
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/65551

Please be advised that this information was generated on 2022-08-23 and may be subject to

change.

http://hdl.handle.net/2066/65551

Modeling and Validating Distributed Embedded

Real-Time Control Systems

Marcel Verhoef

Copyright c© 2008, Marcel Verhoef, Dordrecht, The Netherlands

ISBN 978-90-9023705-3

Typeset with LATEX 2ε

Printed by Print Partners Ipskamp, Enschede

Cover design by Silvian de Jager

Abstract

The development of complex embedded control systems can be improved significantly

by applying formal techniques from control engineering and software engineering. It

is shown how these approaches can be combined to improve the design and analysis of

high-tech systems, both in theory and practice. The semantics of the integration of two

established rigorous techniques has been defined formally in this work. The strength

of this integrated semantics is demonstrated by means of a significant industrial case

study: the embedded control of a printer paper path, whereby the full development

life-cycle from model to realization is covered. The resulting model-driven design ap-

proach fits the current engineering practice in industry and is both flexible and effective.

IPA dissertation series 2009-01

The work in this thesis has been carried out under the auspices of the research school

IPA (Institute for Programming research and Algorithmics) and under responsibility

of the Embedded Systems Institute as part of the Boderc project, which was partially

supported by the Dutch Ministry of Economic Affairs under the Senter TS progam.

Modeling and Validating Distributed Embedded

Real-Time Control Systems

Een wetenschappelijke proeve op het gebied van de

Natuurwetenschappen, Wiskunde en Informatica

Proefschrift

ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus, prof. mr. S. C. J. J. Kortmann,

volgens besluit van het College van Decanen

in het openbaar te verdedigen op woensdag 21 januari 2009

om 15.30 uur precies

door

Marcel Henri Gerard Verhoef

geboren op 5 augustus 1968

te Papendrecht

Promotor:

Prof. dr. F. W. Vaandrager

Copromotor:

Dr. J. J. M. Hooman, Radboud Universiteit Nijmegen &
Embedded Systems Institute

Manuscriptcommissie:

Prof. dr. B. P. F. Jacobs

Prof. dr. L. Thiele, Swiss Federal Institute of Technology Zürich (CH)

Prof. dr. ir. P. G. Larsen, Engineering College Aarhus (DK)

Dr. ir. J. P. M. Voeten, Technische Universiteit Eindhoven &
Embedded Systems Institute

Dr. ir. J. F. Broenink, Universiteit Twente

Preface

This dissertation is long overdue. Already in 1993, when I graduated from Delft Uni-

versity of Technology, I had been looking for opportunities for a suitable PhD position

in Computer Science. But I did not succeed in finding one for various reasons. So, I

ended up in industry and spent ten years of my life building complex computer systems

and being reasonable successful at it as well. Every now and then there was still this

itch that needed satisfaction, of leaving behind unfinished business in academia. But

the pressure of working in industry usually kept me far from doing something sensible

about it. Having seen several colleagues trying to complete a PhD along side a full

time job did not really help either.

All this changed in November 2002 when an advertisement appeared in “Tech-

nisch Weekblad” seeking PhD candidates for an applied research project on multi-

disciplinary design of real-time embedded control systems at the Embedded Systems

Institute. Having struggled with these issues for several years in industry made me de-

cide to seek a position in this project, called BODERC, and the result is now in front

of you. It was both a blessing and a challenge returning to academia after so many

years. Of course I brought a lot of practical experience to the project, but my academic

skills needed polishing, and a lot of it as well. But with the help of old and new friends,

I believe we did some interesting work and had a lot of fun doing it.

Of course, papers where produced and conferences were visited. But, perhaps

because I was the only BODERC PhD candidate with a priori grey hair, I also got

involved in quite a number of interesting “extra-curricular” activities, such as writing

a book on VDM++ and organizing a special session at ISOLA’04 which led to the

publication of a special issue of the STTT journal which I also co-edited. I have been

part of two programme committees of high profile symposia and I visited ETH Zürich,

University of Newcastle and the Engineering College at Aarhus several times for joint

research work. I was co-organizer of the Industry Day at FM’05 at Newcastle and last

but not least I was asked to give two invited lectures at Boston Scientific at Minneapolis,

USA, and CSK Systems at Tokyo and Nagoya in Japan on early results of my research

work.

So, obviously, completing this thesis before the BODERC project was finished in

March 2007 was out of the question. Since my return to Chess, I have been working on

this document as any other project in industry: running from one infeasible deadline

to another, using floating priority scheduling. But here it is, my magnus opus, and I

hope that you enjoy reading it as much as I have enjoyed writing it. Finally, my sincere

apologies to those who have tried to provoke and stimulate me to take (and complete)

a PhD over the past years and had to wait 15 years on this result!

5

Voor mijn ouders:

Gerrit Hendrik Verhoef en

Dikkie Adriana van Herk

Contents

1 Introduction 9

1.1 The embedded systems design challenge 12

1.2 The BODERC research project . 13

1.3 The goal of this thesis . 14

1.4 Organization of this thesis . 15

2 Evaluating Embedded System Architectures 19

2.1 Introduction . 19

2.2 The In-Car Radio Navigation system case study 22

2.2.1 Modeling the system . 22

2.2.2 Modeling the environment 25

2.2.3 The modeling and analysis challenge 27

2.3 The performance modeling methods 27

2.3.1 Modular Performance Analysis 28

2.3.2 Symbolic Timing Analysis for Systems 40

2.3.3 Timed Automata . 42

2.3.4 Parallel and Object-Oriented Specification Language 53

2.3.5 Vienna Development Method 58

2.4 Comparing the models . 65

2.5 Discussion and conclusions . 69

3 Extending VDM++ for Distributed Real-Time Systems 71

3.1 Introduction . 71

3.2 The limitations of timed VDM++ . 72

3.3 Proposed changes . 72

3.4 Modeling the in-car radio navigation system 73

3.4.1 The environment model . 74

3.4.2 The system model . 76

3.5 Abstract Operational Semantics . 77

3.5.1 Syntax and informal semantics 78

3.5.2 Formal Operational Semantics 79

3.5.3 Validation . 83

3.6 Related work and concluding remarks 84

4 Co-simulation of Distributed Embedded Real-Time Control Systems 85

4.1 Introduction . 85

4.2 Current state of practice in academia and industry 86

4.3 Modeling and analysis of embedded control systems 88

7

4.3.1 Plant modeling . 89

4.3.2 Controller description . 91

4.4 Tool support . 92

4.5 Reconciled operational semantics . 95

4.5.1 Syntax and informal semantics revisited 96

4.5.2 Formal Operational Semantics 98

4.6 Concluding remarks . 104

5 A Development Process for Embedded Control Systems 105

5.1 System-level reasoning . 106

5.1.1 The key driver method . 107

5.1.2 Threads of reasoning . 109

5.1.3 Budget-based design . 110

5.1.4 From analysis towards design 112

5.2 Control engineering process . 112

5.3 Software engineering process . 115

5.4 Discussion and conclusion . 119

6 Embedded Control of a Printer Paper Path - a Case Study 121

6.1 Introduction . 121

6.2 The paper path experimental set-up 124

6.3 Modeling the experimental set-up 128

6.3.1 Modeling the plant . 129

6.3.2 Validating the plant model 133

6.3.3 Modeling the controller . 134

6.3.4 Validating the controller model 144

6.4 Analysis of the simulation results . 147

6.4.1 Co-simulation of the system model 148

6.4.2 Software-in-the-loop co-simulation 149

6.4.3 Measurements on the experimental set-up 150

6.5 Discussion and conclusions . 153

7 Conclusions and Outlook 155

7.1 Summary of research contribution 155

7.2 Evaluating the objectives of this thesis 157

7.3 Future work and outlook . 159

Chapter 1

Introduction

Computers are all around us and we use them every day, sometimes even without giving

it a second thought. The term “computer” often refers to the personal computer (PC),

which is used to send e-mail and browse the Internet or perhaps a video game console

that is used for entertainment. But computers are also part of the alarm clock, coffee

machine, dishwasher, video recorder, DVD player, photo camera, television set and

mobile telephone. This class of systems is often referred to as “embedded systems”.

Wikipedia defines an embedded system 1 as: “a special-purpose system in which the

computer is completely encapsulated by the device it controls”. Corporaal observes in

a recent white paper [20] that you can easily count up to a hundred embedded devices

in an average family household nowadays.

We become more and more dependent on the proper operation of these embedded

systems. Not only because they are efficient and convenient to use but also because

they potentially affect the quality of life. Sangiovanni-Vincentelli mentioned in his

presentation [89] at the 2006 Design Automation and Test in Europe (DATE) con-

ference that a modern, high-end, car contains 80 microprocessors executing several

million lines of code. These microprocessors are used to control not only the car ra-

dio and air conditioning, but also the air bag, cruise control, fuel injection, brakes and

power steering. A failure in any one of those critical embedded systems may have

severe consequences. But the general public is typically not aware of this, because

these computers are deeply embedded in the system, hidden well out of plain sight.

Dependability issues are typically associated with the military, medical or aeronautical

domains but not so much with consumer or capital goods. For example, does one ask

about the code coverage statistics of the power steering unit (an embedded system that

contains a microprocessor which executes possibly several thousands lines of code)

when you buy a new car? In 2004, Deutsche Welle reported 2 that the reliability rat-

ing of German cars, which used to be unrivalled and universally acclaimed, has been

steadily decreasing for several years in succession as compared to their main competi-

tors. Analysts believe that this may very well be due to the increased complexity as

outlined by Sangiovanni-Vincentelli.

The impact of embedded systems is likely to grow even far beyond what is possi-

ble today. The on-going miniaturization and wireless digital communication has made

mobile computing already a reality. We have seen the desktop PC shrink, first to a

laptop and then to a personal digital assistant (PDA) in less than a decade, without a

1See http://en.wikipedia.org/wiki/Embedded systems
2See http://www.dw-world.de/dw/article/0,2144,1400331,00.html

9

http://en.wikipedia.org/wiki/Embedded_systems
http://www.dw-world.de/dw/article/0,2144,1400331,00.html

significant loss in performance. Personal audio systems, like Apple’s iPod, are now

common place. In principle, you can reach any one, at any place, at any time. The

growth in application areas seems to be limited only by the amount of power such a

mobile device requires. Visionaries claim that we will be moving towards ubiquitous

computing 3, a paradigm whereby the distinction between computers and their envi-

ronment will eventually disappear completely. Advocates like Aarts [1] also refer to

this as “ambient intelligence”. Companies such as Philips 4 already demonstrate that

this is not just science fiction. They are building actual prototypes of products for the

consumer, lighting and medical markets based on these ideas in their ExperienceLab.

The economic relevance of embedded systems is easily demonstrated. For example,

take mobile telephony. Market analysts such as Informa Telecoms & Media 5 predicted

in 2005 that the number of mobile hand-sets deployed world-wide would reach 1 bil-

lion early in 2007 which corresponds to roughly twenty percent of the population on

Earth! Moreover, this target was reached in just fifteen years and the market is far

from saturated. Growth is expected to continue by at least ten percent per year until

2012. These numbers are just staggering and it is obvious that such a market poten-

tial generates an enormous amount of pressure on the companies that build these kinds

of products. Production volumes are extremely high, profit margins are typically low

which implies that you have to reach the market with a new product before your com-

petitor, in order to be economically successful. This so-called “time-to-market” (TTM)

pressure is therefore the beast to beat.

Companies invest huge amounts of money and effort in order to reduce the pro-

duction time and cost-price of their products. This has created a secondary econ-

omy consisting of companies that deliver (half-) products and services to achieve those

goals. For example, Gartner 6 reports that the revenues for electronic design automa-

tion (EDA) will experience double-digit growth in 2006, reaching 4.5 billion US Dollar.

But do all these investments lead to good products? Unfortunately not. It seems that

the well-known adage “Price, Time, Quality - Pick Any Two for Success” is still a fact

of life, as is shown in Figure 1.1.

After the famous CHAOS report from the Standish Group 7 appeared in 1994, there

have been numerous published examples of projects failing or products malfunctioning.

Despite efforts to improve the quality of computerized systems, it remains difficult

to make error-free systems. Most surprisingly, end-users seem to have accepted that

as a given fact. People are used to reboot their computer if a problem occurs. If it

does not work, you just download the latest software from the web-site. Updates and

upgrades have become part of the business model of the product. Even more so, only

limited warranties 8 are provided and companies typically do not accept any liability

from the use of their products. Would you buy a car if you would have to sign such

a legal document? Open source software comes with a so-called “as-is” disclaimer,

without warranty of any kind. The GNU General Public License 9 actually contains the

following sentence: “The entire risk as to the quality and performance of the program

is with you.”. Yet, open source software is often believed to be of higher quality than

most commercial software, because it is exposed to public scrutiny.

3See http://en.wikipedia.org/wiki/Ubiquitous computing
4See http://www.research.philips.com/
5See http://www.informatm.com
6See http://www.gartner.com, Doc. Id. G00143619
7See http://www.standishgroup.com/sample research/chaos 1994 1.php
8See for example the End-User Licence Agreement athttp://www.microsoft.com.
9See http://gplv3.fsf.org.

10

http://en.wikipedia.org/wiki/Ubiquitous_computing
http://www.research.philips.com/
http://www.informatm.com
http://www.gartner.com
http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://www.microsoft.com

Figure 1.1: Decision making at large: how to find the optimum?

Quality is a major issue in embedded systems development, mainly because of the

production volumes involved. Intel Corporation was forced to recall a substantial num-

ber of their early Pentium processors in 1994 because a problem was found in the float-

ing point unit after the product release. Harrison reported at the 2005 ForTIA Industry

Day [72] that Intel wrote off 475 million Dollar because of the Pentium FDIV bug and

suffered considerable damage to their reputation. But even in a low-volume market

things can go spectacularly wrong with great consequences. On June 4, 1996, the inau-

gural flight of the Ariane-5 rocket failed. About 40 seconds after initiation of the flight

sequence, at an altitude of about 3700 m, the launcher veered off its flight path, broke

up and exploded. The Cluster mission, consisting of four identical scientific satellites,

was lost during this event. Conservative estimates suggest that this accident costed the

European tax payer in the order of 300 million Euro. The Inertial Reference System

(abbreviated in French: SRI), which is used to determine the attitude of the launcher,

shut down mid flight because an exception occurred in the software calculating the cur-

rent flight path. Virtually the same system had been used to launch Ariane-4 rockets

successfully for many years, but it was used outside its original specification in this

particular case. The investigation showed that the system was never tested under flight

conditions despite suggestions from the responsible engineers. In fact, the Ariane-5

Accident Report [71] states: “... it was jointly agreed not to include the Ariane-5 tra-

jectory data in the SRI requirements and specification.”. However, the report does not

state why this decision was made. It is commonly believed that the time-to-market

pressure, to have this new generation launcher operational as soon as possible, may

have contributed to this decision, taking into account the excellent track-record of a

similar system on Ariane-4. Johnson reports on similar problems at NASA in [59].

The “Faster, Better, Cheaper” initiative, which was announced in 1998, fostered a cul-

ture in which engineers took considerable risks to innovate with new design in order to

meet requirements. In hindsight, time-to-market is one of the contributing factors [10]

to the loss of the Mars Polar Lander mission in 1999.

11

1.1 The embedded systems design challenge

One might argue that the examples mentioned above are somewhat dated and do not re-

flect the current state of practice. But in fact, Johnson has demonstrated in [60] that the

average likelihood of projects succeeding has only marginally improved over the last

decade, despite substantial investments in tools and processes. It is generally believed

that the performance in the embedded systems domain is rather worse than better. Why

is this the case? Looking at general trends there are a few potential reasons.

The design gap problem. According to Moore’s Law [74], the performance of hard-

ware is roughly doubled every eighteen months. But recent advances in networking,

packaging and integration technology has enabled the development of heterogeneous

embedded computing platforms that show a potential exponential growth in perfor-

mance and thus complexity [58]. These platforms are commonly referred to as System-

On-Chip or Network-On-Chip and usually combine multiple and interconnected radio-

frequency, analog and digital components on a single chip. However, the technology

we use to design the applications for these new platforms cannot keep up with this

tremendous growth in capabilities, primarily because they are currently focused on de-

signing single, monolithic systems. In other words, the complexity of the problem

grows much faster than the capabilities of today’s leading design tools. This is com-

monly referred to as the “design gap”.

The moving target problem. Rapidly evolving technology and the constant quest for

reducing cost-price forces designers of embedded systems to operate on the edge of

what is technically feasible. In order to stay competitive they sometimes need to adopt

novel technology even while a product is already under development. One of the key

problems in embedded systems design is the validation of these design decisions. How

much effort and time does it take to check that the intent of a design choice works out

in practice? Over-dimensioning is the usual approach to accommodate for uncertainty

in the design but this is typically not economically viable because it increases the cost

price. Sometimes actual prototypes need to be built in order to assess the feasibility of

some potential solution. Managing this process is regarded as the key to success and it

is often referred to as “shooting at a moving target”.

The requirement versus design paradox. Making design decisions in the early phases

of the system life-cycle is notoriously difficult. In this stage, requirements are often un-

clear and under-specified, at best leading to a long list of properties that the system shall

eventually satisfy. In the past, emphasis has been put on managing the requirements

process, such that sufficient information is available at the time the design decisions

are made. However this is often not realistic, in particular in the domain of embedded

systems. At the time when requirements are elaborated, the major architectural design

decisions also need to be taken, primarily in order to meet the time-to-market target

for the product. But how can one make these crucial decisions when there is still so

much uncertainty? This is in particular true for performance criteria that the system

must meet because they are in general surprisingly hard to quantify and evaluate. It is

obvious that elaboration of the requirements is guided by the chosen architecture but in

turn the definition of the architecture depends on clear and unambiguous requirements.

System architects have to deal with this paradox, for example by applying iterative de-

velopment processes in order to close the design loop.

12

Multi-disciplinary design. Systems are traditionally designed in a mono-disciplinary

style usually with an organizational structure to reflect this (e.g. mechanical depart-

ment, electronics department, software department and so on). While in the past

systems where developed out-of-phase (mechanical design precedes electrical design

which in turn precedes software design) nowadays concurrent engineering is applied

in order to save development time. However, system-level requirements that cannot

be assigned to a single discipline, such as performance, typically cause great prob-

lems during the integration phase because the responsibility to meet the requirement

is shared among all disciplines. The root cause of this problem is the lack of cross-

discipline design interaction. This problem cannot be solved by improving the internal

organization; the way (embedded) software is currently being developed is fundamen-

tally different from, for example, mechanical and electrical design. These engineers

basically speak a different language, are concerned about different types of problems

and use different techniques to address and solve these problems. This challenge is

dominant in the embedded systems domain because the computer and the device it

controls both loose their function if they were to be separated. Hence, they cannot be

designed in isolation which makes the cross-discipline communication mandatory.

1.2 The BODERC research project

The issues listed in the previous section played an important role in defining the objec-

tives for a new research project at the Embedded Systems Institute (ESI) in the summer

of 2002. The central idea was to explore model-based engineering as a methodology

for the design and analysis of high-tech systems. It was believed that: “the product

creation time can be reduced significantly by the use of multi-disciplinary models dur-

ing the early product development phases” [47]. The project should therefore bring

researchers from different engineering disciplines and industrial practitioners together

in an “Industry as a Laboratory” setting [82]. Océ Technologies 10, a leading manufac-

turer of high-volume document printing systems, became the so-called carrying indus-

trial partner or “problem statement owner” in the project. Océ and ESI spearheaded

a consortium consisting of the companies Imtech and Chess and researchers from the

Technical University of Eindhoven, Radboud University Nijmegen and the University

of Twente. The project was partially financially supported by the Netherlands Ministry

of Economic Affairs under the Senter TS program.

The difficulty of multi-disciplinary research was already demonstrated during the

definition phase of the project. The participants were unable to reach an agreement

on the definition of the term “model”. Each discipline seemed to have its own defi-

nition that was incompatible with what others used. The debate continued until one

of the participants observed that Bo Derek, the famous movie actress, is also a model

and this point was of course conceded quickly. It actually inspired the name of the

project: BODERC, which is an acronym that stands for “Beyond the Ordinary: Design

of Embedded Real-time Control”. The project was started in September 2002 and was

completed in March 2007.

High-tech mechatronic systems, such as high-volume printers, are complex and so

is the associated design process. Many implementation choices need to be made and the

impact of each decision is difficult to assess due to this inherent complexity. This makes

the design process error prone and vulnerable to failure as other downstream design

10See http://www.oce.com.

13

http://www.oce.com

choices may be based on it, causing a cascade of potential problems. Moreover, it may

take some time to realize that a decision is wrong because it will require feedback in

the design process. Usually this happens at system integration and testing or product

manufacturing. The repairs required to fix these problems cause significant project

delays and cost overruns or sometimes even worse: product cancelation. Three reasons

are identified in the BODERC project that seem to be the root cause of this problem

and they are listed here for convenience:

1. Reasoning about system-level properties is difficult because a common language

is lacking. Each engineering discipline uses its own method, vocabulary and

style of reporting. This incompatibility causes confusion often leading to mis-

understandings and wrong assumptions being made on the sub-designs of other

disciplines. These inconsistencies are hard to spot because there is usually no

structured system design reasoning process in place.

2. Many design choices are made implicitly, usually based on previous experience,

intuition or even assumptions. System-level reasoning is made difficult if the

rationale behind such a decision is not quantified. The reasons are sometimes

kept hidden on purpose, for example if strong personal preference or politics

plays a role. This may perhaps lead to a local optimum in the system design

but only rarely to a global optimum. It is therefore necessary to make design

knowledge explicit in order to enable the dialogue at the system level.

3. Dynamic or time dependent aspects of a system are complex to grasp and more

over, there are not many methods and tools available to support reasoning about

time varying aspects in design, in contrast to static or steady-state aspects.

The effects of the above mentioned points are amplified by the complexity of the

product under development (a high-volume printer typically consists of tens of thou-

sands of components and millions lines of code) and the complexity of the design

process (number of people involved, organizational structure, out-of-phase or multi-

site development, etcetera). The hypothesis of the project is that light-weight models

that capture the system-level behavior and a reasoning method that indicates how and

when to use them will release the aforementioned tension considerably. A good system

engineering methodology shall expose implicit or hidden design choices and replace

the usual “hand-waving” by design rationale which is based on objective, quantified

and verifiable information.

The goal of the BODERC project is graphically presented in Figure 1.2. The aim is

to develop a model-based methodology that supports multi-disciplinary design (space

exploration) by predicting system performance. The developed models, methods and

techniques shall be applicable in the early design phases and must satisfy industrial

application constraints. Hence, the methodology shall be usable in an industrial context

with its particular people, organization and constraints such as product and process

legacy, time, effort and money.

1.3 The goal of this thesis

The aim of this thesis is to define a method that supports the multi-disciplinary design

of embedded systems. This is obviously a broad field, therefore we focus on the scope

set by the BODERC project definition: the design of distributed real-time control

systems. Furthermore, a number of challenging sub-goals were defined:

14

Figure 1.2: The BODERC research project goal from [47]

1. The method shall be able to address design problems at the system level; these

are so-called cross-cutting concerns that usually affect more than one engineer-

ing discipline such as performance and dependability.

2. The method shall be able to predict whether or not both the functional and extra-

functional properties are satisfied by the proposed system architecture.

3. The method shall provide means of abstraction that are appropriate for modeling

the problem at hand; this may require support for different levels of abstraction

for different parts of the problem but from within a single framework.

4. The method shall be cost effective; the amount of effort invested in modeling

should be balanced with the insight gained from the analysis.

5. The method shall be easy to adopt for the average engineer currently working in

the field at acceptable initial investment.

The overall aim is to be able to address industrial size problems, whereby the “grand

challenge” is modeling and analysis of the paper path of a high-volume printer. The

goal of this thesis is to investigate whether or not a method exists, or can be defined,

that satisfies the requirements listed above, whereby its overall effectiveness is studied

and demonstrated on this industrial case study.

1.4 Organization of this thesis

The first part of this thesis looks at several state-of-the-art performance evaluation

methods and tools. The aim of the exercise is to understand the capabilities and lim-

its of those methods by applying them on the same case study. Modular Performance

Analysis (MPA), Symbolic Timing Analysis for Systems (SymTA/S), Parallel Object-

Oriented Specification Language (POOSL), Timed Automata and the Vienna Develop-

ment Method (VDM) are used to model and analyze an in-car radio navigation system.

The result of this comparison is presented in Chapter 2 and it is based on the following

publications:

15

[105] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef and Paul Lieverse. System

Architecture Evaluation using Modular Performance Analysis - A Case Study.

Appeared in International Journal of Software Tools for Technology Transfer

(STTT), Volume 8, No 6, pages 649-667. Springer, 2006. This is an extended

version of the research paper that was published at the First International Sym-

posium On Leveraging Applications of Formal Methods - ISOLA 2004.

[51] Martijn Hendriks and Marcel Verhoef. Timed Automata Based Analysis of Em-

bedded Systems Architectures. Appeared in the proceedings of 20 th International

Parallel and Distributed Processing Symposium IPDPS 2006, Workshop on Par-

allel and Distributed Real-Time Systems - WPDRTS. IEEE, 2006.

[34] Oana Florescu, Jeroen Voeten, Marcel Verhoef and Henk Corporaal. Reusing

Real-Time Systems Design Experience Through Modelling Patterns. Chapter in

Advances in Design and Specification Languages for Embedded Systems. Se-

lected papers FDL 2006 (best paper award). pages 329-348. Springer, 2007.

The second part of this thesis addresses the concerns identified during the com-

parison. Method improvements are proposed and implemented. Small case studies

are used to check the upgraded tool support. Timed VDM++ is extended with asyn-

chronous operations and an explicit notion of system architecture in Chapter 3. The

semantics of these language extensions are defined and the implemented tool support

is again applied to the in-car radio navigation case study. The improved VDM++ no-

tation is coupled to 20-SIM, a dynamic systems modeling and simulation environment

in Chapter 4. The semantics of both methods is reconciled and the integrated tools are

applied to a case study: a water tank level controller. The results presented are based

on the following publications:

[101] Marcel Verhoef, Peter Gorm Larsen and Jozef Hooman. Modeling and Vali-

dating Distributed Embedded Real-Time Systems with VDM++. Appeared in

the proceedings of FM 2006: Formal Methods. LNCS 4085, pages 147-162.

Springer, 2006.

[102] Marcel Verhoef, Peter Visser, Jozef Hooman and Jan Broenink. Co-simulation

of Real-Time Embedded Control Systems. Appeared in the proceedings of Inte-

grated Formal Methods. LNCS 4591, pages 639-658. Springer, 2007.

[56] Jozef Hooman and Marcel Verhoef. Formal Semantics of a VDM Extension for

Distributed Embedded Systems. Paper included in festschrift to honor profes-

sor Willem-Paul de Roever. In Correctness, Concurrency and Compositionality.

LNCS Festschrift Series, Springer, 2008 (to appear).

The third part of this thesis puts these results back into the industrial context. Both

the embedding of the methods and tools in an industrial design process is considered in

Chapter 5 and their application to the “grand challenge” of this thesis in Chapter 6 : the

printer paper path. And, last but not least, the result of this research work is discussed

and evaluated in Chapter 7. This work is based on the following publications:

[88] Heico Sandee, Maurice Heemels, Gerrit Muller, Peter van den Bosch, Marcel

Verhoef. Threads of Reasoning: A Case Study in Printer Control. Appeared in

the proceedings of the 16th Annual International INCOSE Symposium. Interna-

tional Council on Systems Engineering, 2006.

16

[32] John Fitzgerald, Peter Gorm Larsen, Simon Tjell, Marcel Verhoef. Validation

Support for Distributed Real-Time Embedded Systems in VDM++. Appeared in

the proceedings of the 10th IEEE High Assurance Systems Engineering Sympo-

sium, pages 331-340. IEEE, 2007.

[4] Zoe Andrews, John Fitzgerald, Marcel Verhoef. Resilience Modeling Through

Discrete Event and Continuous Time Co-simulation. Extended abstract appeared

in the proceedings of the 37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks. IEEE, 2007.

Other publications

Several related published works are not included in this thesis:

[96] Peter van den Bosch, Gerrit Muller, Marcel Verhoef and Oana Florescu. Mod-

eling of Hardware Software Performance in High-Tech Systems. Appeared in

the proceedings of the 17th Annual International INCOSE Symposium. Interna-

tional Council on Systems Engineering, 2007.

[100] Marcel Verhoef and Peter Gorm Larsen. Interpreting Distributed System Archi-

tectures Using VDM++. Appeared in the proceedings of the 5 th Conference on

System Engineering Research. Stevens Institute of Technology, 2007.

[30] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat and Marcel Ver-

hoef. Validated Designs for Object-Oriented Systems. ISBN 1-85233-881-4.

Springer, 2005, 402 pages.

[99] Marcel Verhoef and Jozef Hooman. Evaluating Embedded Systems Architec-

tures. Summary of Chapter 2 from this thesis which appeared in the BODERC

final report [47]. Pages 151-160. ESI, 2006.

[95] Peter van den Bosch, Oana Florescu, Marcel Verhoef and Gerrit Muller. Model-

ing of performance. Chapter in the BODERC final report [47]. Pages 101-114.

ESI, 2006.

[72] Tiziana Margaria, Bernhard Schätz, Marcel Verhoef. Formal Methods Going

Mainstream: Costs, Benefits, Experiences. Report on the ForTIA Industry Day

at FM 2005. Appeared in the BCS FACS Newsletter Issue 2006-2, pages 34-38.

British Computer Society, 2006.

[98] Marcel Verhoef. On the use of VDM++ for Specifying Real-time Systems. Ap-

peared in the proceedings of the First Overture Workshop at FM 2005, Technical

Report CS-TR-969, pages 26-43. Newcastle University, 2006.

17

18

Chapter 2

Evaluating Embedded System

Architectures

2.1 Introduction

An architectural description of a product is typically made during the initial phases of

an industrial product creation process. For example, an Operational Concept Descrip-

tion document from the IEEE 12.207 system life cycle standard may be produced. Such

a document does not only list functional and extra-functional requirements, boundary

conditions and other restrictions for the design, but it also contains high-level Use-

Cases. These Use-Cases, or scenarios, describe how the system is typically used and

they are the starting point for the design of the embedded system architecture. Al-

though there is no principle limit to the number of scenarios that can be analyzed, it is

not uncommon to first concentrate on those Use-Cases that have the highest expected

impact on the set of target system-level requirements. It is the system architect who

makes this selection, often based on previous experience. Quantitative performance

analysis can be used to guide the design process.

However, when a new system is being developed, there is typically little quantita-

tive data available to work with. Therefore, course grain assumptions are used initially.

Typically, these values are “guestimates” or extrapolated performance figures obtained

from systems developed previously. During the design and development phases, the

system architect will constantly try to improve the accuracy of the models by using

for example better estimation techniques on details of the design, such as worst-case

execution time analysis of existing or new source code, by benchmarking new critical

system components on the target hardware or by performing measurements on existing

and comparable systems. It is clear that performance analysis is an activity that needs

to be performed throughout the system life cycle, in particular because requirements

are likely to change over time.

In this chapter, we investigate several techniques that can be used to evaluate per-

formance properties of embedded system architectures such as latency, throughput and

resource utilization. We focus on these properties in particular, because they play a

significant role in the selection of a suitable embedded architecture. The challenge is

19

to decide, at design time:

• which of the proposed architectures is best suited, or,

• how to distribute functionality on a proposed embedded architecture, or,

• how to select suitable architecture parameters,

such that required performance targets and cost levels are met. This is often a trade-off

between competing or even adversary requirements. Performance analysis techniques

can be used to expose these design conflicts. This is demonstrated in this chapter by

applying five different techniques to a common case study. These techniques are: Mod-

ular Performance Analysis (MPA), Symbolic Timing Analysis for Systems (SymTA/S),

Timed Automata, the Parallel Object-Oriented Specification Language (POOSL) and

the Vienna Development Method (VDM++). The aim of the experiment is to better

understand the capabilities and limits of each method and to determine the value of the

predictions derived from each model. It is certainly not the intent to determine which

method is best. The experiment is too small and it has not been executed under con-

trolled circumstances. The comparison was performed during the ARTIST2 workshop

held at the Lorentz Center at Leiden University (November 2005) where experts on

the relevant techniques where challenged to attack a common set of problems 1. The

case study described in the next section, which was originally used for an early version

of [105], was put forward by the author of this thesis. The scope of the comparison

presented here is limited to those techniques that were represented at the workshop.

Some interesting observations can be drawn from the comparison because the five

techniques and their associated tools are very different. MPA is based on a determin-

istic queuing theory and uses Matlab as a front-end to compose and analyze abstract

performance models extremely efficiently. SymTA/S combines deterministic queuing

theory with classical scheduling theory to build abstract performance models using a

nice and intuitive user interface. MPA and SymTA/S both provide hard, but not nec-

essarily tight, results. Timed Automata is a general purpose modeling framework that

can be analyzed using the UPPAAL model checker, possibly leading to accurate re-

sults. POOSL and VDM++ belong to the class of formal modeling languages that can

be subjected to rigorous analysis techniques such as interactive theorem proving and

model checking. However, discrete event simulation is used to analyze the POOSL

and VDM++ models here. While MPA and SymTA/S abstract away from the actual

computation that is performed by the system, Timed Automata, POOSL and VDM++

allow to describe the system functionality in more detail.

The well-known Y-chart, as proposed by Kienhuis et al in [62] and shown in Fig-

ure 2.1, is used as a framework for our comparison. The central idea of the Y-chart,

which is not specific to any performance analysis technique in particular, is to build an

abstract model of the concrete system that bundles all information needed for perfor-

mance analysis. The following steps are taken to construct a Y-chart model:

1. identify key usage scenarios and system functions and quantify event rates, mes-

sage sizes and execution times;

2. identify resources and their communication structure and quantify resource and

communication capacities;

3. compose a system model, calculate (or simulate) and evaluate.

1The problem set can be found at http://www.tik.ee.ethz.ch/∼leiden05

20

http://www.tik.ee.ethz.ch/$sim $leiden05

The model resulting from steps 1 and 2 unifies essential information about the envi-

ronment, about the available computation and communication resources, about the ap-

plication tasks (or dedicated HW/SW components), as well as the system architecture

itself. First, the Y-chart is explained in more detail.

Figure 2.1: The Y-chart method for performance analysis

The application model (top-left in Figure 2.1) provides an abstract definition of

the software or application logic that needs to run on the system. Application specific

performance requirements are usually specified in this model. We will demonstrate

how annotated UML sequence diagrams can be used to represent application models.

The architecture model (top-right in Figure 2.1) defines on which hardware the

application(s) shall be deployed. It describes which computation resources (such as

microprocessors) are available and how they are interconnected using communication

resources (such as buses). The architecture model is typically composed from a li-

brary of well-defined standard resources (middle-right in Figure 2.1). These resource

models provide information about the properties of the generic computing and com-

munication resources that are available, such as processor speed and communication

bus bandwidth. This information is typically found in data sheets or benchmarks, or

can be obtained from measurements on existing systems. This library might also con-

tain black-box descriptions of highly specialized components that are used for some

dedicated task in the system, e.g. an encryption device.

The abstract system performance model is constructed by describing the deploy-

ment of the application model (the software) on the architecture model (the hardware,

indicated as the so-called “mapping” in Figure 2.1). Furthermore, architecture param-

eters, such as the type of scheduling or arbitration used on each resource, are specified

in this model. UML deployment diagrams or AADL models may be used to describe

the mapping, but in this chapter we use an intuitive informal approach for deployment.

21

The environment model (bottom-left in Figure 2.1) defines the interface between

the system and the surrounding environment. It describes for example how often sys-

tem functions will be called, how much data is provided as input to the system and so

on. Typically, end-to-end system-level requirements are specified in environment mod-

els. Environment models can, for example, be derived from measurements or traces.

The suitability of the proposed system architecture can be determined once the ab-

stract system performance model has been evaluated with a certain technique in step 3.

This is often difficult due to adversary requirements, such as for example cost price

versus performance. Typically, a set of near-optimal solutions exists which requires

heuristics for the “final” decision making. However, the process needs to be repeated

if one of the requirements is clearly not met. This usually requires changing the ap-

plication model (e.g. improve the algorithm to reduce processor load) or changing the

architecture model (e.g. select a faster processor or bus) or changing the mapping (e.g.

reallocate applications to different computation resources). This process is repeated

until all requirements are met. This evaluation approach is commonly referred to as

system-level performance optimization or, when higher levels of automation are in-

volved, design space exploration. Note that it is not just restricted to performance

requirements in the narrow sense used here. Other aspects that influence the choice of

architecture, such as power usage, may also be taken into account.

First, the application and architecture models are presented in Section 2.2.1 and

the environment model is defined in Section 2.2.2. Then, in sections 2.3.1 - 2.3.5, the

modeling techniques are introduced. And finally, the results and lessons learned from

the case study are discussed in Section 2.4.

2.2 The In-Car Radio Navigation system case study

The case study presented in this section is inspired by a system architecture defini-

tion study for a distributed in-car radio navigation system. Such a system typically

executes a number of concurrent applications that share a common platform. Never-

theless, each application has individual performance requirements that need to be met

by the platform. During the system definition phase, several candidate platform archi-

tectures might be proposed by the engineers and the system architect needs to evaluate

each one and decide which one to implement. First, the system sub-model is presented

in Section 2.2.1 and the environment sub-model is presented in Section 2.2.2.

2.2.1 Modeling the system

An overview of the system is presented in Figure 2.2. It is composed of three main

clusters of functionality:

• The man-machine interface (MMI) which takes care of all interaction with the

user, such as handling key inputs and graphical display output.

• The navigation functionality (NAV) which is responsible for destination entry,

route planning and turn-by-turn route guidance giving the driver both audible

and visual advices. The navigation functionality relies on the availability of a

map database, typically stored on a CD or DVD, and positioning information,

e.g. speed and GPS. The positioning sensors are not shown and considered here.

• The radio functionality (RAD) which is responsible for basic tuner and volume

control as well as handling of traffic information services such as RDS TMC

22

(Radio Data System / Traffic Message Channel). RDS TMC (or TMC for short)

is broadcast along with the audio signal of radio channels.

Figure 2.2: High-level overview of a distributed radio navigation system

Step 1 of the Y-chart approach - scenario inventory

In our case study, we have selected three distinctive Use-Cases or scenarios:

1. “Change Volume” – The user turns the rotary button and expects near instan-

taneous audible feedback from the system. Furthermore, the visual feedback

(the volume setting on the screen) should be timely and synchronized with the

audible feedback. This seemingly trivial Use-Case is actually quite complex

because many components are affected. Changing the volume might involve

commanding a digital signal processor (DSP) and an amplifier in such a way

that the quality of the audio signal is maintained while changing the volume.

For example, rapid volume changes need to be damped because it would other-

wise cause “clipping” which is disturbing to the user. This scenario is shown in

detail in Figure 2.3. Note that three operations are identified, VolumeKeyPress,

AdjustVolume and UpdateVolume. VolumeKeyPress takes care of the rotary but-

ton event handling. AdjustVolume interfaces with the DSP subsystem to actually

change the volume and finally UpdateVolume which changes the volume setting

on the display. Execution times and message sizes are estimated and annotated

in the Sequence Diagram together with the two principle timing requirements

applicable to this scenario. Priorities are defined in descending order (0 implies

highest priority).

2. “Address Look-up” – Destination entry is supported by a smart “typewriter” style

interface. By turning a knob the user can move from letter to letter; by pressing it

the user will select the currently highlighted letter. The map database is searched

for each letter that is selected and only those letters in the on-screen alphabet are

enabled that are potential next letters in the list. This scenario is shown in detail

in Figure 2.4. Note that the SearchAddress operation is expensive compared to

the other operations and that the size of the output value of the operation is 16

times larger than the input message.

3. “TMC Message Handling” – Digital traffic information is important for in-car ra-

dio navigation systems. It enables features such as automatic re-planning of the

23

Figure 2.3: Annotated Sequence Diagram for “Change Volume”

Figure 2.4: Annotated Sequence Diagram for “Address Look-up”

planned route in case a traffic jam occurs ahead. It is also increasingly important

to enhance road safety by warning the driver, for example when a ghost driver is

spotted just ahead on the planned route. TMC is such a digital traffic informa-

tion service. TMC messages are broadcast by radio stations together with stereo

audio sound. TMC messages are encoded: only problem location identifiers and

message types are transmitted. The map database is accessed to translate these

identifiers and to construct human readable text. The TMC message handling

scenario is shown in Figure 2.5.

24

Figure 2.5: Annotated Sequence Diagram for “TMC Message Handling”

Note that the Sequence Diagrams are all annotated in such a way that they are

useful for performance analysis. The order of magnitude of the numbers shown in the

diagrams is realistic. This completes the first step of the recipe described in Section 2.1.

Step 2 of the Y-chart approach - resource inventory

The scenarios have an interesting property: they can occur in parallel. TMC messages

must be processed while the user changes the volume or enters a destination. However

“Change Volume” and “Address Look-up” can not occur at the same time because

they share a common resource; the rotary button is used for both. The architecture

shown in Figure 2.2 suggests to assign the three clusters of functionality each to its

own processing unit, whereby the computation resources are interconnected by a single

communication bus.

Figure 2.6 shows that there are more potential architectures that might be appli-

cable. Note that the capacity of the resource units and communication infrastructure

is quantified, completing step 2 of the recipe described in Section 2.1. The order of

magnitude of the numbers shown in the diagram is correct; they are taken from the

data sheets of several commercially available automotive CPUs. Observe that archi-

tecture (b) can only be evaluated if we introduce an additional operation on the MMI
resource that transfers the data from one communication link to another, in the case

that NAV wants to communicate to RAD or vice versa. This is the case for the “TMC

Message Handling” scenario. The adapted Sequence Diagram for this special case is

shown in Figure 2.7.

2.2.2 Modeling the environment

In order to analyze the proposed embedded architecture, we also need to character-

ize the so-called workload that the environment imposes onto the system. In this case

study, we simply describe how often each application is invoked. We can abstract away

from the complexity of the environment by describing the stimuli as a (p, j, d, o)-tuple.

25

22 MIPS

11 MIPS113 MIPS

72 kbps

MMI

NAV RAD

(a)

22 MIPS

11 MIPS113 MIPS

72 kbps

MMI

NAV RAD

(b)

57 kbps

22 MIPS260 MIPS

72 kbpsNAV

RAD

130 MIPS113 MIPS

72 kbpsNAV RADMMI

MMI

(c) (d)

260 MIPS

RAD

MMI

NAV

(e)

Figure 2.6: Alternative system architectures to explore

Figure 2.7: Sequence Diagram for “TMC Message Handling” on architecture (b)

The p parameter describes the period of the stimulus, j describes the jitter, d the mini-

mal inter arrival time and o the offset for the start of the first period. The most common

stimuli arrival patterns can be described or approximated by this approach, including

for example burst and sporadic behavior. The relationship between the parameters is

graphically depicted in Figure 2.8. The (p, j, d, o)-tuple basically defines the time in-

26

terval in which a stimulus will occur. This model can be enriched with an additional

stochastic variable which defines the distribution of the event within that interval. Sim-

ilarly, the model can be extended to describe how much data is provided to the system

at each event. But these extensions are out of scope for this thesis.

Figure 2.8: Workload definition using the (p, j, d, o)-notation

2.2.3 The modeling and analysis challenge

The generic question that is investigated in this chapter is how to distribute functionality

over the available resources, such that all performance requirements are met. More

specifically, some typical design-time questions can be formulated:

• Design question 1. Does the proposed architecture meet the performance re-

quirements of all applications?

• Design question 2. How robust is the chosen architecture with respect to changes

in application or architecture parameters?

• Design question 3. Is it possible to replace components by cheaper, less power-

ful, equivalents to save cost while maintaining the required performance targets?

These questions will be addressed in sections 2.3.1 - 2.3.5 when the modeling tech-

niques are introduced. The initial values for environment model used in this case study

are shown in Table 2.1. The influence of the jitter, delay and offset parameters will be

considered later. Fixed priority scheduling is assumed on all resources.

Event name period p jitter j delay d offset o

KeyPressVolume (KPV) 31.25 0 0 0

KeyPressAddress (KPA) 1000 0 0 0

ReceiveTmc (RT) 3000 0 0 0

Table 2.1: Initial case study workload definitions (values in msec)

2.3 The performance modeling methods

The last step in the procedure proposed in Section 2.1 is to compose and analyze the

abstract system performance model using some technique, based on the data collected

in steps 1 and 2. We will demonstrate how this is done using Modular Performance

Analysis (MPA) in Section 2.3.1, Symbolic Timing Analysis for Systems (SymTA/S) in

Section 2.3.2, Timed Automata in Section 2.3.3, Parallel Object-Oriented Specification

27

Language (POOSL) in Section 2.3.4 and finally using the Vienna Development Method

in Section 2.3.5. Each technique is introduced shortly and a flavor of the created system

and environment models is given. The caveats of the modeling exercise are discussed

and the analysis results obtained from these methods are compared in Section 2.4 in

order to draw more general conclusions.

2.3.1 Modular Performance Analysis

Short overview of the technique

Modular Performance Analysis (MPA) was developed by Thiele et al at ETH Zürich

[18]. MPA is a compositional modeling technique based on a general event and re-

source model. A set of basic building blocks, called abstract components, is available

to build a queuing network that represents the system that we want to analyze. These

abstract components are used to describe the handling of incoming events under the,

possibly delayed, availability of resources. The events are described by a pair of inter-

val bound functions α, the so-called lower and upper arrival curves α l and αu. These

curves describe the respective bounds on the number of events that are to be handled

by the component for any given interval size. α is also called the event-based arrival

curve. Similarly, resources are described by a pair of interval bound functions β, the

so-called lower and upper service curves β l and βu. These curves describe the bounds

on the available resource capacity for any given interval size.

How do these interval bound functions relate to a real system? Consider a task

in the system that handles a stream of events (e.g. an interrupt handling routine). A

trace of this event stream can be described by a cumulative function R(t), which is de-

fined as the number of events seen on the event stream in the time interval [0, t〉. Each

event is processed by the task which is deployed on a resource. The availability of this

resource is described by a cumulative function C(t), which is defined as the total ca-

pacity available on the resource in the time interval [0, t〉. The events are emitted on the

output of the task after handling the event, resulting in an output event trace described

by R′(t). Similarly, the resource capacity that is left after the event is handled, is de-

scribed by C ′(t). If we assume that processing an event always takes a finite, non-zero

and positive amount of time then it is clear that R(t) �= R ′(t). Similarly, if we assume

that processing an event always consumes a finite, non-zero and positive amount of

resource capacity, we can claim that C(t) �= C ′(t). With these assumptions in mind,

we provide a definition for arrival and service curves.

Definition 2.3.1 Arrival Curves. Let R(t) denote the number of events that arrive on

an event stream in the time interval [0, t〉. Then, R, αu and αl are related to each other

by the following inequality:

αl(t − s) ≤ R(t) − R(s) ≤ αu(t − s), ∀s < t (2.1)

with αl(0) = αu(0) = 0.

Definition 2.3.2 Service Curves. Let C(t) denote the number of processing or com-

munication cycles available from a resource over the time interval [0, t〉. Then C, β u

and βl are related by the following inequality:

βl(t − s) ≤ C(t) − C(s) ≤ βu(t − s), ∀s < t (2.2)

with βl(0) = βu(0) = 0.

28

The relationship between a concrete task running on a real system and an abstract

component in MPA is visualized in Figure 2.9. While R and C describe a specific

behaviour of the system, α and β represent all possible behaviors of the system. This

is the key abstraction that is provided by this technique. However, R and C are defined

over t while α and β are defined over some time interval ∆. This implies that infor-

mation about absolute time is lost in this transformation. We do not know any more

when a certain situation occurs. As shown in Figure 2.9, each abstract component in

MPA takes a pair of arrival and service curves as its input but also produces a pair of

arrival curves and service curves. These output curves describe respectively the prop-

erties of the resulting event stream and the remaining resource capacity after the event

is handled. They can again be used as inputs to downstream components in the queuing

network.

