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ABSTRACT
As supercomputers and clusters increase in size and com-
plexity, system failures are inevitable. Different hardware
components (such as memory, disk, or network) of such sys-
tems can have different failure rates. Prior works assume
failures equally affect an application, whereas our goal is to
provide failure models for applications that reflect their spe-
cific component usage. This is challenging because compo-
nent failure dynamics are heterogeneous in space and time.

To this end, we study 5 years of system logs from a produc-
tion high-performance computing system and model hard-
ware failures involving processors, memory, storage and net-
work components. We model each component and con-
struct integrated failure models given the component us-
age of common supercomputing applications. We show that
these application-centric models provide more accurate relia-
bility estimates compared to general models, which improves
the efficacy of fault-tolerant algorithms. In particular, we
demonstrate how applications can tune their checkpointing
strategies to the tailored model.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; C.4 [Performance of Systems]: Fault
tolerance

1. INTRODUCTION
With the rapid increase in the size and complexity of large-
scale parallel computing systems, failures are the norm and
no longer the exception. New emerging PetaFLOP systems
with hundreds of thousands of nodes are expected to have
1 component failure every 30 minutes [1]. The failure rate
of these systems is expected to increase as they incorporate

higher numbers of commodity components, and the relia-
bility of such components is not expected to improve [2].
Large-scale applications using large numbers of processors
and memory in parallel are relatively more sensitive to indi-
vidual component failures.

The components (such as memory, CPU, disk, and the net-
work) of such systems arguably have different failure dynam-
ics in terms of time and space. Some components may fail
randomly and frequently while others may fail in a corre-
lated fashion though rarely. Most modern supercomputers
concurrently use multiple heterogeneous types of networks,
storage and processors (such as GPU’s, general purpose pro-
cessors, and FPGA’s). This potentially makes the failure
dynamics even more diverse. Moreover, applications may
use such components to different degrees. Some applica-
tions may by design fit entirely in memory and avoid disk
accesses. Other applications may be CPU-bound and have
little network use.

With those factors in mind, our goal is to design application-
centric failure models that depend on both the component
usage of the application and the failure dynamics of each
component. This is challenging as the components exhibit
a diverse mixture of failure patterns, and obtaining failure
traces of different components is difficult. Nevertheless, such
models, which can be used for generative, analytical, or pre-
dictive purposes, are critical for the design of efficient and
effective fault-tolerant algorithms. For example, an applica-
tion which frequently uses local storage is more likely to be
affected by local hard disk failure than an application which
does not use local storage. If the frequently faulty factor
is the hard disk, an application which uses this component
should checkpoint more often than one which does not.

To the best of our knowledge, this is the first work to explore
a range of heterogeneous failures in large-scale systems and
investigate methods for addressing them in a holistic man-
ner. Previous models (reviewed in Section 5) treat failures
identically, often viewing system nodes as a single black-
box or focusing on one specific component (such as disks or
memory) exclusively. In particular, they do not distinguish,
compare, nor integrate the different failure rates of compo-
nents nor consider the component usage of applications.



Table 1: Characteristics of Mercury System.
Resource Phase I Phase II

# of Nodes 256 635
Processors 2x Itanium II @ 1.3 GHz 2x Itanium II @ 1.5 GHz
Memory 4 or 12 GB DDR1600 ECC RAM 4GB DDR2100 ECC RAM

Network Storage AFS, NFS (1TB), GPFS (90TB)
Local Storage 1x18GB, 1x73 GB UltraSCSI drives 2x73 GB UltraSCSI drives

Network Gigabit Ethernet, Myrinet, Management Network (Ethernet)

We summarize our approach as follows:
1. We analyze five years of event logs from a production

high-performance computing system with hundreds of
nodes, and multiple storage and networking systems.

2. We develop a failure model for this system that in-
cludes multiple heterogeneous components and cap-
tures failure correlation between components.

3. We propose techniques for checkpointing and fault-
tolerance on the system, based on the model incor-
porating component failure heterogeneity.

Section 2 gives an overview of the failure collection method-
ology we used. Then we proceed to analyze the system and
build a heterogeneous failure model in Section 3. Using this
model, we propose a failure aware checkpointing scheme in
Section 4 and analyze its effectiveness. We review related
work in Section 5, describing how our contribution fits in.
We conclude with a summary of our work and possible fu-
ture research directions in Section 6.

2. SYSTEM EVENT COLLECTION AND PRO-

CESSING
In this paper we base our model of component failure on
event logs taken from the Mercury cluster at the National
Center for Supercomputing Applications (NCSA). We be-
gin by examining the technical details of this cluster, the
event recording methodology and how event log messages
are correlated with component failures.

2.1 Cluster Specification
The NCSAMercury cluster was a production high-performance
computing system used for scientific applications as part of
TeraGrid over a 5-year period with roughly 98% uptime over
its lifetime. During its operation, it ran millions of parallel
computing jobs for hundreds of researchers in fields ranging
from molecular and fluid dynamics simulation to DNA and
gene expression analysis.

