
temperature could be included as a candidate.

In the analysis performed in this study, each candidate
was of the general form

pm[n] = x1

[

n− q11

]

. . . x1

[

n− q1m1

]

x2

[

n− q21

]

. . . x2

[

n− q2m2

]

. . . xp
[

n− q11

]

...xp
[

n− q1pm

]

. . . UL(x1[n− rL1]− SL1) . . . UR(x1[n− rR1]− SR1)

. . . UL

(

xp
[

n− rLp
]

−SLp
)

. . . UR

(

xp
[

n−rRp
]

−SRp
)

,

(4)

where xp is the pth predictor. There could be up to mp factors
of a given predictor, p, in each candidate function. The lag
for each factor of each predictor could be different and is
denoted qij where i refers to the predictor and j refers to each
individual factor in that predictor.

Additionally, step functions, triggered by the value of one
of the predictors, were possible factors in a term. The steps
allow threshold effects to be modeled. In a right step, denoted
UR, when the value of the argument of the step function is less
than a threshold value, its value is zero; otherwise, it is one.
Conversely, for a left step,UL, when the value of the argument
of the step function is greater than a threshold value, the
value is zero; otherwise, it is one. The Si j parameter in the
argument of the step function gives the threshold value of
step transition; here the i subscript refers to the step type
and the j subscript refers to the predictor. The value of the
predictor used to trigger the step is compared to S. The
lag of this predictor, ri j , was taken to be the minimum lag
allowed in that predictor (i.e., ri j = mink{q j1, q j2, . . . , q jmp}).
Only one step function was allowed per predictor in each
candidate term. The FOS algorithm was programmed by
the authors using MATLAB, and the implementation was
verified by fitting known relationships.

Each candidate term in the model could contain multiple
factors. Log-transformed visits were considered as the model
output. Predictors included the same weather variables used
for the Poisson regression model. Table 1 describes the
component factors possible in a given candidate term by
giving the limits on the parameter values for (4) for each
predictor. Step functions could occur without any factors
of the corresponding predictor occurring. In preliminary
exploratory analyses, maximum temperature and water
vapour pressure lagged at up to seven days were allowed
as candidates. The values in Table 1 were selected based
on previous literature and exploratory analysis. Visit counts
were log-transformed before fitting the model. The set of

candidate terms searched included all possible combinations
of each of the factors, approximately 140 000 possible
candidate terms, from which FOS obtained a concise model
within minutes on a standard laptop computer.

2.5. Heat-Related Illness Syndrome Definition. To develop
a syndrome definition for heat-related illness based on
emergency department chief complaint, NACRS visits (the
gold standard) were matched to emergency department chief
complaint using date and time of visit, hospital visited,
partial postal code, age, and gender since a unique identifier
was not available for matching records between data sets. By
evaluating the positive predictive value (PPV) of the most
commonly appearing text strings in emergency department
chief complaints relative to the NACRS gold standard, a set of
strings identifying likely heat-related visits was created. The
resulting time-series of heat-related visits counts was created
by counting the daily number of emergency department chief
complaints containing at least one of the text strings in the
set. This time-series was compared to the NACRS time-series
of heat-related visit counts.

2.6. Model Evaluation and Comparison. A second model for
estimating emergency department visits using FOS which
included as predictors both daily counts of various text
strings in chief complaints found to be associated with
heat-related illness in addition to the weather variables was
created. If the surveillance data provides additional benefit
beyond the weather variables, then such a model should give
better estimates of the actual number of heat-related visits.

To compare the predictive ability of the three models
described above (Poisson regression, FOS model containing
weather variable predictors only, and FOS model containing
weather variables, and chief complaint text strings as pre-
dictors), the data was divided into training and validation
data sets. The training data set (April 1, 2003 to December
31, 2006) was used to fit the models, and the validation
data was used to assess the model fit (January 1, 2007 to
December 31, 2008). Model estimates were compared to the
gold standard (NACRS heat-related emergency department
visit time-series) using the mean square error (MSE) and
Pearson correlation coefficient.