0

2

4

6

8

t

0

2

4

6

8

t
0

2

4

6

8

t

0

2

4

6

8

t

C’(t)

C(t)

R’(t)R(t)

T

(a) a concrete task in a system

0

2

4

6

8

Δ

FP

0

2

4

6

8

Δ
0

2

4

6

8

Δ

0

2

4

6

8

Δ

β'(Δ)

β(Δ)

α'(Δ)α(Δ)

FP

(b) an abstract component in MPA for fixed priority scheduling

Figure 2.9: Cumulative functions versus interval bound functions

29

The semantics of each abstract component is formally defined by a set of mathe-

matical functions that relate the input arrival and service curves to the output arrival

and service curves using Real-Time Calculus (RTC) [92]. This transformation has two

effects. First, since event processing takes time, the output arrival curves will exhibit

a time delay. Second, since event processing consumes resources, the output service

curves will exhibit a drop in resource availability. The amount of time delay and re-

source usage depends on the cost of handling a single event and the scheduling pol-

icy used, because the latter determines when resource capacity is available to process

the event. RTC provides formulas for several well-known scheduling policies, such

as fixed-priority preemptive (FP), generalized processor sharing (GPS), time division

multiple access (TDMA) and earliest deadline first (EDF).

Abstract components in MPA can be used to describe both computation as well as

communication resources. As said earlier, in order to calculate the delay per event, we

need to specify how expensive handling such an event is. This is achieved by introduc-

ing a cost function c that transforms event-based arrival curves α into a resource-based

arrival curves α, i.e. α(∆) = c ◦ α(∆). The pair of resource-based arrival curves α l

and αu describe the bounds on the generated resource demand for any given interval

size. In the most basic scenario, which is applicable to our case study, every arriving

event generates the same resource demand, i.e. the worst-case execution demand equals

the best-case execution demand. Resource based arrival curves can then be obtained by

multiplying the event based arrival curves with a constant that represents the resource

demand of a single event. Here, we use the number of instructions as specified in the

annotated UML sequence diagrams as presented in Section 2.2 for computation and

the message sizes for communication resources.

The service curves of a resource can be determined using data sheets, using ana-

lytically derived properties, or by measurement. For example, in the simplest case of

an unloaded processor, whose capacity we measure in available processing cycles per

time unit as shown in Figure 2.6, both the upper and the lower resource curves are equal

and are represented by straight lines βu(∆) = βl(∆) = f ·∆, where f equals the pro-

cessor speed, i.e. the number of available processing cycles per time unit. With service

curves, we may also model communication resources. In the case of an unloaded bus,

f equals the available bandwidth. The service curves then represent the minimum and

maximum number of transmittable bits, for any given time interval.

An open source implementation of MPA in Java for Matlab/Simulink is available

from http://www.mpa.ethz.ch. A detailed treatment of MPA and this case study is pro-

vided in [105].

Modeling the case study

How can systems be modeled using Modular Performance Analysis? Suppose we want

to model Architecture (a) of the case study described in Figure 2.6. We start by declar-

ing four resource components. Resource components are abstract components that only

produce a pair of service curves that describe the unloaded resource, as proposed in the

previous section. We need three resource components for the processors in Architec-

ture (a) and one for the bus that connects the processors. The resource components

will form the columns in our queuing network, as shown in Figure 2.10. Resources

flow vertically through this model, while events flow horizontally. The rows are used

to describe the applications that are deployed on those resources.

Consider the “Change Volume” scenario as presented in Figure 2.3. Each task in-

vocation and each message exchange is represented by an abstract component in the

30

Figure 2.10: Example MPA queuing network for Architecture (a)

queuing network. The task VolumeKeyPress is represented by abstract component 1,

AdjustVolume by component 3 and UpdateVolume by component 5. Note that compo-

nent 5 uses the remaining resources of component 1, which implies that 1 has a higher

priority than 5. This conforms to our case study, where we use fixed priority preemp-

tive scheduling on all resources. A similar situation applies to components 2 and 4

which represents the message handling on the bus, whereby the call to AdjustVolume

has priority over the result coming back from the call.

We can study the effect of multiple, concurrent, applications executing on the same

architecture by adding another set of rows. In Figure 2.10, we have also added the

“TMC Message Handling” scenario to the queuing network. Component 6 represents

the HandleTmc task from Figure 2.5, component 8 corresponds to SearchTmc and com-

ponent 10 represents UpdateTmc. In the vertical direction, the resource flows are ter-

minated by resource sinks. Resource sinks simply take a pair of service curves as their

input. These service curves describe the end-to-end behavior of the resource in terms

of remaining capacity. In the horizontal direction, the event flows are started by a load

scenario and they are terminated by an event sink. The event sinks simply take a pair

of arrival curves as their input. Similarly, these arrival curves describe the end-to-end

behavior of the application in terms of timing. Note that both resource usage as well as

timing information can be obtained from the same model.

Load scenarios are abstract components that only provide a set of arrival curves.

These arrival curves are used to define the workload of the system, based on the

31

(p, j, d, o)-tuple as presented in Section 2.2, with two exceptions. First, note that the

offset parameter o from the (p, j, d, o)-tuple is not meaningful in the time interval do-

main since that parameter does not affect the event inter arrival time. Second, sporadic

input events only have a lower bound on the period, which can be specified using only

the delay parameter d, in order to specify the minimal inter arrival time. The resulting

arrival curve pair has a strict periodic event stream with period d as its upper bound

and y = 0 as its lower bound because the arrival of the first event may take forever. In

particular this lower bound causes pessimistic results in real-time calculus as will be

shown later. Recall that ∆ represents an arbitrarily sized time interval. The relationship

between the (p, j, d)-triple and arrival curves for p > 0 is then defined by:

Definition 2.3.3 load scenario

αl(∆) =

⌊

∆ − j

p

⌋

(2.3)

αu(∆) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
{⌈

∆+j
p

⌉

,
⌈

∆

d

⌉

}

if d > 0

⌈

∆+j
p

⌉

if d = 0

(2.4)

whereby ∆ ≥ 0 and j ≥ 0.

In Figure 2.11, the relation between these parameters and the corresponding arrival

curves is graphically depicted. Note that in this particular example the jitter is much

greater than the period which is typical for a so-called event streams with bursts. This

also explains the steep ascend at the beginning of the upper arrival curve.

2

4

6

8

10

#
 e

v
e

n
ts

αu

αl

p

j

d

p

pj

Figure 2.11: The relationship between the (p, j, d)-triple and arrival curves

Figure 2.12 shows some typical examples of arrival curves. The arrival curves

in Figure 2.12 (a) model a strictly periodic event stream, while the arrival curves in

Figure 2.12 (b) model a periodic event stream with jitter, and the arrival curves in

Figure 2.12 (c) model a periodic event stream with bursts. The arrival curves in Fig-

ure 2.12 (d) model an event stream with more complex timing behavior. This event

stream may have short steep bursts, longer lasting less steep bursts, and the maximum

long-term period does not equal the minimum long-term period. An event stream with

such complex behavior can not be represented accurately using the (p, j, d, o)-tuple.

32

0 10 20 30
0

2

4

6

8

10

Δ

#
 e

v
e

n
ts

αu

αl

0 10 20 30
0

2

4

6

8

10

Δ

#
 e

v
e

n
ts

αu

αl

0 10 20 30
0

2

4

6

8

10

Δ

#
 e

v
e

n
ts

αu

αl

0 10 20 30
0

2

4

6

8

10

Δ
#

 e
v

e
n

ts

αu

αl

(a)

(d)(c)

(b)

Figure 2.12: Examples of typical arrival curves

Analysis of the model - theory

The abstract system performance models, as described in the previous section, can

be analyzed using Real-Time Calculus to complete step 3 from the recipe presented in

Section 2.1. Real-Time Calculus belongs to the class of so-called deterministic queuing

theories. These models can be solved analytically, without simulation. Analysis of

the queuing network provides us with bounds on the propagation delay and resource

usage for each component individually as well as end-to-end. In addition, the so-called

backlog, the number of outstanding events which corresponds to maximum queue size

needed, can be determined for each component.

Real-Time Calculus extends the concepts of the well-known Network Calculus [69]

to the domain of real-time systems. It unifies the notions of computation and commu-

nication and provides powerful semantic models for abstract components to describe

specific scheduling policies. Furthermore, modular performance analysis also allows

hierarchical modeling, whereby abstract components can be decomposed into lower-

level queuing networks. This feature is not demonstrated in this case study.

Network Calculus is based on min-max calculus. Min-max calculus is the combi-

nation of the min-plus and max-plus calculi. Min-plus calculus and max-plus calculus

both define a special algebra (the min-plus dioid and max-plus dioid, respectively). An

excellent introduction to these calculi is provided in [5], we present a short overview

here. Traditionally, we are used to work with the algebraic structure (R, +,×), i.e. with

the set of reals endowed with the operations of addition and multiplication, that possess

a number of properties such as associativity, commutativity, distributivity, etcetera.

In contrast, min-plus calculus works with an algebraic structure (R ∪ ∞,∨, +).
Here, the operation of addition becomes the computation of the infimum (or the mini-

mum), and the operation of multiplication becomes the addition. Most axioms known

from conventional algebra still apply to this algebraic structure. In max-plus calculus,

the infimum and minimum are replaced by supremum and maximum. In Real-Time

33

Calculus, we often need to compute convolutions and de-convolutions defined in min-

plus and max-plus calculus. These operations are defined as follows [69]:

Definition 2.3.4 min-max convolution and de-convolution

The min-plus convolution ⊗ and the min-plus de-convolution ⊘ of two functions f and

g are defined as:

(f ⊗ g)(∆) = inf
0≤λ≤∆

{f(∆ − λ) + g(λ)} (2.5)

(f ⊘ g)(∆) = sup
λ≥0

{f(∆ + λ) − g(λ)} (2.6)

The max-plus convolution⊗ and the max-plus de-convolution⊘ of two functions f and

g are defined as:

(f ⊗ g)(∆) = sup
0≤λ≤∆

{f(∆ − λ) + g(λ)} (2.7)

(f ⊘ g)(∆) = inf
λ≥0

{f(∆ + λ) − g(λ)} (2.8)

Recall that abstract components are specified by a set of functions, that relate the

input arrival and service curves to the output arrival and service curves, more formally:

α′ = fα(α, β) (2.9)

β′ = fβ(α, β) (2.10)

The relations fα and fβ depend on the processing semantics of the component, and

must be determined such that α′(∆) correctly models the event stream with event trace

R′(t) and that β′(∆) correctly models the resource availability C ′(t). Consider a fully

preemptive task that is triggered by an incoming event stream. This task is started at

every event arrival to process the incoming event, and active tasks are processed in a

greedy fashion in FIFO order, while being restricted by the availability of resources.

Such a component can be modeled as an abstract component with following internal

relations:

α
′u
FP = min {(αu ⊗ βu) ⊘ βl, βu} (2.11)

α
′l
FP = min {(αl ⊘ βu) ⊗ βl, βl} (2.12)

β
′u
FP = (βu − αl) ⊘ 0 (2.13)

β
′l
FP = (βl − αu) ⊗ 0 (2.14)

Components with these processing semantics are common in the area of real-time

embedded systems, and we will refer to them as fixed priority (FP) components. To

model a component with different processing semantics, one has to determine the ap-

propriate internal relations fα and fβ . The min-max algebra ensures that hard bounds

are always calculated, since it computes convolutions and de-convolutions over interval

bound functions that describe the minima and maxima for any time interval ∆. This

is why MPA is suitable to analyze real-time systems, because guarantees can be given

about the worst-case.

34

When an event stream with arrival curves α is processed by an FP component on a

resource with service curve β, the maximum delay dmax experienced by any event on

the event stream is bounded by [69, 18]:

dmax ≤ sup
λ≥0

{

inf {τ ≥ 0 : αu(λ) ≤ βl(λ + τ)}
}

def
= Del (αu, βl) (2.15)

When an event stream is processed by a sequence of several components, we could

simply add the different maximum delays of each individual component together, to

obtain an end-to-end delay guarantee. However, in this case we can exploit the phe-

nomenon known as “Pay Bursts Only Once” [69], and the end-to-end delay guarantee

can be tightened to [69]:

dmax ≤ Del (αu, βl
1 ⊗ βl

2 ⊗ . . . ⊗ βl
n) (2.16)

Similarly, the maximum buffer space bmax that is required to buffer an event stream

with arrival curve α in the input queue of an FP component on a resource with service

curve β is bounded by [69]:

bmax ≤ sup
λ≥0

{αu(λ) − βl(λ)}
def
= Buf (αu, βl) (2.17)

When the buffers of several consecutive components use the same shared memory, the

total required buffer space can even be tightened to:

bmax ≤ Buf (αu, βl
1 ⊗ βl

2 ⊗ . . . ⊗ βl
n) (2.18)

In Figure 2.13, the relations between α, β, dmax and bmax are depicted graphically.

From this figure, we see that dmax and bmax are bounded by the maximum horizontal

and maximum vertical distance between the upper arrival curve and the lower service

curve respectively. This corresponds to the intuition, that dmax and bmax occur when

the maximum load arrives at the same time when the minimum resources are available.

∆

β

αu

l

delay dmax

backlog bmax

service curve

arrival curve

Figure 2.13: Delay and backlog obtained from arrival and service curves

35

Analysis of the model - practice

Three design challenges where posed in Section 2.2.3 and they are discussed here.

Design question 1. We build the abstract system performance model for the “Change

Volume” and “TMC Message Handling” scenarios, as depicted in Figure 2.10, as well

as the performance model for the “Address Lookup” and “TMC Message Handling”

scenarios. For both models, we compute the upper bounds to the end-to-end delay

of every event stream, as described in the last section, and then we merge the results

obtained from the two analysis runs to obtain our overall result. For the TMC delay,

we take the bigger value of the two runs. This process is repeated for all proposed

architectures. From the results presented in Figure 2.14, we see that all architectures

fulfill the requirements (as mentioned in Figure 2.3, 2.4 and 2.5) on the different maxi-

mum end-to-end delays. Furthermore, the results suggest that architectures (d) and (e)

process the input data to the system particularly fast. This may be explained partly by

the reduced communication overhead in these architectures, but most probably, these

architectures are also over-dimensioned.

0

10

20

30

40

50

0

10

20

30

0

20

40

60

80

0

150

300

450

Vol K2V Delay [ms] Vol A2V Delay [ms]

TMC Delay [ms]Addr Delay [ms]

A EDCBA EDCB A EDCB

A EDCB A EDCB

Figure 2.14: Maximum end-to-end delays for each system architecture

Design question 2. To investigate the robustness of architecture (a), we first com-

pute its sensitivity towards changes in the input data rates. These sensitivity results

are shown in Figure 2.15. The height of the columns in this figure depict the increase

of end-to-end delays relative to the respective specified maximum end-to-end delays,

in dependence to increasing input data rates. For example, the tallest column in Fig-

ure 2.15 shows us that if we increase the data rate of the “Change Volume” scenario

slightly (e.g. by 4 %, to 33.3 events/s), the end-to-end delay of the TMC message

handling increases by 1.14 % of its specified maximum end-to-end delay (i.e. 1.14 %
of 1000 ms or 11.4 ms).

From the results shown in Figure 2.15, we see that architecture (a) is sensitive to-

wards increasing the input data rate of the “Change Volume” scenario, while increasing

the input data rate of the “Address Look-up” and the “TMC Message Handling” sce-

narios do not really affect the response times. And in fact, further analysis reveals that

in order to still guarantee all system requirements, we must not increase the input data

rate of the “Change Volume” scenario by more than 7 %, while we could increase the

input data rate of the other two scenarios by a factor of more than 20.

36

0

0.2

0.4

0.6

0.8

1

1.2

Change Vol.

Vol K2V

Vol A2V

Addr

TMC

[%]

Addr. Lookup Receive TMC

Figure 2.15: Sensitivity towards changes in the input data rates

After investigating the system sensitivity towards changes in the input data rates,

we investigate the system sensitivity towards changes in the resource capacities. These

sensitivity results are shown in Figure 2.16. The height of the columns in this figure

depicts the increase of end-to-end delays relative to the respective specified maximum

end-to-end delays, in dependence to decreasing resource capacities. For example, from

the tallest column in Figure 2.16 we know that if we decrease capacity of the MMI

processor by 1 % (e.g. to 21.78 MIPS), the end-to-end delay of the TMC message

handling increases by 3.22 % of its specified maximum end-to-end delay (i.e. 3.22 %
of 1000 ms or 32.2 ms).

0

0.5

1

1.5

2

2.5

3

3.5

NAV RADIO MMI BUS

Vol K2V

Vol A2V

Addr

TMC

[%]

Figure 2.16: Sensitivity towards changes in the resource capacities

From the results shown in Figure 2.16, we see that architecture (a) is most sensitive

towards the capacity of the MMI processor. This suggests that the MMI processor is

a potential bottleneck of architecture (a). To investigate this further, we compute the

37

end-to-end delay of the TMC message handling for different MMI processor capacities.

The results of these computations are shown in Figure 2.17.

0.9 1 1.1 1.2 1.3 1.4 1.5
0

200

400

600

800

Relative MMI Processor Speed

T
M

C
 D

e
la

y
 [

m
s
]

+20%

Figure 2.17: TMC delay versus MMI processor speed

From Figure 2.17, we see that indeed at its given operation point, the end-to-end

delay of the TMC message handling in architecture (a) is sensitive towards changes of

the MMI processor capacity. And the analysis reveals that with a decrease of the MMI

processor capacity to 89 % of its initial capacity, we cannot guarantee finite response

times anymore.

To sum up, the above analysis results suggest that increasing the capacity of the

MMI processor would make architecture (a) more robust. To support this statement,

we individually increase the capacity of each resource by 20 %, and we then analyze

how much we can increase the input data rate of the “Change Volume” scenario while

still fulfilling the requirements. Remember, with the initial resource capacities, we can

increase the data rate of the “Change Volume” scenario by 7 % and the data rate of

the other two scenarios by a factor of more than 20 while still guaranteeing all require-

ments. From this analysis, we learn that increasing the resource capacities of the RAD

processor, the NAV processor and the BUS does not allow to increase the input date

rate of the “Change Volume” scenario more than with the initial capacities, while in-

creasing the MMI processor capacity allows us to increase the data rate of the “Change

Volume” scenario by 60 %.

Design question 3. We compute the upper bound to the end-to-end delay of every event

stream in architecture (d) for different processor capacities. The results are shown in

Figure 2.18.

In the plots in Figure 2.18, the NAV processor capacity is varied in steps of 5 %
from 100 % down to 10 % of its initial capacity. At the same time, the MMI/RAD

processor capacity is varied in steps of 5 % from 100 % down to 20 % of its initial ca-

pacity. As we see from the plots, the delays of the “Change Volume” scenario are not

much affected by changes of the NAV processor capacity and the delay of the “Address

Look-up” scenario is not much affected by changes of the MMI/RAD processor capac-

ity. On the other hand, the delay of the “TMC Message Handling” scenario is affected

by the changes of both processor capacities. From the results, we learn that we could

38

0.2

0.4

0.6

0.8

1

0.2
0.4

0.6
0.8

1

0

100

200

300

400

500

Addr Delay [ms]

0.2

0.4

0.6

0.8

1

0.2
0.4

0.6
0.8

1

0

500

1000

1500

TMC Delay [ms]

0.2

0.4

0.6

0.8

1

0.2
0.4

0.6
0.8

1

0

10

20

30

40

50

Rel. MMI/RAD Proc. Speed Rel. N
AV Proc. S

peed

Vol K2V Delay [ms]

0.2

0.4

0.6

0.8

1

0.2
0.4

0.6
0.8

1

0

10

20

30

40

50

Vol A2V Delay [ms]

Figure 2.18: Delays versus processor speed in architecture (d)

decrease both the NAV processor capacity as well as the MMI/RAD processor capacity

down to 25 % of their initial capacity (i.e. 29 MIPS and 33 MIPS, respectively) while

still guaranteeing the fulfillment of all system requirements.

Observations on the experiment

MPA provides hard bounds to all analyzed properties, but these bounds are not nec-

essarily tight. The primary cause of this phenomenon is that information is lost when

we move from the time to the time interval domain. Consider for example two strictly

periodic event streams with the same period p. Now suppose these event streams are

related by a constant phase shift, for example, by an offset o = 0.5 p. The arrival

curves that describe these event streams are equal, despite the offset, since the dis-

tance between two consecutive events on each event stream is identical and does not

depend on the offset. When we merge these two event streams together into one, we

basically create a new strictly periodic event stream with period 0.5 p. However, if we

would combine the arrival curves in a similar way using min-max algebra, we would

get a more pessimistic result. Calculating the (de-)convolutions of these arrival curves

would create a new arrival curve that assumes that both events, in the worst case, would

arrive if ∆ ≈ 0 while the arrival curve of the composed event stream will reach that

same worst-case value for ∆ = 0.5 p.

Evaluation of an MPA network is fast (typically a few seconds at most) which sup-

ports the interactive nature of the design process. Without any attempts to optimization,

analyzing one system architecture in the design space took around 1 s on a Pentium

Mobile 1.6 GHz using Matlab 7. Computing the four mesh plots in Figure 2.18 took

for example around 5 min.

39

2.3.2 Symbolic Timing Analysis for Systems

Short overview of the technique

Symbolic Timing Analysis for Systems (SymTA/S) was developed by Ernst and Richter

et al at the University of Braunschweig [46]. Tool support is now further developed at

the SymtaVision company, a spin-off from the university. SymTA/S is a performance

and timing analysis tool based on formal scheduling analysis techniques and symbolic

simulation. It supports modeling of heterogeneous architectures, complex task depen-

dencies, context aware analysis and combines optimization algorithms with sensitivity

analysis for rapid design space exploration suitable for application in an industrial set-

ting. The input for the comparison was kindly provided by Richter, we did not have

access to the tool itself.

SymTA/S uses an approach whereby subsystems in the architecture are seen as en-

tities that interact, or communicate, through event streams. As shown before, event

streams can become arbitrarily complex and SymTA/S uses two techniques to tame

this complexity. Like Modular Performance Analysis, arrival curves are supported. In

addition, so-called event vector systems [42] can be used. Where MPA treats each

abstract component identically, SymTA/S uses system-level knowledge to improve the

accuracy of the analysis at the abstract component level by using this context infor-

mation. Event model interfaces (EMIFs) or event model adaptor functions (EAFs) are

used so that classical scheduling analysis techniques can be safely applied at the ab-

stract component level. It is claimed that this approach leads to both hard and tight

results [84].

The use of global context information becomes clear when the model is cyclic, in

other words when the output of some task causes new events to appear at the input

of an upstream task. Modular performance analysis can only deal with these kind of

problems if a fixed-point can be found [105]. SymTA/S iteratively propagates the pa-

rameterized event streams through the model automatically until 1) the event stream

parameters converge or 2) a task misses its deadline or 3) a specified maximum buffer

size is exceeded. This process always terminates because the timing uncertainty, which

is defined by the difference between the best- and worst-case event timing interval,

grows monotonically with each iteration. EAFs are inserted automatically if the it-

eration is stopped due to the latter two problems. This breaks the dependency cycle

by reducing the timing uncertainty. Similarly, SymTA/S can deal with complex task

interdependencies that are hard if not impossible to model in Modular Performance

Analysis. An overview of SymTA/S is provided in [84]. The tool is available, as a

commercial product, from http://www.symtavision.com.

Modeling the case study

The tool provides a convenient graphical user-interface to enter the model. A separate

model needs to be constructed for each architecture. Each model consists of a number

of resources on which tasks can be deployed. Tasks can be assigned and reassigned

to resources by drag-and-drop. Applications are modeled by linking the tasks together

into a so-called execution path. The environment is modeled by connecting event gen-

erators to the initial tasks. The properties of each entity in the model can be changed

interactively by means of pop-up menus, for example to modify the (p, j, d, o)-values

of the event generators. A screen dump of the case study being edited in SymTA/S is

shown in Figure 2.19.

40

Figure 2.19: SymTA/S analysis of Architecture (a)

Analysis of the model

The end-to-end performance of an application can be shown by looking at the out-

put event stream of the last task in an execution path, similar to event sinks in MPA.

Special diagrams can be presented to observe the global and per-application usage of

the resource. The path observer window conveniently displays all relevant execution

paths, their best-case and worst case execution times and whether or not the associated

requirements for each path was met, by color coding. Similarly, incompatible interface

connections or local requirements that are not met after analysis are made visible to

the user graphically, by changing the color of the entity in the diagram that caused the

error. With respect to the three design questions raised in Section 2.2.3, all three can

be answered with SymTA/S, but unfortunately only results for question 1 were made

available to us for this comparative study.

Observations on the experiment

Composing and evaluating a model is quick, typically in the order of a few seconds

to a minute. The tool computes the local optimum per resource using classical formal

scheduling analysis techniques like, for example, rate monotonic analysis [16]. This

technique corresponds to the fixed-priority preemptive scheduling we specified in the

case study. The values obtained for each resource are used to feed a symbolic simu-

lation step where system-level values are derived. Using optimization strategies, this

process is repeated automatically until some, user defined, property is reached as de-

scribed earlier. Like MPA, SymTA/S gives hard but not necessarily tight results, which

41

is primarily caused by the abstractions introduced in the model.

2.3.3 Timed Automata

Short overview of the technique

The timed automata modeling language [2, 7] is a general purpose framework used

to describe timed systems. The basic entity in the language is the so-called automa-

ton, which can be represented as a labeled transition system. An automaton consists

of locations and transitions. Locations represent the state of the component and the

transitions define the relationships between these states. Time can be modeled by in-

troducing clocks as state variables. Clocks are automatic and strictly monotone in-

creasing continuous variables, all with the same rate of change. Clock invariants can

be added to a location, to denote when this state is valid. The transitions define how

those locations can be reached starting from some initial location. Transitions can be

labeled with guards and actions. Guards can be used to specify for which clock or

state value(s) a transition is enabled. Actions can be used to modify the state, including

resetting clock variables. This technique is useful for our purpose mainly because of

the expressiveness offered.

The UPPAAL model checker [7] is used to analyze the timed automata model. The

tool was developed by Yi and Larsen et al at Uppsala and Aalborg Universities respec-

tively, with help from several other universities including the Radboud University [8].

It provides a graphical user-interface to compose and edit timed automata models. A

simulator is available to animate the specification. The model checker is invoked as

a batch process from the graphical user-interface. It performs a symbolic exhaustive

search over the dynamically generated state space in order to verify some user-defined

property. If the property does not hold, a counter example is automatically generated

which can be visualized and animated for further analysis. UPPAAL is available for

free download from http://www.uppaal.com.

Modeling the case study

The principal idea of the model is that system resources are either idle or performing

some task, i.e. executing a computation or transferring data. Resource activity is mod-

eled as a location in the timed automata. Transitions are defined from the idle (initial)

location to each of the activity locations and vice-versa. The outgoing transitions are

guarded by a counter which represents the number of outstanding requests for a par-

ticular activity. The counters are used to model the interaction between the different

resources and the environment. The transition is enabled when the counter is greater

than zero. When such a transition is taken, one is required to stay in the target location

for the amount of time that corresponds to the user-defined maximum execution time

of that task. This requirement can be relaxed if the best case execution time is also

known. Then the time required to stay at the location is at minimum the best case ex-

ecution time and at maximum the worst case execution time. The actual value taken is

determined by a non-deterministic choice from this interval. When the execution time

is reached, a transition back to the idle location is taken. Note that these models need

to be constructed for each architecture that we want to investigate, because the deploy-

ment of software tasks over hardware resources are strongly coupled in this approach.

The timed automata models are directly at the level of the abstract system performance

model of the Y-chart in Figure 2.1, since separate application and architecture mod-

42

els do not exist. Pre-emption of tasks can also be modeled and template automata are

available to describe the environment of the system. We will look at the different timed

automata models in more detail in the next sections, whereby we investigate architec-

ture (a) from Figure 2.6.

Modeling the computation resources

Figure 2.20 presents the basic automaton that models the behavior of the radio func-

tionality (RAD). From the two sequence diagrams (Figures 2.3 and 2.5), it can be

deduced that this functionality in fact consists of two operations, AdjustVolume and

HandleTmc respectively. Each operation is represented as a location in the automaton.

The automaton has a local clock x and two local constants, WCET HT and WCET AV.

These constants represent the execution time of the operation, which is calculated as

the worst-case execution time (expressed by the number of instructions to execute, as

specified in the applicable sequence diagram) divided by the capacity of the hardware

component on which it is deployed (which is expressed in million instructions per sec-

ond, as specified in Figure 2.6).

AdjustVolume
x <= D

HandleTmc
x <= D

idle

x == D
nacv!
vkp2av_rx--, av2uv_tx++

x == D
rt--,
ht2st_tx++

vkp2av_rx>0
hurry!
x = 0,
D = WCET_AV

rt > 0
hurry!
x = 0,
D = WCET_HT

Figure 2.20: The automaton RAD representing the radio sub-system

Note that both outgoing transitions from the idle location in Figure 2.20 offer the

hurry! event. This automaton communicates over a so-called urgent broadcast channel

called hurry. Events offered on urgent channels are immediately processed, it has

priority over all other actions in the model. It forces greedy automata behavior in our

case, transitions are taken as soon as they are enabled. This modeling trick ensures that

the model of the system will keep processing requests as soon as possible (whenever

the resource is available). Otherwise the RAD automaton could postpone the handling

of events indefinitely, since enabling a transition does not guarantee that it will be taken

immediately, which would lead to possibly infinite worst-case response times.

The global variables rt and vkp2av rx keep track of the number of pending calls to

HandleTmc and AdjustVolume respectively. The transition is enabled if the guard

evaluates to true, in other words if and only if the associated counter is greater than

zero. Thus, in Figure 2.5, if the RAD automaton is in location idle and the ReceiveTmc

event arrives, which is modeled by the increment of the rt variable, then the automaton

immediately takes the transition to the location HandleTmc, whereby the clock x is re-

set. With “immediately” we mean that no time elapses between the arrival of the event

43

and the execution of the transition. The automaton stays for WCET HT time units in

location HandleTmc and then returns to the idle location while generating an output

event (modeled by incrementing the counter ht2st tx) and decreasing the input event

counter rt. As we will see in the next section, the global variables vkp2av rx, ht2st tx

and av2uv tx are the interface of the RAD automaton to the automaton representing

the communication link. Similarly, the synchronization navc! is used to signal the

completion of the AdjustVolume operation towards the environment, for measuring

the end-to-end response time.

Note that the automaton in Figure 2.20 models a non-deterministic non-preemptive

scheduler, which is not realistic in most cases. The UPPAAL language allows to model

many kinds of schedulers. For instance, the automaton in Figure 2.21 models the radio

functionality again, but now with a priority based non-preemptive scheduling strategy,

in which the AdjustVolume operation has priority over the HandleTmc operation.

AdjustVolume
x <= D

HandleTmc
x <= D

idle

x == D
nacv!
vkp2av_rx--, av2uv_tx++

x == D
rt--,
ht2st_tx++

vkp2av_rx>0
hurry!
x = 0,
D = WCET_AV

rt > 0 and
vkp2av_rx==0
hurry!
x = 0,
D = WCET_HT

Figure 2.21: Adding scheduling priority to automaton RAD

In Figure 2.21, modeling priority is achieved by the additional expression vkp2av rx

== 0 to the guard of the transition from location idle to location HandleTmc. This

means that TMC messages may only be handled if there are no outstanding AdjustVol-

ume requests pending. More changes are required in order to model preemption and

these are presented in Figure 2.22.

The guard expressions on the outgoing transitions from the idle location in Fig-

ure 2.22 have now been put in simple auxiliary functions enHT and enAV which re-

turn a Boolean value. Similarly, the update actions have been put in auxiliary functions

updateD1, updateD2, retHT and retAV. This is done to increase readability and to

simplify model maintenance. Furthermore, each activity has been given its own clock

and a separate deadline variable, such that we can measure progress of each task in-

dividually. HandleTmc relates to clock x1 and variable D1 and AdjustVolume re-

lates to clock x2 and variable D2. Now suppose that a low-priority TMC message is

being processed, in other words we are at location HandleTmc, and a high-priority

AdjustVolume request arrives, since the global variable vkp2av rx has been incre-

mented by another automaton. The guard expression contained in enHT now returns

false since vkp2av rx is non-zero and the transition towards the committed location is

enabled. This transition is immediately taken due to the urgent communication over

the hurry broadcast channel. Since no time is allowed to pass in committed locations,

44

AdjustVolume
x2 <= D2

HandleTmc
x1 <= D1

idle

x1 < D1
i1 := true

x1 == D1
retHT()

not enHT()
hurry!

x2 == D2
nacv!
retAV()

x1 == D1
retHT()

enAV()
hurry!
updateD2()

enHT()
hurry!
updateD1()

// local definitions for the RAD automaton
clock x1, x2; int [0,ABOUND] D1 = 0;
bool i1 := false; int [0,ABOUND] D2 = 0;

// auxiliary functions for the RAD automaton
bool enHT () { bool enAV {

return (rt > 0) and return (vkp2av_rx > 0);
(vkp2av_rx == 0); }

}

void updateD1() { void updateD2() {
if (not i1) { // reset the clock

// reset the clock x2 = 0;
x1 = 0; // update the deadlines
// set the deadline if (i1 && (D1<ABOUND-WCET_AV))
D1 = WCET_HT; D1 += WCET_AV;

} D2 = WCET_AV;
} }

void retHT () { void retAV () {
// update the interface vkp2av_rx--;
rt--; av2uv_tx++;
ht2st_tx++; }
// reset the interrupt
i1 := false;

}

Figure 2.22: Adding preemption to automaton RAD

45

we either return normally to idle if the interrupt occurred exactly at the end of the

[0, WCET HT] time interval (in other words x1 == D1) or we set a Boolean flag i1

to true, to indicate that the execution of HandleTmc has been interrupted. The pend-

ing AdjustVolume call is immediately processed since enAV is true. The auxiliary

function updateD2 not only sets D2 and resets clock x2, but also increases D1 with

WCET AV, to account for the time lost due to handling this higher priority task. Note

that the automaton keeps processing high-priority tasks until all of them are dealt with.

Only then will the handling of lower priority tasks resume. Also note that tasks at the

same priority level cannot interrupt each other, they simply run to completion. The

model can be improved and simplified further by using so-called transition priorities,

but this is not shown here.

Thus, preemption can be modeled, but care has to be taken because an integer

variable in UPPAAL has a finite domain by definition. Therefore, it must not be the

case that a task can be preempted infinitely often, since then D1 can grow to infinity

and model checking is not possible anymore. However, the model checker can be used

to prove that this is not the case by verifying some finite upper bound for these deadline

variables. In this case study the deadline variables were restricted to ABOUND = 1 · e6,

which corresponds to 1 second or roughly ten times the largest worst-case execution

time of any task available in the model. This can alternatively be modeled as an explicit

error state in the model whereby UPPAAL is then used to prove that this state cannot be

reached. The modeling of the other computation components follow the same pattern

as described above and are therefore not depicted here.

Modeling the communication resources

Modeling the communication in the system is surprisingly similar to the models we

have presented for the computation in the previous subsection. A separate timed au-

tomaton is created for each communication resource. The automaton modeling the bus

for the communication supporting the “Change Volume” application from Figure 2.3

running in parallel to the “TMC Message Handling” application from Figure 2.5 on

architecture (a) is shown in Figure 2.23.

A location is created in the automaton for each message that is exchanged between

the computation components that communicate through this link. The location reflects

the fact that the message is being sent. The location is occupied for as long as the

message transfer takes. We use the constants BYTES4 and BYTES64 in the model

(but not shown here) to represent the time to transfer 4 and 64 bytes respectively over

the communication link. This constant is again simply calculated as the message length

(in bits, which is specified in the augmented sequence diagrams) divided by the bit rate

(which is specified in the deployment diagram). Obviously, this formula can be adapted

to compensate for expected protocol overhead.

The computation components interface to the communication link using (sharing)

the set of global variables that count the number of outstanding messages of a particular

type that need to be transferred over the link. If the first message from Figure 2.3 is

to be sent from the MMI to RAD, from VolumeKeyPress to AdjustVolume, then the

MMI automaton will simply increment the global vkp2av tx variable to announce the

message arrival at the communication resource. If the bus is idle, and all other global

variables are zero and assuming that enVKP2AV returns true if vkp2av tx is non-zero,

then the transition towards the location VKP2AV location is immediately taken due to

the hurry! synchronization. This location is occupied for BYTES4 time units and then

the transition back to idle is taken. This return transition will decrement the vkp2av tx

46

VKP2AV
x4 <= D4

AV2UV
x3 <= D3

HT2ST
x2 <= D2

ST2UT
x1 <= D1

idle

x3 < D3
i3 := true

x3 == D3
retAV2UV()

not enAV2UV()
hurry!

x2 < D2
i2 := true

x2 == D2
retHT2ST()

not enHT2ST()
hurry!

x1 < D1
i1 := true

x1 == D1
retST2UT()

not enST2UT()
hurry!

x4 == D4
retVKP2AV()

enVKP2AV()
hurry!
updateD4()

x3 == D3
retAV2UV()

enAV2UV()
hurry!
updateD3()

x2 == D2
retHT2ST()

enHT2ST()
hurry!
updateD2()x1 == D1

retST2UT()

enST2UT()
hurry!
updateD1()

Figure 2.23: The automaton BUS

and increment the vkp2av rx global variables, to indicate message delivery. In turn,

this will enable the corresponding transition in the RAD automaton, as presented in the

previous paragraph.

We can use the same strategy for dealing with priorities and scheduling as in

computation resources. In fact, the communication resource shown in Figure 2.23

uses fixed-priority preemptive scheduling, as mandated by the case study description,

whereby ST2UT has the lowest and VKP2AV has the highest priority. It is fairly easy

to represent simple industrial serial bus interfaces such as RS485, priority based proto-

cols such as Controller Area Network (CAN) or complex time-triggered protocols. For

example, a solution for a TDMA bus concept is proposed by Perathoner et al in [80].

Less trivial however is the encoding of protocols that break large messages into pieces

to prevent bus starvation, such as the well-known TCP/IP protocol stack.

The approach presented here has another interesting characteristic. If the interface

(the global variables) remains the same, then it would be simple to replace a certain

bus concept by another by merely replacing the bus automata. This would not affect

the computation components at all. Therefore, we can easily investigate the impact

of different bus protocols for a given deployment of software over hardware, i.e. to

perform design space exploration.

47

Modeling of the environment

There are two actors that interact with the system from the environment: (i) a user who

initiates the “Change Volume” or alternatively the “Address Look-up” scenario and (ii)

a radiostation that initiates the “TMC Message Handling” scenario. There are two

timed automata for each actor: a “normal” automaton and a “measuring” automaton.

Which one is included in the network of timed automata that models the system de-

pends on the particular worst case execution time property that we want to investigate.

If we want to measure the response time of the “Change Volume” scenario, we add the

“measuring” automaton for the user and the “normal” automaton for the radiostation.

Vice versa, if we want to measure the response time of the “TMC Message Handling”

scenario, then we add the “measuring” automaton for the radiostation and the “normal”

automaton for the user.

We consider four basic kinds of event arrival models: (i) periodic, (ii) sporadic,

(iii) periodic with jitter and (iv) event streams with bursts. For the strict periodic event

model, an offset can be specified to force a phase shift in the signal (start of the first

period). The periodic and sporadic event models can be expressed by automata as

shown in Figure 2.24 (a-c) for key press events, using synchronization kpv in and event

counter kpv. The event model for periodic behavior with jitter (where the jitter is

smaller than or equal to the period) can elegantly be expressed by the model proposed

by Perathoner et al in [80], which is shown in Figure 2.24 (d) for TMC events, using

synchronization rt in and event counter rt. The behavior of events is called bursty

when the jitter becomes larger than the period of the event. This can be modeled,

but it is more involved than the previous model of periodic behavior with small jitter.

The reason is that the subsequent intervals in which an event can occur now overlap.

Figure 2.25 shows the UPPAAL model for a TMC event stream with bursts with offset

o, period p, jitter j and a minimal separation time between two consecutive events of

d, using synchronization rt in and event counter rt. Note that we have used explicit

channel names in all environment models shown here, mainly to enhance readability.

In reality, generalized models are used which are instantiated by passing these explicit

channel names as parameters to the timed automata model.

The automaton shown in Figure 2.25 has two local variables, req and hdl. The

variable req is incremented every p time units (using clock x) which models that an

event may be sent. The clock y is used to keep track of the next deadline for sending

an event. An event may be sent if z > d, where clock z keeps track of the minimum

inter-event separation time d, and req > 0. When the event is sent, hdl is incremented.

This signals that the deadline for the next event may be incremented by d time units.

This is modeled by the reset of clock y after j (for the first event) or after p (for the

other events) time units. Note that this automaton leads to a large increase of the state

space of the model: it has three local clocks (but if d = 0 then clock z can be left out)

and two local integer variables that both can count up to 1 + j
p

.

Every event automaton also has a “measuring” companion automaton which is used

to record the worst-case response time of a generated system input event. These au-

tomata seem complicated at first sight, but they are logical in structure. The general

idea is that a randomly chosen event is inserted into the system model by the environ-

ment automaton and its end-to-end response time is measured. It is assumed that all

queues in the system model are order preserving and that events are never dropped. If

the n-th event is inserted at t1 and the n-th response is seen at t2 then the observed

execution time is t2 − t1.

The automaton in Figure 2.26 is the measuring companion of the event genera-

48

x <= px <= o

x == p
kpv_in!

x = 0, kpv++

x == o
kpv_in!

x = 0, kpv++

(a) strictly periodic key press event stream with period p and a fixed offset o

x <= px <= p

x == p
kpv_in!

x =0, kpv++

kpv_in!

x = 0, kpv++

(b) strictly periodic key press event stream with period p and an arbitrary offset o ≤ p

x >= p
kpv_in!

x = 0, kpv++

kpv_in!

x = 0, kpv++

(c) sporadic key press events with distance d ≥ p

x<=px<=jx<=o

x==p x=0

rt_in! rt++x==o x=0

(d) periodic TMC event stream with period p, offset o and jitter j ≤ p

Figure 2.24: Example environment automata

tion automatons shown in Figure 2.24 (a-c). The measurement automaton is triggered

whenever the event automaton generates a new system input event (stimulus) by syn-

chronizing over a normal non-urgent channel, in this case kpv in. The measurement

automaton is also triggered whenever the system model generates a system output event

(response) by synchronizing over normal non-urgent channels, in this case nacv and

nvcv. For each kpv in signal there should be exactly one corresponding nacv and one

nvcv signal. Hence, two counters, cnta and cntv, both initially zero, are used to keep

track of the number of stimuli and responses received so far. Both counters are incre-

mented if kpv in is received. Counter cnta is decremented whenever nacv is seen and

cntv is decremented whenever nvcv is received. The self-transitions on the initial loca-

49

x <= o
x <= p and
y <= p

x <= p and
y <= j

x == o
req = 1 + j/p,
x =0, y =0, z = d

y == p and hdl>0
hdl--, y = 0

z > d and req > 0
rt_in!

rt++, z=0,
req--, hdl++

x == p
x = 0, req++

y == j and hdl > 0
hdl--, y = 0

z > d and req > 0
rt_in!

rt++, z=0,
req--, hdl++

x == p
x = 0, req++

Figure 2.25: environment automaton describing TMC event bursts

seen

cntv > 0
nvcv?
cntv--

nacv?

kpv_in?

cntv==0
nvcv?

cnta == 0
nacv?

a2v = 0

cntv > 0
nvcv?
cntv--

cnta > 0
nacv?
cnta--

kpv_in?

kpv_in?

meas = 0

cntv > 0
nvcv?
cntv--

cnta > 0
nacv?
cnta--

kpv_in?
cnta++,
cntv++

Figure 2.26: “Change Volume” response time measurement automaton mv

tion are used to deal with incoming kpv in, nacv and nvcv events until the automaton

chooses a random kpv in signal to start the measurement. The out-going transition to

the next location resets the clock meas, which is used for measuring. From now on,

next incoming kpv in signals are ignored and we wait until the cnta counter reaches

zero. This indicates that the nacv response belonging to the kpv in stimulus has been

received. The out-going transition to the third location from the left resets the a2v

clock. The next incoming nacv signals are now also ignored and we wait until cntv

becomes zero. This indicates that the nvcv response belonging to the kpv in stimulus

has been received and we move to the location seen. The value of the clock meas

now contains the k2v response time and idem for a2v.

Note that at most one end-to-end measurement can be in progress at any time. Dif-

ferent execution time measurements require therefore different combinations of event

stream and measurement automata. Dummy measurement automata, which simply

always accept the synchronization actions offered by the event stream and system au-

tomata are used for those timing requirements that are currently not under investigation.

The modeling of the other measuring companion automata follows the same pattern as

explained above and are therefore not depicted here.

Analysis of the model

The system model is constructed by composing a network of timed automata from the

resource and environment automata described above. UPPAAL is then asked to verify

50

whether a certain response time is within the set of reachable states of the model. By

using a binary search approach manually, the exact best and worst-case response times

can be determined. The worst-case response time k2v of the “Change Volume” scenario

can thus be found using UPPAAL by finding the smallest C such that Property 2.19 is

satisfied. The operator “AG” stands for “always globally” which implies that for all

reachable states this property holds.

AG(mv.seen −→ meas < C) (2.19)

The UPPAAL model has been analyzed for 5 different requirements and 5 different

sets of environment models. The results have been collected in Table 2.2. UPPAAL

version 4.0.6 has been used with default options, unless indicated otherwise. The rows

indicate which requirement is measured and in what context (combination of applica-

tions) the analysis was performed.

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Requirement

Event model
po (o = 0) pno sp

HandleTMC (+ ChangeVolume) 336.111 345.269 345.713
HandleTMC (+ AddressLookup) 172.106 239.079 239.079
A2V ChangeVolume (+ HandleTMC) 27.717 27.717 27.717
K2V ChangeVolume (+ HandleTMC) 41.796 41.796 41.796
AddressLookup (+ HandleTMC) 79.075 79.075 79.075

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Requirement

Event model
pj (j ≤ p) bur (j ≤ 2p, d = 0)

HandleTMC (+ ChangeVolume) > 400.000 (df) > 500.000 (rdf)

HandleTMC (+ AddressLookup) 239.079 239.079
A2V ChangeVolume (+ HandleTMC) > 27.715 (bf) > 27.715 (bf)

K2V ChangeVolume (+ HandleTMC) > 41.795 (bf) > 41.795 (bf)

AddressLookup (+ HandleTMC) 79.075 79.075

Table 2.2: UPPAAL worst-case response time analysis results (in milliseconds)

(bf = breadth first, (r)df = (random) depth first)

The first column of the top table shows the results for strictly periodic event streams

with a user-defined offset o for all events (po, o = 0), which reflects fully dependent or

synchronous environment models. In the second column of the top table, the results are

shown for strictly periodic event streams with an unknown offset for all events (pno,

o ≤ p), which reflects fully independent or asynchronous environment models. The

third column of the top table presents the analysis results for sporadic event streams

(sp, d ≥ p) where only a lower bound is specified for the event inter arrival time.

In the first column of the second table we show periodic event streams with small

jitter (pj, j ≤ p) for the “radio station” environment model and sporadic events for the

others. And finally, we use event streams with bursts (bur, j ≤ 2p, d = 0) for the

“radio station” and sporadic event streams for the others in the second column of the

bottom table.

Design question 1. Analysis of the “TMC Message Handling” and “Address Look-

up” scenario combination proved to be no problem. The verification times for po, pno

and sp where so small (typically less than a second) that a binary search could easily

51

be performed. The pj and bur scenarios took a bit more effort, but still a binary search

was feasible (verification times typically in the order of a few minutes). The “TMC

Message Handling” scenario in combination with “Change Volume” proved to be a

problem for the pj and bur scenarios. This is due to the large difference in time scales

of the event automata: the period of the “radiostation” events is in the order of seconds

whereas the period of the “change volume” events is in the order of milliseconds. Such

differences are bad for the symbolic representation of clock values that is used by

UPPAAL. However, UPPAAL can still be used as a “structured testing” tool with its

options for the search order (df = depth first, rdf = random depth first). The verifier

will try to find a counterexample of the property. If it finds one, then the constant C
in the property is a lower bound on the worst-case response time of the event. This is

indicated by the “greater than” symbols in Table 2.2.

Note that the “Address Look-up” and “Change Volume” worst-case response time

values remain constant since (i) they have priority over the “radiostation” related events

and (ii) their event model parameters are such that events are never queued for process-

ing. For example, each “Address Look-up” event is fully processed on each resource

before the next event arrives on the same resource. If we would allow jitter to the “Ad-

dress Look-up” scenario, such that two events might overlap, then the bound of 79.075
would certainly increase. Also note that the results for po and pno are not identical,

which indicates that a phase shift between the environment models does matter in this

case. We get this result almost for free, neither the modeling nor the analysis effort is

much influenced. The approach shown here can treat asynchronous and synchronous

environment models by simply removing an invariant from the appropriate environ-

ment models.