Detailed technical information regarding the cluster is shown
in Table 1. The cluster started with 256 compute nodes,
half having large amounts of memory (12GB). Later, an ad-
ditional 635 compute nodes were added with faster proces-
sors. The cluster was operational from January 2004 until
March 2010 when it was decommissioned. Over time, system
components were replaced due to failure and nodes repur-
posed to/from computing or storage purposes. We tracked
between 936 to 1050 nodes actively reporting log messages
over the lifetime of the cluster - this includes compute, login
and storage nodes.

Each compute node consisted of two Itanium processors run-
ning at 1.3 or 1.5 GHz with 4 or 12 GB ECC protected mem-

ory. Login and storage nodes had roughly similar specifica-
tions. Storage was a combination of a network file system
and local hard disks serving as mount and scratch devices,
as well as a wide-area file system using AFS. The AFS sys-
tem was generally not used directly by applications, so we
omit it from our analysis. High speed I/O was handled by
a GPFS file system connected by fiber channel.

The Mercury system contained three separate networks -
a Gigabit Ethernet network for computation, a high speed
Myrinet network for latency sensitive parallel applications,
and a management network for node maintenance and soft-
ware updates. By default there was no checkpointing or
fail-over mechanism for applications running on the cluster.
Each application was responsible for managing its own fault
tolerance.

2.2 Event Logs
To understand failures in the Mercury cluster we analyze
system error logs maintained by the cluster administrators.
Logs from each node were collected centrally with each log
message being sent as a single packet to avoid truncation.
Some events generated multiple messages which could be
interleaved in the logs with messages from other machines.
These logs contain the time of the message, node on which
it occurred and possibly details regarding the application
which generated it.

Figure 1 shows the dates for which event logs are avail-
able, with blue colored sections indicating log availability
and blank sections indicating a lengthy log lack. There are
a handful of small (less than a few days) gaps in the logs, as
well as longer inter uptions on the order of several months
such as from March to July 2007 and February to May 2009.
These gaps are the result of system downtime, inactive data
recording or accidental deletion of message logs. We are
interested in understanding the distribution of long-term
failure behavior of components. Therefore, in this paper
we extract event data from logging periods uninterrupted
by excessively lengthy gaps. We refer to these periods as
epochs.

For this work we select five epochs which cover most of the
operational span of the cluster and have relatively small pe-
riods of missing data (on the order of 1 or 2 weeks at the
most). Table 2 shows the five epochs for event log data used
in this paper. The chosen epochs range in length from 203
to 329 days (29-47 weeks) with an average length of 257 days
(36 weeks). Two of the epochs have no missing days, while
epoch 3 has the most with 15 days missing. Overall, our
selected epochs cover 1285 days (183 weeks) with only 25
days missing.



Table 2: Event Log Data.
Epoch Time Span Days Days

Recorded Missing
1 Jul. 2004 to Jun. 2005 329 6
2 Jun. 2005 to Jan. 2006 203 0
3 Feb. 2006 to Oct. 2006 227 15
4 Jul. 2007 to May 2008 301 4
5 Jun. 2008 to Feb. 2009 225 0

Total 1285 25

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

2004 2005 2006 2007 2008 2009

Available Event Log Dates and Epochs

Figure 1: Dates of event log availability.

2.3 Event Processing
To summarize the common event log messages, we performed
an initial pass over the logs to identify frequently occurring
messages with similar syntactic patterns. In particular, we
applied the Hierarchical Event Log Organizer [3] to the logs,
resulting in a list of message templates. These message tem-
plates are essentially regular expressions that describe a set
of syntactically-related messages.

The cluster system administrator, one of the paper co-authors,
then inspected these message templates, and identified which
messages indicated hardware failures and which were caused
by user error or misconfiguration. The system administra-
tor had over 6.5 years of experience identifying and resolving
failures of this particular cluster, since its first construction.

Table 3: Example error messages.
Code Message

F1
scsi error: (1:0:0) status=02h
key=4h (hardware error); fru=02h
asc/ascq=11h/00h ""

F2
rpc: bad tcp reclen
0x47455420 (non-terminal)

F3
pbs_mom: sister could not communicate
(15059) in xxxxxx, job_start_error from
node xxxxx in job_start_error

F4 ifup: could not get a valid interface
name: -> skipped

F5

+ mem error detail: physical
address: 0x5fa56180, address mask:
0xfffffffff80, node: 0, card: 0,
module: 4, bank: 2, device: 0,
row: 6098, column: 3252

F6
processor error map: 0x4000
processor state param: xxx
processor lid: 0xc0180000

In order to have a good statistical measure of events, we
discarded patterns which occurred less frequently than once
a week over the entire system. Many log messages were
ambiguous and could indicate either user or hardware error.
In this regard, we were conservative, and chose only error
messages which clearly indicated hardware errors.

Based on our analysis, we developed a set of 6 message pat-
terns corresponding to errors affecting processor, disk, mem-
ory and network resources. Examples of these messages are
shown in Table 3 with identifiable elements replaced by x’s.
Rather than using the full message, in this work we refer to
each error by a code F1, F2, etc.