2.7. Ethics. Ethics approval for the study was obtained
from the Queen’s University Health Sciences and Affiliated
Teaching Hospitals Research Ethics Board.

3. Results

Heat-related emergency department visits ranged from 67 to
161 per year for the complete years included in the study
(2004 to 2008). The median age of individuals with heat
illness was 29, and half of those presenting to the emergency
department were between the ages of 18 and 49. Ten percent
were over age 71, and ten percent were under age 11.

The variation in weather variables across the five weather
stations in the study area is given in Table 2.

Table 3 presents the parameter estimates, associated
standard error, and P values for the Poisson regression
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Table 1: Parameter ranges and values for candidate terms in FOS model.

Predictor, p
(symbol)[units]

Maximum factor
multiplicity, mp

Maximum lag,
maxk{qpk}

Minimum lag
mink{qpk}

Step functions:
right (UR), and left

(UL)

Value of predictor
at left step function

transition, SLp

Value of predictor at
right step function

transition, SRp

maximum
temperature
(tmax)[◦C]

3 2 0 UR — 10, 15, 20, 25, 30

Average wind
speed(s)[km/h]

1 0 0 UR, UL 0, 5, 10, 15, 20 0, 5, 10, 15, 20

spring/early
summer
indicator (g)

1 0 0 None — —

Water vapour
(v)[hPa]

2 2 0 None — —

Weekend
indicator (w)

1 0 0 None — —

model which included maximum temperature, maximum
water vapour pressure, average wind speed, and weekend
and spring/early summer indicator variables as predictors of
visits. The results show that of the weather variables included
in the model, only maximum water vapour pressure and
maximum temperature were significant, while average wind
speed was not.

Figure 1 shows the proportion of days with a given
number of emergency visits for various Heat Index ranges
out of the total days over the study period with that Heat
Index range. Heat Index was chosen because it is a function
of only temperature and humidity, the only weather variables
found to be significantly related to heat in the above model.

Equation (5) gives the model estimating heat-related
emergency department visits, y(k), using weather variables
developed using FOS:

loge
[

y(k)
]

= 1.237× 10−6UR[tmax(k)− 15](tmax(k)− 15)2

× (tmax(k − 1)− 15)v(k − 0)v(k − 1)UL[s(k)− 20]

+ 4.356× 10−4UR[tmax(k)− 15](tmax(k)− 15)

× (tmax(k − 1)− 15)UL[s(k)− 20]g(n)v(k − 1)

− 4.476× 10−4UR[tmax(k)− 30](tmax(k − 2)− 30)

× (tmax(k)− 30)UL[s(k)− 10](s(k)− 10)(v(k − 1))2,

(5)

where the symbols for the variables in the model above are
given in the headings in the first column of Table 1.

Of the 1 444 519 emergency department surveillance
records containing any chief complaint available over the
study period, 95 945 (6.6%) visits could be matched to visits

Table 2: Difference in daily weather station measurements across
study area.

Difference in weather station measurements

Median Interquartile range

Maximum
temperature (◦C)

3.3 2.1

Minimum
temperature (◦C)

5.9 3.5

Average wind
speed (km/h)

8.2 5.4

Maximum dew
point (◦C)

3.2 2.1

in the NACRS database based on the variables available.
In this matched dataset, 225 records represented visits
for heat-related illness as defined by the ICD10-CA codes
given earlier. The most frequently occurring strings were
identified from these confirmed heat-related visits. Table 4
presents the number of visits from the matched dataset
containing each string, for both visits that were for heat-
related illness and not for heat-related illness based on the
associated ICD-coded reason for visit. This table is sorted
according to the positive predictive value (PPV) of each
string. The strings “sun”, “exhaust”, and “heat” had the
highest positive predictive value of visits for heat-related
illness of the frequently occurring strings and therefore
defined the heat-related syndrome. However, using these
three strings combined flagged only 81 of the 225 (36%) true
visits for heat-related illness, while flagging another 40 visits
that were not heat-related.