Design questions 2 and 3. The approach shown in this section is not convenient for

studying design questions 2 and 3. This is mainly caused by the fact that we can only

study the best- and worst-case execution times, not the resource availability. When

searching for these hard and tight worst-case execution time (WCET) results, we ex-

plore the state space such that the resource usage is maximized. But that does not imply

that all resources are busy all the time. If a WCET value is proven to be in the set of

reachable states, we have no information as to the level of resource usage. This can be

investigated by studying the counter example which is produced if a WCET value is

chosen that is slightly lower than the value that was found previously. However, this is

a cumbersome and slow process.

Observations on the experiment

UPPAAL is a generic tool. Many model types and scenarios can be expressed (i.e.

event models, communication, computation, mix of preemptive and non-preemptive el-

ements) and analyzed. However, manual construction and maintenance of these models

is error prone and should be automated to be useful in an industrial setting. Evaluation

of the model is in the order of minutes if the state space is tractable; the values then

found are hard and tight. Tractability however, is mainly determined by the amount of

non-determinism in the model. For example, when two event streams have an average

period which is orders of magnitude apart, the state space explodes even though the

model of the system is small and simple. In this case, the model checker will not be

able to find an answer in an acceptable amount of time.

52

2.3.4 Parallel and Object-Oriented Specification Language

Short overview of the technique

The Parallel Object-Oriented Specification Language (POOSL) is a general purpose

formal specification language which lies at the core of the Software/Hardware Engi-

neering (SHE) system-level design method. POOSL was developed by Voeten and

Van der Putten at the Technical University Eindhoven [97]. The language contains a

set of powerful primitives to formally describe concurrency, distribution, synchronous

communication, timing and functional features of a system into a single, high-level,

executable model. The language uses a process algebra notation that is strongly influ-

enced by Milner’s Calculus of Communicating Systems (CCS) [73].

The formal semantics of POOSL is defined in terms of timed probabilistic labeled

transition systems. This mathematical structure enables the unambiguous interpreta-

tion of POOSL models, both for validation through simulation as well as verification

through model checking and proof. Currently, the SHE method is accompanied by two

simulation tools, SHESim and Rotalumis. Verification tools are feasible and planned

but not yet available. SHESim is a graphical environment intended for the incremental

specification, modification and validation of POOSL models. Rotalumis is a high-

speed execution engine which is aimed at batch-oriented simulation.

The simulation algorithm at the core of both tools, first constructs a set of so-called

process execution trees (PETs) which are directly derived from the POOSL models.

Basically, each POOSL process is translated into a PET whereby the leaves represent

the actions that can be taken by the process. Two types of actions are possible: state

actions and time actions. The PETs are interpreted using a two-phase execution ap-

proach. In the first phase, all PETs greedily execute state actions asynchronously until

completion, which implies that they are either a) terminated or b) blocked on a read or

write action on a communication channel where no matching data is offered or c) a time

step needs to be taken. The execution of the actions performed in phase 1 is considered

to have taken zero time. The simulation process can continue if there is at least one

process that needs to make a time step, otherwise a deadlock has occurred. In phase 2,

time passes for all processes synchronously, by the minimum of all outstanding time

steps. As a result, at least one process can continue processing actions. So, after this

time step has been taken, the simulation resumes as if it was a new phase 1 step. This

simulation algorithm has been proven to correctly implement the formal semantics of

POOSL [40]. Both SHESim and Rotalumis have been used to model this case study.

The tools are available for free download from http://www.es.ele.tue.nl/poosl/.

Modeling the case study

De Hoon constructed a model of our case study in [23] using POOSL. The approach

followed in this work is to explicitly model the events that flow through the sys-

tem instead of using abstractions like arrival curves. A POOSL data class, called

EventProperties, not shown here, is defined to administer the timing proper-

ties of an event, such as release time, start time, finish time, relative deadline and so

on. Instances of this class are created and given a unique identifier. These event ob-

jects are manipulated by the application model of the system. Applications, such as

the “Change Volume” scenario, are represented by a directed task graph. A POOSL

process class, called ComputationTask, is defined to provide a generic model of

such an application task. This class is shown in Figure 2.27.

53

≪ process ≫

ComputationTask
≪ instantiation parameters ≫

TaskName : String
ComputationLoad : Real
Priority : Integer

≪ instance variables ≫

TaskId : Integer
≪ methods ≫

HandleEvent()()
Execute()()

≪ initial method call ≫

HandleEvent()()
≪ messages ≫

in!event
out?event
task!execute
task?executed

01 HandleEvent()()
02 | E : EventProperties |
03 in?event(E);
04 par

05 HandleEvent()()
06 and

07 Execute()();
08 out!event(E)
09 rap.

10 Execute()()
11 task!execute(TaskId,
12 ComputationLoad, Priority);
13 task?execute(TaskServed
14 | TaskServed = TaskId).

Figure 2.27: A POOSL specification of a generic application task

Three parameters are provided whenever an instance of ComputationTask is

created. The task is given a name, its computation load (in terms of the number of cy-

cles to execute) and a priority. The operation HandleEvent is immediately invoked

after the initialization of the object. This operation performs a blocking read on the

in-channel in line 3. The par-and-rap block is executed as soon as an event has arrived.

The par-part (line 5) is executed in parallel with the rap-part (line 7 and 8). The par-

part is a tail-recursive call to HandleEvent which causes the process to be ready

to accept new messages on the in-channel immediately. The rap-part first calls the

Execute operation which offers a message on the task-channel. This is the request

to the resource to allocate a certain number of cycles for this task with a given prior-

ity (line 11-12). The Execute operation waits until the resource notifies that these

cycles have indeed been spent on behalf of this task (line 13-14). A guard is defined

in line 14 to check whether it was this task that was confirmed to be completed. This

check is important because there may be several tasks deployed on the same resource

and we need to distinguish each one individually. Finally, the task offers the event on

the out-channel in line 8 after the operation Execute returns in line 7. This triggers

the next task in the task graph. Communication over a bus follows a similar pattern,

as shown in Figure 2.28. The only notable difference is the name of the channel in the

TransferMsg operation.

≪ process ≫

CommunicationTask
≪ instantiation parameters ≫

MessageId : Integer
MessageSize : Real
Priority : Integer

≪ instance variables ≫

≪ methods ≫

HandleEvent()()
TransferMsg()()

≪ initial method call ≫

HandleEvent()()
≪ messages ≫

in!event
out?event
msg!transfer
msg?transferred

01 HandleEvent()()
02 | E : EventProperties |
03 in?event(E);
04 par

05 HandleEvent()()
06 and

07 TransferMsg()();
08 out!event(E)
09 rap.

10 TransferMsg()()
11 msg!transfer(MsgId,
12 MessageSize, Priority);
13 msg?transferred(MsgServed
14 | MsgServed = MsgId).

Figure 2.28: A POOSL specification of a generic communication task

54

The next step is to define the resources of our system model. In Figure 2.29 we

present the definition of a fixed-priority preemptive resource as a POOSL process class.

Here, we show the definition of a computation resource. A communication resource is

virtually identical. The FixedPrioCompResource waits for scheduling requests

on the task-channel on line 2. It is the counter action of the message offer on line 11

in Figure 2.27. If such a message arrives, it invokes the ComputeTask operation on

line 3. This operation executes a delay statement on line 10 whereby time is allowed

to elapse by ServLoad/MIPS seconds. This corresponds to the worst-case execution

time of the task deployed on this resource, since the parameter ServLoad is defined

as the maximum number of cycles to execute. However, this delay statement can be

interrupted when another message arrives during the time step (line 11-14). But only

messages that offer a priority level that is higher than the current priority are actually

accepted in the guard on line 12. The operation ComputeTask is called recursively

on line 13-14 if this particular situation occurs. The requesting application is informed

that the task has been executed on line 15. Finally, the operation HandleTask is

called again on line 4 to accept the next scheduling request for this resource.

≪ process ≫

FixedPrioCompResource
≪ instantiation parameters ≫

MIPS : Real
≪ instance variables ≫

≪ methods ≫

HandleTask()()
ComputeTask()()

≪ initial method call ≫

HandleTask()()
≪ messages ≫

task?execute
task!executed

01 HandleTask()()
02 task?execute(Task, Load, Prio);
03 ComputeTask(Task, Load, Prio);
04 HandleTask()().

05 ComputeTask(ServTask : Integer,
06 ServLoad : Real,
07 ServPrio : Integer)()
08 | ReqTask, ReqPrio : Integer,
09 ReqLoad : Real |
10 interrupt delay ServLoad / MIPS with

11 (task?execute(ReqTask, ReqLoad,
12 ReqPrio | ReqPrio > ServPrio);
13 ComputeTask(ReqTask, ReqLoad,
14 ReqPrio)());
15 task!executed(ServTask).

Figure 2.29: A POOSL specification of a fixed priority computation resource

The final components we need in order to compose the abstract performance model

is the event generator that reflects the environment and the event sink to register the

end-to-end elapse time. In Figure 2.30 we show the PeriodicEventModel and

the EventReceiverModel process classes. The former offers an event on the out-

channel with a certain period and registers the release time in the event. The latter ac-

cepts events on the in-channel and registers their arrival time. The application response

time is the difference between those two values. Similar components are available for

event generators with jitter and bursts. They make use of a random number generator

that is available as a standard data class in POOSL.

The final step is to compose the abstract performance model using the template

classes that we have presented so far. This can for example be done using the SHESim

tool. SHESim provides a graphical user-interface to compose POOSL models. Objects

are represented as boxes. The channels are visible as interface points and they can be

connected together. The tool verifies whether the interfaces are of the same type when

they are composed. Figure 2.31 shows the abstract performance model of architec-

ture (a) in the user-interface of SHESim. On the left, we see the event generators, on

the right the event sinks. At the bottom we see the four resources and the remaining

components represent the application tasks and message exchanges.

55

≪ process ≫

PeriodicEventModel
≪ instantiation parameters ≫

period : Real
≪ instance variables ≫

≪ methods ≫

PeriodicEventStream()()
≪ initial method call ≫

PeriodicEventStream()()
≪ messages ≫

out!event

01 PeriodicEventStream()()
02 | E : EventProperties |
03 E := new(EventProperties)
04 SetReleaseTime(currentTime);
05 par

06 out!event(E)
07 and

08 delay period;
09 PeriodicEventStream()()
10 rap.

≪ process ≫

EventReceiverModel
≪ instantiation parameters ≫

≪ instance variables ≫

≪ methods ≫

ReceiveEvent()()
≪ initial method call ≫

ReceiveEvent()()
≪ messages ≫

in?event

01 ReceiveEvent()()
02 | E : EventProperties |
03 in?event(E);
04 E SetArrivalTime(currentTime);
05 ReceiveEvent()().

Figure 2.30: Example event generators and event sinks in POOSL

Analysis of the model

All three of the suggested typical design problems can be studied using this approach.

However, hard guarantees cannot be given because there is no proof that we will visit

all so-called “corner cases” during simulation. Corner cases are parts of the state space

that are only reached under specific conditions, for example a transition in the simu-

lation model with a very low probability attached to it. Exposing these corner cases

therefore requires potentially infinitely long simulation runs. Hence, full coverage of

the state space can, in general, not be guaranteed.

Design question 1. An abstract performance model must be created using SHESim for

each proposed architecture. Finding the worst-case timing of the application requires

many simulation runs because the two input event streams are strictly periodic but not

correlated. This implies that the simulation must be repeated many times whereby ran-

dom values are chosen for the initial offset of either event stream. Since time is a real

valued property in our model, infinitely many values can be selected for this param-

eter. The maximum response time of the application is the maximum that was found

for this value over all simulation iterations. However, the number of iterations must

be determined carefully in order to create realistic results. In principle, we only have

to simulate until the hyper-period of our event stream is reached because the model of

our case study is fully deterministic. Nevertheless the number of simulation iterations

can become quite large, for example if the periods of the input event streams and the

time delay caused by the fastest task are orders of magnitude apart. Resources usage

can be studied by observing the resource models, for example by time stamping the

ComputeTask operation in Figure 2.28.

Design question 2 and 3. The obvious way to answer these questions is to repeat the

experiment as presented in the previous case several times, but each time with different

settings for the event input rates or the resources capacities. This is identical to the pa-

rameter sweep approach proposed in Section 2.3.1. But, with this model, we can also

56

Figure 2.31: The performance model of architecture (a) in SHESim

study the average performance of the system, as opposed to the other techniques pre-

sented so far. Suppose we know both the best- and the worst-case load of each task in

the system, in terms of number of cycles. If we assume some distribution of likelihood

in this interval, say a normal distribution, we could vary the cost of executing that func-

tion by passing a random value taken from this interval, instead of the worst-case value,

whenever we ask the resources to schedule our task (in line 11 in Figure 2.27). This

approach was studied by Florescu and De Hoon in [36]. Of course, it requires even

more repetitions for the simulations than in the previous case, for example because

the hyper-period limitation per simulation run is not longer viable since the model is

no longer deterministic. Nevertheless, interesting results can be obtained at reasonable

cost that also relate to design question 1. For example, the average end-to-end response

time that is reported per application after each simulation run, can be represented as a

histogram. This histogram shows us the relationship between the average response

time and the required worst-case timing requirement. Is the average close to the limit

value or does it only occur in few cases that the worst-case is reached? But we know

that this worst-case response time might not have been reached yet because we did not

simulate long enough. The approach proposed in [36] is to approximate the histogram

by some Gaussian distribution. From this distribution, we can calculate, using standard

mathematics, the likelihood that the application would exceed the worst-case timing

requirement. This gives us valuable insight into the robustness of the application and

for soft real-time applications it may even provide sufficient proof.

57

Observations on the experiment

Evaluation of this model is in the order of minutes to hours, depending on the property

to analyze. Despite the fact that the simulator conforms to the formal semantics of the

language, no guarantee can be given that the model is completely covered during sim-

ulation. Exact best- and worst case values are not necessarily found during analysis,

i.e. the bounds found by the simulator are not hard. Exhaustive analysis techniques

are available but have not yet been implemented into tools. These exhaustive analy-

sis techniques are subject to the state-space explosion problem, just like in UPPAAL.

However, POOSL is able to describe and analyze the nominal (average) behavior of

the system and complex system - environment interactions, for example involving tim-

ing dependencies between input stimuli. POOSL is well-suited for analysis of soft

real-time systems.

2.3.5 Vienna Development Method

VDM++ is an object-oriented and model-based specification language with a formally

defined syntax, static and dynamic semantics. It is a superset of the ISO standard-

ized notation Vienna Development Method - Specification Language (VDM-SL) [24].

VDM++ was originally designed in the ESPRIT project AFRODITE and it was sub-

sequently improved and tools were implemented by IFAD [27]. Different VDM di-

alects are supported by industry strength tools, called VDMTOOLS, which are currently

owned and further developed by CSK 2 [31]. A timed extension to VDM++ was deliv-

ered as part of the VICE project: “VDM++ In a Constrained Environment” [75].

The dynamic semantics of an executable subset of VDM++ is provided as a con-

structive operational semantics specified in VDM-SL which is roughly 500 pages in-

cluding informal explanation [68]. The core of this specification is an abstract state

machine which is able to execute a set of formally defined primitive instructions. Spe-

cial functions are supplied to “compile” each abstract syntax element into such a se-

quence of instructions. The dynamic semantics specification is executable and can be

validated using VDMTOOLS. The test suite contains several thousand test cases which

are also used to verify the implementation. The industrial success of VDMTOOLS is,

for a large part, due to excellent conformance of the tool to the formally defined opera-

tional semantics and the round-trip engineering with UML. We present an overview of

the language and the timed extensions in this section. For an in-depth presentation of

the language and supporting tools 3 see [30].

Short overview of the technique

In VDM++, a model consists of a collection of class specifications, whereby we distin-

guish active and passive classes. Active classes represent entities that have their own

thread of control and do not need external triggers in order to work. In contrast, passive

classes are always manipulated from the thread of control of another active class. We

use the term object to denote the instance of a class. More than one instance of a class

might exist. An instance is created using the new operator, which returns an object

reference. A class specification has the following components:

Class header: The header contains the class name declaration and inheritance infor-

mation. Both single and multiple inheritance are supported.

2 Free tool support can be obtained from http://www.vdmtools.jp/en/ .
3 Many examples can be found at http://www.vdmbook.com and http://www.vdmportal.org.

58

http://www.vdmtools.jp/en/

Instance variables: The state of an object consists of a set of typed variables, which

can be of a simple type such as bool or nat, to represent Boolean values and nat-

ural numbers respectively, or abstract data types such as sets, sequences, maps,

tuples, records and object references. The latter are used to specify relations be-

tween classes. Instance variables can have invariants and an expression to define

the initial state.

Operations: Class methods that may modify the state can be defined implicitly, using

pre- and postcondition expressions only, or explicitly, using imperative state-

ments and optional pre- and postcondition expressions.

Functions: Functions are similar to operations except that the body of a function is

an expression rather than an imperative statement. Functions are not allowed to

refer to instance variables, they are pure and side-effect free.

Synchronization: Operations in VDM++ are re-entrant and their invocation is defined

with synchronous (rendez-vous) semantics. It is possible to constrain the execu-

tion of an operation by specifying a permission predicate [66]. A permission

predicate is a Boolean expression over so-called history counters that acts as a

guard for the operation, for example to express mutual exclusion. History coun-

ters are maintained per object to count the number of requests, activations and

completions per operation.

Thread: A class can be made “active” by specifying a thread. A thread is a sequence

of statements which are executed to completion at which point the thread dies.

The thread is created whenever the object is created but the thread needs to be

started explicitly using the start operator. It is possible to specify threads that

never terminate.

In the VICE project [75], time was added to VDM++ by assigning a configurable

default duration to each basic language construct. Whenever a statement is evaluated

by the interpreter, the global notion of time is increased by the specified amount. In

this way, it was possible to simulate the timed behavior of a program running on a

single processor. In addition, the user can specify the task switch overhead and the

scheduling policy used, as simulation parameters. The duration statement was added to

the language, with the concrete syntax duration(d) IS, which implies that all statements

in IS are executed instantaneously and then time is increased by d time units. The

duration statement is used to override the default execution time for IS. Furthermore,

the periodic statement was introduced, with the concrete syntax periodic(d)(Op). This

statement can only be used in the thread clause to denote that operation Op is called

strict periodically every d time units. The time keyword can be used to refer to the

current value of the so-called simulation “wall-clock”.

Modeling the case study

There are many ways in which the VDM++ language can be used to model systems.

Very high-level and abstract specifications can be made, which are usually tailored to-

wards rigorous analysis of certain system aspects, for example using deductive proof.

This traditional style of formal specification is not used here, we intentionally apply a

design oriented style of specification. The model shall reflect the implementation struc-

ture of the system as closely as possible, including formal descriptions of the actual

computations performed. This style of specification is typically more commonly used

59

Figure 2.32: UML class diagram of the Timed VDM++ case study model.

in industry and also sets VDM++ apart from the other methods discussed previously.

It is a pragmatic approach whereby emphasis is on exploring the design by simulation

and testing, not necessarily on finding undisputable formal proof of correctness.

The in-car radio navigation system can be modeled as a set of classes. A UML class

diagram of the model is presented in Figure 2.32. All environment and all the applica-

tion tasks are modeled as separate threads. These threads obviously need to communi-

cate, for example to exchange stimuli and responses between the environment and the

system or for inter thread communication within the system. The mechanism available

to communicate between objects in VDM++ is to use method invocation. However,

the Timed VDM++ language developed in the VICE project provides synchronous op-

eration call semantics only. This implies that an operation is always executed by the

thread of the callee. This complicates the specification of embedded systems because

they are reactive and therefore asynchronous by nature.

The usual way to break this strong coupling is to use a so-called event loop mech-

anism using message passing. The receiving thread performs a blocking read on some

input queue. The sending thread does not call the required operation directly, but puts

a message in the input queue of the receiving thread. The sending thread can continue

after message delivery and the receiving thread will unblock and process the incoming

message by invoking the appropriate operation. Such an event loop mechanism is at the

60

basis of the VDM++ model presented here and this basically mimics the functionality

offered by a contemporary real-time operating system.

A small framework was developed for modeling reactive systems. Assume given

a class called Event that only supports some basic identity functions. We define two

specialized classes called InterruptEvent and NetworkEvent by sub-classing

from Event. These derived classes are used to distinguish communication between

the environment threads and system threads from inter system thread communica-

tions. Furthermore, InterruptEvents shall be treated instantaneously while a time

penalty is associated with NetworkEvents, whereby the former also have priority

over the latter.

The AbstractTask class presented in Figure 2.33 provides the basic function-

ality to handle events. Two separate input queues are maintained, one for interrupt and

one for network events. There will be a single EventDispatcher class instance that

will process the routing of all messages between all AbstractTasks in the model.

The EventDispatcher can inject messages by calling the public setEvent oper-

ation of the applicable AbstractTask instance. Note that the operation getEvent
gives priority to interrupt over network events. The AbstractTask can send mes-

sages to other tasks on the system by calling sendMessage or back to the envi-

ronment by calling raiseInterrupt. The EventDispatcher will handle the

message in both cases without blocking the AbstractTask.

Modeling the system

Notice that the class AbstractTask is passive, since there is no thread specification.

The derived class BasicTask, as presented in Figure 2.34, actually implements the

event loop mechanism. It has now become an active object that is constantly processing

incoming events. Note that the thread will block if there are no messages available due

to the permission predicate defined on the getEvent operation declared in the sync
block of the base class AbstractTask.

The class BasicTask acts as a generic base class for all system threads in our

model. Consider for example the class RadioAdjustVolume, shown in Figure 2.35.

Here, we see an implementation of the abstract operation handleEvent, which calls

the operation AdjustVolume synchronously and then sends a message to the next

task called UpdateScreenVolume asynchronously. Note that we have abstracted

away entirely from the complexity of whatever the operation AdjustVolume really

does, by using the skip statement, since we are just concerned about the time penalty

specified by the duration statement. But the skip statement could of course be re-

placed by the algorithm that specifies its behavior appropriately.

The specification of the other system tasks follows the same strategy as the class

RadioAdjustVolume and they are therefore not discussed in detail here.

Modeling the environment

The EnvironmentTask class presented in Figure 2.36 provides the basic functional-

ity to generate and administer events. Each event can be given a unique number by call-

ing the operation getNum. The operation logEnvToSys is used to register the time

when an input stimulus has been generated and the operationlogSysToEnv is used to

register the time at which the response was observed. The worst-case response time of

each stimulus / response pair can be checked by calling the checkResponseTimes
function. The operation getMinMaxAverage is used to compute the minimum,

61

class AbstractTask

instance variables

name : seq of char := [];

events : seq of NetworkEvent := [];
interrupts : seq of InterruptEvent := [];

dispatcher : EventDispatcher

operations

public AbstractTask: seq of char * EventDispatcher ==> AbstractTask
AbstractTask (pnm, ped) == atomic (name := pnm; dispatcher := ped;);

public getName: () ==> seq of char

getName () == return name;

public setEvent: Event ==> ()
setEvent (pe) ==
if isofclass(NetworkEvent,pe)
then events := events ˆ [pe]
else interrupts := interrupts ˆ [pe];

protected getEvent: () ==> Event
getEvent () ==
if len interrupts > 0
then (dcl res : Event := hd interrupts;

interrupts := tl interrupts; return res)
else (dcl res : Event := hd events;

events := tl events; return res);

protected handleEvent: Event ==> ()
handleEvent (-) == is subclass responsibility;

protected sendMessage: seq of char * nat ==> ()
sendMessage (pnm, pid) == dispatcher.SendNetwork(name, pnm, pid);

protected raiseInterrupt: seq of char * nat ==> ()
raiseInterrupt (pnm, pid) == dispatcher.SendInterrupt(name, pnm, pid)

sync

-- setEvent and getEvent are mutually exclusive
mutex (setEvent, getEvent);

-- getEvent is blocked until at least one message is available
per getEvent => len events > 0 or len interrupts > 0

end AbstractTask

Figure 2.33: The AbstractTask base class.

class BasicTask is subclass of AbstractTask

operations

public BasicTask: seq of char * EventDispatcher ==> BasicTask
BasicTask (pnm, ped) == AbstractTask(pnm, ped);

thread

while (true) do

handleEvent(getEvent())

end BasicTask

Figure 2.34: The derived class BasicTask.

maximum and average response time observed. Note that this class is passive since no

62

class RadioAdjustVolume is subclass of BasicTask

operations

public RadioAdjustVolume: EventDispatcher ==> RadioAdjustVolume
RadioAdjustVolume (pde) == BasicTask("AdjustVolume",pde);

public AdjustVolume: () ==> ()
AdjustVolume () == duration (100) skip;

handleEvent: Event ==> ()
handleEvent (pe) ==

(AdjustVolume();
sendMessage("UpdateScreenVolume", pe.getEvent()))

end RadioAdjustVolume

Figure 2.35: The RadioAdjustVolume class.

thread has been declared, neither here nor in the base classes.

The derived class VolumeKnob, shown in Figure 2.37 defines the behavior of the

environment thread responsible for inserting key press events into the system for the

“Change Volume” scenario. The createSignal operation is declared as a periodic

thread with a period of 1000 time units. It creates a new event identifier, registers

the current time and injects the event into the system model by calling the operation

raiseInterrupt. The operation handleEvent is called as soon as the response

returns to the environment. The current time is logged and its consistency is checked

by the post condition, which states that the response time of all events received so far

shall be less than 200 time units.

The specification of the other environment tasks follows the same strategy as the

class VolumeKnob and they are therefore not discussed in detail here. Finally, the

top-level system model RadNavSys, as presented in Figure 2.38, can be constructed

from the building blocks presented.

The VICE interpreter needs to be set up appropriately before the model can be exe-

cuted. We use the interpreter in preemptive scheduling mode with all integrity checking

options enabled. This includes dynamic type, invariant, pre- and post condition check-

ing. Furthermore, task priorities are specified in a simple external text file, whereby

each class name is related to an associated priority level. Once an instance of this class

is created by the interpreter, it will be assigned this priority level. This thread priority

is immutable during execution and remains valid until the thread dies. The model is

started by running the “new RadNavSys().Run()” command. The simulation re-

turns with the collected execution time statistics in case the timing requirements where

met. The simulation terminates prematurely if a worst-case execution time limit was

exceeded, for example in a post condition of the handleEvent operation of an envi-

ronment task. The VDMTOOLS debugger can be used to capture such an event and to

analyze its cause.

Analysis of the model

We have not been able to evaluate architecture (a) from Figure 2.6 using the Timed

VDM++ notation that was developed in the VICE project, using VDMTOOLS version

7.2. The main reason is that all threads in the model are implicitly bound to the same

physical resource, in other words a single CPU. Therefore, only evaluation of archi-

tecture (e) could possibly lead to useful results here. Since only the active thread can

63

class EnvironmentTask is subclass of AbstractTask

instance variables

static private num : nat := 0;
protected max_stimuli : nat := 0;

-- e2s is used for all out-going stimuli (environment to system)
protected e2s : map nat to nat := {|->};
-- s2e is used for all received responses (system to environment)
protected s2e : map nat to nat := {|->}

functions

public checkResponseTimes: map nat to nat * map nat to nat * nat -> bool

checkResponseTimes (pe2s, ps2e, plim) ==
forall idx in set dom ps2e &

ps2e(idx) - pe2s(idx) <= plim
pre dom ps2e inter dom pe2s = dom ps2e

operations

public EnvironmentTask: seq of char * EventDispatcher * nat ==> EnvironmentTask
EnvironmentTask (tnm, disp, pno) ==
(max_stimuli := pno; AbstractTask(tnm, disp));

public getNum: () ==> nat

getNum () == (dcl res : nat := num; num := num + 1; return res);

public setEvent: Event ==> ()
setEvent (pe) == handleEvent(pe);

public Run: () ==> ()
Run () == is subclass responsibility;

public logEnvToSys: nat ==> ()
logEnvToSys (pev) == e2s := e2s munion {pev |-> time};

public logSysToEnv: nat ==> ()
logSysToEnv (pev) == s2e := s2e munion {pev |-> time};

public getMinMaxAverage: () ==> nat * nat * real

getMinMaxAverage () ==
(dcl min : [nat] := nil, max : [nat] := nil, diff : nat := 0;

for all cnt in set dom s2e do

let dt = s2e(cnt) - e2s(cnt) in

(if min = nil then min := dt
else (if min > dt then min := dt);
if max = nil then max := dt
else (if max < dt then max := dt);
diff := diff + dt);

return mk_(min, max, diff / card dom s2e))

sync

-- getNum is mutually exclusive to ensure unique values
mutex (getNum);

-- getMinMaxAverage is blocked until all responses have been received
per getMinMaxAverage => card dom s2e = max_stimuli

end EnvironmentTask

Figure 2.36: The class EnvironmentTask

move time forward in Timed VDM++, it is hard if not impossible to specify distributed

systems in which truly concurrent behavior can occur. It is obvious that environment

and system models should not influence each other, except for the exchange of stimuli

and responses on their interface. But this is not the case here, since the threads used

to model the environment are running in the same execution context as the model. The

impact of the environment threads on the progress of time in the system model can be

64

class VolumeKnob is subclass of EnvironmentTask

operations

public VolumeKnob: EventDispatcher * nat ==> VolumeKnob
VolumeKnob (ped, pno) == EnvironmentTask("VolumeKnob", ped, pno);

handleEvent: Event ==> ()
handleEvent (pev) == duration (0) logSysToEnv(pev.getEvent())
post checkResponseTimes(e2s,s2e,200);

createSignal: () ==> ()
createSignal () ==

duration (0)
if (card dom e2s < max_stimuli) then

(dcl num : nat := getNum();
logEnvToSys(num);
raiseInterrupt("HandleKeyPress", num));

public Run: () ==> ()
Run () == start(self)

thread

periodic (1000) (createSignal)

end VolumeKnob

Figure 2.37: The VolumeKnob class

reduced by using the duration(0) construct. But this restricts the expressiveness to

pure periodic behavior because we need a pseudo-random delay, modeled using a du-

ration, to specify jitter. Furthermore, there is no guarantee that the environment threads

are executed on time, since the VDM++ simulator has limited options for priority based

scheduling. For efficiency reasons, the simulator favors a dominant run-to-completion

semantics, which may temporarily postpone higher priority tasks. This situation is re-

ported to the user when it occurs, but it seriously complicates the interpretation of the

simulation results. There is no guarantee that the input stimuli are representative and

therefore the simulation results obtained cannot be trusted a priori.

Observations on the experiment

It is clear from our results that the Timed VDM++ notation from the VICE project has

only limited usefulness for performance analysis of distributed real-time systems. This

experiment confirms earlier findings reported in [98]. The notation is not sufficiently

expressive, the supporting tools have significant limitations and moreover the inter-

pretation of simulation data is cumbersome. VDMTOOLS produces a textual trace file

which needs to be interpreted by hand. We developed some special purpose tool sup-

port, called “ShowVICE” to aid in this activity. Figure 2.39 presents the user-interface

after parsing a trace file. A relevant subset of the trace can be selected for further inves-

tigation, which is visualized as a time annotated message sequence chart in Figure 2.40.

Tools such as this are essential in order to raise the user productivity.

2.4 Comparing the models

The case study was modeled using several techniques but the question is: How do the

answers found during analysis relate? Consider for example the system-level response

time for each of the applications in the case study. Based on the properties of the

65

class RadNavSys

types

public perfdata = nat * nat * real

instance variables

dispatch : EventDispatcher := new EventDispatcher();
appTasks : set of BasicTask := {};
envTasks : map seq of char to EnvironmentTask := {|->}

operations

RadNavSys: () ==> RadNavSys
RadNavSys () ==
(addApplicationTask(new MMIHandleKeyPressOne(dispatch));

addApplicationTask(new RadioAdjustVolume(dispatch));
addApplicationTask(new MMIUpdateScreenVolume(dispatch));
addApplicationTask(new RadioHandleTMC(dispatch));
addApplicationTask(new NavigationDecodeTMC(dispatch));
addApplicationTask(new MMIUpdateScreenTMC(dispatch));
startlist(appTasks); start(dispatch));

addApplicationTask: BasicTask ==> ()
addApplicationTask (pbt) ==
(appTasks := appTasks union {pbt};

dispatch.Register(pbt));

addEnvironmentTask: EnvironmentTask ==> ()
addEnvironmentTask (pet) ==
(envTasks := envTasks munion {pet.getName() |-> pet};

dispatch.Register(pet);
pet.Run());

public Run: () ==> map seq of char to perfdata
Run () ==
(addEnvironmentTask(new VolumeKnob(dispatch,10));

addEnvironmentTask(new TransmitTMC(dispatch,10));
return { name |-> envTasks(name).getMinMaxAverage() |

name in set dom envTasks })

end RadNavSys

Figure 2.38: The top-level specification RadNavSys

techniques themselves, we would expect to find results as depicted in Figure 2.41.

MPA and SymTA/S provide hard but not necessarily tight bounds for these values. The

approximations inherent to these methods may yield conservative results. Simulation

based techniques, such as POOSL and VDM++, do not provide tight bounds because

the model is not guaranteed to be fully covered, which may lead to results that are

too optimistic. Timed automata can find hard and exact bounds within a user-defined

accuracy, but only if the state space remains tractable. Tractability is, however, not

guaranteed a priori. Although it is fairly easy to inspect timing aspects using timed

automata, it is hard to analyze the load per resource. The only guarantee we have

is that none of the resources is over-allocated. The other methods in comparison do

provide detailed resource usage information.

Modeling comes at a price and there is a clear trade-off between abstraction and

accuracy. We list a number of relevant questions. How much effort is required in order

to get a result on time and within a certain error margin? Can this error margin be de-

termined at all a priori? Both MPA and SymTA/S are methods that are clearly tailored

to support early life-cycle decision making. Models are easy to construct and evaluate.

Suitable levels of automation are available for design exploration and sensitivity analy-

sis. As we learned from additional experiments at Océ, not reported in detail here, their

66

Figure 2.39: The main user-interface of “ShowVice”, showing a parsed log file.

Figure 2.40: Time annotated message sequence diagram of the trace subset.

weakness is lack of support for time dependent input stimuli, which typically leads to

analysis results that have little value in practice.

Building timed automata, VDM++ and POOSL models involves significantly more

67

Figure 2.41: A general comparison of results found

work than MPA and SymTA/S, although modeling templates were developed for POOSL

to overcome this problem in part, see [35, 37]. Furthermore, analysis takes more time

and is in general not guaranteed to lead to deterministic results. In the case of timed au-

tomata, expert knowledge may be required to modify the model such that tractability is

achieved. However, the models built with these techniques can be described in greater

detail if needed, for example to deal with time dependent input stimuli, but obviously

at the cost of model analysis efficiency. POOSL can provide feedback on the nominal

(average) system behavior while timed automata, MPA and SymTA/S can only investi-

gate the performance bounds. Currently, Timed VDM++ can only realistically analyze

the timing behavior of single CPU multi-threaded systems.

Table 2.3 provides an overview of the analysis results for the worst-case response

time of all applications deployed on architecture (a) in Figure 2.6. The abbreviations

K2V and A2V mentioned in the table refer to the two system-level performance re-

quirements of the “Change Volume” scenario shown in Figure 2.3. The models were

evaluated against pure periodic environment stimuli with an unknown offset between

the two event streams. With the exception of VDM++, this situation can be suitably

analyzed by all techniques and therefore enables a fair comparison of the results.

❳
❳

❳
❳

❳
❳

❳
❳

❳❳
Requirement

Tool
Uppaal POOSL SymTA/S MPA

HandleTMC (+ ChangeVolume) 345.27 366.94 382.09 390.09
HandleTMC (+ AddressLookup) 239.08 234.26 253.30 265.85
A2V ChangeVolume (+ HandleTMC) 27.72 27.71 27.72 28.16
K2V ChangeVolume (+ HandleTMC) 41.80 41.78 41.80 42.24
AddressLookup (+ HandleTMC) 79.08 78.90 79.08 84.07

Table 2.3: Worst-case response time results (in ms)

The parameters in the case study were chosen such that the ChangeVolume appli-

cation always has the highest priority on all resources, as can be seen in Figure 2.3.

Because fixed priority pre-emptive scheduling is used on all resources, this applica-

tion gets access to the resource as soon as it is required. This is why the A2V /

K2V rows in the table contains almost identical results for each method. But even

this seemingly trivial exercise leads to the insight that the “Change Volume” scenario

is self-interrupting. The execution of UpdateVolume due to the n-th event is in-

terrupted by the execution of VolumeKeyPress of the n+1-th event, because this

task has a higher priority. In fact, we can manually calculate this result, as shown in

Equations 2.20 and 2.21, and we find exactly the same values, which demonstrates the

validity of the results found by the tools.

68

A2V =
4 · 8

72 · 103
+

5 · 105

22 · 106
+

1 · 105

22 · 106
= 27.717 ms (2.20)

K2V =
1 · 105

22 · 106
+

4 · 8

72 · 103
+

1 · 105

11 · 106
+ A2V = 41.797 ms (2.21)

When we compare the first two columns in Table 2.3, we see that the POOSL results

are indeed slightly more optimistic than the values found by UPPAAL. This is due to

the fact that there are infinitely many possible values for the offset. In this particular

case, UPPAAL was able to handle this property symbolically. It is also clear that both

SymTA/S (third column) and MPA (fourth column) are slightly more conservative than

UPPAAL, as expected.

Comparing the analysis results showed us that each technique introduces hidden

assumptions and approximations of its own. To our surprise, the initial results did

not conform to the expectation illustrated in Figure 2.41. A discussion was started on

the meaning of the results, to gain more insight. Apart from a better problem under-

standing, this also included improving the case study specification, discovering subtle

modeling errors in almost all models produced and even bugs and hidden limitations in

the (prototype) analysis tools. Table 2.3 is in fact the result of several iterations due to

this debate.

2.5 Discussion and conclusions

Our performance models of software applications are based on an estimate of the num-

ber of instructions that the resource shall execute. This value is obviously a rough

approximation that in general might not be accurate. For example, the peak capacity

of modern CPU architectures can only be achieved for specific types of algorithms;

digital signal processors are optimized for repeated multiply-addition operations that

occur frequently in fast Fourier transformations (FFT) for example. Moving an appli-

cation from one resource to another might not only rely on the number of instructions

to execute. Furthermore, issues such as caching, have not been considered here either.

But despite these approximation, it suffices for our purpose since we are interested in

high-level analysis of early design models. The feedback gained from the analysis of

these models provides valuable insights that can be used to guide the design process,

for example to reduce development risk by early detection of potential performance

bottlenecks. If we want to make more accurate predictions, it is always possible to

lower the abstraction level by adding more detail, or to benchmark the operation on the

target architecture and use the measured value instead of the estimate.

More results based on the in-car radio navigation case study are available, for ex-

ample using the DeSiX methodology [12] and the work of Florentz [33]. But these

results are on par with those reported here. Besides, our aim was not to be exhaustive

in our survey. Many other existing techniques have not been considered either and only

a single case study was used for comparison. Neither did we attempt to determine what

the “best” method is, since this is context dependent. Many qualities influence failure

or success.

Five state-of-the-art techniques for performance analysis have been investigated

and compared. We showed how these techniques relate by means of an experiment.

To the best of our knowledge, it is the first time that such a quantitative comparison

was performed on a single case study at this scale, although there exist several surveys

69

that attempt to make a qualitative comparison. The exception being the recent work

of Perathoner et al reported in [79, 81]. They investigated the influence of system

abstractions on the performance analysis of distributed real-time systems, applying

several different techniques to a set of well-known benchmark problems and concluded

that the accuracy of the various approaches may differ significantly and that none of

the methods performs best in all cases.

In conclusion, we do argue that in-depth knowledge of the application domain,

the method used and awareness of the limitations of the tools are equally important

critical success factors. This seems obvious, but in practice it is hardly ever the case

that all three aspects are covered to the same extent. The small experiment has clearly

demonstrated that it does pay off to use more than one method. Weaknesses in the

models will be exposed by comparing the models and the analysis results. The models,

the tools and the analysis results should not be taken for granted.

70

Chapter 3

Extending VDM++ for

Distributed Real-Time Systems

3.1 Introduction

The complexity of embedded systems is rapidly increasing; they are becoming dis-

tributed almost by default, for example due to the System-on-Chip design philosophy

which is often used nowadays. Safety-critical applications have traditionally been fed-

erated, meaning that each “function” has its own CPU with minimal interconnections

to other functions in the system. This approach is expensive and for some application

areas, such as the automobile industry, it is no longer economically viable to do so. The

current trend is rather to combine functions together on the same processing unit and

then distribute their operation between a number of networked fault-tolerant processors

in order to reduce cost. It is not hard to imagine that finding the “right” deployment

of functionality over such a distributed architecture, that meets all the imposed system-

level requirements, is quite a challenging problem.

It is natural to advocate the use of formal techniques in this application area in order

to cope with this complexity and indeed a large body of knowledge exists on their use.

Most formal techniques however, are not able to deal with the combination of complex

behavior, timing, concurrency and in particular distribution in a flexible and intuitive

way. Tool support often does not scale very well to the size of problems faced by

industry. System development lead times remain substantial, even if formal methods

can be usefully applied.

The Vienna Development Method (VDM) has been used in several large-scale in-

dustrial projects [94, 57, 30, 65]. Their success was very much due to the solid for-

mal basis of the notation and the availability of robust and commercial grade tools.

However, not much is known about the application of VDM in the area of distributed

real-time embedded systems. In earlier work [98], we reported that it is very hard to

describe such systems in VDM and this was confirmed by our findings in the previ-

ous chapter. The language is not sufficiently expressive and important tool features are

missing to analyze such models.

The aim of this chapter is to make VDM++ better suited for describing distributed

embedded real-time systems and to enable the design space exploration as mentioned

before. In Section 2.3.5, an overview of the notation and the existing timed extension

was presented. The limitations experienced in our earlier work are summarized in Sec-

71

tion 3.2 and we introduce the main proposed adaptations in Section 3.3 : the addition of

deployment and asynchronous communication. The in-car radio navigation case study

is revisited in Section 3.4 that demonstrates the impact of the proposed changes. In

Section 3.5, we define an abstract formal semantics of the extended language and dis-

cuss how the semantics has been validated. Finally, in Section 3.6 we present related

work and we discuss the results achieved.

3.2 The limitations of timed VDM++

In Chapter 2 and in previous work [98], we assessed the suitability of timed VDM++

for distributed real-time embedded systems. We list the most important problems here.

1. Operations in VDM++ are synchronous; calls are either blocked on a permission

predicate (guard) or executed in the context of the thread of control of the caller.

The caller has to wait until the operation is completed before it can resume. This

is very cumbersome when embedded systems are modeled. These systems are

typically reactive by nature and asynchronous. An event loop can be specified

to describe this, but the complexity of the model is increased and analysis of the

model becomes harder.

2. Timed VDM++ supports a uni-processor multi-threading model of computation

which means that at most one thread can claim the processor and only this active

thread can push time in the model forward. This is insufficient for describing

embedded systems because 1) they are often implemented on a distributed archi-

tecture and 2) these systems need to be described in combination with their en-

vironment. The subsystems and the environment are independent and therefore

need their own notion of time which requires a multi-processor multi-threading

model of computation.

3. The duration statement in timed VDM++ denotes a time penalty that is indepen-

dent of the resource that executes the statement. When deployment is consid-

ered, it is essential to also be able to express time penalties that are relative to

the capacity of the computation resource. Furthermore, there should be an addi-

tional time penalty that reflects the message handling between two computation

resources whenever a remote operation call is performed.

4. Timed VDM++ allows for the specification of periodic threads. But two restric-

tions hamper the effective use of this language construct. First of all, only strictly

periodic threads can be specified and in practice a more flexible solution is re-

quired, for example to specify jitter. And secondly, it is assumed that the periodic

thread has run to completion before the next period is due. In other words, the

thread creation and activation are strongly coupled in Timed VDM++. Hence, it

is not possible to simulate a burst of periodic thread releases or periodic threads

that may have overlapping release intervals.

3.3 Proposed changes

Our aim is to minimize the impact on the existing language as much as possible. Ide-

ally, we want to remain backwards compatible in order to reuse existing models and

72

tools. Therefore, we have not considered to merge VDM++ with other techniques.

Informally, we propose the following changes:

1. The semantics of timed VDM++ is based on the assumption that at most one

thread can push time forward in the model. We propose a richer semantics in

which this limitation is removed. Any thread that is running on a computation

resource or any message that is in transit on a communication resource can cause

time to elapse. Models that contain only one computation resource are compati-

ble to models in timed VDM++.

2. The suggestion is to introduce the async keyword in the signature of an opera-

tion to denote that an operation is asynchronous. The caller shall no longer be

blocked, it can immediately resume its own thread of control after the call is ini-

tiated. A new thread is created and started immediately to execute the body of

the asynchronous operation.

3. A collection of special predefined classes, BUS and CPU, are made available to

the specifier to construct the distributed architecture in his model. The system

class is used to contain such an architecture model. User-defined classes can be

instantiated and deployed on a specific CPU in the model. The communication

topology between the computation resources in the model can be described using

the BUS class.

4. The duration statement is kept intact to specify time delays that are independent

of the system architecture. In addition, we introduce the cycles statement, with

a similar concrete syntax, to denote a time delay that is relative to the capacity

of the resource. The time delay incurred by the message transfer over the BUS

can be made dependent of the size of the message being transferred, which is a

function of the parameter values passed to the operation call.

5. We adopt the more general notation for specifying periodic threads as previously

introduced in Section 2.2.2 using the (p, j, d, o)-tuple, with concrete syntax peri-

odic (p,j,d,o) (Op), for enhanced modeling flexibility. Furthermore, we decouple

the task release moment from the task activation in the operational semantics to

allow for potentially overlapping task release intervals.

We will demonstrate the impact of these changes in Section 3.4 using a small case

study and in Section 3.5 we present the semantics of the main extensions.

3.4 Modeling the in-car radio navigation system

In Chapter 2 we have studied the design of an in-car radio navigation system. Such an

infotainment system typically executes several concurrent software applications that

share a common, and often distributed, hardware platform. Each application has in-

dividual requirements that need to be met and the question is whether all require-

ments can be satisfied when a particular architecture is chosen. In this section, we

present a VDM++ model of the distributed in-car radio navigation system using the

suggested language improvements. We have focused on modeling the non-functional

performance aspects because these will highlight the impact of the language changes

most prominently. This aims to demonstrate that it is easy to describe distributed archi-

tectures and the associated deployment of functionality onto it. The model presented

73

here reflects one of the proposals that was considered during the design, consisting of

three processing units connected through an internal communication bus. An overview

of the case study is presented in Figure 3.1.

Figure 3.1: Informal overview of the case study

Two application scenarios are running on the system: “Change Volume” and “TMC

Message Handling”. Each application consists of three individual tasks. The “Change

Volume” application, represented by the top right gray box, controls the volume of

the radio. The task VolumeKeyPress takes care of all user interface input handling,

AdjustVolume modifies the volume accordingly and UpdateVolume displays the new

volume setting on the screen. The “TMC Message Handling” application, indicated by

the bottom right gray box in Figure 3.1, handles all Traffic Message Channel (TMC)

messages. TMC messages arrive at the HandleTmc task where they are checked and

forwarded to the SearchTmc task to be translated into human readable text which is

displayed on the screen by the UpdateTmc task.

Two additional applications represent the environment of the system: VolumeKnob

and TransmitTMC. The former is used to simulate the behavior of a user turning the

volume knob at a certain rate and the latter is used to simulate the behavior of a ra-

dio station that transmits TMC messages. Both applications inject stimuli into the

system, using the task createSignal and observe the system response using the task

handleEvent.

In the remainder of this section, we will present how applications and tasks from

the informal case study description relate to classes, operations and threads in VDM++

using the proposed language extensions. Furthermore, we will show how distributed

architectures are described and how objects are deployed. We present the environment

model in more detail in Section 3.4.1 and the system model in Section 3.4.2.

3.4.1 The environment model

There are two environment applications in our case study. Each application is rep-

resented by a class and the tasks are represented by asynchronous operations in that

class. An instance of the class is automatically deployed on an implicit computation

resource, denoted by the dashed boxes in Figure 3.1. Environment applications operate

74

in parallel to the system and independent of each other. Execution of an environment

application does not affect the notion of time in other environment or system appli-

cations. Environment applications communicate with the system applications over an

implicit communication resource, as shown by vBUS in Figure 3.1. This so-called

virtual bus connects all computation resources in the model. Communication over the

virtual bus is instantaneous, no time is lost to propagate messages over this implicit

communication resource.