The first error code, F1, refers to a hardware reported error
in a device on the SCSI bus. These messages were reported
by one of three storage devices - compute node local pri-
mary or scratch storage devices or RAID configured SAN
devices (on storage nodes). The messages tended to be clas-
sified into two categories, either SCSI bus resets or unrecov-
erable read or write failures. Roughly 13% of the local device
errors were SCSI resets and among the remaining failures,
82% were unrecoverable read failures, 9% were unrecoverable
write failures and the remaining 9% were problems such as
mechanical failures or record corruption. The SAN messages
were 100% SCSI resets, which should not affect jobs and we
therefore ignore. Although unrecoverable failures might not
necessarily cause immediate job failure, they would at least
result in node shutdown and replacement of the faulty drive
within a short time frame.

Event code F2 is an NFS related error indicating unavail-
ability of the network file system for a machine. These mes-
sages were almost exclusively reported by the NFS server
machines. According to administrators, these errors indi-
cate temporary unavailability of the NFS system to a re-
quest, possibly due to excessive load. In applications using
the network file system this could cause file operations to
fail and the application to quit.

Code F3 indicated a failure of a PBS (Portable Batch Sys-
tem) daemon to communicate. Although this can indicate
incorrect setup, generally PBS was functioning correctly and
thus this message would indicate network unavailability for
a node. Code F4 occurs when a node is restarted but has
not yet connected to either the Gigabit or management net-
works which can indicate an unexpected node restart caused
by unexpected hardware failure.

Finally codes F5 and F6 indicate errors in memory and
processor cache, respectively. These errors are expected on
occasion due to manufacturing imperfections, cosmic rays
or overheating. They are often correctable thanks to the
ECC capabilities of the memory. However, when large num-
bers of them occur in a short time span it likely represents
permanent failure of a component.

2.4 Event Filtering
To correctly match messages to a failure, we processed each
message type in a manner reflecting its nature. With his
in-depth experience, the cluster system administrator deter-
mined different thresholds that allowed us to isolate unique
failures from redundant messages.



Table 4: Failure interevent statistics (in days).
E1 E2 E3 E4 E5

All Mean 0.390 0.543 0.373 0.278 0.287
Median 0.210 0.236 0.157 0.089 0.103

F1 Mean 1.45 2.72 3.27 12.7 14.9
Median 0.986 1.01 2.23 3.46 9.08

F2 Mean 31.2 7.90 6.90 12.2 12.4
Median 34.6 7.90 0.778 14.0 14.0

F3 Mean N/A 1.10 0.828 0.425 0.407
Median N/A 0.078 0.316 0.093 0.114

F4 Mean 1.45 1.45 1.50 1.21 1.80
Median 0.120 0.068 0.121 0.073 0.090

F5 Mean 1.18 5.11 9.88 7.95 3.39
Median 0.841 2.89 5.42 4.41 1.51

F6 Mean 1.52 2.65 2.68 4.27 4.09
Median 0.908 1.74 1.82 3.25 2.70

For example, some component failures may cause logging of
large numbers of messages. In particular, memory and pro-
cessor cache failures (F5 and F6) can result in a single faulty
component generating hundreds or thousands of messages in
less than a day. Conversely, transient correctable errors in
these components can generate isolated single messages but
not affect an application.

Along these lines, codes F5 and F6 appear frequently due to
repeated access to the corrupted component when a memory
module or processor failed. Replacement of a faulty memory
module by the administrators could take up to a day or
more. Therefore, consecutive F5 or F6 messages on the same
host within a 24 hour span are treated as a single failure.

However, to avoid transient correctable errors being treated
as fatal failures, we only view a host as having a failure if
there are more than 100 F5 or F6 messages. Similarly, code
F1 can be generated repeatedly by a faulty drive, so we treat
multiple F1 messages from a machine in a 24-hour time span
as a single failure.

Conversely, codes F2, F3 and F4 should not be generated
repeatedly for a long time by a single failure, and a single
instance of any of these codes indicates a potentially fa-
tal failure to an application using the resource. Therefore,
we treat any number of these messages on a single machine
within a 1-hour time span as a single failure. We chose these
thresholds with the advice of the cluster system administra-
tor, who had extensive experience with the logs.

3. FAILURE ANALYSIS AND MODELING
Given the six error codes in the previous section, we next de-
velop a model of heterogeneous failures in the system from
the event log data. We assume that failure events are in-
stantaneous, and focus on modeling the time between two
consecutive failure events.

3.1 Heterogeneous Failure Statistics
We derive statistical distributions of failure rates over the
whole system.

Mean and median time to failure. Table 4 shows the
mean and median rate of each failure over the entire cluster
across all epochs. Among all types of failures, there was an
average of between 1.8 and 3.6 failures per day. Assuming

Allcl

All

M1

M2

MJ

Failure inter-arrival time

...

Time

Time of failure events

F1

F2

F3

Correlated Failure

Figure 3: Example of failure events. M1,M2, · · ·MJ

denote the J nodes in use. ALLCL refers to the set of failure
event times over the entire cluster. ALL refers to the set of
unique failure event times over the entire cluster.

an equal probability of failure over all nodes, this is a per-
node mean rate of between 248 to 484 days to failure. This
table also shows there is a wide range in interevent times
for different types of failures. For example, in epoch 3 fail-
ure type F1 has a mean interevent time of 77 hours, while
failure type F3 has a mean of 20 hours. Interevent times
can also vary significantly between different epochs for the
same failure. For example, mean interevent time between
F1 failures increases from roughly 35 hours in epoch 1 to 78
hours in epoch 3.