When the time-series of counts for each of the 14 most
frequently occurring strings were included in a candidate set
used by FOS in addition to the weather variables used above,
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Table 3: Poisson regression model parameter estimates.

Poisson regression model

Parameter Estimate Standard error Parameter significance

Intercept −7.1591 0.2065 (P < .0001)

Water vapour pressure 0.0740 0.0098 (P < .0001)

Weekend 0.1378 0.0642 P = 0.0319

Maximum temperature 0.2002 0.0115 (P < .0001)

April/May/June 0.8196 0.0595 (P < .0001)

Average wind speed −0.0081 0.0092 P = .3785

Table 4: Positive predictive value of chief complaint text strings
associated with heat.

String
Counts in

heat-related visits
Counts in

nonheatrelated visits
PPV(%)

Sun 39 15 72.2

Exhaust 32 15 68.1

Heat 10 10 50.0

Burn 17 196 8.0

Headache 11 850 1.3

Nausea 9 1127 0.8

Faint 4 488 0.8

Vomit 17 2334 0.7

Syncope 19 4194 0.5

Fever 7 1553 0.4

Fatigue 4 981 0.4

Weak 13 5483 0.2

Dizz 13 5525 0.2

Lighthead 1 424 0.2

the difference equation found by FOS was:

loge
[

y(k)
]

= 9.3114× 10−7UR[tmax(k)− 15](tmax(k)− 15)2

× (tmax(k − 1)− 15)v(k − 0)v(k − 1)UL[s(k)− 20]

+ 4.2143× 10−4UR[tmax(k)− 15](tmax(k)− 15)

× (tmax(k − 1)− 15)UL[s(k)− 20]g(n)v(k − 1)

+ 1.359× 10−3UR[tmax(k)− 15]

×UL[s(k)− 20](v(k))2(wheat(k)),

(6)

where wheat(k) is the time-series of counts of emergency
department chief complaints containing the string “heat”
and the other symbols are again defined in the headings of
Table 1. Note that this was the only string of the 14 included
in the candidate set found by FOS to reduce the model MSE
when weather variables were also included in the model.

Table 5: Comparison of syndrome counts and model-based
estimates of emergency department visits over the validation time
period (January 1, 2007 to December 31, 2008) (error and cor-
relation compared to NACRS ICD-coded heat-related emergency
department visits).

Training data Validation data

Correlation MSE Correlation MSE

Syndrome
counts time
series

0.57 0.66 0.59 1.06

Poisson
regression
model

0.76 0.38 0.63 0.37

FOS model
(weather
predictors)

0.79 0.32 0.66 0.34

FOS model
(weather and
string count
predictors)

0.82 0.30 0.73 0.29

Table 5 compares the various methods for estimating
heat-related visits counts presented above over the validation
time period. The FOS-derived models produced slightly
better estimates than the regression model over both training
and validation data sets, with the best model for estimating
the true visits being the model which included both emer-
gency department chief complaint string count time-series
and weather variables as predictors.

Figures 2, 3, 4, and 5 present provide additional visual
comparisons of the time series of the syndrome counts and
FOS models to each other and the gold standard NACRS
ICD-coded heat-related emergency department visits over
the time period used to validate the models.

4. Discussion

The results of the regression model indicate that temperature
and humidity are most useful in estimating emergency
department heat-related visits, although wind speed also
appears predictive in the better-performing FOS model.
These findings make sense when considering the fact that
individuals are more likely to be exposed to humidity and
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Figure 1: Distribution of the daily number of emergency visits for
heat-related illness for five heat index ranges.

temperature which can be present even indoors compared to
wind which can easily be shielded by physical barriers and are
more likely to be highly variable across a given geographic
region. Inaccurate measurement of wind by insufficiently
capturing its variation across the study region may have
contributed to this result. Analogously, it may be that heat
exposure measures that include variables that have high
variability across individuals and or geography, and therefore
cannot be adequately measured, may not provide any better
measure of population risk of heat-related illness than
simpler measures that omit these variables. Unfortunately,
this study did not have precise enough measures of solar
radiation to allow this variable to be assessed.