Typical system-level temporal and timing properties can be specified over the stim-

ulus / response interface between the environment and the system model. Informal

examples of these requirements are: “The order of the VolumeKnob stimuli is pre-

served by the output response sequence of the system.” and “The maximum allowed

response time shall be less than 1000 time units for each individual stimulus arriving

at HandleTmc.”. These requirements can be modeled using standard VDM++ con-

structs. For example, the latter end-to-end response time requirement is formulated as

a post condition to the operation handleEvent in the TransmitTMC class, which

is presented in Figure 3.2.

class TransmitTMC

instance variables

static private id : nat := 0;
protected e2s : map nat to nat := {|->};
protected s2e : map nat to nat := {|->}

operations

getNum: () ==> nat

getNum () == (dcl res : nat := id; id := id + 1; return res);

async public handleEvent: nat ==> ()
handleEvent (pev) == s2e := s2e munion {pev |-> time}
post forall idx in set dom s2e & s2e(idx) - e2s(idx) <= 1000;

async createSignal: () ==> ()
createSignal () ==

(dcl num : nat := getNum();
e2s := e2s munion {num |-> time};
RadNavSys‘radio.HandleTmc(num))

thread

periodic (3000, 6000, 1000, 0) (createSignal)

sync

mutex(getNum)

end TransmitTMC

Figure 3.2: The TransmitTMC class

Two instance variables are maintained to log the stimuli (e2s) and the responses

(s2e). These variables are mappings from a unique natural number provided by the op-

eration getNum, to identify each stimulus, to another natural number that represents

the time at which the event was recorded. Uniqueness is guaranteed by the sync pred-

icate which specifies that calling the operation getNum is mutual exclusive. At most

one invocation of this operation can be active at any point in time. The time keyword

in VDM++ provides access to the “wall clock” of the interpreter whenever the model

is executed. The periodic thread createSignal is executed every 3000 time units,

with a jitter of 6000 time units and a minimal event separation time of 1000 time units.

This operation injects TMC events into the system by calling the asynchronous opera-

75

tion HandleTmc of an instance of the Radio class shown in Figure 3.3. The operation

handleEvent is called by the system at the end of the UpdateTMC operation (not

shown here), indicating that the event was completely processed by the “TMC Message

Handling” application. The worst-case response time requirement is encoded as a post

condition to the handleEvent operation. The post conditions are checked at run-

time when the model is simulated. The interpreter will stop automatically whenever

an integrity constraint evaluates to false and the state of the model can be inspected to

determine the cause of the problem. Other timeliness requirements can be specified in

a similar way.

3.4.2 The system model

There are two independent applications that consist of three tasks each in the system

model of our example. Tasks can either be triggered by external stimuli directly or

by receiving messages from other tasks indirectly. A task can also actively acquire or

provide information by periodically checking for available data on an input source or

delivering new data to an output source. All three notions of task activation are sup-

ported by our approach. Note that task activation by external stimuli can be used to

model interrupt handling. The HandleKeyPress and HandleTmc tasks in Figure 3.1

belong to this category. All other tasks in our system model are message triggered,

because operation invocation implies message exchange over the communication re-

source BUS1, shown in Figure 3.1. Note that we already demonstrated the use of

periodic task activation in the environment model (createSignal).

class Radio

operations

async public AdjustVolume: nat ==> ()
AdjustVolume (pno) ==
(duration (150) skip;

RadNavSys‘mmi.UpdateVolume(pno));

async public HandleTmc: nat ==> ()
HandleTmc (pno) ==
(cycles (1E5) skip;

RadNavSys‘navigation.SearchTmc(pno))

end Radio

Figure 3.3: The Radio class

Application tasks are modeled by asynchronous operations in our VDM++ exten-

sion. Figure 3.3 presents the definition of AdjustVolume and HandleTmc tasks from

Figure 3.1, which are grouped together in the Radio class for convenience. We use

the skip statement for illustration purposes here. It can be replaced with an arbitrary

complex statement to describe the actual system function that is performed, for exam-

ple changing the amplifier volume set point. Note that the operation AdjustVolume
uses the duration statement to denote that a certain amount of time expires inde-

pendent of the resource on which it is deployed. This duration statement states that

changing the volume set point always takes 150 time units. For illustration purposes,

the operation HandleTmc uses the cycles statement instead, to denote that a certain

amount of time expires relatively to the capacity of the computation resource on which

it is deployed. If this operation is deployed on a resource that can deliver 1000 cycles

76

per unit of time, then the delay (duration) would be 100 time units. A suitable unit of

time can be selected by the modeler.

A special built-in class called CPU is provided to create computation resources in

the system model. Each computation resource is characterized by its processing capac-

ity, specified by the number of available cycles per unit of time, the scheduling policy

that is used to determine the task execution order and a factor to denote the overhead

incurred per task switch. For this case study, fixed priority preemptive scheduling with

zero overhead is used, although our approach is not restricted to any scheduling policy

in particular.

system RadNavSys

instance variables

-- create the application tasks
static public mmi := new MMI();
static public radio := new Radio();
static public navigation := new Navigation();

-- create CPU (policy, capacity, task switch overhead)
CPU1 : CPU := new CPU(<FP>, 22E6, 0);
CPU2 : CPU := new CPU(<FP>, 11E6, 0);
CPU3 : CPU := new CPU(<FP>, 113E6, 0);

-- create BUS (policy, capacity, message overhead, topology)
BUS1 : BUS := new BUS(<FCFS>, 72E3, 0, {CPU1, CPU2, CPU3})

operations

-- the constructor of the system model
public RadNavSys: () ==> RadNavSys
RadNavSys () ==

(-- deploy MMI on CPU1
CPU1.deploy(mmi);
-- deploy Radio on CPU2
CPU2.deploy(radio);
-- deploy Navigation on CPU3
CPU3.deploy(navigation))

end RadNavSys

Figure 3.4: The top-level system model for the case study

A special built-in class BUS is provided to create communication resources in the

system model. A communication resource is characterized by its throughput, specified

by the number of messages that can be handled per unit of time, the scheduling policy

that is used to determine the order of the messages being exchanged and a factor to

denote the protocol overhead per message. The granularity of a message can be deter-

mined by the user. For example, it can represent a single byte or a complete Ethernet

frame, whatever is most appropriate for the problem under study. Here, we use “first

come, first served” scheduling with zero overhead, but again the approach is not re-

stricted to any scheduling policy in particular. An overview of the top-level VDM++

system model is presented in Figure 3.4.

3.5 Abstract Operational Semantics

In this section we formalize the semantics of the proposed changes to VDM++, as

described in Section 3.3. To highlight the main changes and modifications, an ab-

stract basic language which includes the new constructs is defined in Section 3.5.1. We

77

describe the intended meaning and discuss the most important issues that had to be

addressed when formalizing this. In Section 3.5.2, a formal operational semantics is

defined. Validation of this semantics is discussed in Section 3.5.3.

3.5.1 Syntax and informal semantics

To be able to highlight the formal semantics of the extensions proposed in the previous

section, we define a syntax which abstracts away from many aspects and constructs

in VDM++. For example, our syntax does not contain class definitions with explicit

definitions of synchronous and asynchronous operations. Instead, we assume given a

set Operations of operations, with typical element op and predicate syn?(op) which is

true if and only if the operation is synchronous. We also assume that the body of each

operation is compiled into a sequence of basic instructions. We abstract from most

local, atomic instructions and consider only the skip instruction here.

Our time domain is the nonnegative real numbers; Time = {t ∈ R | t ≥ 0}. We

use d to denote a time value and duration (d) as an abbreviation of duration(d) skip.

Assume that, for an instruction sequence IS, the statement duration(d) IS is translated

into IS ˆduration(d), where internal durations inside IS have been removed and the

“ˆ” operator concatenates the duration instruction to the end of a sequence. The con-

catenation operation is also used to concatenate sequences and to add an instruction to

the front of the sequence. Functions head and tail yield the first element and the rest of

the sequence, respectively, and 〈〉 denotes the empty sequence. The cycles statement

has been omitted here since it is equivalent to the duration statement, given a certain

deployment. The periodic statement has been generalized to allow the periodic execu-

tion of an instruction sequence instead of an operation call only. Let ObjectId be the

set of object identities, with typical element oid. The syntax of the instructions is given

in Table 3.1.

Instr. I ::= skip | call(oid, op) | duration(d) | periodic(d) IS

Instr. Seq. IS ::= 〈〉 | IˆIS

Table 3.1: Abstract syntax of basic instructions

These basic instructions have the following informal meaning:

• skip represents a local statement which does not consume any time.

• call(oid, op) denotes a call to an operation op of object oid. Depending on the

syn? predicate, the operation can be synchronous (i.e., the caller has to wait

until the execution of the operation body has terminated) or asynchronous (the

caller may continue with the next instruction and the operation body is executed

independently). There are no restrictions on re-entrance here, but in general this

can be restricted by permission predicates as discussed in Section 2.3.5. These

are not considered here and also parameters are ignored.

• duration(d) represents a time progress of d time units. When d time units have

elapsed the next statement can be executed. As shown in Section 3.4.2, cycles(d)
can be expressed as a duration statement.

• periodic(d) IS leads to the execution of instruction sequence IS each period of

d time units. We have generalized the (p, j, d, o)-tuple into a single parameter

78

here, since there exists a simple deterministic algorithm that computes the delay

to the next activation based on those four parameters.

The distributed architecture of an embedded control program can be represented

by so-called nodes. Let Node be the set of node identities. Nodes are used to repre-

sent computation resources such as processors. On each node a number of concurrent

threads are executed in an interleaved way. The function node : Thread → Node

denotes on which node each thread is executing. Each thread executes a sequential

program, that is, a statement (an instruction sequence) expressed in the language of Ta-

ble 3.1. Furthermore, assume given a set of links, defined as a relation between nodes,

i.e., Link = Node × Node, to express that messages can be transmitted from one node

to another via a link. In the semantics described here, we assume for simplicity that

a direct link exists between each pair of communicating nodes. Note that the built-in

classes CPU and BUS, as used in the radio navigation case study, are concrete examples

of a node and a link.

3.5.2 Formal Operational Semantics

The formalization of the precise meaning of the language described above raises a

number of questions that have to answered and on which a decision has to be taken.

We list the main points:

• How to deal with the combination of synchronous and asynchronous operations,

e.g. does one has priority over the other, how are incoming call request recorded,

is there a queue at the level of the node or for each object separately? We decided

for an equal treatment of both concepts; each object has a single FIFO queue

which contains both types of incoming call requests.

• How to deal with synchronous operation calls; are the call and its acceptance

combined into a single step and does it make a difference if caller and callee

are on different nodes? In our semantics, we distinguish between a call within a

single node and a call to an operation of an object on another node.

For a call between different nodes, a call message is transferred via a link to the

queue of the callee; when this call request is dequeued at the callee, the operation

body is executed in a separate thread and, upon completion, a return message is

transmitted via the link to the node of the caller.

For a call within a single node, we have made the choice to avoid a context switch

and execute the operation body directly in the thread of the caller. Instead, we

could have placed the call request in the queue of the callee.

• Similar questions hold for asynchronous operations. On a single node, the call

request is put in the queue of the callee, whereas for different nodes the call is

transferred via a link. However, no return message is needed and the caller may

continue immediately after issuing the call.

• How are messages between nodes transferred by the links? In principle, many

different communication mechanisms could be modeled. As a simple example,

we model a link by a set of messages which include a lower and an upper bound

on message delivery. For a link l, let δmin(l) and δmax(l) be the minimum and

maximum transmission time. It is easy to extend this and make the transmission

time dependent of, e.g. message size and link traffic.

79

• How to deal with time, how is the progress of time modeled? In our semantics,

there is only one global step which models progress of time on all nodes. All

other steps do not change time; all assumptions on the duration of statements,

context switches and communications have to be modeled explicitly by means

of duration statements.

• What is the precise meaning of periodic(d) IS if the execution of IS takes more

than d time units? We decided that after each d time units a new thread is started

to ensure that every d time units the IS sequence can be executed. Of course, this

might potentially lead to resource problems for particular applications, but this

will become explicit during analysis.

The operational semantics presented in this section defines the execution of the

language given in Table 3.1 formally. To focus on the essential aspects, we assume

that the set of objects is fixed and need not be recorded in the configuration. However,

object creation can be added easily, see e.g. [55]. Threads can be created dynamically,

e.g., to deal with asynchronous operation calls. Let Thread be a set of thread identities;

each thread i is related to one object, denoted by o i. This also leads to the deployment

of threads using the node function defined earlier: node(i) = node(o i). Finally, we

extend the set of instructions Instruction with an auxiliary statement return(i). This

statement will be added during the executing at the end of the instruction sequence of

a synchronous operation which has been called by thread i.
To capture the state of affairs at a certain point during the execution, we introduce

a configuration (Definition 3.5.1). Next we define the possible steps from one config-

uration to another, denoted by C −→ C ′ where C and C ′ are configurations (Defini-

tion 3.5.3). This finally leads to a set of runs of the form C0 −→ C1 −→ C2 −→ . . .
(Definition 3.5.9).

Definition 3.5.1 (Configuration) A configuration C contains the following fields:

• instr : Thread → Instr. Seq. which is a function which assigns a sequence of

instructions, as defined in Table 3.1, to each thread.

• curthr : Node → Thread yields for each node the currently executing thread.

• status : Thread → {dormant, alive, waiting} to denote the status of threads.

• q : ObjectId → queue[Thread × Operations] records for each object a FIFO

queue of incoming calls, together with the calling thread (needed for synchronous

operations only).

• linkset : Link → set[Message × Time × Time] records the set of the incoming

messages for each link, together with lower and upper bound on delivery. A

message may denote a call of an operation (including calling thread and called

object) or a return to a thread.

• now : Time to denote the current time.

For a FIFO queue, functions head and tail yield the head of the queue and the rest,

respectively; insert is used to insert an element and 〈〉 denotes the empty queue. For

sets we use add and remove to insert and remove elements. For a configuration C, we

use:

80

• C(f) to obtain its field f . For example, C(instr)(i) yields the instruction se-

quence of thread i in Configuration C.

• exec(C, i) as an abbreviation for C(curthr)(node(i)) = i, which expresses that

thread i is executing on its node.

• fresh(C, oid) to yield a fresh, not yet used, thread identity (so with status dormant)

corresponding to object oid.

To express modifications of a configuration, we define the notion of a variant.

Definition 3.5.2 (Variant) The variant of a configuration C with respect to a field f
and value v, denoted by C[f �→ v], is defined as

(C[f �→ v])(f ′) =

{

v if f ′ = f
C(f ′) if f ′ �= f

Similarly for parts of the fields, such as instr(i).

Steps have been grouped into several definitions, leading to the following overall

definition of a step.

Definition 3.5.3 (Step) C −→ C ′ is a step if and only if it corresponds to the ex-

ecution of an instruction (Definition 3.5.4), a time step (Definition 3.5.5), a context

switch (Definition 3.5.6), the delivery of a message by a link (Definition 3.5.7), or the

processing of a message from a queue (Definition 3.5.8).

Definition 3.5.4 (Execute Instruction) A step C −→ C ′ corresponds to the execu-

tion of an instruction if and only if there exists a thread i such that exec(C, i) and

head(C(instr)(i)) is one of the following (underlined) instructions:

• skip:

Then the new configuration equals the old one, except that the skip instruction is

removed from the instruction sequence of i, that is,

C′ = C[instr(i) �→ tail(C(instr)(i))]

• call(oid, op):
Let IS be the explicit definition of operation op of object oid. We consider four

cases:

– Caller and callee are on the same node, i.e. node(i) = node(oid).

∗ If syn?(op) then IS is executed directly in the thread of the caller:

C′ = C[instr(i) �→ ISˆtail(C(instr)(i))]

∗ If not syn?(op), we add the pair (i, op) to the queue of oid:

C′ = C[instr(i) �→ tail(C(instr)(i)),
q(oid) �→ insert((i, op), C(q)(oid))]

– Caller and callee are on different nodes, i.e. node(i) �= node(oid). Sup-

pose link l connects the nodes, then the call is transmitted via l, so m =
(call(i, oid, op), C(now) + δmin(l), C(now) + δmax(l)) is added to the

linkset of l.

∗ If syn?(op), thread i becomes waiting:

C′ = C[instr(i) �→ tail(C(instr)(i)), status(i) �→ waiting,
linkset(l) �→ insert(m, C(linkset)(l))]

81

∗ Similarly for asynchronous operations, when not syn?(op), except that

then the status of i is not changed:

C′ = C[instr(i) �→ tail(C(instr)(i)),
linkset(l) �→ insert(m, C(linkset)(l))]

• duration(d):
A duration statement leads to global progress of time. This time step will be

defined in Definition 3.5.5.

• periodic(d) IS:

In this case, IS is added to the instruction sequence of thread i and a new thread

j = fresh(C, oi) is started which repeats the periodic instruction after a duration

of d time units, i.e.

C′ = C[instr(i) �→ IS, instr(j) �→ duration(d)ˆperiodic(d) IS,
status(j) �→ alive]

• return(j):
In this case, we have node(i) �= node(j) and let l be the link which connects

these nodes. Then m = (return(j), C(now) + δmin(l), C(now) + δmax(l)) is

transmitted via l, i.e.

C′ = C[instr(i) �→ tail(C(instr)(i)), linkset(l) �→ insert(m, C(linkset)(l))]

Definition 3.5.5 (Time Step) A step C −→ C ′ is called a time step only if all current

threads are ready to execute a duration instruction or have terminated. More formally,

for all i with exec(C, i), C(instr)(i) is 〈〉 or of the form duration(d)ˆIS. Time may

progress with t time units if

• t is smaller or equal than all durations that are at the head of an instruction

sequence of an executing thread, and

• C(now) + t is smaller or equal than all upper bounds of messages in link sets.

Define the maximal length of the time step tm as the largest t satisfying these con-

ditions. Durations in instruction sequences are modified by the following definition

which yields a new function from threads to instruction sequences, for any thread i,
NewDuration(C, tm)(i) =
{

duration(di − tm)ˆtail(C(instr)(i)) if head(C(instr)(i)) = duration(di)

C(instr)(i) otherwise

Let C ′ = C[instr �→ NewDuration(C, tm)]

Definition 3.5.6 (Context Switch) A step C −→ C ′ corresponds to a context switch

if and only if there exists a thread i which is alive, not running, and has a non-empty

program which does not start with a duration, i.e., ¬exec(C, i), C(status)(i) = alive,

C(instr)(i) �= ø, and head(C(instr)(i)) �= duration(d) for any d. Then i becomes

the current thread and a duration of δcs time units is added to represent the context

switching time:

C′ = C[instr(i) �→ duration(δcs)ˆC(instr)(i), curthr(node(i)) �→ i]

Note that more than one thread may be eligible as the current thread on a node at

a certain point in time. In that case, a thread is chosen nondeterministically in our

operational semantics. Fairness constraints or a scheduling strategy may be added to

reduce the set of possible execution sequences and to enforce a particular type of node

behavior, such as round robin or priority-based pre-emptive scheduling.

82

Definition 3.5.7 (Deliver Link Message) A step C −→ C ′ corresponds to the mes-

sage delivery by a link if and only if there exists a link l and a triple (m, lb, ub) in

C(linkset)(l) with lb ≤ C(now) ≤ ub. There are two possibilities for message m:

• call(i, oid, op): Insert the call in the queue of object oid:

C′ = C[q(oid) �→ insert((i, op), C(q)(oid)),
linkset(l) �→ remove((m, lb, ub), C(linkset)(l))]

• return(i): Wake-up the caller, i.e.

C′ = C[status(i) �→ alive, linkset(l) �→ remove((m, lb, ub), C(linkset)(l))]

Definition 3.5.8 (Process Queue Message) A step C −→ C ′ corresponds to the pro-

cessing of a message from a queue if and only if there exists an object oid with

head(C(q)(oid)) = (j, op). Let j = fresh(C, oid) be a fresh thread and IS be the

explicit definition of op. If the operation is synchronous, i.e. syn?(op), then we start a

new thread with IS followed by a return to the caller:

C′ = C[instr(j) �→ ISˆreturn(j), status(j) �→ alive, q(oid) �→ tail(C(q)(oid))]
Similarly for an asynchronous call, where no return instruction is added:

C′ = C[instr(j) �→ IS, status(j) �→ alive, q(oid) �→ tail(C(q)(oid))]

Definition 3.5.9 (Operational Semantics) The operational semantics of a specifica-

tion in the language of Table 3.1 is a set of execution sequences of the form C0 −→
C1 −→ C2 −→ . . ., where each pair Ci −→ Ci+1 is a step (Definition 3.5.3) and the

initial configuration C0 satisfies a number of constraints:

• no thread has status waiting;

• on each node, the currently executing thread is alive;

• a thread is dormant if and only if it has an empty execution sequence;

• all queues and link sets are empty, and

• the auxiliary instruction return does not occur in any instruction sequence.

To avoid Zeno behavior, we require that for any point of time t there exists a configu-

ration Ci in the sequence with Ci(now) > t.

3.5.3 Validation

The formal operational semantics has been validated by formulating it in the typed

higher-order logic of the verification system PVS 1 and verifying properties about it

using the interactive theorem prover of PVS.

In fact, the formal operational semantics presented in this chapter is based on a

much larger constructive (and therefore executable) operational semantics of the ex-

tended language, which has been specified in VDM++ itself. This “bootstrapping”

approach [67] allows us to interpret models written in the modified language by sym-

bolic execution of its abstract syntax in the constructive operational semantics model

using the existing and unmodified VDMTOOLS.

A large collection of test cases has been created to observe the behavior of each

new language construct and we are fairly confident that the proposed language changes

1 The PVS files and all VDM++ models are available on-line at http://www.marcelverhoef.nl. The PVS

interactive theorem prover is freely available from http://pvs.csl.sri.com/ .

83

http://www.marcelverhoef.nl
http://pvs.csl.sri.com/

are consistent. The constructive operational semantics is currently approximately 100

pages including the test suite. It can be used as a specification to implement the pro-

posed language changes in VDMTOOLS.

3.6 Related work and concluding remarks

One might argue that VDM and therefore this work, is not very relevant for distributed

real-time embedded systems at all. Of course, we believe that this is not true. The

Japanese company CSK, which owns the intellectual property rights to VDMTOOLS, is

targeting this market in particular and they have already expressed interest in our ideas

and results. For example, we were granted access to the company confidential dynamic

semantics specification of the interpreter in order to perform our research.

Related to our formal semantics is work in the context of UML about the precise

meaning of active objects, with communication via signals and synchronous opera-

tions, and threads of control. In [83] a labeled transition system has been defined

using the algebraic specification language CASL, whereas [55] uses the specification

language of the theorem prover PVS to formulate the semantics. Note that UML 2.0

adopts the run-to-completion semantics, which means that new signals or operation

calls can only be accepted by an object if it cannot do any other local action, i.e., it can

only proceed by accepting a signal or call. In our VDM++ semantics there are much

less restrictions imposed on threads. In addition, none of these works deal with deploy-

ments. Related to that aspect is the UML Profile for Schedulability, Performance and

Time, and research on performance analysis based on this profile [9].

In summary, we propose an extension of VDM++ to enable the modeling of dis-

tributed real-time embedded systems. These language extensions allows us to experi-

ment with different deployment strategies at a very early stage in the design. On the

syntactic level, the changes seem minor but they make a big difference. The model of

the in-car navigation system presented in this chapter is significantly smaller than the

model that was created earlier with Timed VDM++ in Section 2.3.5. Moreover, the

new model covers a much larger part of the problem domain. We believe that impor-

tant system properties can be validated in a very cost-effective way if these features are

implemented in VDMTOOLS.

A constructive operational semantics was defined for a language subset to prototype

and validate the required improvements in the semantics. The changes are substantial

but they still fit the general framework of the full VDM++ dynamic semantics. Fur-

thermore, a generalized abstract operational semantics, that is not specific to the VDM

family of languages, is presented in this Chapter.

84

Chapter 4

Co-simulation of Distributed

Embedded Real-Time Control

Systems

4.1 Introduction

Computing systems that are intimately coupled to the environment which they monitor

and control are commonly referred to as embedded systems. We focus on the class of

embedded systems that control a physical process in the real world. We refer to these

systems as embedded control systems. Examples are the control unit of a washing

machine and the fuel injection system in a private car. Embedded control systems

execute an algorithm that ensures the correct behavior of the system as a whole. The

common element of all these systems is that timeliness is of concern. Control actions

have to be taken on time to keep the physical process in the required state. Hence,

embedded control systems are real-time systems.

This is in particular true for the class of high-tech systems such as for instance wafer

steppers and high-volume printers and copiers. The productivity of these machines,

which is often their most important selling point, depends on the performance of the

embedded control system. Typically, these complex machines are composed of several

subsystems that need to work together to get the job done, which may require multi-

layer and distributed control. For example, each subsystem may have its own embedded

control system to perform its specific function while another, dedicated, subsystem

coordinates the system as a whole by telling the other subsystems what to do and when.

It is not hard to imagine that the design of the control strategy for these systems is

challenging.

This is complicated by the fact that systems are often developed out-of-phase. Typ-

ically, mechanical design precedes electronics design which precedes software design.

Although there is a trend towards concurrent engineering to reduce development time,

the lead times for mechanical design and engineering typically still exceed those of

electronics and software. System level design considerations are validated during the

test and integration phase, which may cause significant delays in the project in case an

important issue was overlooked. Software is often the only part of the system that can

be changed at this late stage. These late changes can cause a significant increase in the

85

complexity of the software, especially when a carefully designed software architecture

is violated to compensate for some unforeseen problems in the hardware. Hence, it

is important to get as much feedback as possible in the earliest stages of the system

design life-cycle, to prevent this situation.

Model-based design addresses this challenge. Reasoning about system-level prop-

erties is enabled by creating abstract, high-level and multidisciplinary models of the

system under construction. Mono-disciplinary models typically allow optimization of

single aspects of the design, while multidisciplinary models allow reasoning about fit-

ness for purpose across multiple system aspects. Suppose, for instance, that the posi-

tion of a sheet of paper in the paper path of a printer is measured with a sensor that

generates an interrupt when the edge of the sheet is observed. High interrupt loads

can occur on the embedded control system if these sensors are placed physically close

together, because they are triggered right after one another. A very powerful processor

may be required in order to deal with this sudden peak load, in particular when a short

response time must be guaranteed for each event. There is a clear trade-off between

spatial layout and performance in this example. Analysis of multidisciplinary models

provides valuable insight into the design such that these trade-offs can be made in a

structured way, earlier, and with more confidence.

This approach was studied in the BODERC project [47] in which the author par-

ticipated. We observed that creating multidisciplinary models is far from trivial. The

notations and the engineering and analysis approaches that are advocated by the in-

volved disciplines are different and the resulting models are typically not at the same

level of abstraction. Henzinger and Sifakis [53] even claim that these are fundamental

problems and that a new mathematical foundation is required to reason about these in-

tegrated multidisciplinary models. The approach taken in this chapter is different. We

would like to be able to combine the state of the art in each discipline in a useful and

consistent way. In other words, we want to construct multidisciplinary models from

mono-disciplinary models. We are certainly not the first to propose this idea but we

believe that our solution to this problem is novel.

Contribution of this chapter. We have reconciled the semantics of two existing

formal notations such that system models, which are composed of sub-models written

in either language, can be conveniently studied in combination. We also demonstrate

how this is achieved in practice by tool coupling. The result is a light-weight modeling

approach that enables construction of multidisciplinary models that can be simulated,

in addition to the analysis techniques already available for each sub-model individually.

Moreover, the reconciled semantics ensures reliable simulation results which can be

obtained with little effort.

Structure of this chapter. An overview of the current state of practice is presented

in Section 4.2. Modeling and analysis of embedded control systems is discussed by

introducing a motivating case study in Section 4.3. The results of the simulation using

the tool coupling are shown in Section 4.4. The semantic integration is presented from

a formal perspective in Section 4.5. Finally, we look at related and future work and we

draw conclusions in Section 4.6.

4.2 Current state of practice in academia and industry

The importance of model-based design is widely recognized and we observe that many

contenders, typically originating from a specific discipline, are extending their tech-

niques to cater for this wider audience. Matlab/Simulink is an example of this trend.

86

In combination with their Stateflow and Real-time Workshop add-on products, they

provide a tool chain for embedded systems design and engineering. It is particularly

well-suited for fine grained controller design. This is not surprising because the roots of

the tools are firmly based in systems theory. Stateflow can be used to model the control

software using finite state machines. However, this technique is not very convenient

for specifying complex algorithms. One has to write so-called S-functions or provide

a piece of C-code in order to execute the Stateflow model. Timing is idealized by the

assumption that all transitions take a fixed number of timer ticks. Scheduling and de-

ployment of software on a distributed system cannot easily be described and analyzed.

Henriksson [52] designed and implemented the TrueTime toolkit on top of Simulink

which provides a solution for describing scheduling and deployment, but the software

models remain at a low abstraction level. We believe that these tools are not acceptable

to embedded software engineering at large, because insufficient support is provided for

modern software engineering approaches to design and implement complex real-time

software.

A similar situation arises from IBM Rational Technical Developer (formerly known

as Rational Rose Real-time) and Telelogic Rhapsody (now also an IBM company).

These software development environments are increasingly used in real-time embed-

ded systems development [26]. They provide modeling capabilities based on the Uni-

fied Modeling Language (UML) and the System Modeling Language (SysML) and are

supported by mature development processes (RUP and Harmony respectively). Both

tools aim to develop executable models that are deployed on the target system as soon

as possible to close the design loop. This requires the model to evolve to a low level

of abstraction early in the design process in order to achieve that goal. Actions are

coded directly in the target (programming) language and timing can be specified by

using so-called timer objects provided by the modeling framework. However, their

resolution and accuracy is determined by the services of the operating system running

on the target platform; they are not part of the modeling language. Moving code from

one platform to another might lead to completely different timing behavior. Similarly,

task priorities and scheduling are implementation specific. We believe that these tools

are not acceptable to the control engineer at large, because no support is provided to

design and analyze the control laws that the system should implement.

Is it possible to support control and software engineers using a single method or

tool? Several attempts have been made to unify both worlds. For example, Hooman,

Mulyar and Posta [54] have co-simulated Rose Real-time software models with con-

trol laws specified in Matlab/Simulink. They removed the platform dependent notion

of time in Rose Real-time by providing a platform neutral notion of time instead. This

is achieved by development of an interface that sits in between Rose Real-time and

Simulink, which exposes the software simulator of Rose Real-time to the Simulink

internal clock. While this is a step forward, it also shows that Rose Real-time is not

very suitable for the co-simulation of control systems, because it lacks a suitable no-

tion of simulation time and the run-to-completion semantics does not allow interrupts

due to relevant events of the physical system under control. I-Logix has recently an-

nounced integration of Rhapsody with Simulink but the technical details have not yet

been unveiled.

Lee et al [22] propose a component based, actor oriented approach. They define a

framework in which all components are concurrent and interact by sending messages

according to some communication protocol. The communication protocol and the con-

currency policies together are called the model of computation. Ptolemy-II [22] is a

system-level design environment that supports heterogeneous modeling and design us-

87

dV

dt
= fI − fO (4.1)

fO =

{

ρ·g
A·R

· V if valve = open

0 if valve = closed
(4.2)

Figure 4.1: The water tank level control case study

ing this approach. It supports several domains, each of which is based on a particular

model of computation, such as for example discrete event, synchronous data flow, pro-

cess networks, finite state machines and communicating sequential processes. They

can be combined at liberty to describe the system under investigation. This approach

seems to be a major step forward for model based design of real-time embedded sys-

tems, but paradoxically, it does neither appeal to control engineers nor to software

engineers. Perhaps the approach proposed by Ptolemy-II upsets the current way of

working so much that it is considered too high a risk to use in an industrial environ-

ment, as was our own experience. Currently, only simulation is offered as a means of

model validation and synthesis is under development for some domains. Verification

of Ptolemy-II models is not yet possible because the semantics of actors has not been

formally defined.

4.3 Modeling and analysis of embedded control systems

The complexity of embedded control design and analysis is probably best explained by

means of a motivating example. We use the level control of a water tank in this chapter.

This example is small and simple, but it contains all the basic elements of an embedded

control system. These elements are presented in detail in this section. An overview of

the case study is presented in Figure 4.1. The case study concerns a water tank that is

filled by a constant input flow fI and can be emptied by opening a valve resulting in an

output flow fO. The volume change is described by equations (4.1) and (4.2), where A
is the surface area of the tank bottom, V is the volume, g is the gravitation constant, ρ
is the density of the liquid and R is the resistance of the valve exit.

From the system theoretic point of view, we distinguish the plant and the controller

of an embedded control system, as shown in Figure 4.2. The plant is the physical entity

in the real world that is observed and actuated by the controller. More accurately, we

study feedback control in this chapter. Feedback controllers compute and generate a

control action that keeps the difference between the observed plant state and its desired

value, the so-called set-point, within a certain allowed margin of error at all times.

The plant is a dynamic system that is usually represented by differential equations if

it is described in the continuous time (CT) domain or by difference equations if it is

described in the discrete time (DT) domain.

The water tank case study is an example of a continuous time system, described

by differential equation (4.1). Controllers observe some property of the plant and they

change the state of the plant by performing a control action, according to some control

88

Figure 4.2: System theoretic view of a control system

law. This control law keeps the system as a whole in some desired state. In our case

study, the water level is observed by three sensors: a pressure sensor at the bottom of

the tank which measures the current water level continuously and two discrete sensors

that raise an alarm if a certain situation occurs. The top sensor informs us when the

water level exceeds the high water mark and the bottom sensor fires if the water level

drops below the low water mark. The aim of the controller is to keep the water level

between the low and high watermark. The controller can influence the water level by

opening or closing a valve at the bottom of the tank. We assume that the valve is either

fully open or fully closed. Plant modeling and controller descriptions are discussed in

more detail in the following sections.

4.3.1 Plant modeling

To model the plant of the embedded control system, we use so-called bond graphs

[61, 13] in this chapter. Bond graphs are directed graphs, showing the relevant dy-

namic behavior of the system. Vertices are the sub-models and the edges, which are

called bonds, denote the ideal (or idealized) exchange of energy. Entry points of the

sub-models are the so-called ports. The exchange of energy through a port (p) is always

described by two implicit variables, effort (p.e) and flow (p.f). The product of these

variables is the amount of energy that passes through the port. For each physical do-

main, such a pair of variables can be specified, for example: voltage and current, force

and velocity. The half arrow on the vertex at the bonds shows the positive direction of

the flow of energy, and the perpendicular stroke indicates the computational direction

of the two variables involved. They connect the energy flows to the two variables of

the bond. The equations that define the relationship between the variables are specified

as real equalities, not as assignments. Port variables obtain a computational direction

(one as input, the other as output) by means of computational causal analysis on the

graph. This efficient algorithm ensures that the underlying set of differential equations

can be solved deterministically by rewriting the equations as assignment statements

such that a consistent evaluation order is enforced whenever a solution is calculated.

Bond graphs are physical-domain independent, due to analogies between the different

domains on the level of physics. Mechanical, electrical, hydraulic and other system

parts can all be modeled with bond graphs. Bond graphs may be mixed with block

diagrams in a natural way to cover the information domain. Control laws are usually

specified with block diagrams and the plant is specified with bond graphs to model a

controlled mechatronic system. Figure 4.3 shows the bond graph plant model of the

water tank case study. The Sf element is the input flow fI. The C element describes the

water tank. The equations of the tank are next to the figure. The R element describes

the drain. The X0 element is a so-called switching junction which describes the valve.

89

When the valve is opened, a flow fO will be drained from C. There is no flow from C
when the valve is closed.

1 = open

waterlevel

valve control

f
I

f
O

0 = close

Tank

Valve

Drain

Input

R

C 0

X0

Sf

01 variables
02 real volume, level;
03 parameters
04 real area = 1.0;
05 real gravity = 9.81;
06 real density = 1.0;
07 equations
08 // p.e = pressure, p.f = flow rate
09 // integrate flow to obtain volume
10 volume = int(p.f);
11 level = volume / area;
12 p.e = gravity * level * density;

Figure 4.3: The bond graph plant model of the water tank case study

Differential equations are the general format for representing dynamic systems

mathematically. For specifying a plant model many continuous-time representations

exist, e.g., bond graph models, ideal physical models, block and flow diagrams and so

on. A common property is that all these model types are directly related to a set of

differential equations. For the subset of linear time-invariant plant models, alternative

description techniques exist, such as the s-plane, frequency response and state-space

formats [70].

System theory has provided many analysis techniques for time-invariant linear

models and design techniques for their associated controllers, for which certain prop-

erties can be proven to hold. However, real world systems often tend to be nonlinear

and time varying. The task of the control engineer is to find a suitable linearization

such that system theory can still be applied to design a controller. Alternatively, simu-

lation can be used if the dynamic system can be described by a collection of so-called

ordinary differential equations. This includes the linear time-invariant models men-

tioned earlier, as well as non-linear and time varying differential equations. Partial

differential equations can be approximated by lumped parameter models in ordinary

differential equations and also non-deterministic (or stochastic) models can be simu-

lated. Although simulation can never provide hard answers, it is often used because it

can address a much larger class of problems than linear analysis. For example, it can

be used to determine whether a linearized model is a good abstraction of the original

non-linear model, since both models can be simulated.

The basic method used in simulation is to solve a differential equation numerically

instead of analytically. Approximations of the solution are computed by means of

integration of the differential equations. These numerical integration techniques are

commonly referred to as “solvers” and they exist in many flavors. Examples of well-

known solvers are Euler, Runge-Kutta and Adams-Bashforth [44, 45]. These solvers

belong to the class of fixed step size integration algorithms. Also many variable step

size algorithms exist. Selection of the right solver is non-trivial and requires a good

understanding of the model itself. For example, variable step size solvers are typically

required when the dynamic system is described by (combined CT and) DT models. In

addition, since an approximation of the solution is computed, an integration error is

introduced. This error might lead to instability if the solver, and its parameters, are not

carefully selected.

90

4.3.2 Controller description

According to Cassandras and Lafortune [17], a system belongs to the class of discrete

event systems if the state can be described by a set of discrete values and state transi-

tions are observed at discrete points in time. We adopt this definition here. Discrete

event models can be used to describe the behavior of digital computers, which imple-

ment certain control laws. Computers execute instructions based on a discrete clock.

The result of an instruction becomes available after a certain number of clock ticks has

elapsed. Sensor input samples and actuator output values are seen as discrete events in

this model of computation.

In order to bridge the gap between continuous time and discrete event simulation,

we obviously need to introduce the notion of events in the continuous time solver.

Here, we distinguish two different event types: a) state events and b) time events. State

events occur when the solution of a differential equation reaches some value p. Time

events occur when the solver has reached some time t. Consider a solver that produces

a sequence of time steps time and a sequence of solutions state for variable x then we

can declare events as follows

REE (x, p)
def
= state (x, n − 1) − p < 0 ∧ state (x, n) − p ≥ 0 (4.3)

FEE (x, p)
def
= state (x, n − 1) − p > 0 ∧ state (x, n) − p ≤ 0 (4.4)

TE (t)
def
= time (n − 1) < t ∧ time (n) = t (4.5)

whereby n is the index used in both sequences. The event REE is the so-called rising

edge zero crossing and FEE is the falling edge zero crossing. The zero crossing func-

tions of the solver ensure that time(n) is an accurate approximation within user-defined

bounds. The time event TE is generated as soon as the solver has exactly reached time

t, whereby the solver ensures that the solution x in state(x, n) at time(n) = t is

an accurate approximation. For our case study, we define two edge triggered events:

REE (level, 3.0) and FEE (level, 2.0), whereby level is a shared continuous time variable

that represents the height of the water level in the tank. This variable is declared on

line 2 of Figure 4.3 and line 4 of Figures. 4.5 and 4.6. An event is declared as a nor-

mal equation in 20-SIM [19] as shown in Figure 4.4. In this example, we increment

a simple event counter eue and inform the CT solver that the DE model needs to be

updated, by setting the variable fireDES.

// check for the upper water level limit
if (eventup(level - 3.0)) then

eue = eue + 1;
fireDES = true;

end;

Figure 4.4: The REE (level, 3.0) event in 20-SIM

We use VDM++ [30] in this chapter to describe the controller. We extend the

notation reported in earlier work [101], which is also presented in the previous chapter,

such that the behavior of this discrete event controller can be analyzed by means of co-

simulation with the continuous time plant model. For simplicity, we assume a single

processor system cpu1 that executes the controller in our example.

We demonstrate that two styles of control can be used: event driven control, shown

in Figure 4.5, and time triggered control, presented in Figure 4.6. Both models have

91

shared continuous sensor and actuator variables level and valve, which are declared on

Line 4 and 5. Whenever the VDM++ instance variable level is read, it will contain the

actual value of the level variable of the continuous time model as shown on line 11 of

Figure 4.3. Similarly, whenever instance variable valve is assigned a value in VDM++,

it will immediately change the state of X0 in Figure 4.3.

For event driven control, as shown in Figure 4.5, two asynchronous operations,

open and close are defined in lines 8 and 11 respectively. The former will be the

handler for the REE (level, 3.0) event and the latter is the handler for the FEE (level, 2.0)

event. In other words, these two asynchronous operations will be called automatically

by the simulation framework whenever the corresponding event fires. This will cause

the creation of a new thread. This thread will die as soon as the operation is completed.

In VDM++, all statements have a default duration, which can be redefined using the

duration and cycles statements. The duration statement on line 9 states that

opening the valve in this case takes 50 msec. The cycles statement on line 12 denotes

that closing the valve takes 1000 cycles. Assuming this class is deployed on a processor

with a capacity of 100000 cycles per second, then executing valve := false will

take 10 msec. Note that the result of the assignment is available after this time has

passed. The sync clause on line 14-17 states that the two operations are declared

mutually exclusive. This implies that only one operation call can be active at any

time and they cannot be interrupted by each other. All threads that do not meet this

requirement are blocked until the currently executing thread terminates or yields.

01 class EventDrivenControl
02
03 instance variables

04 static public level : real;
05 static public valve : bool := false -- default is closed
06
07 operations

08 async static public open: () ==> ()
09 open () == duration(0.05) valve := true;
10
11 async static public close: () ==> ()
12 close () == cycles(1000) valve := false;
13
14 sync

15 mutex(open, close);
16 mutex(open);
17 mutex(close)
18
19 end EventDrivenControl

Figure 4.5: Event driven control of the water tank in VDM++

Time triggered control, as presented in Figure 4.6, is provided by the loop operation

in line 8-15. The periodic clause in line 18 states that the operation loop is called

periodically, once per second, starting at t = 1 sec. Again we use the duration and

cycles constructs here to specify the time required to open and close the valve.

4.4 Tool support

We implemented a discrete event simulator to execute VDM++ models as described in

the previous section, as a proof of concept. We coupled this tool to the 20-SIM [19]

continuous time simulator for dynamic systems. This tool has the ability to make

92

01 class TimeTriggeredControl
02
03 instance variables

04 static public level : real;
05 static public valve : bool := false -- default is closed
06
07 operations

08 loop: () ==> ()
09 loop () ==
10 -- first check high water mark
11 if level >= 3
12 then duration(0.05) valve := true

13 -- then check low water mark
14 else if level <= 2
15 then cycles(1000) valve := false;
16
17 threads
18 periodic(1.0, 0.0, 0.0, 1.0)(loop)
19
20 end TimeTriggeredControl

Figure 4.6: Time triggered control of the water tank in VDM++

calls to user-defined libraries from within the simulation. We implemented a simple

DLL in C++ to exchange arbitrary sequences of double precision reals over a TCP/IP

connection. The same library is used in the VDM++ simulator to set-up a connection.

The progress of time in the simulators on either end of the connection is synchronized

by exchanging the current time, time steps, actuator and sensor values and events,

whereby the current time is always strictly monotonically increasing. In this section

we will focus on the construction and use of the interface. In the next section we will

look at the semantics in more detail.

The behavior of the interface is shown in the UML sequence diagram in Figure 4.8.

We use an XML configuration file to describe the information that is exchanged over

the link. The interface is completely model independent. For brevity, we use an infor-

mal description as presented in Figure 4.7. The keywords sensor and actuator
are defined as perceived from the perspective of the discrete event simulator. Basically,

we define a sensor[] array, an actuator[] array and an event[] array. These

arrays provide the bindings for all variables and events. The abort keyword is used to

stop the simulation, in addition to other tool specific stop criteria that may be defined,

and gives control back to the user, for example to inspect the state of the model.

sensor[1] = cpu1.Controller‘level
actuator[1] = cpu1.Controller‘valve
event[1] = REE(level,3.0) -> cpu1.Controller‘open
event[2] = FEE(level,2.0) -> cpu1.Controller‘close
event[3] = TE(15.0) -> abort

Figure 4.7: The interface configuration file

The XML configuration file is read by both simulations when the interface is started,

indicated by initialize in Figure 4.8. When a message is sent from VDM++ to

20-SIM, indicated as updateCT in Figure 4.8, the message contains the current time

T , the target time step ts, and the value of each defined actuator variable at T from

actuator[]. So, for our case study only three values are exchanged in this direc-

tion for every step. Upon arrival, the operation updateCTmodel calls the continuous

93

time solver and tries to perform the time step ts. Either this time was reached or the

solver stopped due to an event that occurred at t r. When a message is sent from 20-SIM

to VDM++, indicated as updateDE in Figure 4.8, the message contains the current

time T , the realized time step tr ≤ ts, the value of each defined sensor variable at

T + tr from sensor[], followed by a monotone increasing counter for each declared

event[]. This counter is incremented when the event occurred at T + t r. This al-

lows us to monitor the integrity of the interface. Several events can be detected at the

same time, but an event can only occur once per iteration. Six values are offered when

a message is sent from 20-SIM to VDM++ in the water tank model. Upon arrival,

the operation updateDEmodel processes all events, updates the shared continuous

variables and performs a simulation step on the discrete event model, after which we

iterate.

Figure 4.8: Tool interface behavior as a UML sequence diagram

Figure 4.9 presents a co-simulation run for our case study using event driven con-

trol. In other words, we are studying the behavior of the two asynchronous operations

open and close, as shown on lines 8-12 in Figure 4.5. The top screen shows the evo-

lution of the level sensor variable. The middle screen shows the evolution of the valve

actuator variable. The bottom screen shows when the controller has been activated.

This is monitored by means of a simple counter that is increased whenever the VDM++

model executes either of these asynchronous operations. Note that these operations are

only executed when either of the sensors is tripped.

Figure 4.10 presents a co-simulation run for our case study using time triggered

control. In other words, we are studying the behavior of the periodic loop operation,

as shown on lines 8-18 in Figure 4.6. The top screen shows the evolution of the level

sensor variable. The middle screen shows the evolution of the valve actuator variable.

The bottom screen shows when the controller has been activated. This is monitored

by means of a simple counter that is increased whenever the VDM++ model executes

the loop operation. Notice that the discrete controller is indeed invoked every second.

94

Figure 4.9: Co-simulation of the water tank case study using event driven control

Moreover, observe that the valve was not opened at t = 8 sec because level was 2.96 at

that time. The overshoot would have been substantially smaller if event based control

was used or a smaller period was chosen.

We can change many system parameters in the discrete event simulator and observe

their impact, such as the processor speed, task switch overheads, and the scheduling

policy, without modifying the models shown in Figures 4.5 and 4.6. Similarly, we

can change parameters in 20-SIM, such as the input flow rate, the liquid density, the

resistance of the valve exit, etcetera.

4.5 Reconciled operational semantics

We extend the abstract and formal operational semantics for distributed embedded real-

time systems of Chapter 3 in this section. Recall that a two-phase elaboration is used.

In the first phase, all active threads perform atomic actions asynchronously until they

need to perform a time step. In the second phase, this time step is performed syn-

chronously for all threads and all pending messages. One of the key features of the

work presented here is that state modifications computed in phase one are only made

visible after the time step in phase two has been completed, in order to guarantee con-

sistency in the presence of shared continuous variables and arbitrary interleaving of

multiple, concurrent, threads.

The main aim of the extended operational semantics presented here is to formalize

the interaction between the discrete event simulator, which executes a control program,

95

Figure 4.10: Co-simulation of the water tank case study using time triggered control

and a solver for a continuous time plant model. We have omitted many details that

have already been formalized in Chapter 3, such as the links between nodes, message

transfer along these links, the definition of operations, guards and the concept to define

periodic threads. In this section, we concentrate on the interaction between discrete

event and continuous time models by means of sharing state variables and exchanging

events. In Section 4.5.1 we define the syntax of a simple imperative language which

serves as an illustration of the basic concepts, without trying to be complete. The

operational semantics of this language is defined in Section 4.5.2. The tool support

described in the previous section conforms to this formal operational semantics.