Cumulative distribution of failure interarrivals. Fig-
ure 2 shows cumulative distributions (CDF) of the time be-
tween failures for the whole cluster over different epochs
plotted on a log scale. The solid lines indicate interevent
times for the cluster as a whole. These interevent times
correspond to the time line labeled ALLCL in Figure 3.

Some correlated failures (for example, network failures cor-
responding to F2 and F4) can occur nearly simultaneously
on multiple machines. In the logs, a correlated failure ap-
pears as sequence of time-clustered events of the same fail-
ure type across machines. In particular, we assume that a
correlated failure occurs when the time separating two con-
secutive failure events is less than 1 minute. We justify this
threshold as overheads for fault tolerance often exceed this
threshold by a factor of 10 [4]. Also, the CDF for failures
on the whole cluster showed a spike near this threshold (not
visible in Figure 2), indicating a correlated failure.

After interpreting nearly simultaneous failures as a single
failure, we plot also in Figure 2 the resulting cumulative
distribution shown as the dotted line. These interevent times
correspond to the time line labeled ALL in Figure 3. Finally,
the red line indicates the line of best fit. The derivation of
this line of best fit is explained below.

Correlation across nodes. We find that some of the fail-
ures are correlated across different machines, shown in the
graphs as a large cumulative distribution at the start of the
plot. For example, depending on the epoch, between 30-70%
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of the F4 failures on different machines occur within 30 sec-
onds of each other. This could be caused by multiple nodes
being restarted simultaneously after a shared power failure,
for example. On the other hand, other failures such as F1,
F5, and F6 show almost no correlation between machines,
with over half the failures occurring more than a day apart.

Correlation across components. Although some fail-
ure types are correlated between machines, we must also
investigate whether different failure types have correlation,
such as memory and processor failures being correlated due
to common causes like overheating or motherboard failure.
To determine whether different failures are time-correlated
between machines, we divided each epoch into hour-long pe-
riods where the value of each period is 1 if a specified failure
type occurred and 0 otherwise. We chose a length of 1 hour
as most failure events are separate by several hours. We
calculate the cross-correlation over all epochs between all
combinations of failure types, with a cross-correlation of 1
indicating exact correlation (at some time delta) between
two failure patterns within an epoch.

The average cross-correlations between different failures over
all epochs ranged from 0.04 to 0.11, none of which indicate
strong positive or negative correlation. Therefore, in our
model we feel it is reasonable to assume there is no cor-
relation between different types of failures. However, it is
worth noting that this does not mean there are no correla-
tions between failures in large-scale systems, as some cor-
related aspects (e.g. long term failure rates of the same
type of component) have been found in previous studies [5].
Rather, over extended periods we find there is little corre-
lation between different types of failures. We also looked
into auto-correlation among failure arrival times for a single
component, but not see any noticeable periodic pattern.

3.2 Per-Component Failure Model
Time to failure. Next we perform statistical analysis to
create a model of resource failure for the Mercury cluster.
Since we found no correlation between different component
failures, we choose to model the failure types as independent
probability distributions. We also treat the model of failure
interevent times differently from the model of the number



of nodes affected. Previous work [6] indicates a Weibull
distribution tends to fit failure interevent times well. For
completeness we also test log-normal, log-gamma and expo-
nential distributions.

To fit the parameters of each candidate distribution, we
use the standard method of maximum likelihood estimation
(MLE) [7]. To evaluate the fit of these distributions with our
data, we use the Kolmogorov-Smirnov test which generates
a p-value between 0 and 1. Low p-values below a standard
threshold of 0.05 indicate that the data did not come from
the specified distribution.

With the combined failure data, we find log-normal and
Weibull distributions best fit with p-values of 0.41 and 0.49
respectively. For F1 we find that log-normal and Weibull
distributions fit best with average p-values around 0.52 to
0.61. F2 is difficult to model due to the irregular sharp spike
shape in the distribution around 11 days, but it fits reason-
ably to an exponential, log-normal or Weibull distribution
(p-values 0.33, 0.22 and 0.12 respectively).

F3 is fit best by a log-normal distribution with p-values
around 0.38 (ignoring the first epoch). F4 is not particu-
larly well fit by a distribution because of the crease in the
distribution around 17 hours, but it fits reasonably well to
log-normal or Weibull distributions (p-values around 0.15).
F5 and F6 are both well fit by log-normal distributions (p-
values 0.82 and 0.68), Weibull distributions (p-values 0.68
and 0.58) and exponential distributions (p-values around
0.55). Based on these results, we use Weibull distributions
for each of the failure interevent times except F3. The pa-
rameters for these distributions are shown in Table 5.