The results of this study suggest the possibility of an
“early heat effect”, whereby heat experienced in the spring or
early summer (defined as April, May, June) results in more
visits. This is consistent with acclimation and/or adaptation
effects suggested by other studies [8, 13, 17]. Public health
authorities might take this into account in planning and
when issuing warnings.

The FOS-derived difference equation models ((5) and
(6)) provide better fit than the Poisson regression model over
both the training and validation data. This suggests that the
FOS models are not simply over-fitting the data. However, it
is much more difficult to interpret these models as they have
terms that consist of interactions of many predictor variables.
The model terms in (5) and (6) suggest that the lagged
effects of heat on heat-related emergency department visits
are relatively short (one day), consistent with findings for
hospital admissions [4] but in contrast to the lag suggested
for mortality [8, 13]. Note that the first two terms in both
models are the same (with the exception of their coefficients
which are similar in magnitude). The presence of right step

functions in temperature and squares in temperature and
humidity are consistent with the threshold and nonlinear
effects suggested by other studies [8, 13]. The left step
function in wind that appears in the first two terms in both
equations, which has positive coefficients in both models,
makes sense in that we might expect a higher number of visits
when wind speeds are low if wind has a cooling effect.

The desire to uncover complex relationships between the
weather variables and heat related emergency department
visits, including threshold, nonlinear, and weather variable
interactions, motivated the use of FOS. Testing all of the
lagged and interaction terms using standard regression
models and techniques would have been extremely tedious
at best, and the use of FOS provided a method to check that
important relationships were not being missed. However, the
difference in performance of this type of model compared to
standard regression techniques likely does not justify its use.
In practice, simpler regression models may provide similar
performance with judicious selection of the proper form of
the predictor variables.

The results of this study suggest that both predictive
models using weather variable predictors and syndromic
surveillance can provide estimates of heat-related emergency
department visits. The small improvement in predictive
model performance ((6) versus (5)) after including syn-
dromic surveillance information suggests that measuring the
latter may provide additional information not provided by
the weather predictors. Since emergency department chief
complaint is entered before patients have been examined
by a physician and is a brief unstructured description,
the syndromic chief compliant data represents a potentially
nonsensitive and nonspecific source of information for
heat-related emergency department visits. The results of
attempting to create a syndrome definition for heat show that
it is difficult to derive strings that accurately identify heat-
related emergency department visits. Many of the strings
appearing in chief complaint for heat-related emergency
department visits have low positive predictive value, and
those terms that have high enough values to make them
useful in a syndrome definition only appear in a small
fraction of the visits. It is therefore not surprising that the
time series of heat-related visits generated by these terms
is noisy, as seen when comparing the heat-related illness
syndrome time-series to the NACRS heat-related visits time
series. Increased performance might be achieved by using
a more sophisticated classifier [29] to flag probable heat-
related visits rather than using a simple set of strings as was
done here. Failure to use such algorithms in this study is a
limitation that makes it difficult to compare the accuracy of
model-estimated heat-related emergency department visits
with visit counts captured by syndromic surveillance.

Another major limitation of this study was potential
exposure misclassification. Weather variables were averaged
across weather stations. Ideally, the relationship between
weather variables would have been performed for each region
separately for maximum exposure accuracy. However, this
would have resulted in very few counts in each stratum of
the analysis. Table 2 suggests misclassification of wind may
have been most significant.
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Figure 2: Comparison of syndrome counts for heat-related emergency department visits and NACRS ICD-coded heat-related emergency
department visits.