4.5.1 Syntax and informal semantics revisited

The distributed architecture of an embedded control program can be represented by

so-called nodes. Nodes are used to represent computation resources such as proces-

sors. On each node a number of concurrent threads are executed in an interleaved

way. Each thread performs a sequential program, that is, a statement (instruction se-

quence) expressed in the language of Table 3.1. In fact, we need to extend the syntax

of the language in order to demonstrate the extensions to the operational semantics

proposed here. Let Value be a domain of values, such as the reals and let Var be a set

of variables. The syntax of our enhanced sequential programming language is given in

Table 4.1, with c ∈ Value, x ∈ Var, and d ∈ Time.

96

Value Expr. e ::= c | x | e1 + e2 | e1 − e2 | e1 × e2

Bool Expr. b ::= e1 = e2 | e1 < e2 | ¬b | b1 ∨ b2

Instr. I ::= skip | x := e | call(oid, op) | duration(d) |

periodic(d) IS | if b then IS1 else IS2 fi |

while b do IS od

Instr. Seq. IS ::= 〈〉 | IˆIS

Table 4.1: Abstract syntax of basic instructions - revisited

These basic instructions have the following informal meaning:

• skip represents a local statement which does not consume any time.

• x := e assigns the value of expression e to x.

• call(oid, op) denotes a call to an operation op of object oid. Depending on the

syn? predicate, the operation can be synchronous (i.e., the caller has to wait

until the execution of the operation body has terminated) or asynchronous (the

caller may continue with the next instruction and the operation body is executed

independently). There are no restrictions on re-entrance here, but in general this

can be restricted in VDM by so-called permission predicates. These are not

considered here and also parameters are ignored.

• duration(d) represents a time progress of d time units. When d time units have

elapsed the next statement can be executed.

• periodic(d) IS leads to the execution of instruction sequence IS each period of d
time units.

• if b then IS1 else IS2 fi executes instruction sequence IS1 if b evaluates to true

and IS2 otherwise.

• while b do IS od repeatedly executes instruction sequence IS as long as b evalu-

ates to true.

New in the approach taken here is that the execution of threads is interleaved with

steps of the continuous time solver. The interface between the discrete event and con-

tinuous time models consist of shared variables and events. First, we define the shared

variables.

Assume given a set of variables Var = InVar ∪ OutVar ∪ LVar where InVar is the

set of input / sensor variables, OutVar is the set of output / actuator variables, and LVar

a set of local variables. The input and output variables (also called I / O-variables) are

global and shared between all threads and the continuous model. Hence, they can also

be accessed by the solver of a continuous model, which may read the actuator variables

and write the sensor variables. Let IOVar = InVar ∪ OutVar.

Next, we define a notion of events. The continuous time solver may send events to

the discrete event control program. Let Event be a set of events, which can be defined

by using the primitives REE (x, c), FEE (x, c), and TE (d), as proposed in Equations 4.3-

4.5. Assume that an event handler has been defined for each event, i.e., an instruction

sequence and a node on which this statement has to be executed as a new thread, de-

noted by the function evhdlr : Event → Instr. Seq. × Node.

97

4.5.2 Formal Operational Semantics

A new issue arises with respect to the formal definition of the extended operational

semantics, in addition to the questions already raised in Section 3.5.2 :

• What is the effect of the interleaved execution of assignments to shared variables

in different threads? Recall that the execution of basic statements such as skip

and assignment takes zero time. Hence, in our semantics any sequence of state-

ments between two successive duration statements is executed atomically (in

zero time). For instance, if we execute the instruction sequence duration(1)̂ x :=
1ˆx := x + 1ˆduration(1) in parallel with the sequence duration(1)ˆx :=
5 ˆ y := x ˆ duration(1) then there are two possible results; we might get

x = 5 ∧ y = 5 or x = 2 ∧ y = 5. This in contrast with duration(1)ˆx :=
1ˆduration(1)ˆx := x + 1ˆduration(1) in parallel with duration(1)ˆx :=
5ˆduration(1)ˆy := xˆduration(1), where additionally x = 2 ∧ y = 1,

x = 2 ∧ y = 2, x = 6 ∧ y = 5, and x = 6 ∧ y = 6 are possible.

Hence, the execution of an instruction sequence might be interleaved with state-

ments of other threads or a step of the continuous time solver. Concerning the shared

I / O-variables in IOVar, this means that we have to ensure atomicity explicitly. Hence,

we introduce a kind of transaction mechanism to guarantee consistency in the presence

of arbitrary interleaving of steps. Thread i is only allowed to modify I / O-variable x if

there is no transaction in progress by any other thread. The transaction is committed

immediately after the thread performs a time step. This will be explained in detail in

Defs. 4.5.2, 4.5.4 and 4.5.5.

To capture the state of affairs at a certain point during the execution, we introduce

a configuration (Definition 4.5.1). Next we define the possible steps from one config-

uration to another, denoted by C −→ C ′ where C and C ′ are configurations (Defini-

tion 4.5.3). This finally leads to a set of runs of the form C0 −→ C1 −→ C2 −→ . . .
(Definition 4.5.9).

Definition 4.5.1 (Configuration) A configuration C contains the following fields:

• instr : Thread → Instr. Seq.

which is a function which assigns a sequence of instructions to each thread.

• curthr : Node → Thread

yields for each node the currently executing thread.

• status : Thread → {dormant, alive, waiting}
denotes the status of threads.

• lval : LVar × Thread → Value

denotes the value of each local variable for each thread.

• ioval : IOVar → Value

denotes the committed value of each sensor and actuator variable.

• modif : IOVar × Thread → Value ∪ {⊥}
denotes the values of sensor and actuator variables that have been modified by a

thread and for which the transaction has not yet been committed (by executing a

duration statement). The symbol ⊥ denotes that the value is undefined, i.e., the

thread did not modify the variable in a non-committed transaction.

98

• q : ObjectId → queue[Thread × Operations]
records for each object a FIFO queue of incoming calls, together with the calling

thread (needed for synchronous operations only).

• linkset : Link → set[Message × Time × Time]
records the set of the incoming messages for each link, together with lower and

upper bound on delivery. A message may denote a call of an operation (including

the calling thread and called object) or a return to a thread.

• now : Time

denotes the current time.

For a FIFO queue, functions head and tail yield the head of the queue and the rest,

respectively; insert is used to insert an element and 〈〉 denotes the empty queue. For

sets we use add and remove to insert and remove elements. For a configuration C we

use:

• C(f) to obtain its field f . For example, C(instr)(i) yields the instruction se-

quence of thread i in configuration C.

• exec(C, i) as an abbreviation for C(curthr)(node(i)) = i, which expresses that

thread i is executing on its node.

• fresh(C, oid) to yield a fresh, not yet used, thread identity (so with status dormant)

corresponding to object oid.

To express modifications of a configuration, we define the notion of a variant.

Definition 4.5.2 (Variant) The variant of a configuration C with respect to a field f
and value v, denoted by C[f �→ v], is defined as

(C[f �→ v])(f ′) =

{

v if f ′ = f
C(f ′) if f ′ �= f

Similarly for parts of the fields, such as instr(i).

We define the value of an expression e in a configuration C which is evaluated in the

context of a thread i, denoted by [[e]](C, i). The main point is the evaluation of a

variable, where for an I / O-variable we use the modif field if there is an uncommitted

change:

[[x]](C, i) =

⎧

⎪

⎨

⎪

⎩

C(modif)(x, i) if x ∈ IOVar, C(modif)(x, i) �= ⊥

C(ioval)(x) if x ∈ IOVar, C(modif)(x, i) = ⊥

C(lval)(x, i) if x ∈ LVar

The other cases are trivial, e.g., [[e1 × e2]](C, i) = [[e1]](C, i) × [[e2]](C, i) and

[[c]](C, i) = c. It is also straightforward to define when a Boolean expression b holds

in the context of thread i in configuration C, denoted by [[b]](C, i). For instance,

[[e1 < e2]](C, i) if and only if [[e1]](C, i) < [[e2]](C, i), and [[¬b]](C, i) if and

only if not [[b]](C, i).

Definition 4.5.3 (Step) C −→ C ′ is a step if and only if it corresponds to the ex-

ecution of an instruction (Definition 4.5.4), a time step (Definition 4.5.5), a context

switch (Definition 4.5.6), the delivery of a message by a link (Definition 4.5.7), or the

processing of a message from a queue (Definition 4.5.8).

99

Definition 4.5.4 (Execute Instruction) A step C −→ C ′ corresponds to the execu-

tion of an instruction if and only if there exists a thread i such that exec(C, i) and

head(C(instr)(i)) is one of the following (underlined) instructions:

skip:

Then the new configuration equals the old one, except that the skip instruction is re-

moved from the instruction sequence of i, that is,

C′ = C[instr(i) �→ tail(C(instr)(i))]

x := e:

We distinguish two cases, depending on the type of variable x.

• If x ∈ IOVar we require that there is no transaction in progress by any other

thread, that is, for all i′ with i′ �= i we have C(modif)(x, i′) = ⊥. Then the

value of e is recorded in the modified field of i:
C′ = C[instr(i) �→ tail(C(instr)(i)), modif(x, i) �→ [[e]](C, i)]

As we will see later, all values belonging to thread i in C(modif) are removed

and bound to the variables in C(ioval) as soon as thread i completes a time step

(Definition 4.5.5). This corresponds to the intuition that the result of a compu-

tation is available only at the end of the time step that reflects the execution of a

piece of code.

• If x ∈ LVar then we change the value of x in the current thread:

C′ = C[instr(i) �→ tail(C(instr)(i)), lval(x, i) �→ [[e]](C, i)]

call(oid, op):
Let IS be the explicit definition of operation op of object oid. We consider four cases:

• Caller and callee are on the same node, i.e. node(i) = node(oid).

– If syn?(op) then IS is executed directly in the thread of the caller:

C′ = C[instr(i) �→ ISˆtail(C(instr)(i))]

– If not syn?(op), we add the pair (i, op) to the queue of oid:

C′ = C[instr(i) �→ tail(C(instr)(i)),
q(oid) �→ insert((i, op), C(q)(oid))]

• Caller and callee are on different nodes, i.e. node(i) �= node(oid). Suppose link

l connects these nodes. Then the call is transmitted via link l, which is repre-

sented by adding message m = (call(i, oid, op), C(now) + δmin(l), C(now) +
δmax(l)) to the linkset of l.

– If syn?(op), thread i becomes waiting:

C′ = C[instr(i) �→ tail(C(instr)(i)), status(i) �→ waiting,
linkset(l) �→ insert(m, C(linkset)(l))]

– Similarly for asynchronous operations, when not syn?(op), except that then

the status of i is not changed:

C′ = C[instr(i) �→ tail(C(instr)(i)),
linkset(l) �→ insert(m, C(linkset)(l))]

duration(d):
A duration statement leads to global progress of time, including a time step in the

100

solver of the continuous model of the environment. This time step will be defined in

Definition 4.5.5.

periodic(d) IS:

In this case, IS is added to the instruction sequence of thread i and a new thread j =
fresh(C, oi) is started which repeats the periodic instruction after a duration of d time

units, i.e.

C′ = C[instr(i) �→ IS, instr(j) �→ duration(d)ˆperiodic(d) IS, status(j) �→ alive]

if b then IS1 else IS2 fi

• If [[b]](C, i) then C ′ = C[instr(i) �→ IS1ˆtail(C(instr)(i))]

• Otherwise, C ′ = C[instr(i) �→ IS2ˆtail(C(instr)(i))]

while b do IS od:

• If [[b]](C, i) then

C′ = C[instr(i) �→ ISˆwhile b do IS odˆtail(C(instr)(i))]

• Otherwise, C ′ = C[instr(i) �→ tail(C(instr)(i))]

return(j):
In this case we have node(i) �= node(j). Let l be the link which connects these nodes.

Then m = (return(j), C(now) + δmin(l), C(now) + δmax(l)) is transmitted via l:
C′ = C[instr(i) �→ tail(C(instr)(i)), linkset(l) �→ insert(m, C(linkset)(l))]

Definition 4.5.5 (Time Step) A step C −→ C ′ is called a time step only if all current

threads are ready to execute a duration instruction or have terminated. More formally,

for all i with exec(C, i), C(instr)(i) is 〈〉 or of the form duration(d)ˆ IS. Then the

definition of a time step consists of three parts: (1) the definition of the maximal du-

ration of the time step as allowed by the VDM model, (2) the execution of a time step

by the solver, leading to intermediate configuration C s (3) updating all durations of all

current threads, committing all variables of the current threads, and dealing with events

generated by the solver.

1. Time may progress with t time units if

• t is smaller or equal than all durations that are at the head of an instruction

sequence of an executing thread, and

• C(now) + t is smaller or equal than all upper bounds of messages in link

sets.

Define the maximal length of the time step tm as the largest t satisfying these

conditions.

2. If tm > 0 the solver tries to execute a time step of length tm in configuration

C. Concerning the variables, the solver will only use the ioval field, ignoring

the lval and modif fields. It will only read the actuator variables in OutVar

and it may write the sensor variables in InVar in field ioval. As soon as the

solver generates one or more events, its execution is stopped. This leads to a

new configuration Cs and a set of generated events EventSet. Since the solver

takes a positive time step, we have C(now) < Cs(now) ≤ C(now) + tm. If

101

Cs(now) < C(now) + tm then EventSet �= ø. Moreover, Cs(f) = C(f) for

field f ∈ {instr, curthr, status, lval, modif}.

If tm = 0 then the solver is not executed and Cs = C and EventSet = ø. This

case is possible because we allow duration(0) to commit variable changes, as

shown in the next point.

3. Starting from configuration Cs and EventSet, next (a) the durations are decreased

with the actual time step performed, leading to configuration C d (b) transactions

are committed for threads with zero durations, leading to configuration C m, and

(c) new threads are created for the event handlers, leading to final configuration

C′.

Let ts = Cs(now) − C(now) be the time step realized by the solver.

(a) Durations in instruction sequences are modified by the following definition

which yields a new function from threads to instruction sequences, for any

thread i,
NewDuration(C, ts)(i) =
{

duration(di − ts)ˆtail(C(instr)(i)) if head(C(instr)(i)) = duration(di)

C(instr)(i) otherwise

Let Cd = Cs[instr �→ NewDuration(C, ts)]

(b) Let ThrDurZero(C) = {i|exec(C, i) and head(C(instr)(i)) = duration(0)}
be the set of threads with a zero duration. For these threads the transactions

are committed and the values of the modified variables are finalized. This

is defined by two auxiliary functions:

NewIoval(C)(x) =
{

v if ∃ i ∈ ThrDurZero(C) and C(modif)(x, i) = v �= ⊥

C(ioval)(x) otherwise

Note that at any point in time at most one thread may modify the same

global variable in a transaction. Hence, there exists at most one thread

satisfying the first condition of the definition above, for a given variable x.

The next function resets the modified field, for any x and i,

NewModif(C)(x, i) =

{

⊥ if i ∈ ThrDurZero(C)

C(modif)(x, i) otherwise

Then Cm = Cd[ioval �→ NewIoval(C), modif �→ NewModif(C)]

(c) For each event e ∈ EventSet with evhdlr(e) = (ISe, ne), let ie be a fresh

- not yet used - thread identity with status dormant and node(i e) = ne.

Then we define an auxiliary function EventInstr(C) : Thread → Instr. Seq.

which installs event handlers. For any thread i,

EventInstr(C)(i) =

{

ISe if i = ie for some e ∈ EventSet

C(instr)(i) otherwise

In addition, we awake the threads of the event handlers by changing their

status. Define, for any i,

102

NewStatus(C)(i) =

{

alive if i = ie for some e ∈ EventSet

C(status)(i) otherwise

Then C ′ = Cm[instr �→ EventInstr(Cm), status �→ NewStatus(Cm)]

Observe that C ′(now) = Cs(now) = C(now) + ts with ts ≤ tm.

Definition 4.5.6 (Context Switch) A step C −→ C ′ corresponds to a context switch

if and only if there exists a thread i which is alive, not running, and has a non-empty

program which does not start with a duration, i.e., ¬exec(C, i), C(status)(i) = alive,

C(instr)(i) �= ø, and head(C(instr)(i)) �= duration(d) for any d. Then i becomes

the current thread and a duration of δcs time units is added to represent the context

switching time:

C′ = C[instr(i) �→ duration(δcs)ˆC(instr)(i), curthr(node(i)) �→ i]

Note that more than one thread may be eligible as the current thread on a node at

a certain point in time. In that case, a thread is chosen nondeterministically in our

operational semantics. Fairness constraints or a scheduling strategy may be added to

reduce the set of possible execution sequences and to enforce a particular type of node

behavior, such as round robin or priority-based pre-emptive scheduling.

Definition 4.5.7 (Deliver Link Message) A step C −→ C ′ corresponds to the mes-

sage delivery by a link if and only if there exists a link l and a triple (m, lb, ub) in

C(linkset)(l) with lb ≤ C(now) ≤ ub. There are two possibilities for message m:

• call(i, oid, op): Insert the call in the queue of object oid:

C′ = C[q(oid) �→ insert((i, op), C(q)(oid)),
linkset(l) �→ remove((m, lb, ub), C(linkset)(l))]

• return(i): Wake-up the caller, i.e.

C′ = C[status(i) �→ alive, linkset(l) �→ remove((m, lb, ub), C(linkset)(l))]

Definition 4.5.8 (Process Queue Message) A step C −→ C ′ corresponds to the pro-

cessing of a message from a queue if and only if there exists an object oid with

head(C(q)(oid)) = (i, op). Let j = fresh(C, oid) be a fresh thread and IS be the

explicit definition of op. If the operation is synchronous, i.e. syn?(op), then we start a

new thread with IS followed by a return to the caller:

C′ = C[instr(j) �→ ISˆreturn(i), status(j) �→ alive, q(oid) �→ tail(C(q)(oid))]
Similarly for an asynchronous call, where no return instruction is added:

C′ = C[instr(j) �→ IS, status(j) �→ alive, q(oid) �→ tail(C(q)(oid))]

Definition 4.5.9 (Operational Semantics) The operational semantics of a specifica-

tion in the language of Table 4.1 is a set of execution sequences of the form C0 −→
C1 −→ C2 −→ . . ., where each pair Ci −→ Ci+1 is a step (Definition 4.5.3) and the

initial configuration C0 satisfies a number of constraints:

• no thread has status waiting;

• on each node, the currently executing thread is alive;

• a thread is dormant if and only if it has an empty execution sequence;

• the modif field is ⊥ everywhere;

103

• all queues and link sets are empty, and

• the auxiliary instruction return does not occur in any instruction sequence.

To avoid Zeno behaviour, we require that for any point of time t there exists a configu-

ration Ci in the sequence with Ci(now) > t.

4.6 Concluding remarks

A multidisciplinary modeling approach shall provide sufficient means of abstraction to

support all mono-disciplinary views in order to be industrially applicable. A solid se-

mantic foundation of the combination of these views is required to support meaningful

and reliable analysis of the heterogenous model. We believe that this can be achieved

by taking a “best of both worlds” approach whereby the software discipline uses a for-

mal specification technique. Firstly, because it provides abstraction mechanisms that

allow high-level specification and secondly because its well-defined semantics provides

a platform independent description of the model behavior that can be analyzed prop-

erly. Software models as advocated by IBM Rational Technical Developer and I-Logix

Rhapsody are, in our opinion, not suited for this purpose in particular because they lack

a suitable notion of abstraction, time and deployment. We showed how tool integration

can be achieved based on the formal semantics proposed in this chapter, which we ap-

plied to a case study. Note however that the approach taken here is not specific to any

tool in particular.

Nicolescu et al [77] propose a software architecture for the design of continuous

time / discrete event co-simulation tools for which they provide an operational seman-

tics in [41]. Our work is in fact an instantiation of that architecture, however, with a

difference. Their approach is aimed at connecting multiple simulators on a so-called

simulation bus, whereas we connect two simulators using a point-to-point connection.

They use Simulink and SystemC whereas we use 20-SIM and VDM++ to demonstrate

the concept. The type of information exchanged over the interfaces is identical (the

state of continuous variables and events). They have used formal techniques to model

properties of the interface, whereas we have integrated the continuous time interface

into the operational semantics of a discrete event system. We believe that our approach

is stronger because a weak semantics for the discrete event model may still yield unex-

pected simulation results even though the interface is proven to work consistently. An

in-depth comparison of both approaches is subject for further study.

The interface between the continuous time and discrete event models seems to be

convenient when resilience of a system is studied. Early experiments performed in

collaboration with Zoe Andrews at the Centre for Software Reliability at Newcastle

University have shown that it is possible to use this interface for fault injection [4].

Values and events exchanged over this interface can be dropped, inserted, modified,

delayed and so on to represent the failure mode of a sensor or actuator, such as for

example “stuck at x”. The advantage of this approach is that the failure model can

remain orthogonal to the continuous time and the discrete event models. These system

models need no longer be obscured by explicit failure mode modeling in either plant or

controller, which usually clobbers the specification. We certainly plan to explore this

further.

104

Chapter 5

A Development Process for

Embedded Control Systems

The market success of novel high-tech systems depends more and more on the ability

to address system-level, multi-disciplinary, design issues. The BODERC project sug-

gests to follow a model-driven design philosophy to address this challenge [47]. The

proposition is that reasoning about system-level properties is enabled by creating ab-

stract, high-level and multi-disciplinary models. Analysis of these models will provide

valuable insight into the system under construction. This closes the design feedback

loop in the early stages of the life-cycle instead of postponing it to the system integra-

tion phase. It also prevents late changes in the design with obvious positive effects on

time, cost and quality.

But how do we come up with these high-level multi-disciplinary models? What

steps need to be taken to create and evaluate them? When do we stop modeling and

how do the resulting artifacts relate to the design of the system? It is clear that a

suitable process needs to be put in place in order to address these issues. Industrial

development of high-tech systems simply requires a step-wise approach because of the

inherent scale of the effort involved. Usually, project teams consist of tens of engineers

which are possibly working on multiple locations. A development process is a “golden

reference” which provides focus to a team, because it suggests a specific order in the

activities to perform and it defines the expected output of each activity. Progress can

be monitored by observing when specific outputs are delivered while quality can be

assessed by inspecting these intermediate artifacts. In other words, a development

process is essential for the effective and efficient use of tools, techniques and human

resources within a project.

The aim of this chapter is to put the results presented in Chapters 3 and 4 into the

context of an industrially viable development process. First, the system-level reasoning

approach proposed in the BODERC project is presented in Section 5.1. It is argued

how these abstract and high-level models can be used for design oriented activities

in sections 5.2 and 5.3. The former section concentrates on the control engineering

design process, the latter on the software engineering design process. And finally, the

relationship between these processes is assessed and discussed in Section 5.4.

105

5.1 System-level reasoning

The complexity of the products being developed by industry today is increasing at an

astonishing rate. This is partly caused by the advances in the implementation technol-

ogy used but also by the sheer volume of design related information and its average

rate of change. The design process has primarily become an exercise in information

management: acquire, evaluate, categorize, prioritize, report and distribute. The ef-

ficiency of this activity has a strong influence on the ability to innovate and to meet

time-to-market targets. The basis of the system-level reasoning approach suggested in

the BODERC project is the CAFCR methodology proposed by Muller in [76]. This

methodology is shown in Figure 5.1 and uses a system architectural description de-

composed into five related views to structure design information:

“C” the Customer objectives view - identifying what the customer wants to achieve.

“A” the Application view - identifying how the customer objectives are to be achieved.

“F” the Functionality view - identifying what functional and extra-functional prop-

erties much be accommodated.

“C” the Conceptual view - identifying how the functional and extra-functional prop-

erties are satisfied.

“R” the Realization view - identifying how the system concept is implemented.

Figure 5.1: Overview of the CAFCR framework from [76]

The framework is focused on capturing the relationship between the customer and the

product. The job of the system architect is to safeguard the consistency of these views

in order to create a valuable, usable and above all feasible product. However, this

work is usually performed within tight industrial constraints, such as project duration

and available man power. It is therefore essential to dedicate a significant portion of

the available time and effort to the most critical issues. The design methodology for

high-tech systems proposed in the BODERC project [50] addresses this particular

concern. An iterative approach is proposed which consists of the following three steps

per iteration:

1. Preparation. The purpose of this step is to gather existing knowledge in order to

obtain a good understanding of the product to be developed. It involves making

core domain knowledge explicit and identifying dominant realization concerns

and system requirements. This provides a level playing field for all the stake-

holders involved.

106

2. Selection. The purpose of this step is to select the critical design aspects. It

involves the identification of tensions or trade-offs between individual design

issues and a qualitative assessment of their associated risk and priority. These

can be based on expected customer value, inherent difficulty of the problem or its

expected impact on the system as a whole. This approach focuses the attention on

the most essential design decisions and prevents spending effort on less relevant

issues.

3. Evaluation. The purpose of this step is to gain quantitative insight into the

identified high priority tensions from the previous step. These results can be

obtained either by model-based analysis or by performing measurements on a

prototype or comparable system. The aim is to use simple, light-weight, models

that can be built and evaluated within hours or a few days at most. This requires

finding the appropriate level of abstraction that provides the level of accuracy

required. Initially, it may suffice to perform a back-of-the-envelope calculation

while more detailed models are required in later stages.

The knowledge gained in the evaluation step is consolidated and evaluated by the de-

sign team. Usually, interpretation of the results leads to the identification of new re-

quirements or concerns. Alternatively, the results may give rise to changing the risk

or priorities of the critical design aspects. It is clear that iteration is required until

the risks associated with each critical design aspect has reached an acceptable low

threshold. Note that a design record is built during the iterations which captures the

decisions made along the way. These design choices can be rechecked whenever re-

quirements change over time, which is very likely to occur. This is a major benefit

over contemporary approaches where usually only the end result of the decision is kept

up-to-date, causing significant amounts of rework when requirements change. The

industrial strength of the BODERC methodology is based on the embedded process

awareness to maintain focus on the important design issues by evaluating risks and as-

signing priorities. Furthermore, the modeling, measurement and analysis activities are

limited in scope to what is essentially required. This time and effort boxed approach

provides optimum support for the inherently iterative nature of the design process. The

core support techniques used in the BODERC methodology described previously are:

1. the key driver method [48, 49]

2. threads of reasoning [88, 87]

3. budget-based design [38, 39]

These techniques will be discussed in the following sub-sections.

5.1.1 The key driver method

The key driver method is a technique that helps to structure information obtained during

requirements elaboration. It presents the relationship between the essential customer

objectives and the dominant requirements of the system from the viewpoint of a spe-

cific stakeholder as a structured graph. Usually only a few customer objectives, or key

drivers, are mapped onto tens of requirements. In other words, it provides a visual

presentation of the requirements justification because each requirement can be traced

back to the customer objective from which it originates. It is useful for the designers

107

to understand why a requirement is important and how it relates to the other system re-

quirements. The graphical presentation is more convenient for gaining overview, while

an exhaustive textual description can be used to capture the rationale. The key driver

method covers the CAF-views of the CAFCR framework. The key drivers represent the

main customer objectives from the “C”-view and they are placed on the left of the di-

agram. The system requirements from the “F”-view are presented on the right of the

diagram and the application drivers from the “A”-view are placed in the middle of the

diagram. Arrows are used to express the relationships, whereby the line width is used

to indicate the importance of the relationship. Rows can be used to indicate priority, i.e.

top row has highest priority, bottom row has lowest priority and so on. Drawing con-

ventions, such as line color, can be used to increase readability. A square box around a

requirements indicates a “must-have” property while a rounded box indicates a unique

selling point of the product. An example key driver model of a copier is shown in

Figure 5.2.

Figure 5.2: An example key driver model of a copier from [50]

108

5.1.2 Threads of reasoning

Engineers are typically confronted with many possible realization options at design

time. Each potential solution, or design driver, has advantages and disadvantages and

usually there is also a significant amount of uncertainty involved. This leads to conflicts

in the design. A conflict is defined as the situation where a specific design choice

influences one or more design drivers positively, while influencing others negatively.

The threads of reasoning technique aims at composing a graphical overview of the

conflicts that relate to a number of selected design drivers. These design drivers, the

design choices and their consequences are referred to as threads. The method is called

threads of reasoning because it reveals the rationale behind the decision making. In

other words, the decision making is made explicit and traceable which enables and

supports the objective dialogue on complex trade-off issues during the design. Threads

of reasoning can use information from all CAFCR-views. An iterative and step-wise

approach is used to define and elaborate the threads:

Figure 5.3: Overview of the threads of reasoning approach

1. Select a starting point. Typically the most critical design driver is used as a

starting point. Whether or not it really is the most critical one is not important

because the elaboration process will quickly reveal the true relevance of the de-

sign driver. Another design driver will be selected at the next iteration if the

importance of the current design driver was initially overrated.

2. Create insight. The second step is used to produce an inventory of known facts

and questions about the chosen design driver. This information is gathered by

means of informal analysis, for example using the story telling technique [76].

The inventory is consolidated and communicated to all stakeholders.

3. Deepen insight. The third step is aimed at answering the questions identified

in the second step. This can be done by model-based analysis or by test and

measurements on existing systems. Back-of-the-envelope calculations or rules

of thumb may suffice in the first iteration but usually in-depth modeling and

109

analysis is required in order to take well-founded design decisions with greater

accuracy at later stages.

4. Broaden insight. Design drivers are usually closely related and can therefore

typically not be studied in isolation. The fourth step is used to establish the

volatility of other design drivers with respect to changes in the design driver

under study. This may for example influence the risk and priority properties

associated with those design drivers.

5. Define and extend the thread. The previous steps have generated a wealth of

new information and has most likely also uncovered new potential problems as

well. Step five aims to organize and prioritize this information and present it con-

cisely to all stakeholders as a thread of reasoning. This requires filtering of the

information whereby emphasis is put on decisions that are the most conflicting

or have the highest impact for the customer. The objectivity is not lost because

the underlying information is still available for inspection.

Figure 5.4: An example thread of reasoning in the design of a printer paper path

5.1.3 Budget-based design

Designing distributed embedded real-time systems is difficult because the system has

to operate within well-defined resource constraints in order to guarantee deterministic

behavior at all times. For example, the performance of the CPU, the bandwidth of the

network or the amount of available memory is usually limited. But also power usage

or heat dissipation may become an issue. Design complexity is increased significantly

if these scarce resources are shared among multiple subsystems or when the resource

consumption depends on the dynamic behavior of the system as a whole. This usually

leads to conflicts at design time because designers will either try to claim the critical

resource or they ignore the embedded restriction entirely in order to meet their local

design goal. The BODERC methodology addresses this problem with the budget-

based design technique. The general principle is simple. The amount of available

resource is the so-called budget. The budget is split into parts and each part is assigned

to a specific product function or subsystem. It is the responsibility of the designer of

that function or subsystem to allocate the assigned budget to its components, and so on.

Making such an explicit budget raises the awareness among engineers that resources are

indeed limited available. This causes a healthy design dialogue across all disciplines

early in the life cycle whereby a budget request is typically scrutinized by the other

110

users of the critical resource. This may result in exploring other design alternatives, for

example if the budget is deemed insufficient. The technique involves four steps:

1. Scope of the budget. It is important to define the scope of the budget explicitly,

for example to define which parts of the design are included. Add-on modules

may be regarded as part of the entire product and thus part of the budget but

others may not. Similarly, the applicable operating modes of the product need to

be defined appropriately.

2. Select a decomposition. The budget needs to be decomposed into parts in or-

der to manage it successfully. There is no universal recipe for defining such a

decomposition, but usually physical or functional decomposition is used. Each

budget item is allocated to a specific subsystem or function and a responsible

designer. This person collects the required performance data and is responsible

for meeting the budget.

3. Find quantitative data. Finding suitable performance numbers for a subsystem

or function can be very difficult because they are in general hard to measure or

estimate. Sometimes measurements from existing systems can help but in many

cases guestimates or simulations are required in order to obtain quantitative data.

The budget-based design approach forces the engineer to think about manage-

ment of the resources in advance.

4. Provide a clear overview. A clear overview must reveal the essence of the

budget to the system architect and his stakeholders, preferably in the glimpse of

an eye. A good budget has at most tens of quantities listed which are graphically

presented. A budget is an evolutionary design artifact which needs to be checked

and updated on a regular basis.

Figure 5.5: Graphical representation of the power budget of a copier

111

5.1.4 From analysis towards design

The BODERC methodology presented in the previous sections in aimed at supporting

the high-level reasoning process in the very early stages of the life-cycle. Model-based

design is used to support this activity and the complexity of those models will grow

over time. Firstly because the demands for the required accuracy of the models is

usually increasing and secondly because the scope of the models typically grows. The

purpose of the models evolves from analysis towards design, whereby we enter the

realm of the domain specific methods and tools more and more. These methods and

tools are presented in the next sections. A typical control engineering development

process is presented in Section 5.2 and a software engineering approach is discussed in

Section 5.3.

5.2 Control engineering process

Visser and Broenink have taken a control engineering viewpoint and suggest a system-

atic design trajectory for embedded control systems in [104, 103]. This design trajec-

tory is based on a workflow for the development of embedded control systems which

was proposed earlier by Broenink and Hilderink in [14] and is shown in Figure 5.6.

First, the dynamic behavior of the system is described in the physical systems model-

ing activity. The models from this phase can be investigated by means of simulation or

analyzed mathematically. Second, the control law design takes place. The control laws

can be studied using simulation or mathematically analyzed, for example with respect

to convergence and stability. Third, the embedded control software design is created.

Usually, some semi-formal notation is used to describe the software architecture and

these design artifacts may be demonstrated using simulation or checked mechanically

using some static analysis tool. And finally, the embedded control software realization

takes place. After coding the software, which may be (partly) automated, the imple-

mentation is integrated and tested on the real hardware. The embedded control system

is validated by exposing it to a significant number of test cases. Iteration is required

in each phase if irregularities are exposed during analysis. Larger errors may require

moving back to a previous step.

Figure 5.6: Embedded control system development workflow

The problem with this workflow is that the block arrows in Figure 5.6 between the

different phases usually cause a paradigm shift. Modeling and analysis approaches on

either side of the arrow are not compatible and there exists no smooth transition from

one phase to the next or vice versa. Partial, automated, solutions exist for some of

these issues but in general it involves human intervention causing substantial amounts

of work. This is expensive because it needs to be repeated whenever an iteration is

performed and moreover it is very error prone. In our opinion, this is a blocking fac-

112

tor for industrial application, a show stopper in fact for truly iterative and concurrent

design, that must be addressed in order to achieve a significant process improvement.

Visser and Broenink propose an alternative in [104]: a step-wise refinement approach

that provides a near-seamless transition from model to realization.

Figure 5.7: Basic embedded control system decomposition proposed in [104]

The usual way to describe embedded control systems is to distinguish the so-called

controller and the plant. The former is the computer system implementing the control

strategy, the latter is the physical process that is being controlled. Visser and Broenink

propose to add an explicit interface notion to this paradigm, the so-called I/O model,

as shown in Figure 5.7. The absence of this particular model in contemporary design

trajectories, such as Matlab/Simulink, is one of the reasons for the aforementioned

paradigm shifts. Interface requirements are considered too late in these approaches,

which usually causes substantial rework when models are elaborated. Maintenance

of these models then becomes very costly, for example when requirements change,

because at least four models (one controller-plant pair with and one pair without I/O

model) need to be updated. Furthermore, the introduction of an explicit interface model

introduces a higher level of abstraction at the model level: we move from mere wire

connections to strongly typed ports which exchange flows or signals. This allows for

seamless modeling in port-based design methods, such as bond graphs [13].

The design trajectory based on this enhanced system decomposition strategy pro-

vides the basis for a step-wise, model driven, approach to move from model towards

implementation, whereby both the controller and the plant will evolve. Various so-

called “x-in-the-loop” simulation techniques are used to check whether each elabora-

tion step is still compliant to the high-level system-level requirements. This provides

a gradual introduction of increased system complexity instead of the “direct-to-target”

approaches advocated by the leading tool vendors. Furthermore, the design trajectory is

easier to manage because explicit decisions are made when, where and how complexity

is added. In each step, model abstractions are replaced by their elaborated counterparts,

which can then be subjected to analysis. This leads to less errors because attention of

the designer is very focused whereby development time can be time-boxed in order to

ensure overall productivity. The development trajectory consists of six stages, which

are summarized in Table 5.1.

The purpose of this design trajectory is not to create the optimal controller for the

given plant but to optimize the design of the complete system. As mentioned before,

the explicit structure of this process ensures a consistent view of the I/O throughout the

design trajectory. The trajectory is roughly split into two parts, the simulated time and

the real-time part. In the former (stages 1-3), we have total control over the notion of

time on either side of the interface. Progress of time at the system-level can be managed

explicitly. This enables for example faster than real-time simulations required to obtain

design feedback quickly in the early stages of the life-cycle. In the latter case (stages 4-

6), the so-called wall-clock, which is the locally perceived notion of time, is equal to a

physical clock in the real world on at least one side of the interface. The synchronicity

to this physical clock dictates the system-level notion of time.

113

Stage 1 – Embedded Control System speci-

fication using state-of-the-art dynamic sys-

tems modeling tools, whereby the interface

layer is explicitly modeled.

Stage 2 – Software artifacts are created for

the controller, whereby “Software-in-the-

loop” co-simulation is used to check the

control code against the (unmodified) plant

model.

Stage 3 – The controller and plant models

are executed on separate computers, which

enables CPU usage estimation for the con-

trol code and validation of the interfaces.

Stage 4 – The controller code is moved

to the real-time test platform and the plant

model is executed on a real-time simulator.

Stage 5 – The controller code is moved to

the real-time target platform and the plant

model is executed on a real-time simulator.

Stage 6 – The controller code, running on

the target platform is connected to the phys-

ical plant. Test scenarios are executed to

validate the total system.

Table 5.1: Control system design trajectory proposed by Visser and Broenink in [104]

The transition from stage 3 to 4 should therefore be addressed with care. In stage 4

we run a simulation of the plant in real-time. The time required to perform the com-

putation to update the state of the plant model is very important. It is firstly bounded

by the dynamics of the continuous time model and secondly by the imposed controller

constraints. The first point implies that the reciproke of the maximum computation time

should be less than half of the highest possible frequency that may occur in the contin-

uous time model. The second point is determined by the style of control. In the case of

time-driven (synchronous) control, the computation time should not exceed the small-

est possible sample time interval length. In the case of event-driven (asynchronous)

control, the computation time should not exceed the required maximum observation

delay for an event. The strongest of these bounds should be taken, otherwise we possi-

114

bly introduce unwanted system behaviors. The usual approach to limit these effects and

to circumvent the associated problems is to assume a fixed time delay between action

and observable reaction. This can be modeled as a simple time delay in stages 4-5, as

shown in Figure 5.8. In addition, if time-driven control is applied then the use of fixed

step-size solvers is advocated for both controller and plant, whereby this time delay

corresponds to the step size of the continuous time solver. The time delay is removed

in stage 6 since the real plant reacts infinitely fast.

Figure 5.8: Standard (left) and elaborated (right) I/O model in stages 4-5

Although the design trajectory proposed by Visser and Broenink is a significant

step forward from the control engineering perspective, it does not necessarily address

the needs of the engineer that produces the software artifacts in stage 2. The implicit

assumption in the approach of Visser and Broenink is that the control code is automati-

cally generated from the dynamic system models and this is in practice quite problem-

atic. The primary cause for this problem is that the amount of code for the controller

is usually only a very small portion of the total application software, in particular in

the area of high-tech systems. Furthermore, the techniques used to design these other

parts of the application software, are not well suited for modeling control applications,

and vice versa. In order to understand this mismatch, we need to look at the software

development processes in more detail.

5.3 Software engineering process

The basis for most industrial software engineering processes is the well-known “V”-

model as shown in Figure 5.9. We use the ESA PSS-05 definitions here for conve-

nience, but this standard is comparable to other industry standards such as ARP 4754

[43] and DO-178B [90]. The “V”-model provides a step-wise approach for the devel-

opment of software. Originally, it was regarded as a single-shot process whereby the

deliverables from one phase where the input to the next phase. This process is usually

referred to as the “waterfall” approach which was suggested by Royce in [86]. In many

cases, this cascade of intermediate design artifacts, which increase in number, size and

complexity as the project evolves, typically leads to severe productivity losses since

more effort is required to create and maintain them as time progresses. Brooks [15]

and Johnson [60] have shown that the key problems with this approach are: lack of

project and product overview and lack of problem and client interaction. Alternate ap-

proaches are suggested to overcome this situation. For example, Boehm proposed the

so-called “spiral development” model in [11]. He suggests to deliver the total system

using increments whereby the scope of the system is enlarged after each iteration. Se-

lection of the extended scope is driven by explicit risk analysis, whereby he proposes

to attack the highest risk components first. Within each iteration, the waterfall process

is being used but this is far less problematic due to the restricted scope per iteration.

Most modern software development processes such as the Rational Unified Process

(RUP) are inspired by this approach [64]. The related Dynamic Systems Development

115

DESIGN ARTIFACTS V&V ARTIFACTS

URD User Requirements Document SRTP Software Requirements Test Plan

SRD Software Requirements Document ARTP ARchitecture Test Plan

ADD Architecture Design Document DDTP Detailed Design Test Plan

DDD Detailed Design Document UTP Unit Test Plan

ITP Integration Test Plan

STP System Test Plan

ATP Acceptance Test Plan

Figure 5.9: The “V”-model as described in ESA PSS-05-10 [28]

Method 1 (DSDM) has been notably successful applying this iterative development

process, in particular in the area of database enabled client-server applications. Ex-

plicit priority-based requirements management, time-boxed system development and

tailored tool support are the key success factors for this approach. Many of today’s

web applications have been developed using these techniques and this has been a ma-

jor contributor to the interest in so-called agile system development. Iterative design is

also acknowledged in the field of high-tech systems as can be observed in the ECSS-E-

40 2 standard, developed jointly by the European Space Agency and industry. However,

these light-weight management processes have not yet demonstrated their added value

in practice. We believe that this is mainly due to the fact that the equivalent of the

relational database paradigm, which has been the driving force behind the success of

the rapid application development techniques described earlier, is missing in this par-

ticular application field. There is no commonly accepted way to characterize the class

of distributed real-time embedded control systems. The Unified Modeling Language 3

(UML) seems to gain industrial acceptance because of its flexibility and versatility and

the notation has become more mature with the recent release of version 2.0 of the stan-

dard. Several domain specific modeling extensions have been proposed, the so-called

profiles, but their industry acceptance is still rather poor, mainly because tool support

1 See http://www.dsdm.org.
2 See http://www.ecss.nl.
3 See http://www.uml.org.

116

http://www.dsdm.org
http://www.ecss.nl
http://www.uml.org

is lacking. The Model Driven Architecture 4 (MDA) philosophy that is proposed by the

Object Management Group (OMG) to address this issue is still far from mature.

We propose to use formal description techniques to address this challenge. This

class of languages, with a well-defined syntax and semantics, are used to create models

which can be subjected to rigorous formal analysis. The results from the analysis drives

the, usually informal, reasoning process about the system and its properties, which in

turn drives the elaboration of the formal model. In other words, formal methods are

inherently model-driven. This approach usually exposes potential problems in early

phases of the design and moreover, explicitly describes the way these issues are ad-

dressed. This contributes positively to the increased quality and reduced cost of the

system development. We have demonstrated in the previous chapter that this is techni-

cally feasible for the development of distributed embedded real-time control systems,

even in the early stages of design, using a combination of VDM++ and bond-graphs.

VDM++ is a general purpose model oriented formal specification language that is well-

suited for the description of large-scale industrial systems. Furthermore, the industrial

grade tool support enables round-trip engineering with UML, which provides a bridge

towards the currently accepted mainstream software engineering practice in industry.

But so far, the impact on the development processes have not yet been considered.

Mukherjee, Larsen and Verhoef and others have proposed a set of guidelines for the

specification, analysis and development of real-time systems using VDM++ in [21].

These guidelines are inspired by [85] and extend the more traditional specification pro-

cess described in [30]. This guideline document provides a step-wise plan comparable

to the approach taken by Visser and Broenink for control applications. Each step elab-

orates the previous step by focusing on certain aspects of the system. Complexity in-

creases over time because the system scope grows due to this refinement. This process

remains manageable due to the abstraction mechanisms offered by the formalism and

the powerful tool support for analysis. The steps are summarized here for convenience.

• step 1 : Requirement capture (URD / SRD in Figure 5.9).

Requirements elicitation is performed using a mix of formal and informal tech-

niques. Typically, Use-Case analysis is performed whereby critical parts of the

system are formally modeled, in our case using VDM. The resulting specifica-

tions are at a high-level of abstraction, focusing on the key properties of the

system. Specifications do not necessarily reflect a particular system structure, in

order to prevent design bias at the requirements level. These formal specifica-

tions can be subjected to rigorous analysis using powerful tools to ensure their

internal consistency and integrity. The same techniques can also be used to val-

idate the requirements, for example by testing, model checking or formal proof.

Conjectures about the system are formulated and the analysis shows whether or

not, or under which circumstances, these properties hold. Usually it takes sev-

eral iterations to obtain a consistent view of the system. The level of formality

that is applied follows from the type of application that is being developed. In

our vision, and to stimulate industrial uptake, a light-weight approach should be

followed whenever possible. In this thesis we use prototyping, simulation and

testing as our means to validate the formal models. The resulting test suite forms

the basis of the system acceptance test, which closes the “V”-cycle already from

day one.

• step 2 : Software architecture - static structure (ADD in Figure 5.9).

4 See http://www.omg.org/mda.

117

http://www.omg.org/mda

The formalized requirements from step 1 are transformed into a potential system

architecture. Again a mix of formal and informal techniques are used to spec-

ify the system, whereby we focus on its static structure. This approach follows

the usual object-oriented design paradigm. What sub-systems can we identify

and what are the interfaces between them? How do the interfaces relate, what

services do they offer and what kind of data is exchanged between them? The

result of this step is a description of the design in UML, whereby critical parts

of the model are elaborated in VDM++, in particular for the sequential behavior

of the identified operations in the model. Round-trip engineering tool support

is available to enforce consistency between the UML and VDM++ models and

to generate consistent documentation directly from these models. The VDM++

models can again be subjected to rigorous formal analysis, whereby the valida-

tion suite from step 1 drives the validation of this step. Note that an explicit

environment model is required to assess the system model, in particular for em-

bedded systems. The rigorous analysis and the different view-points taken in

this step usually highlight additional requirements that will force iteration back

through step 1. The test suite has evolved as well. It will reflect the chosen sys-

tem structure defining tests to be performed at the sub-system level for example.

Note that we move down on both sides of the “V”-cycle at the same time.

• step 3 : Software architecture - dynamic structure (ADD / DDD in Figure 5.9).

The architecture which was designed in step 2 will be adapted to reflect the dy-

namic behavior of the system. Concurrency considerations drive the selection of

so-called active and passive classes in the design which may require restructuring

parts of the static architecture. The latter forces iteration through steps 1 and 2

but the impact is usually rather limited because the complex sequential behavior

remains intact in most cases. The power of rigorous formal analysis is perhaps

best demonstrated in this phase because absence of e.g. dead-lock is notoriously

hard, if not impossible, to demonstrate using informal means.

• step 4 : Hardware architecture and software deployment (DDD in Figure 5.9).

Real-time embedded systems usually operate in a constrained environment which

limits the implementation options. The purpose of this step is to deploy the soft-

ware architecture from step 3 onto some abstract representation of the possibly

distributed hardware architecture and to enrich these models with performance

data. The combined hardware, software and environment models can then be

used for performance analysis, such that system fitness for purpose can be as-

sessed prior to implementation. This step enables investigation of many extra-

functional system properties such as timeliness and throughput. The designer

may wish to modify either the software or the hardware design if the expected

performance is not within some safe margin of error of the required value. The

former forces iteration through steps 1 to 3 if it cannot be solved by means of

changing the hardware architecture or the deployment.

• step 5 : Implementation (software in Figure 5.9).

The system design that results from step 4 provides the baseline for the dis-

tributed implementation. The level of abstraction of the specification is lowered

by repetitive refinement until a fully explicit model is available. This model is

translated into the target implementation language, either by manual coding or

automated code generation. Each refinement step is checked by means of the

validation suite already developed, component by component. It is equally im-

118

portant to check the extra-functional properties of the implemented component

on the target platform after the functional correctness has been demonstrated.