In addition to having heterogeneous scale and shape parame-
ters, the hazard rates are different as well for the component
types. Intuitively, if the hazard rate is decreasing, the longer
the component has been without failure, the higher the prob-
ability that it will not fail in the future. A shape parameter
with value less than 1 indicates a decreasing hazard rate.
For F1 and F4, the shape parameter is clearly below one.
So the hazard rate is clearly but surprisingly decreasing for
disk and network failures. For F5 and F6, the shape param-
eter fluctuates above or slightly below 1. This means that
the hazard rate is relatively constant or slight increasing for
memory or processor failures. Overall, the F1, F2, and F4
failures are dominant, and the hazard rate is decreasing.

Number of nodes in failure. Finally, we examine the
number of nodes affected by a failure. As seen in Figure 2,
F1, F3, F5 and F6 rarely occur at close intervals on sepa-
rate nodes. Therefore we consider each of these as affecting
only a single node. However, F2 and F4 can occur simulta-
neously on multiple nodes, as well as the combination of all
failures. A plot of the CDF for the number of nodes affected
by a failure over all epochs is shown in Figure 4 with the
black line indicating the actual data and the red line show-
ing the fitted distribution. For example, with the combined
failure model, 91% of failures affect just one node, 3% affect
two nodes, and 6% affect more than two nodes. We model
the number of nodes affected by the combined failure as a
Weibull distribution, by an F2 failure as a log normal distri-
bution, and by an F4 failure as an exponential distribution.
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The relevant parameters are shown in Table 5.

Although this model is for the Mercury system, we believe
the underlying principles should be applicable to other large-
scale parallel systems. In particular this model demonstrates
that failure interevent time tends to be well modeled by a
Weibull distribution, and that some failures can affect multi-
ple nodes, the modeling of which may require a heavy-tailed
distribution.

3.3 Integrated Failure Model
Next we develop a complete failure model integrating the dif-
ferent resource failure distributions and affected node distri-
butions determined in Section 3.1. In general, the distribu-
tion depends on two factors, namely the specific components
and number of nodes used by the application. Our approach
is to use Monte Carlo simulations to determine the failure
distribution for different applications.

Application resource usage. We consider two profiles of
application resource usage, representative of real workloads.
We assume that applications using a subset of components
are only affected by failures of components in that subset.

The first configuration [F5,F6] corresponds to an application
that uses mainly the processor and memory with little disk
or network usage. Many bag-of-task applications, such as
those commonly used in Grids [8] and Desktop Grids [9],
match this profile. Examples of such real-world applications
include Rosetta@home [10] (a project investigating protein
folding) and EINSTEIN@home [11] (a project searching for
gravitational wave sources).

The second configuration [F1, F5, F6] corresponds to data-
intensive applications that use disks frequently in addition
to memory and the processor. An example of such a data-
intensive application is the CM1 application used for atmo-
spheric research at NCSA.

The third configuration is the combination of all failure
types, which we refer to as combined. Massively parallel



Table 5: Failure model parameters. (λ: scale, k: shape)
Interevent Time (days)

Distribution Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

All Weibull λ = 0.3166 λ = 0.3868 λ = 0.2613 λ = 0.1624 λ = 0.1792
k = 0.7097 k = 0.6023 k = 0.6629 k = 0.6161 k = 0.5841

F1 Weibull λ = 1.436 λ = 2.110 λ = 3.167 λ = 7.579 λ = 10.684
k = 0.8300 k = 0.6052 k = 0.8418 k = 0.5560 k = 0.6510

F2 Weibull
λ = 33.16 λ = 7.515 λ = 1.831 λ = 13.08 λ = 8.077
k = 1.994 k = 2.631 k = 0.5317 k = 0.9249 k = 1.416

F3 Log Normal N/A
µ = −2.509 µ = −1.717 µ = −2.767 µ = −2.622
σ = 2.361 σ = 2.030 σ = 2.249 σ = 2.125

F4 Weibull λ = 0.4498 λ = 0.3639 λ = 0.4776 λ = 0.3400 λ = 0.3792
k = 0.3593 k = 0.4009 k = 0.4317 k = 0.3931 k = 0.2979

F5 Weibull λ = 1.071 λ = 4.032 λ = 7.181 λ = 5.506 λ = 2.274
k = 1.065 k = 1.253 k = 0.8464 k = 0.8510 k = 0.7092

F6 Weibull λ = 1.260 λ = 2.520 λ = 2.520 λ = 4.788 λ = 4.548
k = 0.9258 k = 1.392 k = 1.323 k = 1.455 k = 1.091

Number of Nodes
Distribution Parameters

All Weibull λ = 0.1387, k = 0.4264
F1, F3, F5, F6 Constant 1

F2 Log Normal µ = 2.273, σ = 2.137
F4 Exponential λ = 0.8469

Variable Definition

MJ Number of nodes used by job J
Mtot Total number of nodes in cluster
Qi(N) Probability of number of nodes N af-

fected by failure for component i
Pnode(MJ) Probability of a failure of component

i on a node used by job J
PJ(MJ , t) Probability of job J failing at time t

Table 6: Failure Variable Definitions.

applications would use many or all components of the sys-
tem, including multiple networks and storage devices. One
such application is NAMD [12], a portable parallel applica-
tion for biomolecular simulations.