28-Sep-200730-Jul-200731-May-200701-Apr-2007

Time (days)

0

2

4

6

8

10

12

14

E
m

er
ge

n
cy

vi
si

ts

NACRS ICD-coded visits

FOS model (weather predictors)

Emergency department visits for heat-related

illness in south eastern Ontario (validation data)

(a) April to September 2007

28-Sep-200830-Jul-200831-May-200801-Apr-2008

Time (days)

0

2

4

6

8

10

12

14

E
m

er
ge

n
cy

vi
si

ts

NACRS ICD-coded visits

FOS model (weather predictors)

Emergency department visits for heat-related

illness in south eastern Ontario (validation data)

(b) April to September 2008

Figure 3: Comparison of estimated visits for heat-related illness from FOS-generated model using weather variables as predictors and
NACRS ICD-coded heat-related emergency department visits over validation data.
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Figure 4: Comparison of syndrome counts for heat-related emergency department visits and estimated heat-related emergency department
visits using FOS-generated model with weather-variable predictors over validation data.
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Figure 5: Comparison of FOS generated models using weather predictors only and weather predictors and key string counts for estimating
heat-related emergency department visits.

Another weakness of the assessment of the relationship
between heat and emergency visits performed in this study
was failure to include covariates known to modify the effects
of heat (such as age) or underlying medical conditions (such
as diabetes), which may vary spatially. This may also bias
the observed effect of heat. While these limitations impact
the generalizability of the results, they do not impact the
study objectives which rely on comparisons within the same
population.

A perfect measure for the true number of heat-related
emergency department visits was not available and the
amount of error present in the NACRS data is not mea-
surable. It has been suggested that some administrative
data sources may underestimate heat-related cases: cases
are underreported either because of failure of the clinicians
assessing patients to recognize heat as a cause, failure to
record this on patient records, or a failure to code heat as an
underlying cause when medical records are being abstracted
for inclusion in health databases such as NACRS [25, 30].
Since we defined heat-related emergency department visits
as only those heat-specific ICD-10CA codes, it is likely
that we underestimated the true number of visits. This
may explain the low number of heat-related emergency
department visits seen in the results of this study. To
overcome these problems, other researchers have examined
the excess numbers of deaths with heat [25] calculated by
removing visits for known sources variability from visit
totals; however, we chose to be conservative rather than run
the risk of over-estimating numbers. In addition to missing
visits, it was also possible that we included some visits not
related to environmental heat exposure: the T67 group of
ICD codes may include exposure to nonnaturally related heat
sources (e.g., occupational exposure), providing a possible
explanation for visits seen during winter months. Because of
the restricted outcome definition of heat-related illness used
in our study, the results may represent only the “tip of the
iceberg” of heat effects on population.

Only a small number of chief complaints could be
matched with the NACRS data (less than 7%), and some

of these visits may have been mismatches since unique
individual identifiers were not available. Difficulty matching
and the fact that heat-related visits were relatively rare,
reduced the amount of data available for creating a syndrome
definition. Because of the lack of data, the syndrome
definition was not validated on a set of data different from the
one used to create it. This impacts the internal validity of the
study: specifically the performance of the heat-related illness
syndrome definition may be even less accurate than reported
in Table 5. However, there would be no impact on validity
of the model given by (6) since all strings in Table 4 were
considered equally when constructing the model using FOS
which was subsequently validated over a separate data set.

5. Conclusion

Temperature and humidity and were significantly associated
with increased heat-related emergency department visits
while there was less evidence supporting an association
with wind speed. Heat in the spring and early summer
appear to be associated with more visits, possibly due to
subsequent acclimation. Very short lags (0 and 1 day)
appeared to be important in explaining visits. Even with
potential measurement errors in weather variables, time
series models using weather variable predictors, fit using
regional historic data, can be constructed that are highly
correlated with future emergency department visits not used
to fit the models. These models could be used with regional
weather forecasts to predict visits and therefore could serve
as an evidence-based population risk indicator for issuing
heat warnings. Syndromic surveillance of heat-related illness
might complement predictive models for estimating and
monitoring population-level heat-related illness.
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