This may force iteration through the previous steps, if the measured performance

does not conform to the assumptions made in step 4.

5.4 Discussion and conclusion

A system-level reasoning approach was already presented in Chapter 2 of this the-

sis. The so-called “Y-chart”, as shown in Figure 2.1, is used for the evaluation of

performance properties of embedded system architectures. The approach taken in the

BODERC project is related but it is not specific to performance modeling, it has a

substantially wider scope. The BODERC methodology [50] covers requirement cap-

ture towards design while the Y-chart assumes the system requirements to be known a

priori and focuses on design space exploration as the primary activity. The aim of the

BODERC methodology is to gain focus on the most critical system aspects as soon as

possible, using simple models that create insight into a design issue within a reasonable

amount of time.

Perhaps best proof of the success of this approach is provided by Beckers, Heemels,

Bukkems and Muller in [6]. They have developed a high-level simulation model of the

Varioprint paper path using Matlab/Simulink. A topological view of the paper path

can be abstracted directly from the the original mechanics drawing in just a few hours

by means of a purpose built support tool. This two dimensional topological view, the

so-called track, is then enriched with the position information of the pinches, sensors,

switches and the connection between motors and pinches. A timing table is provided

for each motor detailing its predicted angular speed at each moment in time. Simple

logical rules can be added to influence the timing table contents. Together with job

and sheet information, such as number of pages to print, inter-sheet distance and the

page size per sheet, this provides sufficient information for a coarse grain simulation.

The result is a set of position-time and velocity-time diagrams. These can be used to

check whether sheets are, for example, hitting each other or overlapping. Moreover, the

movement of sheets can be animated, superimposed over the original CAD drawing,

as shown in Figure 5.10. This provides valuable input during the design of the paper

path layout. Trade-offs between spatial layout, positioning of sensors and actuators and

sheet scheduling can be investigated. The light-weight modeling approach enables a

turn-around time of just a few hours which supports the interactive nature of the design

process in these early stages. Furthermore, the model can be extended easily to address

other concerns.

Orbons claims in [47] that this approach has already led to a significant cost and

time reduction at Océ. A complete engineering prototype and development iteration

could be skipped, saving many man-years of effort. The success of this modeling

approach was largely due to the conscious simplification of the model, where only the

desired behavior of a sheet and ideal movement of parts is considered. All disturbances

and variations of actual hardware performance are ignored. However, the most critical

effects are taken into account, such as software and actuation delays and maximum

acceleration and deceleration rates. This provides valuable input to downstream engi-

neering activities that can follow a budget-based design approach to meet these identi-

fied margins of error. However, this so-called “Happy Flow” kinematic model does not

provide guidance on how to design the embedded control system software that controls

the paper path. Neither does it assist in deciding what to do if the dynamic effects of

119

(a) user-interface of the simulator

(b) animation of the kinematic model

Figure 5.10: The “Happy Flow” model of a printer paper path from [6]

some sub-system exceed the allocated design margins from the kinematic model. The

solution is to build a truly dynamic system model, but with virtually the same level of

abstraction, flexibility and ease of use as the “Happy Flow” kinematic model.

120

Chapter 6

Embedded Control of a Printer

Paper Path - a Case Study

6.1 Introduction

We introduced the extension of the VDM++ language with an explicit notion of system

architecture and deployment in Chapter 3 and we looked at co-simulation of discrete

event VDM++ models with continuous time Bond graph models in Chapter 4. Fur-

thermore, the development process of embedded control systems was considered in

Chapter 5. We will now apply these partial results to a case study: the paper path

of an office printer, as presented in Figure 6.1. The purpose of this case study is to

demonstrate a typical design flow for such a system, using the method and techniques

proposed in the previous chapters. We focus on modeling and analysis of an important

subsystem of a printer: the control system of the so-called paper path. This subsystem

is responsible for the internal logistics, it is in charge of managing the flow of sheets

through the printer. Therefore, it directly influences the overall productivity and quality

of the system as a whole. In nowadays office printers, the paper path can be very com-

plex because of the physical layout, the operating modes (simplex, duplex or mixed

mode printing) and different paper sizes that need to be supported, even within a single

print job. Throughput and time-to-first-print are important design drivers, whereby 50-

100 pages per minute and 5-10 seconds are realistic values for current products in the

mid-range market. It is not uncommon that the paper path control system design needs

to cater for a whole range of products or even a product family.

One of the most important design criteria however, is the so-called sheet-to-image

synchronization. We use the term sheet to denote the physical piece of paper that is

transported through the printer and we use the term image to denote the bitmap that is

ultimately printed on the sheet. The former implies the process of managing moving

objects and the latter implies the process of managing large volumes of data. At some

point in time, these processes need to synchronize, such that the first line of the image is

exactly printed near the leading edge of the sheet. The accuracy of this synchronization

is determined by the tolerances of all subsystems. It is the primary task of the paper

path control system to ensure that this tolerance is dynamically kept within a predefined

range, typically expressed in terms of several micrometers.

Printing is the process whereby dry ink particles, the so-called toner, is transferred

to the paper and fused. In the system we study here, fusing is performed by applying

121

Figure 6.1: Schematic overview of the Océ Varioprint 2090 printer from [47]

both heat and pressure, whereby the toner melts and bonds to the paper. This process

is complicated by the fact that transferring the toner to the paper is in fact a two-stage

process, as presented in Figure 6.2. The first stage is the so-called cold process. The

printer contains an endless (but not seamless) optical photoconductive belt, or OPC,

that is continuously rotating and is uniformly electro-magnetically charged. The belt

passes a light-emitting diode (LED) array that covers the width of the belt. The digital

bitmap image is transferred onto the photoconductor belt, line by line. Each pixel in

the image line causes a LED to turn on. The emission of light from the LED removes

the charge from the photoconductive belt locally. And vice versa, the photoconductive

belt remains charged if the LED was not turned on when passing the LED array. The

belt is exposed to the toner and the toner will stick to the places where charge is still

left on the photoconductor. The toner image is then transferred to the second stage, the

so-called warm process and finally the photoconductor is cleaned and recharged, ready

for the next round.

The warm process consists of a seamless and endless rubber belt, often referred to

as the toner transfer belt, or TTF, that is rotating with the same speed as the photocon-

ductor belt. The TTF is heated and since these two belts are touching at some point,

toner will stick to it temporarily. Hence, the toner image is transferred from the OPC to

the TTF. The rubber belt is then forced through a so-called warm fuse pinch, where it

meets a preheated sheet of paper. The distance between the two rolls of the fuse pinch

is kept marginally smaller than the thickness of the rubber belt. The rubber belt and the

paper are forced through the slit. The elasticity of the belt causes the force necessary

to fuse the toner image on the sheet and finally the TTF is cleaned, ready for the next

round.

The resulting quality of the image on paper is determined by the properties of the

total fusing process, which is an intricate interplay between the mechanical, electrical,

physical and chemical sub-processes as described above. Stability of the fusing pro-

cess is important to guarantee consistent printing quality. It is therefore the dominant

driver in the design of the overall control architecture. The photoconductor belt and

TTF run at a constant speed to avoid fluctuations as much as possible. The LED array

is synchronized on the measured speed of the belt to ensure that all image lines are

equidistant and to avoid the seam on the photoconductor. The image processing equip-

ment follows this as a slave process, it has to ensure that the bitmap data for each line

is supplied in time. Similarly, the paper path sub-system has to ensure that the sheet

122

Figure 6.2: Schematic overview of the two-phase printing process

of paper is available at the fuse pinch on time and with the right speed. Otherwise,

the image would be misaligned and the fuse pinch would be polluted. This high-level

control approach is called sheet-follows-image.

The case study described in this chapter abstracts away from the complexity of the

image transfer process entirely. We assume it works nominally here, it runs at some

preset, constant, speed. Instead, we focus on the derived requirement imposed on the

paper path sub-system to deliver sheets at the right speed at the right moment in time at

a particular location. The paper path sub-system is a so-called mechatronic system that

is composed of many parts. It consists of a number of so-called pinches that are used

to transport the paper. Each pinch consists of a set of rubber rolls on a metal axis each,

whereby the rubber rolls touch each other. The paper moves in between those rolls due

to friction. The pinches are set along the paper track, whereby the distance between

two pinches is chosen to be less than the smallest paper size dimension that the printer

needs to support. This ensures that each sheet is always in control of at least one pinch.

Special care has to be taken if a sheet is in multiple pinches at the same time. The

paper would either tare or blouse if these pinches would rotate at significantly different

speeds.

The pinches are driven by electric motors, typically brushless direct current (BLDC)

or stepper motors. The motors are connected to the pinches using a toothed rubber belt

over cogged wheels. A drive ratio can be realized by using different diameter cogged

wheels. Uni-directional bearings, which allow free rotation in one direction, can be

used to circumvent the multiple pinch problem described previously. Sometimes, a

single motor and rubber belt drives multiple pinches, in order to save cost. Deciding

which pinches to combine is an important task during the design, as is the placement

of the paper sensors. Usually, paper sensors are optical sensors that are able to detect

the leading and trailing edge of each sheet as it moves through the paper path. Their

position is usually a trade-off between mechanical and control requirements. In office

equipment, space is usually a scarce resource and sensors need to be mounted such

that they can be serviced if needed. However, the position of each sensor determines

its control effectiveness and computational demands. Sensors located close to some

critical control objective might require potent computers in order to live up to the short

response times and sensors located far away may impede the required control accuracy.

In many cases, this leads to complex multi-disciplinary design tradeoffs.

123

Organization of this chapter. The purpose of this chapter is to demonstrate how

these design challenges can be supported using the methods and techniques presented

in the previous chapters. First the experimental set-up that is used in our experiments

is presented in Section 6.2. The modeling approach and the models themselves are

discussed in Section 6.3. Last but not least, we present the results from our analysis in

Section 6.4 and we draw some conclusions from our work in Section 6.5.

6.2 The paper path experimental set-up

The paper path we study in this chapter is inspired on the Océ Varioprint 2090 mid-

range black and white office printer, which is presented in more detail in Figure 6.3.

Figure 6.3: Schematic overview of the Océ Varioprint 2090 paper path

The paper path consists of twelve normal pinches, marked P0 to P12 and seven

sensors, marked as closed black dots. In addition, two special pinches, so-called pre-

heaters, are available. They are positioned close to the fuse pinch. Sheets are inserted

into the paper path by the paper input module, or PIM. These are typically stand-

alone units that have a simple interface to request each single sheet. This sheet will

be delivered with a certain margin of error and the paper path has to compensate for

the timing tolerances imposed by this unit. The time difference can be measured by

SENSOR1. When the sheet has reached SENSOR2, the sheet will be stopped by pinch P3

and aligned. Alignment is required to compensate for skewed sheets and the alignment

unit will ensure that the four corners of the sheet are equidistant to the heart line of the

paper path. The sheet is then accelerated towards P4 and passes the first pre-heater.

Pinch P5 is the last pinch that can compensate for tolerances in speed and position of

the sheet. SENSOR5 is used to detect the final margin of error of the leading edge of

the sheet. The compensation has to be completed before the leading edge of the sheet

enters the second pre-heater, because it is physically coupled to the motor that drives

the fuse pinch and therefore always runs at the same speed. After the fuse pinch, the

sheet is either ejected to the finisher (FIN) via P9-P12 or it is re-inserted into the paper

path via the duplex loop at P8. Pinch P3 will catch, stop and align the sheet before

moving it down again towards P4 for the second run. Note that the actuator at P7 to

force simplex or duplex printing is not shown in Figure 6.3. Observe that double sided

124

printing needs to be carefully planned ahead of time, to prevent hitting sheets coming

from the paper input module. It is obvious that designing the control algorithm for

managing this subsystem productively is challenging.

Selection of the appropriate embedded hardware and software architecture to sup-

port such a system is equally difficult and important because it has a potential high

impact on both cost-price and performance. It is clear that a mixture of hard- and

soft real-time task needs to be accommodated by the system, whereby the physical

decomposition into subsystems need to be taken into account. A distributed architec-

ture, consisting of several networked computers, is typically suggested as a way to

achieve separation of concerns. However, the economic drive towards low-cost price

suggests maximum integration instead, to reduce the number of components as much

as possible. The tension between these two extremes is complicated even more when

development and life-cycle requirements are taken into account. Separate comput-

ers for each task would allow for maximum decoupling of development teams which

would enable concurrent development to improve the time-to-market whereas a single

common platform could complicate this. Capital goods, such as printers, are usually

designed as a product family, whereby different product configurations cater for dif-

ferent market segments but are typically based on a common design and architecture.

A low-cost product would perhaps require a highly integrated platform while a high-

end product would need a much more potent, and possibly distributed, architecture.

Last but not least, design of these complex systems can take several years, therefore

spanning several technology generations. Adoption of new embedded control solutions

mid-project is no exception in order to keep competitive. A flexible way to investigate

and accommodate these kind of changes is of course most helpful.

Unfortunately, support for these kinds of system-level design trade-offs is very

limited in practice. Design tools are often targeted towards a single technology, ar-

chitecture or discipline. In the BODERC project [47], we proposed to create abstract,

high-level and multidisciplinary models of the system under construction. This model

driven design approach allows for early impact analysis of proposed solutions. An ex-

perimental set-up was created that allows research on the design and analysis of the

paper path sub-system. The experimental set-up was build by the Control Engineering

group of the department of Electrical Engineering, Mathematics and Computer Science

at the University of Twente [3]. The set-up is in fact a simplification of the Varioprint

2090 paper path, but it exhibits the same basic control challenges. We will now provide

a description of the experimental set-up, as presented in Figure 6.4.

Figure 6.4: Schematic overview of the experimental set-up from [3]

The system can simulate single-sided printing and it is composed of a simple paper

input module, which includes a motor-pinch subsystem with a uni-directional bearing

and a paper path composed of four pinches. Each pinch on the paper path is driven by

a separate electric brushless DC motor. This motor is connected to the pinch by means

of a toothed rubber belt over two cogged wheels. Each motor has a built-in rotation

125

sensor, a so-called quadrature encoder which measures the angular position. This sen-

sor delivers a pulse train whereby the frequency corresponds to the rotation speed of

the motor axis. The sign of the signal encodes the direction of rotation, clockwise or

anti-clockwise. Sheets are delivered into a passive paper tray at the end of the paper

path. Four optical sensors, referred to as so-called paper detectors, are mounted in the

experimental set-up to observe the leading and trailing edges of the sheets. Each pinch

is assigned a specific task:

• The first and second pinch act as the paper input module. Their task is to supply

single sheets with a constant speed. They corresponds to the pinch P0 in Fig-

ure 6.3. A paper detector is mounted right after the second pinch to simulate

SENSOR1 and we will refer to it as PDPIM .

• The third pinch acts as the alignment pinch and it corresponds to pinch P3 in

Figure 6.3. Its task is to align the sheet. This process is simulated by temporarily

stopping each sheet for a specified amount of time. A paper detector is mounted

right after the third pinch to simulate SENSOR2 and we will refer to it as PD ALIGN .

• The fourth pinch acts as the correction pinch and it corresponds to pinch P5 in

Figure 6.3. Its task is to ensure that each sheet is delivered on time and with the

right speed at the fuse pinch. A paper detector is mounted right after the fourth

pinch to simulate SENSOR5 and we will refer to it as PD CORR .

• The fifth pinch acts as the fuse pinch from Figure 6.3. This pinch rotates at some

preset and constant speed. A paper detector is mounted right after the fifth pinch

and we refer to it as PDFUSE .

Figure 6.5: Overview of the embedded control system architecture

The experimental set-up is controlled by a distributed embedded control system

as shown in Figure 6.5. It consists of four nodes. Each control node consists of a

processor board, a Controller Area Network (CAN) field bus interface and a field pro-

grammable gate array (FPGA) board, all using the PC104 form factor. The processor

126

board contains an Intel x86 compatible processor with a built-in VGA graphics adapter,

flash and DRAM memory and an Ethernet network interface. The processor board can

run any operating system, in the case study presented here RTAI real-time Linux is

used. TCP/IP over Ethernet is used for on-target debugging, remote file system access

and software download. The development station is connected to all nodes over this

interface. The CAN and FPGA interfaces are directly connected to the PC104 ISA in-

terface of the processor board. The CAN field bus is used to communicate between the

nodes when executing the embedded control application. The FPGA board is used to

implement low-level input and output interfaces, for example to handle the quadrature

encoder signal and to generate the pulse-width modulation (PWM) signal for each mo-

tor. Furthermore, the FPGA I/O board enables high speed and high accuracy measure-

ments that are completely independent from the software running on the x86 CPUs.

The distributed embedded control system is designed such that any potential system

configuration can be created, which provides maximal flexibility when performing ex-

periments. For example, the H-bridges and amplifiers that drive each motor can be

connected to any of the nodes by changing a simple patch cable. All motors can be

controlled from a single node, or each motor can be controlled from a separate node.

Similarly, software can be deployed on the distributed embedded control system in any

configuration. A picture of the experimental set-up is shown in Figure 6.6. The paper

input tray and the pinches are on the top of the set-up. The four embedded controller

nodes are visible below the paper path. The cross-development system, which is an

ordinary personal computer, is not shown in the photograph.

Figure 6.6: The experimental set-up at University of Twente, photo by P.M. Visser

127

6.3 Modeling the experimental set-up

The experimental set-up described in the previous section has been extensively studied

using formal techniques in the BODERC project. We have followed a three level

development approach to address the complete system development life-cycle of this

system, which is graphically represented in Figure 6.7.

• First level. In the first level, the emphasis is on system analysis by modeling,

simulation and analysis using formal techniques. It does not necessarily require

the use of the experimental set-up. A model of the dynamic behavior of the sys-

tem (the plant) was built using Bond graphs. This model is presented in detail in

Section 6.3.1 and was studied using 20-SIM. A model of the controller software

was built using VDM++. This model is presented in detail in Section 6.3.3 and

it was studied using VDMTOOLS. The semantic extensions presented in Chap-

ter 4 are used to investigate the interaction between these models to support the

multi-disciplinary design dialogue in this phase.

• Second level. In the second level, the emphasis is on elaborating the software

model of the control application. It does not necessarily require the use of the

experimental set-up. The level of detail in the VDM++ model is incrementally

increased until source code can be constructed from it straightforwardly. We use

automatic code generation, directly from the VDM++ models. The generated

code is compiled using a standard C++ compiler running on the simulator host,

in our case a normal personal computer running on the Windows platform. The

resulting dynamic link library (DLL) can be used for so-called software-in-the-

loop simulations against the unmodified model of the plant in 20-sim.

• Third level. In the third level, the unmodified C++ code generated from the

VDM++ models developed in the second level is compiled for the target plat-

form. The resulting application can be uploaded to the embedded controllers of

the experimental set-up for testing. Measurements are taken during the execution

of the experiment.

Figure 6.7: The overall development strategy - a three level approach

128

The philosophy behind this approach is to obtain a design trajectory which enables

continuous validation of the system under development for both controller and plant. In

the first level, light-weight system models are developed that enable the investigation

of multi-disciplinary design trade-offs due to the co-simulation capability. In addi-

tion, the VDM++ models developed here can be studied using domain specific analysis

tools, e.g. to verify internal consistency of the model using static analysis, testing or

even proof. Similarly, the Bond graph models can be scrutinized with the usual control

engineering specific analysis approaches for example to investigate control law stabil-

ity and convergence. System identification techniques can be used to ensure that the

dynamic system model is an accurate representation of the physical plant. Of course,

this last activity can only take place if the system (or part of the system) is available to

perform measurements upon.

In the second level, the software engineer will elaborate the high-level VDM++

models into an implementable software architecture which is also specified in VDM++.

Design decisions are made that may affect the behavior of the system as a whole.

Major architectural decisions such as deployment of the application on a distributed

hardware architecture and the type of scheduling used on and the available performance

of each computation and communication element are decided upon. The designer has

the ability to assess the impact of these design choices by comparing the simulation

results from the second level to those of the first level. This may give rise to partial

redesigns if significant differences are reported. This process is iteratively repeated

until eventually the source code level is reached. Domain specific analysis techniques

can be used after each iteration to verify these refinement steps, e.g. by testing. But

in addition, it is also possible to continuously validate the behavior of the system as a

whole due to the software-in-the-loop capability.

In the third level, the controller application software is moved from the simulation

host to the embedded target. This implies at least recompilation at the source code

level and integration of the application with the real-time operating system running

on each processor. This step can be verified by comparing the measurements from

the experiment performed on the embedded target to the simulations from the first

two levels. Any discrepancy which exceeds predefined design margins must either be

related to a problem in the target compiler, the operating system and device drivers or

it is an incorrect assumption in either of the controller or plant models.

In the next two subsections we will present the model of the printer paper path.

The aim is to give the reader some insight into the scope and level of detail that was

achieved. We do not show how these models were obtained through refinement, we

merely present the end result of that iterative design and analysis activity at the end of

the second level. However, we will explain the major decisions that were taken during

the elaboration process.

6.3.1 Modeling the plant

A dynamic system model of the experimental set-up was developed by Ambrosius and

Visser and is presented in detail in [3]. They developed a model for both plant and

controller using Bond graphs. In this work, we will only reuse the plant sub-model and

we will replace the controller model by a model written in VDM++ in Section 6.3.3.

The important elements from the plant model are summarized here for convenience. As

suggested in Chapter 5, a very important decision that drives the modeling work is the

choice of the appropriate I/O interface between the plant and controller. Ambrosius and

Visser have put this interface at the level of the interconnect matrix shown in Figure 6.5

129

and is presented in more detail in Figure 6.8. The primary reason for the choice of this

particular interface is the high likelihood that this interface remains stable during the

entire life cycle of the system, since it is commonly used in these kinds of applications.

It is composed of the following items:

• The output of the discrete controller model is a real value in the interval 〈−1, 1〉
per motor which represents the so-called duty cycle of the pulse-width modu-

lation (PWM) signal that drives the power amplifier. Assume a square wave

signal with a fixed frequency. The duty cycle is then defined as the ratio between

the pulse duration and the period. The sign determines the direction of rotation

(clock-wise or anti clockwise).

• The input of the discrete controller is a signed integer value per motor which

represents the rotational direction and the number of counted pulses of the rotary

encoder 1 that is connected to each motor axis.

• The paper detectors (input to the discrete controller) are modeled as Integer val-

ues whereby 0 represents the absence of paper and 1 the presence of paper at the

sensor position.

Figure 6.8: Overview of the controller - plant I/O interface

The top-level bond graph model of the plant is shown in Figure 6.9. At the bottom

of the figure, we see the interface towards the controller. There is a pair of PWM and

encoder signals connected to each motor-belt-pinch icon. These icons represent lower

level bond graph models, or sub-models, which we will present later in more detail.

The plant model has four motor-belt-pinch sub-models while our experimental set-up

has five. The first motor in the set-up is only used to inject new sheets into the paper

path. Since its operation is only of minor importance to the total system behavior it

is only abstractly represented in the plant model by means of the FeedSheet signal.

The behavior of the individual sheets is represented by the photographic icon. This

sub-model maintains the state of each sheet in the paper path, such as for example its

current speed and position. The state of the PaperDetectors signal is automati-

cally derived from this information. If the position of a paper detector is in between

the leading and trailing edge of at least one sheet then it will yield 1 else 0. Similarly,

the sheet is in control of a pinch if the position of the pinch is in between the leading

and trailing edge of the current sheet position. The animation icon is used as a monitor

which allows us to visualize the simulation graphically.

The pinches drive the sheets and this transfer of energy is influenced by friction. In

kinematic models the friction is assumed to be zero but this is usually not very realistic.

The friction force which is imposed on each sheet is a function of the mass of the sheet

and the speed difference between the sheet and pinch. Of course, the friction force is

1See http://en.wikipedia.org/wiki/Rotary encoder

130

http://en.wikipedia.org/wiki/Rotary_encoder

Figure 6.9: Top-level bond graph of the plant model

imposed if and only if the sheet is in control of a pinch. What happens if a sheet is

in control of two pinches? In our model we assume that the pinch near the leading

edge of the sheet dominates the pinch near the trailing edge. The assumption is that the

force imposed by the leading edge pinch will cause the sheet to slip in the trailing edge

pinch. This abstraction can be used if and only if the speed of the leading edge pinch

is equal to or slightly higher than the speed of the trailing edge pinch. This condition

can be checked at simulation time. Of course, only a very trivial friction model is used

here, but it can simply be replaced by more complex hybrid friction models if the need

arises, without affecting the plant model architecture demonstrated here.

The Bond graph sub-model for the motor, belt and pinch is presented in Figure 6.10.

This iconized diagram demonstrates at a very high level of abstraction how the control

signal relates to the movement of the sheet. For example, observe that the behavior

of the power electronics, the so-called H-bridge, has been modeled as a simple multi-

plication (or gain) factor. In other words: the amount of power provided to the motor

is linear proportional to the duty cycle of the pulse-width modulated input signal ob-

tained from the controller. The motor converts this electrical energy into torque. The

torque causes the belt to rotate and the belt in turn drives the pinch, whereby the “Belt

and Gear” sub-model simply multiplies the rotational speed of the motor with the gear

ratio. And finally, the pinch transfers its energy towards the sheet of paper as described

previously. The angular velocity is measured at the motor axis and this value is mul-

131

tiplied by 2π to obtain the number of rotations per second. We will see later how this

value is converted into encoder values in the detailed I/O interface model.

Figure 6.10: Bond graph of the motor, belt and pinch subsystem

The “DC motor” icon in Figure 6.10 is itself a Bond graph sub-model as shown

in Figure 6.11, which again demonstrates the explicit hierarchy in the model. The

inductance L, internal resistance R, motor torque constant, rotor inertia and Coulomb

friction parameters required by this sub-model can usually be found in the supplier data

sheet. In our case we use the Maxon RE25 motor 2.

Figure 6.11: Bond graph of the DC motor from Figure 6.10

Finally, we revisit the I/O interface model. The I/O model acts as a mediator be-

tween the discrete time controller model and the continuous time plant model, as shown

earlier in Figure 6.8. In other words, discrete values need to be converted into continu-

ous signals and vice versa and we have to ensure that this conversion process does not

affect the overall analysis at the system level. A detailed overview of the I/O model

is shown in Figure 6.12. The top row demonstrates from left to right how the discrete

PWM values are converted into their continuous counterpart, in this case an analog

voltage between 〈−1, 1〉 Volt. This value is delayed by one integration time step in or-

der to keep the real-time properties of the model consistent, as described in Chapter 5

and Figure 5.8. The middle row shows, from right to left, how the rotation of the motor

axis is translated into a discrete encoder value. First, the motor speed is integrated into

its position. This value is multiplied by n/2π, whereby n is the number of encoder

steps that can be measured per revolution. This value is rounded to the nearest integer

and finally sampled. At the bottom row similar steps are taken to discretize the paper

detector sensor into an Integer value.

2The data sheet can be found at http://www.maxonmotor.com.

132

http://www.maxonmotor.com

Figure 6.12: Detailed overview of the I/O interface model

6.3.2 Validating the plant model

The core of the plant model is now available, but how do we know if it is fit for pur-

pose and whether or not it accurately describes the system? The usual approach is

to validate parts of the model by system identification: tuning the model by perform-

ing measurements on (parts of) the system. Consider the Bond graph sub-model for a

pinch as shown in Figure 6.13. The model demonstrates how rotation is transformed

into translation of the sheet and which disturbances play a role in this process. The

major contributors are the inertia and friction properties of the pinch. These values

can be estimated, measured or calculated. The impact of the friction parameters was

known to be low from previous experience. Their order of magnitude was estimated

and this was checked by simple measurements using open-loop control. The inertia of

the metal axis is by far the most dominant part of the pinch, therefore its value was

calculated based on its mass and radius.

Figure 6.13: Bond graph of a pinch from Figure 6.10

An interesting observation was made when a single motor-belt-pinch sub-system

was put on the test bench. A low frequency sinoid oscillation was detected during speed

measurements, when the motor was controlled in open loop with a preset and constant

duty cycle. The frequency of this disturbance was linear related to the angular velocity

of the motor and the length of the rubber belt. The cause of this phenomenon was that

the belt is not homogeneous in width and thickness, a common problem occurring with

off-the-shelf components which was demonstrated by the fact that other rubber belts

appeared to have exactly the same problem. Ambrosius and Visser decided to update

the plant model to address this issue. A squared sine wave with a small amplitude (as

measured on the test bench) was added to the motor angular velocity. A low-pass filter

was added to ensure that this disturbance is only related to the mean velocity and has no

effect at higher speeds, as was demonstrated in the measurements. This also required a

change at the higher level Bond graph model since the angular velocity is now needed

as an input to the disturbance model. An overview of these improvements is presented

in Figure 6.14.

133

Figure 6.14: Bond graphs of the improved motor, belt and pinch subsystem

Also the behavior of the paper detectors was checked. Light sensitive optical sen-

sors are used to detect the edges of each sheet. However, the light receptacle of the

sensors used have a rather wide opening angle which becomes a problem when the

sensor cannot be mounted physically close to the sheet. At low speeds, it may actu-

ally take a few samples before the sensor is completely covered which would make

sheet detection very inaccurate. This problem could be solved in the plant model, for

example by adding an hysteresis filter. But instead, Ambrosius and Visser decided to

modify the sensor receptacle such that only a narrow beam of light can be detected. The

interested reader is referred to [3] for more details on the design of the plant model.

6.3.3 Modeling the controller

An overview of the paper path and the experimental set-up has been presented in Sec-

tion 6.2. We have fully abstracted away from the image processing part of the Océ

Varioprint 2090 in the experimental set-up. We assume that images are delivered at a

user defined constant rate, which is simulated in the experimental set-up by the con-

stant angular velocity of the fuse pinch. This velocity ω is determined by the required

system throughput performance as described in the following equations:

Vfuse = (pagesize + isd) · tp / 60 (mm / sec) (6.1)

ω = Vfuse / 2π · rpinch (rad / sec) (6.2)

whereby pagesize represents the size of a sheet (in mm), isd represents the inter-sheet

distance (in mm), tp represents the throughput (in pages per minute) and finally r pinch

represents the radius of the fuse pinch (in mm). The inter-sheet distance is defined

as the distance between the trailing and leading edge of two consecutive sheets. The

primary task of the paper path sub-system is to deliver each sheet on time and at the

right speed at the fuse pinch. This requirement has two implications:

1. With respect to “on time”. The inter-sheet distance shall be maintained in order

to meet the required system performance and to ensure the correct alignment of

the image on the sheet. A maximum deviation of 0.5 mm is allowed exactly at

the fuse pinch but the inter-sheet distance may vary elsewhere as long as two

consecutive sheets do not collide or overlap.

2. With respect to “right speed”. The leading edge of each sheet shall have the

nominal speed Vfuse just before it is in control of the fuse pinch. Printing qual-

ity will deteriorate if the speed is too low, because pulling the sheet from the

penultimate pinch may cause slip in the fuse pinch. Alternatively, the sheet may

134

blouse causing folds in the sheet or even paper jams can occur if the sheet is

delivered too fast. A maximum deviation of Vfuse of 2 % is allowed.

Now the main control goal has been identified, we can look at the secondary tasks

to perform by the control application. Considering the pinches in the experimental

set-up, we have the following additional requirements:

1. The first pinch is part of the paper input module and it is used to retrieve sheets

from the tray. The challenge is to ensure that single sheets are separated. The

solution is to control this motor belt pinch sub-system in open loop. Basically

the motor is told to accelerate as fast as possible for a very short period of time

and then immediately decelerate. The friction force between the pinch and the

top sheet is larger than the friction force between the top two sheets, which will

cause clear separation of a single sheet.

2. The purpose of the second pinch is to get the sheet under control by moving it

down the paper path at the nominal speed Vfuse.

3. The purpose of the third pinch is to decelerate, stop and accelerate the sheet.

This will simulate the alignment process of the sheet in the Océ Varioprint 2090.

The length of the stop period is user defined.

4. The purpose of the fourth pinch is to ensure that the sheet is delivered with the

correct inter-sheet distance and speed to the fuse pinch. It will have to compen-

sate for the time lost during alignment of the sheet at the previous pinch.

5. The fifth pinch simulates the fuse pinch. But since it is also the last pinch in the

experimental set-up, it also acts as the finisher pinch. As soon as the pinch is in

control of a sheet and the leading edge has been detected by the fuse pinch paper

detector, it will briefly accelerate to ensure proper delivery to the finisher. The

fuse pinch needs to return to Vfuse and stabilize before the scheduled arrival of

the next sheet.

The control application will have to satisfy all these sub-goals simultaneously. The

behavior of a sheet, in terms of its speed through the paper path, is graphically pre-

sented in Figure 6.15. The numbers 2 to 5 correspond to the pinch that is in control

of the sheet at a given point in time. The grey areas indicate where the paper is in

control of two pinches simultaneously. The control application will need to ensure that

the angular velocity of the pinch with the higher number is equal or marginally greater

than the pinch with the lower number in order to prevent hybrid control phenomena as

described in Section 6.3.1.

We will take a step-by-step look at the lifetime of a sheet during its travel through

the pinches in order to get a feeling for the control complexity involved. The events

mentioned are also shown in Figure 6.15.

1. A new print job arrives and the image processing starts. Meanwhile pinches 2 to

5 are booted up until they run at Vfuse and then the first sheet is requested from

the paper input tray. The sheet is separated by pinch 1 and it is inserted into the

paper path. It will hit pinch 2 with some force and at the wrong speed since we

use a rather brute force separation method.

2. Pinch 2 accepts the first sheet and will try to stabilize its speed to Vfuse. The

timing tolerance caused by the brute force separation is known when the leading

edge of the sheet is detected by PDpim, as shown by the ↑-arrow.

135

Figure 6.15: Overview of a typical sheet velocity profile

3. The sheet continues to move downstream and gets into joint control of pinches 2

and 3 (the first grey area in the figure). The control application knows that the

sheet has left the control of pinch 2 when the trailing edge of the sheet is detected

by PDpim, as shown by the ↓-arrow. The alignment phase of the sheet can now

start because pinch 3 is in full control. The deceleration needs to be quick enough

to ensure that the leading edge of the sheet does not reach pinch 4.

4. The sheet is accelerated to Vfuse after the user-defined alignment time δtstop has

expired. The acceleration must be performed quickly to ensure that the nominal

speed has been reached before the leading edge of the sheet hits pinch 4.

5. The sheet continues to move downstream and gets into joint control of pinches 3

and 4 (the second grey area in the figure). The control application knows that the

sheet has left control of pinch 3 when the trailing edge of the sheet is detected

by PDalign, as shown by the ↓-arrow. The correction phase of the sheet can now

start because pinch 4 is in full control. The sheet is accelerated to compensate for

the time lost in the alignment phase and the tolerances caused by the brute force

sheet separation. The sheet needs to be decelerated and stabilized to Vfuse before

the leading edge arrives at pinch 5 (the fuse pinch) with the correct inter-sheet

distance.

6. The sheet continues to move downstream and gets into joint control of pinches 4

and 5 (the third grey area in the figure) and the image is printed on the sheet.

The alignment accuracy is verified by checking the arrival time of the leading

edge of each sheet at PDfuse, indicated by the ↑-arrow in the figure. The control

application knows that the fuse pinch is in full control of the sheet when the

trailing edge of the paper is detected by PDalign. The sheet is finally accelerated

to ensure proper delivery to the finisher.

7. The sheet is in full control of the finisher when the trailing edge of the sheet is

detected by PDfuse. The speed of the fuse pinch is quickly brought back and

stabilized to Vfuse in time for the arrival of the next sheet.

The informal description of the requirements for the control application listed above

gives us some inspiration for the control application architecture that is required to

address these challenges. From the engineering point of view, it is usually a good

idea to apply the “separation of concerns” principle, for example to divide the time

136

critical parts from the less time critical parts of the application. For example, the timing

requirements for pinches 2 to 5 are very tight. Therefore, the motor-belt-pinch sub-

systems will get a real-time controller. In fact, we will provide each motor-belt-pinch

subsystem its own controller in our architecture because the requirements differ and

they may be deployed on different hardware in the final implementation. In contrast,

the timing requirements for the high-level sheet flow control, as presented in the sheet

life-cycle are far less demanding and a single application may suffice for this purpose.

The linking pin between this high-level supervisory control layer and the real-time

controllers is a set of so-called sequence controllers, one per real-time controller. These

sequence controllers generate so-called set point profiles ahead of time, based on the

planning information received from the supervisor. An informal overview of this well-

known three tier control application architecture is shown in Figure 6.16.

Figure 6.16: An informal overview of the three tier control application architecture

An overview of VDM++ models for the controller application architecture is pre-

sented in a bottom-up fashion. We start at the plant model interface and the real-time

loop controller and work our way up towards the supervisory control. Each motor-belt-

pinch sub-system has an interface consisting of a pulse width modulation input (PWM)

and encoder output (ENC). This interface is well suited for feedback control. A stan-

dard PID control strategy 3 will be used for pinches 2 to 5. The real-time controller

will periodically sample the encoder value. This value is a measure for the distance

covered and it is compared to the so-called set point, which represents the intended

value. The difference between the two is called the error and with the PID algorithm

we calculate a new PWM value to compensate for this measured error. The four PID

loop controllers will operate at 1 kHz in our controller models. Open loop control is

used for pinch 1. Basically, the set point is forced upon the motor-belt-pinch system by

writing the correct PWM value but the encoder value is ignored. For convenience, the

loop controller for pinch 1 will also run at 1 kHz.

The loop controller

Consider the VDM++ model for the loop controller shown below. The constructor of

the active class LoopController takes two arguments. The first argument, ptp, deter-

mines whether the calculated output value is send to the plant model at the start of

the next iteration or immediately. The second argument, pfb is used to distinguish the

control strategy: closed loop or open loop.

class LoopController

instance variables

-- time-triggered (true) or immediate output (false)
private hold : bool := true;

3See http://en.wikipedia.org/wiki/PID controller.

137

http://en.wikipedia.org/wiki/PID_controller

-- closed loop (true) or open loop (false)
private feedback : bool := true

operations

public LoopController: bool * bool ==> LoopController
LoopController (ptp, pfb) == (hold := ptp; feedback := pfb)

It is possible to describe a system at several levels of abstraction in VDM++. Im-

plicit operation definitions will be used in this section for the sake of brevity. Some

of these operations are loosely specified on purpose, for example post conditions may

look trivial. The reader needs to know about their existence but the actual detailed spec-

ification is not relevant to understand the structure of the model. Two operations are

defined to access the plant model. The operation getEnc will read the current encoder

value and setPwm will write the current pulse width modulation value. The auxiliary

operation limit is used to truncate the calculated PWM value.

operations

private getEnc () enc : int

post true;

private setPwm (pwm : real)
pre pwm < 1 and pwm > -1
post true;

private limit (ival : real) oval : real

post oval < 1 and oval > -1

The instance variable output is used to temporarily store the calculated pulse width

modulation value. The operation CtrlLoop implements the real-time control strategy

and is periodically executed. The operation calcPID executes the PID algorithm.

instance variables

private output : real := 0;
private ltime : real := 0

operations

public calcPID (enc : real) pwm : real

ext rd ltime : real

post true;

public CtrlLoop: () ==> ()
CtrlLoop () ==
-- first retrieve the current encoder value
(dcl enc : real := getEnc();

-- update the old output if time-triggered
if hold then setPwm(output);
-- update the local notion of time
ltime := ltime + 0.001;
-- calculate the new PWM value
output := if feedback

then limit(calcPID(enc))
else limit(getSetpoint());

-- update the output if not time-triggered
if not hold then setPwm(output))

thread

-- execute the controller at 1 kHz
periodic (0.001, 0, 0 , 0.001)(CtrlLoop)

The operation getSetpoint used inside CtrlLoop retrieves the set point from the pas-

sive SetpointProfile object for the current local time ltime. The set point profile can be

138

updated by the sequence controller by calling the asynchronous addProfileElement op-

eration. The operations getSetpoint and addProfileElement are declared mutual exclu-

sive to prevent data corruption by simultaneous access to the profile instance variable.

instance variables

private profile : SetpointProfile := new SetpointProfile()

operations

private getSetpoint: () ==> real

getSetpoint () == profile.getSetpoint(ltime);

async public addProfileElement: real * real * real ==> ()
addProfileElement (px, py, pdt) ==

profile.addElement(px, py, pdt)

sync

-- access to the profile is mutual exclusive
mutex (addProfileElement, getSetpoint);
mutex (addProfileElement)

end LoopController

The set point profile

The passive class SetpointProfile is used as a container to collect all knowledge on ma-

nipulating so-called set point profiles. A set point profile is an ordered collection (a

sequence) of left-closed, right-opened, line elements which together define the evolu-

tion of the set point over time. Each line element, or ProfileElement, is defined by three

real numbers. The first number defines the domain: the starting time t at which this el-

ement is valid. The second and third number define the range: the current value at time

t and the direction coefficient that is valid from this point in time onwards respectively.

Set point profiles are defined from some point in time to infinity, since the last element

in the profile is right-opened. The invariant of the profile instance variables ensures that

the domain is strictly monotonically increasing but it does allow discontinuities in the

range. The operation addElement can be used to extend the current set point profile.

class SetpointProfile

types

private ProfileElement = seq of real

inv pe == len pe = 3

instance variables

profile : seq of ProfileElement := [];
inv forall i, j in set inds profile &

i < j => profile(i)(1) < profile(j)(1)

operations

public addElement: real * real * real ==> ()
addElement (t,v,a) ==

profile := profile ˆ [[t,v,a]]
pre len profile > 0 => profile(len profile)(1) < t

The operation getSetpoint is used to compute the actual set point at some specific

point in time based on the abstract continuous time description maintained in the profile

instance variable.

operations

public getSetpoint: real ==> real

139

getSetpoint (t) ==
if len profile = 0
then return 0
else (dcl prev_pe : ProfileElement := hd profile;

for curr_pe in tl profile do

if curr_pe(1) > t
then return calcSetpoint(t, prev_pe)
else prev_pe := curr_pe;

return calcSetpoint(t, prev_pe))
pre t >= 0 and len profile > 0 => t > profile(1)(1)

functions

private calcSetpoint: real * ProfileElement -> real

calcSetpoint(t, [px, py, pdydx]) == py + pdydx * (t - px)
pre t >= px

end SetpointProfile

The sequence controller

The active class SequenceController contains the knowledge to translate high-level pa-

per path planning commands into set point profiles that are used by the loop controllers.

Each sequence controller is associated with exactly one loop controller loopctrl.

class SequenceController

instance variables

public loopctrl : [LoopController] := nil

The operation initNominal is used to power-up the pinches until they reach the

nominal paper path speed vnom. The motors are not started at full throttle immediately,

but they are ramped up gradually. The user can influence the power-up time by setting

the acceleration parameter anom.

operations

async public initNominal: real * real ==> ()
initNominal (v_nom, a_nom) ==
(-- ramp up the motor to the nominal paper speed

loopctrl.addProfileElement(0, 0, a_nom);
-- and maintain a constant speed indefinitely
loopctrl.addProfileElement(v_nom / a_nom, v_nom, 0))

pre v_nom > 0 and a_nom > 0 and loopctrl <> nil;

async public initPeak: real ==> ()
initPeak (tpeak) ==
-- give the sheet a good kick for 60 msec
(loopctrl.addProfileElement(tpeak, -40, 0);

loopctrl.addProfileElement(tpeak+0.060,0,0))
pre loopctrl <> nil

The operation setStopProfile is used to bring the sheet in the paper path to a com-

plete stand still for dstop seconds. The procedure will start at t1 with speed v1 mm/sec

and the sheet will accelerate and decelerate with acc mm/sec2.

operations

async public setStopProfile: real * real * real * real ==> ()
setStopProfile (t1, v1, acc, dstop) ==
def dt = v1 / acc in

(loopctrl.addProfileElement(t1, v1, -acc);
loopctrl.addProfileElement(t1+dt, 0, 0);
loopctrl.addProfileElement(t1+dt+dstop, 0, acc);

140

loopctrl.addProfileElement(t1+dt+dstop+dt, v1,0))
pre acc <> 0 and loopctrl <> nil

end SequenceController

The supervisory controller

The active class Supervisor represents the supervisory control in our architecture. It

has five instance variables of type SequenceController. The links to these objects are

created at model instantiation time. Each sequence controller takes care of one motor-

belt-pinch subsystem. The mapping shts keeps track of the time when each sheet is

requested. We will use this information to check whether or not our control goal has

been achieved. The operation startPrintJob is invoked to start the printing process. The

operation init is used to ramp up all the pinches to the nominal speed.

class Supervisor

instance variables

public ejectSeqCtrl : [SequenceController] := nil;
public pimSeqCtrl : [SequenceController] := nil;
public alignSeqCtrl : [SequenceController] := nil;
public corrSeqCtrl : [SequenceController] := nil;
public fuseSeqCtrl : [SequenceController] := nil;

-- keep track of the time the sheet was requested
private shts : map nat to real := {|->}

operations

async public startPrintJob : real * real * real ==> ()
startPrintJob (ppm, pagesize, isd) ==

def v_nom = (pagesize + isd) * 60 / ppm in

(-- start-up the paper path
init (v_nom, v_nom * 10);
-- simulate printing ten sheets after 1 second
def now = time + 1.0 in

for idx = 0 to 9 do

def tstart = now + idx * ppm / 60 in

(-- tell the sequence controller
ejectSeqCtrl.initPeak(tstart);
-- remember when it is requested
shts := shts munion {idx+1 |-> tstart}))

pre ejectSeqCtrl <> nil and ppm > 0 and

pagesize > 0 and isd > 0;

public init : real * real ==> ()
init (v_nom, a_nom) ==

(pimSeqCtrl.initNominal(v_nom, a_nom);
alignSeqCtrl.initNominal(v_nom, a_nom);
corrSeqCtrl.initNominal(v_nom, a_nom);
fuseSeqCtrl.initNominal(v_nom, a_nom))

pre pimSeqCtrl <> nil and alignSeqCtrl <> nil and

corrSeqCtrl <> nil and fuseSeqCtrl <> nil

The core functionality of the supervisory control application is captured in the op-

erations that respond to the paper detectors. For example, the operation pimDownEvent

will be called whenever a trailing edge of a sheet has been detected by paper detector

PDpim. This event signals the start of the alignment process which will bring the sheet

to a complete stand still, in our case for 100 msec.

operations

-- operation to initiate the alignment procedure
async public pimDownEvent: () ==> ()

141

pimDownEvent () ==
-- start decelerating in 10 msec from now
def dectime = time + 0.01 in

alignSeqCtrl.setStopProfile(dectime, 50, 500, 0.1)
pre alignSeqCtrl <> nil

The operation fuseUpEvent is called whenever the leading edge of a sheet has been

detected by PDfuse. The arrival time of this event is registered in the fues mapping.

The operation corrDownEvent is called whenever the trailing edge of a sheet has been

detected by PDcorr. The arrival time of this event is registered in the cdes mapping.

instance variables

private fue_cnt : nat := 1;
private fues : map nat to real := {|->}

operations

async public fuseUpEvent: () ==> ()
fuseUpEvent () ==
(-- measure the arrival time of the event

fues := fues munion {fue_cnt |-> time};
-- update the counter
fue_cnt := fue_cnt + 1)

instance variables

private cde_cnt : nat := 1;
private cdes : map nat to real := {|->}

operations

async public corrDownEvent: () ==> ()
corrDownEvent () ==
(-- measure the arrival time of the event

cdes := cdes munion {cde_cnt |-> time};
-- update the counter
cde_cnt := cde_cnt + 1)

The information collected in the mappings shts, fues and cdes can be used to check

whether or not the control goals where in fact achieved. We can define predicates to

check these measured values since we know the position of the pinches and the paper

detectors a priori. With respect to the “on time” requirement, we can check whether the

measured arrival time at the fuse pinch, maintained in fues, corresponds to the expected

arrival time of the sheet.