Holistic failure model. We construct an application-
centric failure model as a function of the types of compo-
nents used as well as the number of nodes used. Assume
a parallel job J utilizes MJ nodes out of a total Mtot on
the cluster while periodically checkpointing its computation
state. For simplicity we assume checkpointing occurs simul-
taneously across all nodes and the act of checkpointing does
not affect the failure rates. We also assume a failure on one
node means all MJ nodes performing the job must restart
from the last checkpoint. The job uses resources subject to
failures FJ ⊆ (F1, F2, . . .). Each failure Fi has a correspond-
ing probability density function Qi of the number of nodes
affected by the failure and probability density function Pi

of failure probability at different time intervals - the corre-
sponding distributions/parameters for this work are shown
in Table 5. Table 6 summarizes these variable definitions.

If a job uses MJ of Mtot nodes, the probability Pnode of a
given failure Fi occurring on a node used by a job is:

Pnode(MJ) =

Mtot
∑

N=1

Qi(N)

[

1−
N−1
∏

R=0

(

1− MJ

Mtot −R

)

]

(1)
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Figure 5: Effect of node failure distributions on job
failure probability.

which indicates the weighted sum of the probabilities that
the failure affects one or more of the nodes the job is running
on. This assumes all nodes are equally likely to experience
a given failure.

Figure 5 graphically depicts this function for the four distri-
butions we use in the model. When failures affect a single
node, the job failure probability rises linearly as seen in the
black solid line. This is because the probability of a single
node failure affecting a job rises linearly with the number of
nodes used by the job. However, for failures that are likely
to affect large numbers of nodes (e.g. network failure F2) the
probability of job failure is high even when using few nodes.
The Fall job failure probability is similar to the single node,
but slightly higher because it has a small chance (roughly
10%) of affecting multiple nodes. This demonstrates that
the heterogeneity in number of nodes affected by a given
failure will in turn affect the probability of job failure.

Since we determined the failures are not correlated with each
other, the total failure probability density function of the job



is given by:

PJ(MJ , t) = 1−
∏

i∈FJ

(1− Pnode(MJ)Pi(t)) (2)

Ideally we would solve this analytically to determine the
failure distribution for a given application using a specified
set of nodes and resources. However, this would involve a
mathematical maelstrom and be intractable for most con-
figurations. Instead, we perform Monte Carlo simulations
using the node failure law in Equation 1. These simulations
create failures according to the distributions in Table 5, then
determine if the failure would affect a job of a given size
(MJ). By running the simulations to generate thousands
of failures we can approximate the expected failure arrival
distributions for different job sizes with different resource
usage.

The results of these simulations for parameters from epoch
3 are shown in Figure 6 for three job sizes, MJ = 8, 64, 512
using the Mercury cluster size of Mtot = 891. This figure
shows the result of the simulation - an approximation of the
cumulative distribution function for PJ . As we expect, us-
ing fewer resources or fewer nodes results in a longer time
between failures. For example, the mean time between fail-
ures for jobs subject only to processor or memory failures
(F5 and F6) is 428 days when using 8 nodes, but jumps to
7.21 days when using 512 nodes. However, if the jobs are
subject to disk failures as well, the mean time between fail-
ures becomes 135 days for 8 nodes and 2.13 days for 512
nodes. This demonstrates how by using additional types of
resources or nodes, applications become subject to a higher
rate of failures.

Our model considering all failure types provides an upper
bound on the failure rate. Ideally, the distribution for com-
bined failures and Fall should be identical. However, our
model uses approximations for the distribution of nodes af-
fected by a failure and overestimates the number of nodes
affected by F2 and F4 failures. This is likely the reason why
the combined failure distribution (created by merging fail-
ure times from F1 through F6) shows more frequent failures
than Fall, especially for jobs using fewer numbers of nodes.

Based on the simulations, we create an integrated model
of failure time distributions for different resource configura-
tions and job node counts. We find that the failure time
distributions such as those shown in Figure 6 are best mod-
eled by a Weibull distribution. The fitted parameters of
these distributions for Epoch 3 are shown in Table 7.

Interestingly, for a given set of failures types, the scale pa-
rameter (λ) changes as the number of job nodes (MJ) in-
creases but the shape parameter (k) stays mostly the same.
Also, a doubling in the number of job nodes results in roughly
a halving of the λ parameter, though this effect is less pro-
nounced when including failures that affect multiple nodes
(e.g. the “Combined” row).

These distributions and their parameters are useful for pre-
dictive, generative, and analytical purposes. With respect
to prediction, the model can be used to predict the time
to failure given the time the system has been continuously
available. With respect to generation, the model can be
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Figure 6: The effect of heterogeneous resource usage
on expected failure rates for different job sizes.

used to easily simulate failures realistically in large parallel
systems. In the next section, we show how to apply these
models to determine the optimal checkpoint interval for ap-
plications.

4. TOLERATING HETEROGENEOUS FAIL-

URES
We next examine several common supercomputing applica-
tions and propose a scheme for fault tolerance in light of the
heterogeneous failure model developed in Section 3.3. Given
this model, we develop a scheme for determining the optimal
checkpointing period in Section 4.1.

The novelty of our checkpoint investigation is the failure
model. Prior works on checkpointing assume failures occur
randomly and homogeneously in terms of time and space. In
contrast, we look a checkpointing strategies that account for
correlated failures and mixtures of component failure rates.
We also discover correlations between optimal checkpoint
period with required checkpoint time and node count.