Another approach has to be taken with respect to the “right speed” requirement

because there is no sensor to measure the speed of the sheet at the fuse pinch. In

stead we take the difference between the leading edge of the sheet reaching PD fuse

and the trailing edge of the sheet reaching PDcorr. These events will always take place

in this order because the width of a sheet is wider than the distance between the two

sensors. From this information we can approximate the speed of the sheet at the fuse

pinch. The operation evalPrintJob verifies both control goals and will return true if

all sheets where printed within the design margins set.

values

-- position of the pinches in the paper path (in mm)
pinches : seq of real = [0, 145, 320, 495];

-- position of the paper detectors (in mm)
sensors : seq of real = [12, 186, 361, 537]

operations

public evalPrintJob : real * real * real ==> bool

evalPrintJob (ppm, pagesize, isd) ==
(-- calculate the nominal printing speed (mm/sec)

142

def v_nom = (pagesize + isd) * 60 / ppm in

-- calculate the time to reach PD fuse at this speed
def t_fuse = sensors(4) * v_nom in

-- iterate over the results
for idx = 1 to 10 do

-- calculate the speed of the sheet
def ddiff = pagesize + sensors(3) - sensors(4) in

def tdiff = cdes(idx) - fues(idx) in

def vsheet = ddiff / tdiff in

-- calculate the expected arrival time for this sheet
def t_exp = shts(idx) + t_fuse in

-- calculate the time difference
def dt = abs(t_exp - fues(idx)) in

-- calculate the delivery distance
def dx = dt * vsheet in

-- check the control goal for this sheet
if (dx > 0.25) or

(vsheet < 0.99 * v_nom) or (vsheet > 1.01 * v_nom)
then return false;

-- all sheets pass with flying colors
return true)
pre card dom shts = 10 and card dom fues = 10 and

card dom cdes = 10 and sensors(4) - sensors(3) < pagesize and

forall i in set {1,...,10} & cdes(i) > fues(i)
sync

-- block evalPrintJob until all ten pages have been processed
per evalPrintJob => card dom fues > 9 and card dom cdes > 9

end Supervisor

The paper path control system class

The final step in constructing the controller model is to describe the embedded system

architecture on which the application is deployed. For simplicity we will consider the

situation where all software is deployed on a single CPU. The so-called system class

PaperPathController is constructed for that particular purpose. Five loop controller

and sequence controller instances are created as individual instance variables, as shown

below.

system PaperPathController

instance variables

-- create the first tier: five loop controllers
lp1 : LoopController := new LoopController(true,false);
lp2 : LoopController := new LoopController(true,true);
lp3 : LoopController := new LoopController(true,true);
lp4 : LoopController := new LoopController(true,true);
lp5 : LoopController := new LoopController(true,true);

-- create the second tier: five sequence controllers
sc1 : SequenceController := new SequenceController();
sc2 : SequenceController := new SequenceController();
sc3 : SequenceController := new SequenceController();
sc4 : SequenceController := new SequenceController();
sc5 : SequenceController := new SequenceController();

-- create the third tier: the supervisory controller
supervisor : Supervisor := new Supervisor();

The use of separate instance variables provides the possibility to deploy specific

objects on specific computation resources. Note that in the design of the loop and

sequence controllers we have already taken the issue of deployment into account by

declaring most of the operations that play a role at run-time to be asynchronous. Fur-

thermore, information flows from the supervisor tier down to the loop controllers but

143

not vice versa. Asynchronous operation calls, as presented in chapter 3, do not block

the thread of control of the caller. The asynchronous call will be handled as a seperate

thread of control. The operation call will cause traffic on a communication resource

if the two objects are deployed on different computation resources. The non-blocking

property of asynchronous operations is essential for the design of embedded real-time

systems since these systems always need to be able to respond to their environment.

Here we assume the availability of a single 20 MIPS processor that uses fixed prior-

ity scheduling. All the created objects are explicitly deployed onto this resource and

the relationships between these objects is established in the constructor of the system

class. The periodic threads inside the loop controllers will start immediately after the

constructor of the PaperPathController has finished. A print job can be started by call-

ing the run operation. Note that this operation will wait automatically until the print

job is finished because of the synchronization predicate which has been defined on the

evalPrintJob operation inside the Supervisor class.

instance variables

-- create the CPU on which we will deploy the system
cpu : CPU := new CPU(<FP>, 20E6)

operations

public PaperPathController : () ==> PaperPathController
PaperPathController () ==
(cpu.deploy(lp1); cpu.deploy(lp2);

cpu.deploy(lp3); cpu.deploy(lp4);
cpu.deploy(lp5);
cpu.deploy(sc1); sc1.loopctrl := lp1;
cpu.deploy(sc2); sc2.loopctrl := lp2;
cpu.deploy(sc3); sc3.loopctrl := lp3;
cpu.deploy(sc4); sc4.loopctrl := lp4;
cpu.deploy(sc5); sc5.loopctrl := lp5;
cpu.deploy(supervisor);
supervisor.ejectSeqCtrl := sc1;
supervisor.pimSeqCtrl := sc2;
supervisor.alignSeqCtrl := sc3;
supervisor.corrSeqCtrl := sc4;
supervisor.fuseSeqCtrl := sc5);

public run: () ==> bool

run () ==
let ppm = 50, papersize = 210, isd = 100 in

(supervisor.startPrintJob(ppm, papersize, isd);
return supervisor.evalPrintJob(ppm, papersize, isd))

end PaperPathController

An abstract overview of the control application architecture and its specification in

VDM++ was presented in this section. The structure of the detailed model is identical

to the abstract models presented in this section, as can be seen from the UML class

diagram in Figure 6.17.

6.3.4 Validating the controller model

The main reason for choosing the PID control strategy is because it is well-known for

its excellent performance versus computation ratio. It is a relatively simple feedback

control algorithm that requires a low number of computations. However, the parame-

ters of the PID algorithm need to be tuned in order to obtain stability and convergence

of the control loop. The Ziegler-Nichols method [106] was used to obtain the appro-

priate values of these parameters. Some experiments were performed by automatically

144

Figure 6.17: UML class diagram of the detailed controller application

synthesizing the trivial PID controller shown in Figure 6.18 towards the target on the

experimental set-up using 20-SIM and observing its behavior.

Figure 6.18: 20-SIM models used in Ziegler-Nichols tuning experiments

Surprisingly, the experiments performed by Otto and Ambrosius [3] clearly showed

that controlling the velocity of the pinches using PID control was not feasible. How-

ever, this was not due to the control strategy itself but due the physical properties of

the system. Consider a required paper path throughput of 50 pages per minute using

A4 paper printed side-ways, an inter sheet distance of 50 mm and a pinch radius of

13.9 mm. This would result in a nominal sheet velocity of approximately 217 mm/sec

and an angular pinch speed of 2.48 rad/sec. This corresponds to an angular speed of

the motor of 5.1 rad/sec, due to the cogged wheels and belt with a 18 : 37 motor to

pinch drive ratio. The encoder on the motor shaft delivers 2000 pulses per revolution

or 318 pulses/rad. A sheet moving at the constant nominal speed would therefore cause

1623 encoder pulses per second. Note that the encoder measures distance rather than

speed so the derivative of this signal is required for control, as shown at the top of

Figure 6.18. However, the encoder value only changes by one or two encoder pulses

per PID control loop iteration at 1 khz. It is obvious that the dynamic range of this de-

rived value is insufficient for our control purpose since it is discrete and scales linearly

with the paper speed. Lowering the control loop frequency would increase the dynamic

range of this value but it would influence the overall performance negatively, such as

the ability to prevent over- and undershoot.

Instead, the suggestion was made to move from velocity to position based con-

trol. In that case, the encoder value can be used directly as the input to the controller,

as shown at the bottom of Figure 6.18, since its dynamic range is now sufficient. This

conceptual change was validated on the experimental set-up using the 20-SIM approach

145

described above and the appropriate PID parameters were finally obtained from the

Ziegler-Nichols tuning procedure. However, this approach also impacts the controller

model, since it was originally based on velocity profiles describing the sheet behavior.

Two solutions were suggested to address this issue. The first solution involved pro-

viding position set-point profiles. This solution was rejected because it would involve

using second order line elements in the SetpointProfile class which would increase its

complexity substantially. The second solution proposed to calculate the position by

integrating the velocity based set point profiles on the fly. This solution was accepted

because the iteration required to calculate the integral value of the velocity set point

is already naturally available: the control loop itself. The changes required to imple-

ment this solution were easy to identify and they did not affect the architecture of the

controller application. The improved calcPID procedure is shown below.

class LoopController

values

-- the PID parameters (Ziegler/Nichols tuning)
K : real = 4.0;
taud : real = 2.68e-3;
taui : real = 1.073e-2;
ts : real = 0.001;
N : real = 10

instance variables

-- placeholders for the intermediate PID results
curr_pos : real := 0.0;
prev_setp : real := 0.0;
prev_err : real := 0.0;
uP : real := 0.0;
uI : real := 0.0;
uD : real := 0.0

operations

private calcPID: real ==> real

calcPID (enc) ==
(dcl curr_setp : real := getSetpoint(ctime),

curr_err : real := 0;
-- calculate the current position by numeric integration
curr_pos := curr_pos + (prev_setp + curr_setp) / 2 * ts;
-- calculate the error
curr_err := curr_pos - 5e-4 * enc;
-- calculate the proportional part
uP := K * curr_err;
-- calculate the integral part
uI := uI + K * ts * curr_err / taui;
-- calculate the differential part
uD := taud / (ts + taud / N) * uD / N + K * (curr_err - prev_err);
-- update the state
prev_setp := curr_setp;
prev_err := curr_err;
-- return the PID result
return uP + uI + uD)

end LoopController

The verification and validation activity exposed several design issues in the con-

troller application specified in VDM++. Some of them were clear modeling errors

that were easy to expose with the help of the powerful static analysis capabilities of

VDMTOOLS. In particular the built-in integrity checker pin-pointed at potential weak-

nesses in the specification. Typically these issues are related to implicit assumptions on

the run-time behavior of the model. The tool forces the engineer to make these hidden

assumptions explicit for example by specifying invariants or pre- and post conditions,

even before an attempt was made to execute the model. These assumptions are not

146

necessarily errors because they may all be satisfied in practice, but this is only very

rarely the case. The complexity of the application is usually large so it is virtually im-

possible for the engineer to take all of the possible behaviors into account when writing

the model. Furthermore, these explicit assumptions capture design knowledge which

is particularly useful when the model needs to be maintained over a longer period of

time, is to be reused or when the model is likely to change.

Perhaps somewhat surprisingly, most of the non-trivial problems were found in the

normal sequential parts of the model. For example, the functionality to calculate the

set point profile for the correction pinch was notoriously difficult and error prone. The

complexity does not arise from the mathematics involved but from the many additional

restrictions that need to be taken into account simultaneously while performing the

calculations. For example the acceleration and velocity should not exceed predefined

minimum and maximum bounds. Furthermore, the acceleration and deceleration rates

should be as moderate as possible since high values usually cause overshoot with sig-

nificant counter control actions at the level of the loop controller, in particular when the

inertia of the driven system is high. Moreover, wear and tear and power consumption

usually increases with the amount of force applied.

Two approaches were used to check these complex operations at the VDM++ level.

First of all, the VDMTOOLS interpreter allows the user to make an instantiation of the

model and then execute parts of it, even if it is only partly complete. The algorithms

can therefore be prototyped interactively whereby the user gets immediate feedback on

the design decisions made. This way of working is comparable to what general pur-

pose scientific modeling tools like Mathematica or Matlab offer. But the VDMTOOLS

interpreter does not only execute the model, it also keeps track of its internal consis-

tency by performing dynamic type checking, by enforcing state, type invariants, pre-

and post conditions at run-time. The second method to ensure model consistency is

to use a test framework, such as VDMUNIT as proposed in [30]. This framework is

extremely well-suited for building, maintaining and operating large test suites that can

be used for performance and regression testing. Usually the engineer starts by adding

the simple test cases that were used in the interactive development phase. The test suite

is then augmented with additional and more complex test cases to check the potential

weaknesses identified by the integrity checker. VDMTOOLS maintains line-by-line test

coverage information when the VDMUNIT test suite is executed. This information can

be used to design specific test cases that will increase the coverage. This testing ap-

proach does not provide absolute proof that the model is correct but it has shown to be

very efficient and remarkably effective in exposing problems.

6.4 Analysis of the simulation results

The aim of the modeling effort described in the previous sections is to analyze the

behavior of the system as a whole. Co-simulation of the VDM++ controller model

and the 20-SIM plant models is used in this thesis. These results can be investigated

after the models have been carefully analyzed with respect to their consistency, as

presented in the previous chapters. The results from three different phases in the system

engineering life cycle are presented here. First, the results of the co-simulation will be

shown in Section 6.4.1 and the results from the software-in-the-loop co-simulation are

presented in Section 6.4.2. And finally, the measurements obtained from executing the

control application on the experimental set-up are presented in Section 6.4.3.

147

6.4.1 Co-simulation of the system model

In Section 6.3.2 it was demonstrated how the plant model can be checked in isolation

and in Section 6.3.4 this was shown for the controller model. However, the ability to

use co-simulation or software-in-the-loop simulation of the combined set of models

enables another set of consistency checks to perform. In our experience, it exposes

another class of problems that go beyond what can be statically checked automatically.

This is not surprising since the obvious problems have already been addressed in the

domain specific analysis phases completed previously. In the case of the paper path

models, we encountered two problems that were only exposed because they were tested

in combination.

The first problem was a simple mistake with potentially severe consequences. The

VDM++ controller model used mm/sec as the unit of measure in the set point profiles,

but the loop controller measured the distance covered in radians. Hence, the integrated

set point values provided to the PID controller were incorrect, causing the wrong output

values to be calculated because the error was off the chart every iteration, leading to the

constant spin-up of the motor at maximum speed. The root cause of this problem was

easily identified since it is very simple to monitor model parameters during simulation.

It would have taken substantially more time and effort if the cause of the problem had

to be investigated on the embedded target.

The second problem was slightly more complex but is also due to a misinterpreta-

tion of the informal requirements. The designers of the plant model assumed that the

time earmarked for the alignment of the sheet also included the time to decelerate the

paper. However, the designers of the controller model followed a strict interpretation

of the requirement: the time needed to decelerate is not included in the alignment time.

The designers of the plant model performed a simulation using a simplified controller

model and claimed that an inter-sheet distance of 50 mm was feasible at a productivity

rate of 50 pages per minute and an alignment time of 200 msec. However, when the

experiment was performed on the experimental set-up it turned out that their controller

model was incorrect and they circumvented the problem by increasing the inter-sheet

distance to 100 mm, reduced the alignment time to 100 msec and operated the align-

ment motor with maximum acceleration and deceleration values.

As in real life sometimes happens, these lessons learnt were not properly docu-

mented and communicated. Therefore, the designers of the controller model based

their design on the wrong data. This issue became very clear when the controller

model was tested in combination with the plant model. Both the different assumption

on the same requirement as well as the lack of communication on the insight gained

from the plant experiments were easily identified using the visualization capabilities of

20-SIM. The plant designers developed a three dimensional model of the paper path as

a plug-in to their plant model. This interface is shown in Figure 6.9. The visualization

runs in parallel with the co-simulation, whereby the virtual prototype is fully synchro-

nized with the simulation state. It also provides the ability to stop, rewind and replay

the visualization such that the system behavior can be inspected in detail. Using this

facility it was demonstrated convincingly that two consecutive sheets would always

collide if the original parameters were used. An example of the visualization in shown

in Figure 6.19.

148

Figure 6.19: 3D visualization of the paper path co-simulation in 20-SIM

6.4.2 Software-in-the-loop co-simulation

Detailed design of the system can start as soon as the high-level VDM++ and Bond

graphs models are validated. This activity usually involves lowering the abstraction

level of the model, whereby technology specific implementation choices are made

such as for example the selection of an operating system and implementation language.

These choices may have a significant impact on the behavior of the system. It is there-

fore important to check for these consequences as soon as possible. This is in particular

true for the controller part of the system model since the plant will ultimately be re-

placed by the physical system or parts thereof. The approach taken in this thesis is to

lower the abstraction level of the model in VDM++ using refinement and use automatic

code generation to C++ for the final implementation of the system. This approach pre-

vents the usual paradigm shift that occurs when models are implemented. The main

advantage is that the analysis tools can be used as long as possible providing maxi-

mum support during the design elaboration. Furthermore, the co-simulation interface

between the interpreters can be used to continuously validate the model elaborations.

Perhaps somewhat surprising, but the use of automatic code generation is not com-

mon practice in industry. The main reason is that the code generators themselves are

not trusted and it is believed that the resulting code is difficult to read and does not per-

form well. In general, these issues are bogus and are not based on facts. For example,

code generators are generally considered suspect but the compilers used to build the

application are trusted without second thought. Why would the quality of a compiler

be necessarily better than the quality of the code generator? The issue of code readabil-

ity usually occurs when development tools are used for source-level debugging. Not

because there are problems in the generated code but rather in the hand-written code

to which it interfaces. Current state-of-the-art code generators have an excellent cor-

respondence between model and generated source code, in some cases even with the

149

ability for reverse engineering. Last but not least, there is the issue of performance. It

is important to distinguish two dimensions: size and speed. It is true that the amount of

source-code generated from the model is usually 1 to 3 times larger than hand-written

code. In addition, run-time libraries are usually required which adds to the source line

count and object size. VDM++ is no exception to this rule. But as with compilers, it is

only a matter of time before code generators are as efficient as hand-written code, but

then without the usual coding errors of course. The issue of speed is typically overrated

and exaggerated: timing critical parts of an application are a minority and embedded

control applications are no exception. In the paper path case study it is only 10 % of the

total code size and this is not uncommon in practice. If performance really is an issue

then hand-coding the timing critical parts may be an option but usually it is an indicator

for bad design. In contrast, the time gained by automating this activity is significant.

It does not only reduce cost and increase quality but it also improves the design cycle

because changes are relatively easy to accommodate.

The approach taken in this thesis is to validate the C++ code which is generated

from the elaborated VDM++ model by software-in-the-loop simulation. This requires

compiling the generated source-code using a compiler that is available on the simu-

lation platform. Visual C++ was used to produce a Windows dynamic link library.

This so-called DLL is a drop-in replacement for the co-simulator interface used in the

previous step but retains all the analysis capabilities in the dynamic systems modeling

side, including the 3D visualization shown before. The compiled C++ code is exe-

cuted inside the plant simulation loop and its behavior can be observed, as is shown in

Figure 6.20.

Figure 6.20 (a) clearly demonstrates that dynamic effects are taken into account as

opposed to the “Happy Flow” kinematic simulations shown earlier in Chapter 5. The

bottom row in this diagram indicates the set point value that is enforced on motor 1.

This motor is controlled in open loop and it is used to separate sheets in the paper input

module. The set point is negative because the motor is equipped with a special gearbox

that reverses the direction. The top row presents the velocity of pinch 2 and it shows

that the pinch has to put some effort into stabilizing the speed of the inserted sheet. The

second row presents the velocity of pinch 3 which brings the sheet to a complete stand

still. Note that the deceleration starts at the falling edge of the signal shown in the top

row of Figure 6.20 (b) which represents PDpim. The velocity of pinch 4 is shown in

the third row in Figure 6.20 (a). Note that the acceleration is significant because the

pinch needs to compensate for the alignment time. It also causes substantial amounts

of overshoot after deceleration. But these oscillations have reduced to acceptable levels

just before the fuse pinch is reached, as can be seen from the leading edge of the PD fuse

signal which is shown on the fourth row in Figure 6.20 (b).

6.4.3 Measurements on the experimental set-up

The final step in the approach presented in this thesis is to run the control application

code on the embedded platform, because “the proof of the pudding is in the eating”.

It was suggested to run the controller on the embedded target connected to a real-time

simulation of the plant in the previous chapter. However, this step was skipped in our

experiment because the complexity of the case study is moderate and the experimental

set-up is equipped with sufficient non-intrusive measurement and debugging facilities.

In other words, we believed that the remaining risks did neither require nor justify the

investment of this extra intermediate step. And in hindsight, it was the right decision to

do so. The unmodified C++ code used in the software-in-the-loop simulation was com-

150

(a) pinch velocities

(b) paper detectors

Figure 6.20: Software-in-the-loop simulation results

151

piled using the GNU C++ compiler and linked with the VDMTOOLS run-time library

and the RTAI Linux operating system libraries. The VDM++ run-time library pro-

vides an implementation for abstract data types such as sets, sequences and mappings.

It does not contain operating system specific code. The application was loaded onto

the embedded platform and executed. Measurements were taken independent from the

running application and this allows an objective comparison of the results. First, an

overview is provided of the simulation results and measurements. The leading edge of

the motor 1 set point curve and the leading and trailing edges of all paper detectors are

used as a base line for this comparison. The requirements are evaluated in Table 6.1.

sheet
co-simulation software-in-the-loop measurements

∆ isd Vfuse ∆ isd Vfuse ∆ isd Vfuse

01 0.3 (P) 258.87 (P) 0.3 (P) 258.87 (P) 1.8 (P) 262.59 (P)

02 0.3 (P) 258.87 (P) 0.3 (P) 258.87 (P) 0.3 (P) 258.87 (P)

03 1.1 (P) 260.71 (P) 1.1 (P) 260.71 (P) 2.4 (F) 251.72 (F)

04 1.1 (P) 260.71 (P) 1.1 (P) 260.71 (P) 0.4 (P) 257.04 (P)

05 1.1 (P) 260.71 (P) 1.1 (P) 260.71 (P) 1.8 (P) 253.47 (P)

06 0.3 (P) 258.87 (P) 0.3 (P) 258.87 (P) 1.1 (P) 260.71 (P)

07 0.3 (P) 258.87 (P) 0.3 (P) 258.87 (P) 2.5 (F) 264.49 (F)

08 1.1 (P) 260.71 (P) 1.1 (P) 260.71 (P) 2.4 (F) 251.72 (F)

09 1.1 (P) 260.71 (P) 1.1 (P) 260.71 (P) 3.3 (F) 266.42 (F)

10 1.1 (P) 260.71 (P) 1.1 (P) 260.71 (P) 1.8 (P) 262.59 (P)

Table 6.1: Evaluation of the control goals and requirements (P = pass, F = fail)

Assume a required printing productivity of 50 pages per minute, printing A4 sheet

side-ways (210 mm) with an inter-sheet distance of 100 mm. This requires a nominal

sheet velocity of 258.33 mm / sec. Paper detector PDpinch is located 537 mm down

the paper path. The arrival time of the leading edge of the first sheet is therefore

2.079 seconds after the first start-of-page signal. The start-of-page signal is simulated

by the falling edge of the motor 1 set point profile. The leading edge of the next nine

sheets shall arrive at 2.079+n · (210 + 100) / 258.33 seconds. The required accuracy

is 0.5 mm which corresponds to a maximum ∆ isd of 2 msec. If the required accuracy

is achieved then the isd column lists “P” for pass or “F” for fail otherwise.

The paper detector PDcorr is located 361 mm down the paper path. The distance

between the last two paper detectors is therefore 176 mm. If the leading edge of the

pinch hits PDpinch then the sheet still has to travel 34 mm before the trailing edge

reaches PDcorr. The measured fuse pinch speed can be determined by dividing this

distance by the time difference between the two measured events. The required accu-

racy is 2 % of Vfuse which corresponds to 5.17 mm / sec. If the required accuracy is

achieved then the ∆ Vfuse column lists “P” for pass or “F” for fail otherwise.

The results from Table 6.1 clearly demonstrate that the control goal has been met

in each phase of the development trajectory. Of course, this is not proof of correctness

and neither of robustness since only a small print job was used in this case study. But

it does demonstrate that the development trajectory enables structured development

of complex embedded control systems. Design complexity is tackled by step-by-step

elaboration of models towards implementation. Design bias is introduced consciously

in each step which focuses the attention of the engineer on the associated risks. These

risks are addressed and reduced by continuous validation.

152

6.5 Discussion and conclusions

A step-wise approach for the development of real-time embedded and distributed con-

trol systems was proposed in this chapter and it was put to the test on a non-trivial

case study inspired from industrial practice. Continuous time plant models and dis-

crete event controller models where developed using Bond graphs and VDM++ re-

spectively. It was shown how the domain specific analysis tools and techniques can be

used to improve the quality of the specifications in isolation, here we used 20-SIM and

VDMTOOLS. It was also demonstrated how the combined models can be inspected

using the notational extensions and reconciled semantics as presented in chapters 3

and 4 respectively. The problems exposed by this enhanced analysis capability clearly

contributed to the cross-discipline design dialogue which is usually lacking in the early

phases of the system design. Engineers are forced to investigate the results together in

order to find the root cause of the problem. This typically leads to “what-if” questions

that can usually be answered by changing some model parameters and rerunning the

simulation. This dialogue is usually very constructive because it is relatively easy to

change the models. In contrast, the “blame game” is usually played if problems are

found during system integration because the number of changes required at the code

level are likely to be very significant.

Similarly, the impact of more complex multi-disciplinary design questions, such as

optimal position of the sensors versus the computational load and control performance

can also be addressed, although it is not explicitly demonstrated in this chapter. We

showed how the step-wise development approach fits into the system engineering life

cycle and how the path towards the system implementation can be kept under control.

An iterative refinement approach was proposed whereby continuous validation is at-

tempted after each step. The impact of this approach was demonstrated by comparing

the simulation results of abstract and high-level models to the measurements obtained

from the experimental set-up. It convincingly showed the feasibility of the proposed

approach, since these results were virtually identical while meeting the overall control

objectives. The upfront investment in the modeling effort and the continuous validation

approach is in our opinion and industrial experience significantly less than the amount

of time required to fix problems at integration time, although there is no hard evidence

provided in this chapter to support this claim.

153

154

Chapter 7

Conclusions and Outlook

The area of embedded systems brings together computer science, control, electrical and

mechanical engineering. Contributions from all these areas of expertise need to work,

both in isolation and collectively, in order to achieve the overall system objectives.

Multi-disciplinary design of embedded control systems therefore really requires to go

beyond the ordinary in order to be or become successful. The usual barriers that exist

between these disciplines, both in academia and industry, need to be resolved in order

to build embedded systems reliably and predictively, as Henzinger and Sifakis pointed

out in their key-note address at Formal Methods 2006 [53]. They suggest to create a

new scientific foundation for this class of problems and perhaps this is indeed the way

forward. Of course, such an endeavor is beyond the scope of a single PhD thesis and

even of a large-scale collaborative research project such as BODERC.

This thesis builds upon the common scientific foundation which is already readily

available: mathematics, logic and physics. The focus of this work has been on the inte-

gration of existing well-founded modeling and analysis techniques from different engi-

neering disciplines, both in theory and practice. The ability to support cross-discipline

design dialogue with appropriate tools, which are also embedded in an engineering

method, will remove one of the most dominant obstacles observed in industrial sys-

tem engineering to date. This has been the main motivation for the chosen research

focus. The purpose of this chapter is to assess whether or not this has been achieved. A

summary of the research contributions is presented in Section 7.1 and the objectives of

thesis are evaluated in Section 7.2 and we close this chapter with a look at the future.

7.1 Summary of research contribution

A number of state-of-the-art performance evaluation methods and tools were put to the

test on a simple case study that has been inspired by industrial practice. The aim of

the exercise was to determine the capabilities and restrictions of these methods in the

context of a few typical design trade-off issues between functional and extra-functional

properties that the system should possess. The real value of the study is in the dialogue

caused by comparing the numbers obtained from the analysis. The conclusion is that

these numbers should always be considered to be suspect because they are derived from

a model which is an abstraction of reality. Implicit assumptions made while modeling,

or hidden limitations of the techniques used, are usually exposed by comparison to

results obtained from different techniques. This rather obvious insight is often forgotten

155

and taken for granted, usually because getting a quantitative result is already considered

a victory and a major step forward at design time. It is therefore considered to be

good engineering practise to use a multi-method modeling approach to expose potential

problems and misconceptions as early as possible in the design process. This increases

the confidence in the models and the analysis results but does require commitment and

endurance.

The method comparison has lead to a number of scientific publications, most no-

tably [105], [51], [99] and inspired three related MSc projects [78], [23] and [79].

Furthermore, other researchers have looked at different aspects of the case study, such

as [35], [36], [12] or use different approaches to construct quantitative performance

models, such as [34, 37] and [33]. Last but not least, the comparison was continued

with a significantly larger scope involving more case studies and additional tools in

[81]. The authors of this paper also exposed a problem in the timed automata models

presented earlier in [51] which has been corrected in this thesis. Again, it underlines

the importance of the observation made earlier, especially since several peer reviews

had not exposed the problem.

The choice for VDM++ in this thesis was mainly subjective and inspired by the

previous experience of the author. The notation is well-established in both academia

and industry and there exists robust and industrial strength tool support, including a

round-trip engineering capability to UML and the availability of code generators. Fur-

thermore, at the start of the BODERC project, there was keen interest from the com-

munity at large to extend the notation for use in the embedded systems domain, which

provided a stable basis for the research efforts described in this thesis.

The first step towards the final goal is presented in Chapter 3. Timed VDM++ was

extended with an explicit notion of system architecture, which enables the creation of

context-aware software models at a very high level of abstraction. These language ex-

tensions were given an explicit formal semantics and prototype tools were developed

to demonstrate the improvements on the in-car radio navigation case study from the

earlier comparison work, providing on par results. This work has lead to a number of

scientific publications, in particular [101], [30], [100] and [98] and was later imple-

mented in VDMTOOLS.

The second step towards the final goal is presented in Chapter 4. The extended se-

mantics of the improved VDM++ notation developed in Chapter 3 was reconciled with

the semantics of continuous time simulations, for which Bond graphs are used in this

thesis. The choice for this particular technique was twofold. First of all, this notation

is particularly well-suited to describe and analyze dynamic systems and it is targeted

explicitly towards multi-disciplinary design challenges. For example, it is possible to

describe electronics, hydraulics, pneumatics and mechanics from within a single math-

ematical framework. Second of all, industry grade tool support is available with access

to their main researchers through partners in the BODERC project. Prototype tools were

developed to demonstrate the tool coupling using a simple and intuitive example of a

water tank level controller. This work was published in [102].

Development projects in industry usually consist of a significant number of people

with different backgrounds and experience, which are involved over a long period of

time, sometimes even working on several locations simultaneously. Managing these

complex projects requires a suitable development process that provides each stake-

holder with the overview necessary to perform his or her job. Introducing a novel

technique into industrial practice requires embedding into such a development process

and this issue is investigated in Chapter 5. Contemporary design trajectories for em-

bedded control applications and formal software models were identified and compared

156

to a classic industrial development process. It was shown how these approaches can be

usefully combined.

Finally, the results mentioned above were applied to a significant case study: the

design and analysis of the embedded control of a printer paper path. An informal de-

scription of the case study, the models and the results obtained are presented in Chap-

ter 6. The exercise has clearly and convincingly demonstrated the added value of the

notational enhancements from Chapter 3 and the tool integration from Chapter 4.

7.2 Evaluating the objectives of this thesis

Challenging research goals were set in Section 1.3 and they will be discussed here.

Addressing system-level design. The case study in Chapter 6 has demonstrated that

the research results from this work can indeed be used to address multi-disciplinary

system-level design. The ability to create high-level and abstract models of both the

software and the hardware architecture enables for example the discussion on distri-

bution and deployment, as was shown in Chapter 3 and [100]. This technique can be

used to replace the typical oversimplified notion of software and hardware which is

used in most contemporary dynamic system modeling approaches, as was presented

in Chapter 4. The end result is an integrated multi-method modeling and analysis ap-

proach that can improve the cross-discipline system-level design dialogue significantly.

Prediction of functional and extra-functional properties. The prediction of func-

tional properties of the system is of course intrinsically provided by the methods used:

VDM++ and Bond graphs. There exist many types of extra-functional system-level

properties, such as for example quality, dependability, maintainability and adaptability.

The main focus of the work presented in this thesis has been on performance, in par-

ticular on the timeliness of distributed embedded real-time control systems. A solution

is provided by means of the context-aware software models presented in Chapter 3.

However, it is not possible to claim that all types of extra functional properties can be

suitably addressed. Neither is it possible to claim that hard guarantees on worst-case

timeliness properties can be provided. Simulation has known limitations with respect

to its ability to cover the state space exhaustively and this is also true for the work pre-

sented here. But this is not necessarily a show stopper in practice. The insight gained

by early system life-cycle modeling and analysis, as advocated in this thesis, should be

sufficiently accurate such that it can replace hand-waving. The case studies presented

in this thesis have demonstrated that this is well within reach. Sensitivity analysis, as

shown in Section 2.3.1, can pin-point potential bottlenecks in the design even though

the technique itself is known to provide pessimistic results.

Heterogeneous levels of abstraction. Early system life-cycle modeling requires the

ability to construct a system model out of sub-system models that are not necessarily

at the same level of maturity. For example, one sub-system model may be specified ab-

stractly while another is already more detailed, but neither should restrict the analysis

capability at the system level. This ability is basically provided by the methods used.

Both VDM++ and Bond graphs have explicit support for multiple levels of abstraction.

For example, implicit and explicit operations can be used in VDM++ while decompo-

sition in Bond graphs is strongly developed. The work presented here has not affected

that capability negatively. Since the interface between the two models is defined in

157

terms of sensor and actuator signals, either model can be replaced without affecting the

other. Different control strategies can be tried on a single plant model or different plant

models can be used to validate a single controller implementation.

Cost effectiveness. There are many variables that determine the cost effectiveness of

a method or technique in practice. The method comparison in the first part of this the-

sis has shown that two aspects are dominant: the availability of domain and method

knowledge. Detailed insight into the application domain as well as detailed knowledge

of the methods used is required in order to be effective. Both aspects are typically

not available in a single person and it is the task of the system architect to bring the

relevant experts together. Then again, the end result will principally be determined

by the quality of the people actually performing the work. This has not been stud-

ied in this thesis. Nevertheless, some observations can be made on cost effectiveness.

First of all, the VDM++ language changes proposed in Chapter 3 have significantly

reduced the model size while increasing its capabilities. This has a positive impact on

the time required for model construction and maintenance. Second of all, the use of ab-

stract and high-level system models in the early life-cycle, as proposed by the BODERC

project, has been successfully applied in industry. For example, Orbons states in [47]

that the “HappyFlow” modeling approach has enabled Océ to skip a complete physical

machine-build iteration cycle, saving many man-years of effort.

Adoption in industry. Industrial applicability is obviously closely related to the issue

of cost effectiveness mentioned above. But formal description techniques seem to have

difficulty reaching the main stream of system engineering even despite the fact that

there is sufficient evidence to demonstrate its positive impact and relevance [72]. Based

on personal experience, this problem is intrinsic to the term “formal method”.

Popular belief in industry is that a PhD is required in order to use these techniques

effectively. This myth is perhaps strengthened by the connotation caused by the word

“formal”. It seems to imply that these techniques are an all-or-nothing approach aiming

at proving absolute correctness. This is of course not true. As already mentioned in

Chapter 3, VDM++ in particular has been applied in a pragmatic style leading to several

very successful industrial applications [30]. Formal languages excel in abstraction,

which is considered to be a critical success factor required in problem solving [63].

But the effort spent on modeling should be balanced with the insight gained otherwise

the technique will not be adopted in industry [29]. Learning a new formal notation

is usually considered a high hurdle. But the training effort required is in general on

par with learning any new programming or specification language and does certainly

not require a PhD. For example, Felica Networks, a subsidiary of Sony Corporation

recently reported on the successful development of a firmware application for a new

integrated circuit for which they trained 50 engineers during one week in VDM++.

The 150 man year project produced a 700 page executable specification in VDM++ and

10 million test cases providing near-perfect test coverage. The project was completed

on time, within budget and with a considerable higher measured quality than earlier

releases of the same product [65], while only one external VDM++ expert assisted

the newly trained engineers in part time. The solutions proposed in this thesis do not

significantly increase the learning time.

The second issue is related to the word “method”. Formal description techniques

are disruptive to the current engineering practice because effort is shifted towards the

start of the project [91]. Typically, more time will be spend on modeling and analysis as

compared to traditional design. This usually makes project managers nervous because

158

progress is in general difficult to measure. This activity is often even considered unpro-

ductive by managers, in particular when concrete design artifacts are lacking or only

available at the very end. They do not dare to rely on the premise that the implemen-

tation and test phases are usually significantly shorter and more predictable because of

the higher quality of those initial design artifacts. A solution to this problem is to embed

formal techniques, as a step-wise approach with identifiable intermediate deliverables,

into a commonly accepted development process. The higher upfront investment cost

will otherwise simply not be accepted. This issue is addressed in Chapter 5, where

such an embedding of techniques into an industrial development process is proposed.

Another important point is the scalability of the method and tools. It would be fool-

ish to claim that the solution presented in this thesis is the “silver bullet”, the antidote

to all problems in embedded systems design. On the contrary, it is specifically targeted

at embedded control systems, possibly consisting of several interconnected computing

nodes. It would be very hard if not impossible to analyze massively parallel applica-

tions, such as for example image processing or large-scale wireless sensor networks,

even though the language is probably sufficiently expressive to describe such systems.

Neither does it guarantee to provide hard bounds to the timeliness properties. The sim-

ulation based technique used cannot guarantee complete coverage of the state space of

the model. Exhaustive techniques, such as model checking, can provide hard bounds

but only under specific circumstances such as limited model size and complexity, in

particular for hybrid and stochastic models. Hence, the simulation based technique is

preferred in this thesis because it is has a better chance of scaling up towards industry

needs. In early life-cycle multi-disciplinary system-level modeling it is better to have

an approximate answer than no answer at all, in particular in support of an iterative

design process. Additional deductive or exhaustive analysis techniques such as inter-

active theorem proving or model checking can be used on (parts of) the model at a later

stage if more accuracy is required. This is also good engineering practice because the

amount of effort and skill involved in performing these particular tasks is usually much

larger than the light-weight simulation-based modeling approach proposed in this the-

sis. It is not advisable to spend this kind of effort if the model is not at least order

of magnitude correct. The co-simulation interface presented in Chapter 4 increases

the time required to perform the system simulation. But the insight gained from the

improved analysis outweighs the performance loss.

But will the solution proposed in this thesis ever be used in industry? The current

maintainers of VDMTOOLS, CSK Systems Corporation in Japan, have already adopted

the results presented in Chapter 3 and it is available in version 8.0 which has been

officially released 1 in July 2007. CSK has already indicated that the continuous time

interface described in Chapter 4 will also become part of their product. This will at

least enable the industrial uptake of the research results presented in this thesis.

7.3 Future work and outlook

An important point not yet addressed in the previous section is the ability to adapt the

methodology to the ever changing and increasing needs in the embedded systems do-

main. This thesis has shown that it is both possible and fruitful to combine engineering

methods that seem to have only very little in common at first glance. The integrated so-

lution leverages the analysis potential and removes the methodology lock-in that many

1 VDMTOOLS is available free of charge from http://www.vdmtools.jp/en.

159

http://www.vdmtools.jp/en

practitioners face and seem unable to break. But does the solution presented here cause

a vendor lock-in? Are we forced to use VDM+ and Bond-graphs to reach these results?

Well, in fact, this is not the case. The reconciled semantics presented in Chapter 4 is

not specific to the tools used, neither is the extended semantics shown in Chapter 3.

This is also confirmed by results from related work presented in [41, 77]. It is possible

to replace VDM++ by another discrete event simulation technique and to replace Bond

graphs by another dynamic systems modeling approach, although we have not pro-

vided proof in this thesis. Currently, an attempt is made in the VIEWCORRECT project

to reach comparable results using POOSL and 20-SIM and CSK Systems Corporation

is considering combining VDM++ and SCILAB.

An obvious future work activity would be tool improvement both in terms of per-

formance and capabilities. The former particularly concentrates on the simulator and

the co-simulation interface and the latter concentrates on enhanced visualization and

support for additional scheduling techniques. Three additional directions for future re-

search work have been identified due to feedback received on exposing our results to

our peers in academia and industry.

1. First of all, the VDM++ notation presented in Chapter 3 can again be extended

quite easily on the syntactic level to describe probabilistic properties of a system.

For example, we use the duration and cycles statements to specify the

timing behavior of (a part of) the model. Currently, these constructs take only

a single parameter which is typically used to denote the worst-case response

time. Instead, an argument pair can be used to capture the expected best and

worst-case response times. A value is chosen from this interval at simulation

time according to some predefined selection strategy. This could be a global

setting for the interpreter or it can be described locally, for example by adding a

third parameter. This parameter could for example be a higher-order operation

that implements the selection strategy, for example: best-case always, worst-

case always, pseudo random selection according to some distribution function

or even context-aware selection functions that mimic caching behavior. Initial

experiments have shown that these extensions are feasible and would provide

results comparable to those reported in [36], however the consequences for the

operational semantics and the simulation speed have not been investigated.

2. The second direction for future work is to decouple the specification of the val-

idation property from the model itself. The usual approach is to include a pro-

grammable observer inside the model. Hence, there is no distinction between the

model and the observer as can be seen from the definition of evalPrintJob in the

Supervisor class presented in Section 6.3.3. This increases the model complexity

unnecessarily and causes a model maintenance issue since there may be many of

these properties and they are likely to change often. The approach proposed is

to specify so-called validation conjectures over system traces. These traces are

constructed on-the-fly by the simulator and contain both observable and inter-

nal behaviors of the system, such as operation invocations with their associated

parameter values, and also state changes, such as assignments to class instance

variables. The validation conjectures are analyzed during the simulation run and

the result can be visualized after the simulation run is complete, as is shown in

Figure 7.1. The top part of the screen shows the execution trace of the model in

terms of task and communication activity per resource, as was shown in Chap-

ter 3. The bottom part of the screen is new and lists the validation conjectures

160

and their status. The execution trace is centered when the user selects a particu-

lar validation conjecture. The circles on the traces of resources CPU2 and CPU1

indicate the begin and end points that apply to failing validation conjecture C1.

The engineer can use this diagram to locate the cause of the problem. This re-

search direction seems promising and first results from this approach have been

published in [32].

Figure 7.1: Visual presentation of validation conjectures and their state

3. A similar problem occurs when dependability of a system is under study. Dis-

turbance models need to be added in a controlled and repeatable way. The usual

approach is to copy and modify an existing model in order to describe the dis-

turbance. This usually causes model maintenance issues, in particular when sev-

eral failure modes are analyzed simultaneously. The co-simulation interface pro-

posed in Chapter 4 provides a potential solution to this problem, since it is posi-

tioned exactly at the sensor-actuator interface. The behavior of both connected

simulators is defined by the information exchanged over the interface. It is there-

fore the ideal location to interfere, but without the direct need to change either

model. For example, it is possible to change both temporal as well as state prop-

erties of the information exchanged over the interface during simulation. Signals

may be suppressed, delayed or even injected additionally, for example to model

erratic behavior of sensors or actuators. Similar, the values exchanged can be

modified on-the-fly, e.g. to represent “stuck-at-x” symptoms. In other words an

explicit fault model is added to the simulation interface. This direction seems

promising and first results from this approach have been published in [4].

The longer term challenge is to close the gap between simulation, model checking

and formal proof, to enhance the level of rigor far beyond what can be provided with

the solution proposed in this thesis. I believe this requires additional work in two main

161

directions. First of all by developing support for the automated mapping of models

between different paradigms. This would enable us to unleash different validation and

verification strategies on a set of consistent models with a common semantics. The

area of model driven architecture (MDA) shows promising results but the mapping

support is currently mainly syntactical while the real challenges are at the semantic

level. The area of program abstraction has demonstrated some spectacular results in

recent years using dedicated uni-directional mapping approaches for specific semantic

aspects of some model. I believe these viewpoints need to merge in order to get to the

next generation of robust tool support for multi-disciplinary and complex system de-

sign. Secondly, the analysis techniques themselves need to be improved substantially

in order to provide the scalability and flexibility required to meet the demands of in-

dustrial size problems. This requires developing better (faster) analysis algorithms and

capturing the heuristics of well-known modeling strategies and analysis optimizations

available today. But a prerequisite to all these directions is continued research in the

area of language semantics and unification, as proposed by Henzinger and Sifakis in

[53].

Outlook. There is genuine interest from both the academic and industrial communities

to continue research along the lines suggested in this thesis. For example, the Over-

ture 2 project was started several years ago and it is currently gaining momentum fast.

The aim of the project is to develop a set of open-source Eclipse 3 plug-ins to support

research on VDM++ and related notations. Several MSc and PhD projects are lined

up in different countries on related topics and international workshops are organized

on a regular basis. CSK Systems Corporation have taken their role as maintainer of

VDMTOOLS very seriously, meanwhile creating a significant user community in Japan.

They are also actively involved in the Overture project, in particular to provide lessons

learnt from industry. This information is used to focus on-going research by means

of maintaining a strategic research agenda. The Overture community is also active in

the Grand Challenges initiative on the Verified Software Repository 4, where work is

started on the Mondex electronic purse, the POSIX fault-tolerant flash file system and

last but not least PACEMAKER. The latter has been modeled with the VDM++ lan-

guage extensions described in Chapter 3 [25].

The tools developed in this thesis are available at http://www.overturetool.org and the

models are available at http://www.marcelverhoef.nl.

2 See http://www.overturetool.org.
3 See http://www.eclipse.org.
4 See http://www.fmnet.info/vsr-net/ and http://www.cas.mcmaster.ca/sqrl/pacemaker.htm.

162

http://www.overturetool.org
http://www.marcelverhoef.nl
http://www.overturetool.org
http://www.eclipse.org
http://www.fmnet.info/vsr-net/
http://www.cas.mcmaster.ca/sqrl/pacemaker.htm

Bibliography

[1] Emile Aarts and Stefano Marzano. The New Everyday – Views on Ambient

Intelligence. 010 Publishers, 2003. Koninklijke Philips Electronics NV.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[3] Frank Ambrosius. Modelling and distributed controller design of the BodeRC

paper-path setup. Master’s thesis, University of Twente, department of Electrical

Engineering, Mathematics and Computer Science, January 2007. Appeared as

technical report 003CE2007. On-line available at http://www.ce.utwente.nl.

[4] Zoe Andrews, John Fitzgerald, and Marcel Verhoef. Resilience modelling

through discrete event and continuous time co-simulation. In Proceedings of

the Dependable Systems Network - DSN’07, 2007.

[5] F. Bacelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Lin-

earity: An Algebra for Discrete Event Systems. Wiley Series in Probability and

Mathematical Statistics. John Wiley & Sons Ltd, August 1992.

[6] Jan Beckers, Maurice Heemels, Bjorn Bukkems, and Gerrit Muller. Effective

industrial modeling: The example of happy flow. In Gerrit Muller and Mau-

rice Heemels, editors, Model-based design of high-tech systems, pages 77–88.

Embedded Systems Institute, 2006. See also [47].

[7] Gerd Behrmann, Alexandre David, and Kim Gulstrand Larsen. A Tutorial on

UPPAAL. In Formal Methods for the Design of Real-time Systems, volume 3185

of Lecture Notes in Computer Science, pages 200–236. Springer, 2004.

[8] Gerd Behrmann, Alexandre David, Kim Gulstrand Larsen, John Håkansson,

Paul Petterson, Wang Yi, and Martijn Hendriks. UPPAAL 4.0. In Third Interna-

tional Conference on the Quantitative Evaluation of Systems (QEST’06). IEEE,

2006. This paper is available on-line at http://dx.doi.org/0-7695-2665-9/06 .

[9] A.J. Bennet, A. J. Field, and M. C. Woodside. Experimental Evaluation of the

UML Profile for Schedulability, Performance and Time. In UML2004 - The

Unified Modeling Language, volume 3273 of Lecture Notes in Computer Sci-

ence (LNCS), pages 143–157. Springer, 2004.

[10] JPL Special Review Board. Report on the loss of the Mars Polar Lander and

Deep Space 2 missions. Technical Report JPL D-18709, Jet Propulsion Labora-

tory, March 2000. Available on-line at http://klabs.org/reports.htm.

163

http://www.ce.utwente.nl
http://dx.doi.org/0-7695-2665-9/06
http://klabs.org/reports.htm

[11] Barry W. Boehm. A spiral model of software development and enhancement.

SIGSOFT Software Engineering Notes, 11(4):14–24, 1986. On-line available at

http://doi.acm.org/10.1145/12944.12948, also appeared in the May 1988 issue

of IEEE Computer.

[12] Egor Bondarev, Michel Chaudron, and Peter de With. Quality-oriented design

space exploration for component-based architectures. Technical report, Tech-

nical University of Eindhoven, Department of Mathematics and Computer Sci-

ence, February 2006.

[13] P.C. Breedveld. Multibond-graph elements in physical systems theory. Journal

of the Franklin Institute, 319(1/2):1–36, 1985.

[14] J.F. Broenink and G.H. Hilderink. A structured approach to embedded control

systems implementation. In International Conference on Control Applications,

CCA, pages 761–766. IEEE, September 2001. Available on-line at

http://dx.doi.org/10.1109/CCA.2001.973960.