4.1 Checkpoint-Based Fault Tolerance
In any checkpointing application, there is a tradeoff between
the cost (lost time, network/storage use, etc) due to check-
pointing and the expected time lost from a potential fail-



Table 7: Monte Carlo-based integrated failure model parameters for epoch 3. (λ: scale, k: shape)
Weibull Distribution of Time Between Failures (days), Mtot = 891

MJ = 8 MJ = 16 MJ = 32 MJ = 64 MJ = 128 MJ = 256 MJ = 512

Fall
λ = 17.75 λ = 10.68 λ = 6.284 λ = 3.379 λ = 1.776 λ = 0.9600 λ = 0.4765
k = 1.013 k = 0.9989 k = 0.9915 k = 0.9198 k = 0.8860 k = 0.8190 k = 0.7406

F5, F6
λ = 363.9 λ = 172.8 λ = 89.14 λ = 44.15 λ = 21.40 λ = 10.90 λ = 5.282
k = 0.7167 k = 0.7153 k = 0.7180 k = 0.7013 k = 0.7270 k = 0.7074 k = 0.7020

F1, F5, F6
λ = 132.7 λ = 65.87 λ = 33.52 λ = 16.52 λ = 8.349 λ = 4.225 λ = 2.025
k = 0.9327 k = 0.9867 k = 0.9963 k = 1.006 k = 1.049 k = 0.9905 k = 1.031

Combined λ = 10.86 λ = 5.963 λ = 3.653 λ = 2.236 λ = 1.429 λ = 0.8193 λ = 0.4419
k = 0.7562 k = 0.7654 k = 0.8173 k = 0.7959 k = 0.7887 k = 0.7513 k = 0.7222

Variable Definition

TC Computation time
TS Time to checkpoint
TL Lost computation since last checkpoint
Tstep Single computation and checkpoint step

(TC + TS)
TF Time from (re)start of computation to

next failure
TW Total time wasted

Table 8: Checkpoint Variable Definitions.

Time

TC TS TC TS

TC TS TC TS

Failure event

TLTstep

TFt = 0

... t

Figure 7: Checkpoint and restart variables [13].

ure/restart. By checkpointing more often, an application
loses less computation when a failure occurs, but checkpoint-
ing too frequently leads to wasted time and resources.

One of the first analytic checkpointing schemes [13] deter-
mined the optimal interval between checkpoints by attempt-
ing to minimize the expected wasted/lost time before failure.
The author assumed an exponential distribution for failure
interarrival times. While we use a similar formulation to
derive the optimal checkpoint interval, our failure model is
significantly different and more realistic as it considers fail-
ure heterogeneity, correlation and use of multiple nodes.

Each node computes for TC time, then performs a check-
point requiring TS time to save - a total time of Tstep =
TC + TS . These compute/checkpoint steps are repeated un-
til the program finishes. If a failure occurs, the lost compu-
tation time is TL, which will depend on the time since last
checkpoint. We assume the time to restart a computation is
negligible compared to Tstep and can therefore be ignored.
Table 8 summarizes these variable definitions, and Figure 7
illustrates them.

The time from the start or restart of computation to the
next failure is TF , and the probability density function of

job failure at time t is PJ(MJ , t) as shown in Equation 2.
PJ is determined both by the number of nodes involved in
the job and the failure rate of the resources used by the
nodes. If a job uses many nodes in the cluster, it is more
likely to be affected by a failure than a job which only uses
a few. Similarly, if a job requires multiple resources (local
disk, network, etc) it is more likely to be affected by a failure
than a job which uses only the processors and memory.

A failure occurring at time TF will fall between n(TC + TS)
and (n+ 1)(TC + TS), n = 0, 1, . . ., which will result in nTS

time lost from saving checkpoints and TL time lost from the
failure. Another way of writing this is TF = nTstep + TL.
This gives a total time wasted TW = nTS + TL.

Assuming a Weibull failure inter-arrival distribution with
scale and shape parameters λ and k, the total expected
wasted time due to lost computation and checkpointing is:

TW =

∞
∑

n=0

∫ (n+1)Tstep

nTstep

[t−nTC ]

[

k

λ

(

t

λ

)k−1

e−( t
λ
)k

]

dt (3)

We want to find the value of TC (time between checkpoints)
which minimizes TW (expected wasted time). Other work
[14] uses a dynamic programming approach to solve a similar
problem, however we use standard mathematical packages
to determine optimal TC values for the parameters in Table
7. The calculated optimal TC values are shown in Table 9
- note the days/hours difference between the tables when
comparing them.

We notice several striking aspects of the optimal TC values
including some very useful relations. First, as the num-
ber of machines increases the optimal checkpoint interval
decreases. This is to be expected, since an increase in fail-
ure prone elements implies the mean time to failure will be
shorter and thus require more frequent checkpointing. For
our model we find the relation TC ∝ 1/

√
MJ , indicating

optimal checkpoint time will roughly halve with every four-
fold increase in nodes. This is especially accurate for failures
which only affect single nodes.

Next, the required time to checkpoint (TS) also has a signif-
icant impact on TC with greater TS implying greater TC .
This is because when we optimize TC in Equation 3 we
include the checkpointing time in Tstep. Intuitively this
makes sense as well - more expensive checkpoints should
be performed less often. For our model we find the relation
TC ∝

√
TS . It is worth noting this is the same relation in

the approximation used in Young’s paper [13]. In fact, with
our model for k = 1 (where the Weibull distribution sim-



Table 9: Optimal TC Checkpoint Intervals (hours)
MJ = 8 MJ = 16 MJ = 32 MJ = 64 MJ = 128 MJ = 256 MJ = 512

Fall

TS =1 min 3.746 2.912 2.236 1.669 1.222 0.923 0.681
TS =10 min 11.77 9.136 6.995 5.218 3.810 2.881 2.134
TS =30 min 20.24 15.68 11.98 8.923 6.495 4.906 3.640

F5, F6

TS =1 min 18.99 13.38 9.430 6.713 4.594 3.327 2.328
TS =10 min 60.17 42.42 29.90 21.30 14.57 10.56 7.392
TS =30 min 104.55 73.67 51.91 36.97 25.25 18.32 12.81

F1, F5, F6

TS =1 min 10.44 7.345 5.171 3.619 2.547 1.831 1.253
TS =10 min 33.16 23.24 16.28 11.37 7.972 5.718 3.882
TS =30 min 57.69 40.27 28.06 19.55 13.66 9.767 6.579

Combined
TS =1 min 3.216 2.370 1.806 1.427 1.145 0.8866 0.6650
TS =10 min 10.18 7.493 5.680 4.488 3.594 2.786 2.089
TS =30 min 17.61 12.94 9.766 7.707 6.158 4.769 3.570

plifies to an exponential distribution), Equation 3 results in
almost exactly the same value as Young’s approximation of
TC =

√
2TSTF .

Finally, we find that by using only failures relevant to an
application, such as F5, F6 or F1, F5, F6 we can checkpoint
less frequently. For example, when using 64 nodes the opti-
mal TC for F5, F6 is roughly 4 times less frequent than for
Fall. These results demonstrate that by tuning the check-
point interval to the actual node count and resource usage,
large-scale applications can improve their run time by min-
imizing unnecessary checkpointing.

5. RELATED WORK
There is a significant body of work related to this topic cov-
ering multiple areas including tools for message log analysis,
analysis of failures in large-scale systems, and fault tolerance
for parallel computing.

There are several tools available for system event log analy-
sis which take different approaches. One such tool is Node-
info [15], which uses an automatic identification algorithm
in combination with a binary scoring metric to identify im-
portant alert messages. Another tool uses a bioinformatic
inspired algorithm to classify messages [16]. In this work,
particularly in Section 2.3, we use a hierarchical log analy-
sis tool [3] to summarize the logs. This tool shows higher
accuracy than other comparable tools with our data set.

There are numerous studies investigating failures in large-
scale systems. These studies range from comprehensive re-
views of failures on entire systems to studies of failure for
particular components. Studies of large-scale systems in-
clude investigations of failure and repair in a variety of high-
performance computing systems [6, 17, 18, 19, 20, 21, 22, 4]
to computational error rates in desktop computing systems
[23]. In general, such studies do not distinguish failures
among component types nor consider how an application
would be affected if it uses specific components, or they fo-
cus exclusively on one particular component type.

Other studies examine in more detail the failure of particular
components, taking into account the effects of environment,
utilization and aging. These include recoverable and unre-
coverable errors in memory [24, 25] and disk [5]. Usually,
these studies focus on one component in isolation, and the
models cannot always be easily applied to applications that
use multiple components.

In regards to fault tolerance, there are numerous proposed
techniques. In this work we focus on fault tolerance through
checkpointing since this is the most widely applicable soft-
ware based technique, though perhaps not the most efficient
for some applications. There are several studies of transpar-
ent checkpointing [26] or large-scale parallel application ori-
ented checkpointing [27]. Our checkpointing study is unique
in terms of its failure model, which considers heterogeneous
component failures and node counts.

6. CONCLUSION
In this paper we presented application-centric failure models
that consider both the components used by the application
and the reliability of such components. Specifically our con-
tributions were as follows:

1. Measurement – We identified and analyzed failures
contained in five years of event logs from a production
high-performance computing system. The event traces
and failure identification are certainly useful for other
failure studies and algorithm evaluation.

2. Modeling – We determined the distribution of failure
interarrivals of specific components. We then formed
holistic failure models based on the component-usage
of applications. These distributions are useful for gen-
erative, predictive, and analytical purposes.

3. Fault-tolerance – We applied this model to derive the
optimal time to checkpoint. Our failure model is sig-
nificantly more realistic than previous models in that
it takes into account correlated and random failures in
the system. With more realistic models, the efficiency
and efficacy of algorithms is improved.

Future work could investigate the optimal number of nodes
for a job in order to minimize the expected failure rate; we
noticed that using larger numbers of nodes increases the
expected rate of job failure. Developing a closed form ex-
pression for optimal checkpoint period in a heterogeneous
parallel system with different expected failure distributions
should also be investigated.
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