[15] Frederick P. Brooks. The Mythical Man-Month. Essays on Software Engineer-

ing. Addison-Wesley, 1995. Reprint of the original 1975 book.

[16] Giorgio C. Buttazzo. Hard real-time computing systems : predictable scheduling

algorithms and applications. Kluwer Academic Publishers, 1997.

[17] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete Event

Systems. Kluwer Academic Publishers, 1999.

[18] Samarjit Chakraborty, Simon Künzli, and Lothar Thiele. A general framework

for analysing system properties in platform-based embedded system designs. In

Proc. 6th Design, Automation and Test in Europe, pages 190–195, 2003.

[19] ControlLab Products. 20-sim, See also http://www.20sim.com.

[20] Henk Corporaal. Embedded system design. In PROGRESS White Papers, pages

7–27. Stichting Technische Wetenschappen, 2006. Available on-line at

http://www.stw.nl/Programmas/Progress.

[21] CSK. Development guidelines for real-time systems using VDMTOOLS. Tech-

nical report, CSK Systems Corporation, 2007. Available on-line at

http://www.vdmtools.jp/en.

[22] J. Davis, R. Galicia, M. Goel, C. Hylands, E.A. Lee, J. Liu, X. Liu, L. Muliadi,

S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Ptolemy-II: Het-

erogeneous concurrent modeling and design in Java. Technical Memorandum

UCB/ERL No. M99/40, University of California at Berkeley, July 1999.

[23] Menno M.C.M. de Hoon. Performance analysis of distributed real-time embed-

ded systems. Master’s thesis, Technical University Eindhoven, January 2006.

[24] Derek J. Andrews and Peter Gorm Larsen and Bo Stig Hansen and Hans Brunn

and Nico Plat and Hans Toetenel and John Dawes and Graeme Parkin and oth-

ers. Information technology – Programming languages, their environments and

system software interfaces – Vienna Development Method – Specification Lan-

guage – Part 1: Base language, December 1996.

164

http://doi.acm.org/10.1145/12944.12948
http://dx.doi.org/10.1109/CCA.2001.973960
http://www.20sim.com
http://www.stw.nl/Programmas/Progress
http://www.vdmtools.jp/en

[25] Hugo Daniel dos Santos Macedo. Validating and understanding the Boston Sci-

entific PACEMAKER requirements. Internship report, Minho University, Braga,

Portugal, 2007. Available at http://www.overturetool.org.

[26] Bruce Powell Douglas. Real-Time UML Workshop for Embedded Systems. Em-

bedded Technology. Newnes - Elsevier, 2007.

[27] René Elmstrøm, Peter Gorm Larsen, and Poul Bøgh Lassen. The IFAD VDM-

SL Toolbox: A Practical Approach to Formal Specifications. ACM Sigplan No-

tices, 29(9):77–80, September 1994.

[28] ESA. PSS-05-10 guide to software verification and validation. Technical report,

European Space Agency, ESA Publication Division, ESTEC, Noordwijk, The

Netherlands, 1994. ISSN 0379-4059.

[29] John Fitzgerald and Peter Gorm Larsen. Balancing insight and effort: the indus-

trial uptake of formal methods. Formal Methods and Hybrid Real-Time Systems,

4700:237–254, 2007. http://dx.doi.org/10.1007/978-3-540-75221-9 10 .

[30] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel

Verhoef. Validated Designs for Object-oriented Systems. Springer, 2005. See

also http://www.vdmbook.com.

[31] John Fitzgerald, Peter Gorm Larsen, and Shin Sahara. VDMTools: Advances

in Support for Formal Modeling in VDM. ACM Sigplan Notices, 43(2):3–11,

February 2008.

[32] John S. Fitzgerald, Peter Gorm Larsen, Simon Tjell, and Marcel Verhoef. Vali-

dation support for distributed real-time embedded systems in VDM++. In Pro-

ceedings of 10th IEEE International Symposium on High Assurance System En-

gineering (HASE), pages 331–340. IEEE, 2007. Available on-line at

http://doi.ieeecomputersociety.org/10.1109/HASE.2007.76 .

[33] Bastian Florentz. Inside architecture evaluation: Analysis and representation

of optimization potential. In Sixth IEEE/IFIP Working Conference on Software

Architecture (WISCA), Mumbai, India, January 2007.

[34] O. Florescu, J.P.M. Voeten, M.H.G. Verhoef, and H. Corporaal. Advances in

Design and Specification Languages for Embedded Systems, chapter Reusing

Real-Time Systems Design Experience Through Modelling Patterns, pages 329–

348. Springer, 2007. Appeared earlier as [37]. Available on-line at

http://dx.doi.org/10.1007/978-1-4020-6149-3 .

[35] Oana Florescu. Predictable Design for Real-Time Systems. PhD thesis, Tech-

nische Universiteit Eindhoven, 2007. ISBN 978-90-386-1654-4.

[36] Oana Florescu, Menno de Hoon, Jeroen Voeten, and Henk Corporaal. Proba-

bilistic modelling and evaluation of soft real-time embedded systems. In Pro-

ceedings of SAMOS 2006, volume 4017 of Lecture Notes in Computer Science,

pages 206–215, 2006. http://dx.doi.org/10.1007/11796435 22 .

[37] Oana Florescu, Jeroen Voeten, Marcel Verhoef, and Henk Corporaal. Reusing

real-time systems design experience through modelling patterns. In Forum on

specification and Description Languages (FDL). ECSI, 2006. Received the best

165

http://www.overturetool.org
http://dx.doi.org/10.1007/978-3-540-75221-9_10
http://www.vdmbook.com
http://doi.ieeecomputersociety.org/10.1109/HASE.2007.76
http://dx.doi.org/10.1007/978-1-4020-6149-3
http://dx.doi.org/10.1007/11796435_22

paper award at FDL 2006. This paper is available on-line at

http://www.es.ele.tue.nl/premadona/publications/FVVC06.pdf .

[38] H.J.M. Freriks, W.P.M.H. Heemels, G.J. Muller, and J.H. Sandee. Budget-based

design. In Model-based design of high-tech systems, pages 59–76. Embedded

Systems Institute, 2006. See also [47].

[39] H.J.M. Freriks, W.P.M.H. Heemels, G.J. Muller, and J.H. Sandee. On the sys-

tematic use of budget-based design. In Systems Engineering: Shining Light on

Though Issues, Proceedings of the 16th Annual International INCOSE Sympo-

sium. INCOSE, 2006. Paper is available on-line at http://www.incose.org/ipub.

[40] Marc Constantijn Willem Geilen. Formal Techniques for Verification of Complex

Real-Time Systems. PhD thesis, Technical University Eindhoven, October 2002.

On-line available at http://www.es.ele.tue.nl/∼mgeilen/publications/thesis.pdf .

[41] Luiza Gheorghe, Faouzi Bouchhima, Gabriela Nicolescu, and Hanifa Bouch-

eneb. Formal definitions of simulation interfaces in a continuous/discrete co-

simulation tool. In Proc. IEEE Workshop on Rapid System Prototyping, pages

186–192. IEEE Computer Society, 2006. This paper is on-line available at

http://doi.ieeecomputersociety.org/10.1109/RSP.2006.18 .

[42] K. Gresser. An event model for deadline verification of hard real-time systems.

In Proceedings of the Fifth Euromicro Workshop on Real-time Systems, pages

118–123. IEEE, 1993.

[43] Systems Integration Requirements Task Group. ARP 4754: Certification Con-

siderations for Highly Integrated or Complex Aircraft Systems. Aerospace Rec-

ommended Practice. SAE International, April 1996. http://www.sae.org.

[44] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner. Solving ordinary differen-

tial equations I : Nonstiff problems. Springer, second edition, 1993.

[45] Ernst Hairer and Gerhard Wanner. Solving ordinary differential equations II :

Stiff and differential-algebraic problems. Springer, second edition, 1996.

[46] Arne Hamann, Rafik Henia, Razvan Racu, Marek Jersak, Kai Richter, and Rolf

Ernst. SymTA/S - Symbolic Timing Analysis for Systems. In Work In Progress

session - Euromicro Workshop on Real-time Systems, 2004.

[47] Maurice P.M.H. Heemels and Gerrit J. Muller, editors. Boderc: Model-based

design of high-tech systems. Embedded Systems Institute, P.O. Box 513, 5600

MB Eindhoven, NL, 2006. Available on-line at http://www.esi.nl/boderc.

[48] W.P.M.H. Heemels, L. Somers, P.F.A. van den Bosch, Z. Yuan, B. van der Wijst,

A. van den Brand, and G.J. Muller. The key driver method. In Model-based

design of high-tech systems, pages 27–42. Embedded Systems Institute, 2006.

See also [47].

[49] W.P.M.H. Heemels, L. Somers, P.F.A. van den Bosch, Z. Yuan, B. van der Wijst,

A. van den Brand, and G.J. Muller. The use of the key driver technique in the

design of copiers. In Proceedings of the International Conference on Software

and Systems Engineering and their Applications (ICSSEA), 2006.

166

http://www.es.ele.tue.nl/premadona/publications/FVVC06.pdf
http://www.incose.org/ipub
http://www.es.ele.tue.nl/$sim $mgeilen/publications/thesis.pdf
http://doi.ieeecomputersociety.org/10.1109/RSP.2006.18
http://www.sae.org
http://www.esi.nl/boderc

[50] W.P.M.H. Heemels, E.H. van de Waal, and G.J. Muller. A design methodology

for high-tech systems. In Model-based design of high-tech systems, pages 11–

26. Embedded Systems Institute, 2006. See also [47].

[51] Martijn Hendriks and Marcel Verhoef. Timed automata based analysis of em-

bedded systems architectures. In Workshop of Parallel and Distributed Real-

Time Systems (WPDRTS). IEEE, 2006. This paper is available on-line at

http://dx.doi.org/10.1109/IPDPS.2006.1639422 .

[52] Dan Henriksson. Flexible Scheduling Methods and Tools for Real-Time Control

Systems. PhD thesis, Lund Institute of Technology, Department of Automatic

Control, December 2003. See also http://www.control.lth.se/truetime/ .

[53] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design chal-

lenge. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM

2006: Formal Methods, volume 4085 of Lecture Notes in Computer Science,

pages 1–15. Springer, 2006. This paper is available on-line at

http://dx.doi.org/10.1007/11813040 1 .

[54] Jozef Hooman, Nataliya Mulyar, and Ladislau Posta. Coupling Simulink and

UML models. In B. Schnieder and G. Tarnai, editors, FORMS/FORMATS 2004,

pages 304–311, 2004.

[55] Jozef Hooman and Mark van der Zwaag. A semantics of communicating reactive

objects with timing. Software Tools for Technology Transfer, pages 97–112,

2006.

[56] Jozef Hooman and Marcel Verhoef. Formal semantics of a VDM extension for

distributed embedded systems. In Festschrift in honor of Willem-Paul de Roever,

LNCS Festschrift Series. Springer Verlag, 2008. (to appear).

[57] Johann Hörl and Bernhard K. Aichernig. Validating voice communication re-

quirements using lightweight formal methods. IEEE Software, 13–3:21–27,

May 2000.

[58] ITRS. International technology roadmap for semiconductors. Available on-line

at http://public.itrs.net, 2007.

[59] Chris W. Johnson. The natural history of bugs: Using formal methods to analyse

software related failures in space missions. In John Fitzgerald, Ian J. Hayes, and

Andrzej Tarlecki, editors, FM 2005: Formal Methods, volume 3582 of Lecture

Notes in Computer Science, pages 9–25. Springer, 2005.

[60] Jim Johnson. My Life Is Failure. Standish Group International, Inc., 2006. Co-

author of the original 1994 CHAOS report. See www.standishgroup.com.

[61] Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. System Dy-

namics: Modeling and Simulation of Mechatronic Systems. Wiley-Interscience,

third edition, 2000.

[62] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf. An ap-

proach for quantitative analysis of application-specific dataflow architectures. In

ASAP ’97: Proc. of the IEEE International Conference on Application-Specific

Systems, Architectures and Processors, page 338, Washington, DC, USA, 1997.

IEEE Computer Society.

167

http://dx.doi.org/10.1109/IPDPS.2006.1639422
http://www.control.lth.se/truetime/
http://dx.doi.org/10.1007/11813040_1
http://public.itrs.net
file:www.standishgroup.com

[63] Jeff Kramer. Is abstraction the key to computing? Communications of the ACM,

50(4):37–42, April 2007.

[64] Philippe Kruchten. The Rational Unified Process – An Introduction. Object

Technology Series. Addison-Wesley, 1999.

[65] Taro Kurita, Toyokazu Oota, and Yasumasa Nakatsugawa. Formal specifica-

tion of an embedded IC for cellular phones. In Proceedings of Software Sym-

posium 2005, pages 73–80. Software Engineering Association of Japan, June

2005. Only available in Japanese.

[66] Kevin Lano. Logic specification of reactive and real-time systems. Journal of

Logic and Computation, 8(5):679–711, 1998.

[67] Peter Gorm Larsen. Ten years of historical development: “bootstrapping”

VDMTOOLS. In Journal of Universal Computer Science, volume 7, pages 692–

709. Springer, 2001.

[68] Peter Gorm Larsen and Poul Bøgh Lassen. An Executable Subset of Meta-IV

with Loose Specification. In VDM ’91: Formal Software Development Methods,

pages 604–618. VDM Europe, Springer, March 1991.

[69] J.-Y. Le Boudec and P. Thiran. Network Calculus - A Theory of Deterministic

Queuing Systems for the Internet. Number 2050 in Lecture Notes in Computer

Science (LNCS). Springer, 2001.

[70] Jim Ledin. Simulation Engineering - Build Better Embedded Systems Faster.

Embedded Systems Programming. CMP Books, 2001.

[71] Jacques-Louis Lions, Lennart Lübeck, Jean-Luc Fauquembergue, Gilles Kahn,

Wolfgang Kubbat, Stefan Levedag, Leonardo Mazzini, Didier Merle, and Colin

O’Halloran. ARIANE 5 – flight 501 failure – report by the inquiry board. Tech-

nical report, European Space Agency, July 1996. Available on-line at

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf .

[72] Tiziana Margaria, Bernhard Schätz, and Marcel Verhoef. Formal methods going

mainstream: Costs, benefits, experiences. BCS-FACS FACTS, 2006(2):34–38,

September 2006. Report on the ForTIA Industry Day at FM’05. Available on-

line at http://www.bcs-facs.org/newsletter/facts200609.pdf .

[73] Robin Milner. A Calculus of Communicating Systems. Springer, 1982.

[74] Gordon E. Moore. Cramming more components onto integrated circuits. In

Electronics, volume 38. April 1965.

[75] Paul Mukherjee, Fabien Bousquet, Jerome Delabre, Stephen Paynter, and Pe-

ter Gorm Larsen. Exploring Timing Properties Using VDM++ on an Industrial

Application. In Juan Bicarregui and John Fitzgerald, editors, The Second VDM

Workshop, September 2000.

[76] Gerrit Muller. CAFCR: A Multi-view Method for Embedded Systems Architect-

ing; Balancing Genericity and Specificity. PhD thesis, Technische Universiteit

Delft, 2004. Available on-line at http://www.gaudisite.nl.

168

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://www.bcs-facs.org/newsletter/facts200609.pdf
http://www.gaudisite.nl

[77] Gabriela Nicolescu, H. Boucheneb, L. Gheorghe, and F. Bouchhima. Method-

ology for efficient design of continuous/discrete-events co-simulation tools. In

James Anderson and Ralph Huntsinger, editors, High Level Simulation Lan-

guages and Applications - HLSLA, pages 172–179. SCS, San Diego, CA, 2007.

[78] H. P. Oosterom. On the verification of real-time distributed embedded control

systems. Master’s thesis, University of Twente, Department of Electrical Engi-

neering, August 2006. On-line available at

http://www.ce.utwente.nl/rtweb/publications/ .

[79] Simon Perathoner. Evaluation and comparison of performance analysis methods

for distributed embedded systems. Master’s thesis, Politecnico di Milano, March

2006. Appeared as technical report MA-2006-05 at ETH Zürich, TIK laboratory.

[80] Simon Perathoner, Ernesto Wandeler, and Lothar Thiele. Timed automata tem-

plates for distributed embedded system architectures. Technical Report 233,

ETH Zurich, November 2005.

[81] Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon

Schliecker, Rafik Henia, Razvan Racu, Rolf Ernst, and Michael González Har-

bour. Influence of different system abstractions on the performance analysis of

distributed real-time systems. In Proceedings of EMSOFT’07, pages 193–202.

ACM, 2007.

[82] Colin Potts. Software-engineering revisited. IEEE Software, 10(5):19–28, 1993.

[83] G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML active

classes and associated statecharts - a lightweight formal approach. In FASE 2000

- Fundamental Approaches to Software Engineering, volume 1783 of Lecture

Notes in Computer Science (LNCS), pages 127–146. Springer, 2000.

[84] Kai Richter, Marek Jersak, and Rolf Ernst. A formal approach to MpSoC per-

formance verification. IEEE Computer, 36(4):60–67, April 2003.

[85] Peter J. Robinson. Hierarchical object-oriented design. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1992.

[86] Winston W. Royce. Managing the development of large software systems: con-

cepts and techniques. In ICSE ’87: Proceedings of the 9th international confer-

ence on Software Engineering, pages 328–338, Los Alamitos, CA, USA, 1987.

IEEE Computer Society Press. Republished version of the original 1970 IEEE

WESCON paper. http://portal.acm.org/citation.cfm?id=41765.41801.

[87] Heico Sandee. Event-Driven Control in Theory and Practice - Trade-offs in soft-

ware and control performance. PhD thesis, Technische Universiteit Eindhoven,

2006.

[88] Heico Sandee, Maurice Heemels, Gerrit Muller, Peter van den Bosch, and Mar-

cel Verhoef. Threads of reasoning: A case study in printer control. In Systems

Engineering: Shining Light on Though Issues, Proceedings of the 16 th Annual

International INCOSE Symposium. INCOSE, 2006. Paper is available on-line

at http://www.incose.org/ipub.

169

http://www.ce.utwente.nl/rtweb/publications/
http://portal.acm.org/citation.cfm?id=41765.41801
http://www.incose.org/ipub

[89] Alberto Sangiovanni-Vincentelli. Successive refinements of communication

functions and architectures in system design. In Design Automation and Test

in Europe, 2006. Hot Topic Session – Network the next “Big Idea” in design?

[90] SC-167. DO-178B: Software Considerations in Airborne Systems and Equip-

ment Certification. RTCA, 1992. http://www.rtca.org.

[91] Donna C. Stidolph and James Whitehead. Managerial issues for the consider-

ation and use of formal methods. In Keijiro Araki, Stefania Gnesi, and Dino

Mandrioli, editors, FME 2003: Formal Methods, volume 2085 of LNCS, pages

170–186. Formal Methods Europe, Springer, 2003.

[92] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus

for scheduling hard real-time systems. In Proc. IEEE International Symposium

on Circuits and Systems, volume 4, pages 101–104, 2000.

[93] F. W. Vaandrager. De ingebouwde informatica. Katholieke Universiteit Nijme-

gen, Heyendaalseweg 135, 6525 AJ Nijmegen, December 1996.

[94] Manuel van den Berg, Marcel Verhoef, and Mark Wigmans. Formal Specifica-

tion of an Auctioning System Using VDM++ and UML – an Industrial Usage

Report. In John Fitzgerald and Peter Gorm Larsen, editors, VDM in Practice –

proceedings of the VDM workshop at FM’99, pages 85–93, September 1999.

[95] Peter van den Bosch, Oana Florescu, Marcel Verhoef, and Gerrit Muller. Mod-

eling of performance. In Model-based design of high-tech systems, pages 101–

114. Embedded Systems Institute, 2006. See also [47].

[96] Peter van den Bosch, Gerrit Muller, Marcel Verhoef, and Oana Florescu. Mod-

eling of hardware software performance of high-tech systems. In Proceedings

of the 17th Annual International INCOSE Symposium. INCOSE, 2007. Paper is

available on-line at http://www.incose.org/ipub.

[97] Piet van der Putten and Jeroen Voeten. Specification of Reactive Hardware /

Software Systems. PhD thesis, Technical University Eindhoven, 1997.

[98] Marcel Verhoef. On the use of VDM++ for specifying real-time systems. In John

Fitzgerald, Peter Gorm Larsen, and Nico Plat, editors, Towards Next Generation

Tools for VDM: Contributions to the First International Overture Workshop,

CS-TR 969, pages 26–43. School of Computing Science, Newcastle University,

June 2006. This technical report is available on-line at

http://www.cs.ncl.ac.uk/research/pubs/trs/papers/969.pdf .

[99] Marcel Verhoef and Jozef Hooman. Evaluating embedded system architectures.

In Model-based design of high-tech systems, pages 151–159. Embedded Sys-

tems Institute, 2006. See also [47].

[100] Marcel Verhoef and Peter Gorm Larsen. Interpreting distributed system archi-

tectures using VDM++ a case study. In Brian J. Sauser and Gerrit Muller,

editors, Proceedings of the Conference on System Engineering Research - CSER

2007, Hoboken, NY, 2007. Stevens Institute of Technology.

170

http://www.rtca.org
http://www.incose.org/ipub
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/969.pdf

[101] Marcel Verhoef, Peter Gorm Larsen, and Jozef Hooman. Modeling and validat-

ing distributed embedded real-time systems with VDM++. In Jayadev Misra,

Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods, vol-

ume 4085 of Lecture Notes in Computer Science, pages 147–162. Springer,

2006. Available on-line at http://dx.doi.org/10.1007/11813040 11 .

[102] Marcel Verhoef, Peter Visser, Jozef Hooman, and Jan Broenink. Co-simulation

of distributed embedded real-time control systems. In J. Davies and J. Gibbons,

editors, Integrated Formal Methods - IFM, volume 4591 of Lecture Notes in

Computer Science, pages 639–658. Springer, 2007. This paper is available on-

line at http://dx.doi.org/10.1007/978-3-540-73210-5 33 .

[103] Peter Visser, Jan Broenink, and Job van Amerongen. Design trajectory and

controller-plant interaction. In Gerrit Muller and Maurice Heemels, editors,

Model-based design of high-tech systems, pages 205–214. Embedded Systems

Institute, 2006. See also [47].

[104] P.M. Visser and J.F. Broenink. Controller and plant system design trajectory. In

Conference on Computer Aided Control Systems Design, CACSD, pages 1910–

1917. IEEE Control Systems Society, 2006. This paper is available on-line at

http://www.ce.utwente.nl.

[105] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse. System

architecture evaluation using modular performance analysis: a case study. Inter-

national Journal of Software Tools for Technology Transfer (STTT), 8(6):649–

667, November 2006. This paper is available on-line at

http://dx.doi.org/10.1007/s10009-006-0019-5 .

[106] J.G. Ziegler and N.C. Nichols. Optimum settings for automatic control. In Proc.

of the American Society of Mechanical Engineers. ASME, 1942. Republished

in the Dynamic Systems, Measurements, and Control DSCD Journal in 1993,

vol. 115, pp. 220-222.

171

http://dx.doi.org/10.1007/11813040_11
http://dx.doi.org/10.1007/978-3-540-73210-5_33
http://www.ce.utwente.nl
http://dx.doi.org/10.1007/s10009-006-0019-5

172

Samenvatting

Computers zijn niet meer weg te denken uit ons dagelijks leven. De personal com-

puter is voor veel mensen een belangrijk gereedschap geworden, het Internet een voor-

naam communicatiemedium en de spelcomputer een bron van vertier. In minder dan

vijftig jaar tijd heeft de computer zeer veel invloed gekregen op de kwaliteit van ons

leven. Vaandrager [93] constateert dat met name door de spectaculaire daling in prijs

en grootte van computerapparatuur het gebruik van dit soort technologie de laatste de-

cennia een ongekende vlucht heeft genomen. Dit geldt met name voor de categorie

van de zogenaamde ingebedde systemen (naar het Engelse embedded systems) waarbij

computertechnologie in producten is ingebouwd en daarmee de functionaliteit geheel

of gedeeltelijk bepaalt; de computer en het product zijn onlosmakelijk met elkaar ver-

bonden. Denk daarbij aan de wasmachine, video recorder, DVD speler, foto- en video-

camera en natuurlijk de mobiele telefoon.

In dit proefschrift worden ingebedde systemen beschouwd die een fysisch proces

controleren en besturen. Denk daarbij aan besturing van een volautomatisch produc-

tieproces zoals een waferstepper of een moderne digitale printer. Belangrijke eigen-

schappen van deze klasse van regelsystemen zijn de hoge mate van autonomie en tijds-

druk. De computer neemt zelfstandig beslissingen op basis van metingen en corrigeert

het fysische proces zonder directe tussenkomst van de mens. De taak van de computer

is om onder alle omstandigheden het fysische proces binnen vooraf bepaalde grenzen

in een gedefinieerde toestand te houden. Vaak moet relatief veel rekenwerk worden

uitgevoerd om een eventuele correctie te bepalen. Bovendien speelt de reactietijd een

cruciale rol, denk daarbij bijvoorbeeld aan de airbag in de auto. Dit zijn taken waarin

de computer excelleert; de mens ontwerpt de receptuur, het regelalgoritme dat door de

computer wordt uitgevoerd.

Ondanks het feit dat computers steeds sneller en krachtiger worden blijft het ont-

werpen van ingebedde regelsystemen zeer uitdagend. Enerzijds wordt dit veroorzaakt

door de constante toename van eisen die worden gesteld aan dit soort systemen, ander-

zijds omdat door software oplossingen elders kosten bespaard kunnen worden. Steeds

vaker wordt gekozen om specifieke ontwerpeisen in de regelaar zelf op te lossen. Vaak

omdat dit de enige plek is waar een grote mate van flexibiliteit geleverd kan worden

op een laat moment in de systeemontwikkeling, de software is immers eenvoudig te

wijzigen.

Het ontwikkelen van nieuwe systemen is een constante afweging tussen drie as-

pecten: tijd, geld en kwaliteit. In de markt van consumenten en kapitaalgoederen staan

met name tijd en geld constant onder druk. De productievolumes zijn weliswaar hoog

maar de verkoopmarges zijn vaak relatief laag. Er is dus een groot economisch belang

om eerder dan de concurrentie met een nieuw product op de markt te komen. Maar kan

dat zonder afbreuk te doen aan kwaliteit en, als afgeleide daarvan, functionaliteit? Deze

zogenaamde time-to-market druk heeft in het verleden meermalen geleid tot spectacu-

173

laire mislukkingen. De belangrijkste uitdaging is om de juiste balans te vinden tussen

deze aspecten en dat blijkt buitengewoon lastig.

Dit geldt in belangrijke mate ook voor ingebedde regelsystemen. Daar liggen een

aantal problemen aan ten grondslag. Ten eerste, de ontwikkeling van computer hard-

ware gaat veel sneller dan de ontwikkeling van regelsystemen die op deze technologie

zijn gebaseerd. Ongeveer iedere 18 maanden kunnen we spreken van een totaal nieuwe

hardware generatie, de systeemontwikkelingscyclus van een nieuw product is over het

algemeen veel langer. Bovendien is er een duidelijke trend waarneembaar naar he-

terogene en gedistribueerde hardware. Deze zogenaamde system-on-chip oplossingen

combineren analoge, digitale en hoog-frequent elektronica met meerdere, via een intern

netwerk gekoppelde, processoren in één geı̈ntegreerde schakeling. Opvallend daar-

bij is dat de ontwerpgereedschappen voor deze nieuwe generatie computerhardware

duidelijk achterblijft, hetgeen de ontwikkeling van systemen extra compliceert. Ten

tweede, de continue economische druk om productkosten zo laag mogelijk te houden

dwingt de ontwerper om te werken op het randje van de technische haalbaarheid. Maar

hoe kan de ontwerper deze beslissingen goed nemen als de mechanica, elektronica en

de regelaar nagenoeg gelijktijdig ontwikkeld worden om de doorlooptijd te beperken en

de systeemeisen vaak nog niet eens duidelijk zijn op het moment dat de belangrijkste

architectuurbeslissingen genomen moeten worden? Eén van de belangrijkste proble-

men daarbij is de a-priori validatie van deze beslissingen in de (voor)ontwerpfase en

de gevolgen van potentiële wijzigingen gedurende de levenscyclus. Dit zijn aspecten

die in dit proefschrift aan de orde komen.

Het ontwerpen van ingebedde regelsystemen is bij uitstek een multi-disciplinair

vraagstuk. Specifieke kennis van werktuigbouwkunde, regeltechniek, elektrotechniek

en informatica is onontbeerlijk en de interactie tussen deze vakgebieden is bepalend

voor het behaalde eindresultaat. En dat blijkt in de praktijk moeizaam, met name voor

systeemaspecten die discipline overstijgend zijn zoals bijvoorbeeld betrouwbaarheid,

robuustheid, energieverbruik en snelheid. In de huidige beroepspraktijk blijkt ontwer-

pen vaak disciplinegewijs te zijn ingericht en pas tijdens de systeemintegratiefase komt

dit multi-disciplinaire aspect aan bod en de interactie tot stand. Slechts zelden leidt een

optimale oplossing binnen één discipline tot het bereiken van het optimum op systeem-

niveau en vaak wordt dit probleem pas tijdens de integratiefase vastgesteld. Met andere

woorden, de consequenties van de genomen ontwerpbeslissingen zijn pas laat in het

ontwerpproces zichtbaar. Dit leidt vervolgens tot kostbare correcties en projectuitloop.

Eén van de kernproblemen is dat de gebruikte disciplinespecifieke ontwerptechnieken

fundamenteel van elkaar verschillen en dat de ontwerpers zich concentreren op ver-

schillende type problemen en daarvoor hun eigen werkwijze hebben ontwikkeld. Er is

geen synergie.

Het gebrek aan dialoog op systeemniveau in de vroege ontwerpfase tussen de ver-

schillende ontwerpdisciplines is één van de uitdagingen waarvoor in het BODERC

project, waarvan dit onderzoek deel uit maakt, een oplossing werd gezocht. Het doel

van dit proefschrift is om te bepalen of er methoden en technieken bestaan, of te

definiëren zijn, die een oplossing bieden voor dit probleem. De uitdaging daarbij is

om de effectiviteit van een dergelijke oplossing aan te tonen door toepassing op een

casus van enige omvang, die is geı̈nspireerd op een industrieel ontwerpprobleem: het

papierpad van een hoogvolumeprinter.

Als startpunt voor dit onderzoek is in hoofdstuk 2 gekozen om een aantal bestaande

ontwerp- en analysetechnieken toe te passen op een relatief eenvoudige casus: het ont-

werp van een autoradionavigatiesysteem. De doelstelling van deze fase van het onder-

zoek was enerzijds ervaring opdoen met het modelleren van dergelijke problemen en

174

anderzijds het toetsen van de vraag of een aantal specifieke ontwerpeisen beantwoord

kon worden met de beschikbare technieken. Ook was vergelijking van de resultaten,

zowel in kwalitatieve als kwantitatieve zin mogelijk omdat telkens dezelfde casus werd

beschouwd. Voor zover bekend is het de eerste keer dat een dergelijk vergelijkend

onderzoek op deze wijze is uitgevoerd. In deze studie is gekeken naar Modular Perfor-

mance Analysis (MPA), Symbolic Timing Analysis for Systems (SymTA/S), UPPAAL,

POOSL en VDM++.

Frappant genoeg leidde met name de vergelijking van de modellen en de analy-

seresultaten tot zeer interessante inzichten. Zo werd de incompleetheid van de origi-

nele probleemstelling meermalen aangetoond, maar werden ook subtiele fouten in de

gemaakte modellen en de tools ontdekt. Sommige methoden zijn sterk in het vinden

van een exacte oplossing maar hebben daar veel tijd voor nodig. Andere methoden zijn

sterk in het snel vinden van een goede eerste orde benadering. In veel gevallen bleek

dat de sterke en zwakke kanten van diverse methoden elkaar kunnen compenseren. Dit

is ook vaak nodig omdat de uitkomst vaak onevenredig sterk beı̈nvloed wordt door de

zwakke kant van een techniek. De keuze van de juiste techniek in een bepaalde ont-

werpfase kan dus van grote invloed zijn op de behaalde effectiviteit. Het modelleren en

analyseren van een probleem in twee of meer methoden zorgt er in ieder geval voor dat

de gevonden resultaten altijd kritisch zullen worden beschouwd. In de praktijk wordt

vaak te snel de conclusie getrokken dat het gevonden antwoord ook de juiste is.

Eén van de leermomenten uit het vergelijkend onderzoek is dat het expliciet maken

van de computer hardware architectuur in een model van de ingebedde software alles-

behalve eenvoudig is. Het beschrijven van deze relatie tussen hardware en software is

weliswaar mogelijk, maar het aanbrengen van wijzigingen, hetgeen veelvuldig gebeurt

in de vroege ontwerpfase om snel ontwerpafwegingen te kunnen maken, kost zeer veel

tijd en is bovendien foutgevoelig. In hoofdstuk 3 van dit proefschrift wordt daarom een

voorstel gepresenteerd om één van de technieken, VDM++, aan te passen om dit pro-

bleem op te lossen. Daartoe wordt zowel de syntax als de semantiek van deze formele

specificatie taal aangepast. VDM++ kent een synchroon executiegedrag waarbij er al-

tijd maximaal één taak tegelijk actief is in het model, gebaseerd op beschikbaarheid

van één enkele processor. De belangrijkste wijziging in de semantiek is dat nu ook

asynchroon executiegedrag wordt toegestaan en dat er meerdere processoren kunnen

zijn die elk een eigen actieve taak kunnen hebben. Belangrijk daarbij is dat de beteke-

nis van de bestaande modellen nog steeds wordt ondersteund. Maar de uitbereiding

maakt het nu mogelijk om de computer hardware architectuur, die mogelijk bestaat uit

meerdere processoren en netwerken, expliciet te benoemen en daarmee te redeneren

over distributie van software en de invloed op het totale systeemgedrag. Wijzigingen

in de computer hardware architectuur zijn eenvoudig door te voeren zonder dat daar-

voor het model van de software aangepast hoeft te worden.

In hoofdstuk 4 wordt deze onderzoekslijn nog een stap verder doorgetrokken. De

modellen die met de aangepaste VDM++ notatie worden beschreven, kunnen door

middel van discrete event simulatie nader worden bestudeerd. De omgeving waarin

deze ingebedde regelsystemen werken, met andere woorden de fysische werkelijkheid,

laat zich ook uitstekend formeel beschrijven, bijvoorbeeld door middel van differen-

tiaalvergelijkingen of bondgrafen. Het gedrag van deze fysische systemen kan dus

ook worden bestudeerd door middel van simulatie, zij het in het continue tijddomein.

In hoofdstuk 4 wordt een extra wijziging in de semantiek van VDM++ gepresenteerd

die consistente co-simulatie van de discrete regelaar, gespecificeerd in VDM++, mo-

gelijk maakt waarbij de fysische werkelijkheid mathematisch is beschreven, bijvoor-

beeld met behulp van bondgrafen. Hiervoor is ook prototype tooling ontwikkeld die

175

wordt toegepast op een simpel maar relevant voorbeeld: een watertank controller. Deze

geı̈ntegreerde formele semantiek van VDM++ en bondgrafen, en de bijbehorende tools,

vormen de kern van het resultaat van dit onderzoek. Bovendien blijkt de ontwikkelde

geı̈ntegreerde formele semantiek ook toepasbaar voor andere methoden en technieken.

In hoofdstuk 5 wordt het ontwikkelproces van ingebedde regelsystemen beschouwd

waarbij de focus nadrukkelijk ligt op het inzichtelijk maken van de multi-disciplinaire

vraagstukken die met name aan het begin van de ontwikkelcyclus spelen. Welke, vaak

informele, technieken kunnen worden ingezet om deze ontwerpdialoog te stimuleren

en te structureren? Een drietal technieken wordt daarbij beschouwd: de key-driver

method, threads of reasoning en budget-based design. Op welke wijze vindt ontwik-

keling van regelsystemen en software momenteel in de praktijk plaats? Hoe verhouden

deze aanpakken zich tot elkaar en welke rol spelen formele ontwerptechnieken in deze

processen? Zijn ze in elkaar te passen of sluiten ze elkaar uit? Welke impact hebben

deze processen in de praktijk en hoe wordt de juiste balans tussen proces en product

bereikt? Wat moet er gedaan worden in welke fase? Aan deze vragen wordt in hoofd-

stuk 5 aandacht besteed.

De resultaten van het onderzoek uit de hoofdstukken 3, 4 en 5 komen samen in

hoofdstuk 6. Hierin wordt het papierpad van een hoogvolumeprinter nader bestudeerd.

Zowel het ontwerp van het model van de fysische werkelijkheid als het ontwerp van

de ingebedde regelaar komt daarbij uitgebreid aan bod. Bijzondere aandacht wordt

gegeven aan het validatieproces dat werd gevolgd tijdens de ontwikkeling, waarbij

werd gewerkt volgens de processen beschreven in hoofdstuk 5. In de eerste fase werd

de co-simulatie interface toegepast zoals beschreven in hoofdstuk 4. In de tweede fase

werd uit het VDM++ model direct C++ code gegenereerd die vervolgens als software-

in-the-loop applicatie kan worden gesimuleerd. In de eerste twee fasen werd een 3D

visualisatiemodel gekoppeld aan de simulator om het dynamisch gedrag van het sys-

teem inzichtelijk te maken. In de derde en laatste stap werd de gegenereerde C++ code

gecompileerd voor het target platform en op de proefopstelling getest. Daarbij zijn

metingen verricht die vervolgens zijn vergeleken met de uitkomst van de simulaties,

met als eindresultaat een regelaar die conform verwachting presteert. Daarbij viel op

dat reeds in de eerste fase diverse discipline-overstijgende problemen opgespoord kon-

den worden omdat de co-simulatie niet leidde tot het gewenste resultaat. Bovendien

bleek dat de continue validatieaanpak inderdaad bijdraagt tot het actief en relatief een-

voudig beheersen van de ontwerp- en implementatierisico’s.

De conclusie van het onderzoek gepresenteerd in dit proefschrift is dat een metho-

de voor het multi-disciplinair ontwerpen van ingebedde gedistribueerde regelsystemen

inderdaad beschikbaar is. Met behulp van twee bestaande technieken, VDM++ en

bondgrafen, is aangetoond dat relatief compacte en eenvoudig onderhoudbare modellen

gemaakt kunnen worden van zeer complexe systemen. Daarvoor werd de syntax en

semantiek van VDM++ aangepast en een geı̈ntegreerde semantiek voor continue tijd

co-simulatie ontwikkeld, ondersteund door prototype tools. Met behulp van deze tools

is het mogelijk om de ontwikkelde modellen te inspecteren. Deze simulaties geven

weliswaar geen bewijs van absolute correctheid maar de resultaten ondersteunen wel

degelijk de ontwerpdialoog in de vroege fase van het ontwerp. De effectiviteit van

deze aanpak is door middel van een relevante casus aangetoond. Inmiddels zijn de

resultaten van hoofdstuk 3 ook beschikbaar in een commercieel verkrijgbaar product,

sinds versie 8.0 is deze functionaliteit namelijk ook beschikbaar in VDMTOOLS.

De tools en modellen die ontwikkeld zijn in het kader van dit proefschrift zijn

beschikbaar op http://www.overturetool.org en op http://www.marcelverhoef.nl.

176

http://www.overturetool.org
http://www.marcelverhoef.nl

Curriculum Vitae

Marcel Henri Gerard Verhoef was born at Papendrecht on 5 August 1968. He attended

the Willem de Zwijger Scholengemeenschap where he obtained his Atheneum-B de-

gree in 1986. He moved to Delft University of Technology where he studied Com-

puter Science and Aerospace Engineering. He became a student assistant at the Com-

puter Science department in 1991, where he worked on the Delft VDM-SL Front-End.

He moved to the Institute of Applied Computer Science, IFAD, at Odense, Denmark

for 9 months in 1992 to obtain his MSc thesis called “A Constructive Static Seman-

tics for the IPTES Meta-IV Specification Language”. This work was supervised by

professor Jan van Katwijk and involved specification and implementation of a type-

checker for the ancestor language to VDM++. Some of the MSc results ended up in

VDMTOOLS and are still in use today. He needed to go into the obligatory military ser-

vice in November 1992 and finally graduated from Delft University of Technology in

September 1993. He served in the army for 14 months and was honorably discharged

in January 1994 reaching the rank of “Eerste Luitenant”. He joined the COMBINE

project at the faculty of Civil Engineering at Delft University of Technology as a re-

search assistant. This project, lead by professor Godfried Augenbroe, was sponsored

within the EC Joule programme and was aimed at integrating design tools for devel-

oping energy efficient buildings. He was responsible for implementing a large product

data model in an object-oriented database and implementing several on-line and off-

line interfaces, for example to leading CAD tools such as Bentley Microstation and

Autodesk AutoCad. He moved to industry at the end of the project in 1996 and started

working for BSO/Origin. He worked on several commercial and large-scale software

engineering projects for customers such as the European Space Agency, Shell Neder-

land and the Dutch Department of Defense. In 1999, he moved with several colleagues

to form Chess Information Technology, a new company in the Chess group. Empha-

sis shifted towards complex mission-critical and embedded systems and he worked

as a systems architect for customers such as the Bloemenveiling Aalsmeer, European

Space Agency, Océ Technologies and Siemens VDO Automotive. He worked on the

BODERC project from March 2003 to March 2007, while still being employed by

Chess who became full partner in the project. Currently, he is part of the Chess innova-

tion team where he consults customers and the other Chess business lines on embedded

system architecture issues. He is involved in the Quasimodo EU Seventh Framework

research project where he works on verification and validation of large-scale wireless

sensor networks using model checking technologies. He is a member of KIVI, IEEE,

ACM, INCOSE and ForTIA and he is treasurer of Formal Methods Europe. He likes

recreative running, spinning and he plays squash and golf. He maintains a web-site

with an up-to-date overview of his publications: http://www.marcelverhoef.nl.

177

http://www.marcelverhoef.nl

178

Acknowledgements

First of all, I would like to thank Frits Vaandrager and Jozef Hooman for accepting me

as a PhD candidate “beyond-the-ordinary” at the Radboud University Nijmegen. It was

a pleasure working with you both and I am particularly grateful for the mental support

you provided in times of need. I truly admire your patience and mentoring skills!

Second of all, I would like to thank Jan Laagland and Rene Hodde, joint owners

and executive directors of Chess Information Technology, now Chess, and Siebren de

Vries, for giving me the opportunity to step out of the commercial business for four

years to chase my own dream.

This manuscript would not have seen the light of day without the warm support of

the large number of the people I have had the pleasure to meet and work with:

• I would like to thank Ernesto Wandeler, Lothar Thiele, Paul Lieverse, Mar-

tijn Hendriks, Simon Perathoner, Kai Richter, Menno de Hoon, Oana Florescu,

Jeroen Voeten, Henk Corporaal, Egor Bondarev, Peter Gorm Larsen and Erik

Oosterom for their in-depth discussions and contributions to the method com-

parison presented in Chapter 2.

• I would like to thank my co-authors, Jozef Hooman and Peter Gorm Larsen

for their contribution and the anonymous reviewers of FM 2006, Søren Chris-

tensen, John Fitzgerald, Finn Overgaard Hansen, Shin Sahara, Erik Gaal and

Evert van de Waal for their valuable comments and support for the paper pre-

sented in Chapter 3.

• I would like to thank my co-authors, Peter Visser, Jozef Hooman and Jan Broenink

for their contribution and the anonymous reviewers of IFM 2007, Zoe Andrews,

Job van Amerongen, Peter van den Bosch, Erik Gaal, Peter Gorm Larsen and

Frits Vaandrager for their valuable comments and support for the paper presented

in Chapter 4.

• Chapter 5 and 6 would simply not have been possible without the help of Peter

Visser, Frank Ambrosius and Jan Broenink. I would like to thank Heico Sandee,

Peter van den Bosch, Maurice Heemels and Gerrit Muller for the BODERC

group work which was instrumental to the Threads of Reasoning paper [88].

Many thanks to Peter Gorm Larsen for the in-depth discussions on the VDM++

development process for embedded real-time systems.

• I owe many thanks to the manuscript committee members, prof. dr. Bart Jacobs

(chair), prof. dr. Lothar Thiele, prof. dr. ir. Peter Gorm Larsen, dr. ir. Jeroen

Voeten and dr. ir. Jan Broenink for final approval of this manuscript and provid-

ing me with many detailed corrections, suggestions and questions which have

helped me to improve and fine-tune this work.

179

I would like to thank John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee and

Nico Plat for giving me the opportunity to contribute to the book Validated Designs for

Object-Oriented Systems [30]. It has been a joy and very worthwhile experience! In

particular I want to mention the incredible hospitality I have enjoyed from Peter and

Margit Larsen at their home in Søften, Denmark, where I have spent several weeks

over the last few years working with Peter on the book and parts of this thesis. Those

were memorable occasions that I will never forget!

Of course, I want to acknowledge all the people involved in the BODERC project

at the Embedded System Institute for the stimulating discussions and open atmosphere

in the project. I want to thank my fellow PhD students Heico Sandee, Marieke Clooster-

man, Björn Bukkems, Peter Visser and Oana Florescu, and the ESI staff members Frans

Beenker, Gerrit Muller, Bauke Sijtsma, Jan-Matthijs Wijnands, Anget Mestrom and Ed

Brinksma. But also the participants from the project partners: Jan Beckers, Peter van

den Bosch, Zhaorui Yuan, Hennie Freriks, Paul van den Bosch, Maarten Steinbuch,

Henk Nijmeijer, Henk Corporaal, Job van Amerongen, Jan Broenink, Jeroen Voeten,

Maurice Heemels, Nathan van de Wouw, Rene van de Molengraft, Evert van de Waal,

Erik Gaal, Berry van der Wijst, Jandit van Doorn, Adriaan van den Brand and Lou

Somers.

Thank you Silvian de Jager for making the extraordinary graphic design for the

cover of this manuscript!

Special thanks to Marcelle van Valkenburg, who has convinced me to write the

magic letter to ESI that started it all in November 2002.

And last, but certainly not least, my parents: Gerrit and Dikkie, to whom I dedicate

this thesis and my sister Bernadette, my family and friends, for their love, patience and

support.

180

Titles in the IPA Dissertation Series since 2006

E. Dolstra. The Purely Functional Soft-

ware Deployment Model. Faculty of Sci-

ence, UU. 2006-01

R.J. Corin. Analysis Models for Se-

curity Protocols. Faculty of Electrical

Engineering, Mathematics & Computer

Science, UT. 2006-02

P.R.A. Verbaan. The Computational

Complexity of Evolving Systems. Faculty

of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-

mal Specification and Analysis of Hybrid

Systems. Faculty of Mathematics and

Computer Science and Faculty of Me-

chanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications

of UML Models: Tool Support and Com-

positionality. Faculty of Mathematics

and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed

Automata - Techniques and Applications.

Faculty of Science, Mathematics and

Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-

ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in

tool-assisted verification of JML pro-

grams. Faculty of Science, Mathematics

and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molec-

ular Simulations. Faculty of Biomedical

Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured

Data. Faculty of Mathematics and Natu-

ral Sciences, UL. 2006-10

G. Russello. Separation and Adapta-

tion of Concerns in a Shared Data Space.

Faculty of Mathematics and Computer

Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-

istic and Probabilistic Choices. Faculty

of Science, Mathematics and Computer

Science, RU. 2006-12

B. Badban. Verification techniques for

Extensions of Equality Logic. Faculty of

Sciences, Division of Mathematics and

Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-

ods and protocol standardization. Fac-

ulty of Mathematics and Computer Sci-

ence, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for

Hybrid Systems. Faculty of Electrical

Engineering, Mathematics & Computer

Science, UT. 2006-15

M.E. Warnier. Language Based Secu-

rity for Java and JML. Faculty of Sci-

ence, Mathematics and Computer Sci-

ence, RU. 2006-16

V. Sundramoorthy. At Home In Service

Discovery. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-

ence, UT. 2006-17

B. Gebremichael. Expressivity of Timed

Automata Models. Faculty of Sci-

ence, Mathematics and Computer Sci-

ence, RU. 2006-18

L.C.M. van Gool. Formalising Interface

Specifications. Faculty of Mathematics

and Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics

and Verification of Security Protocols.

Faculty of Mathematics and Computer

Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-

nels for Exogenous Coordination of Dis-

tributed Systems: Semantics, Implemen-

tation and Composition. Faculty of

Mathematics and Natural Sciences, UL.

2006-21

H.A. de Jong. Flexible Heterogeneous

Software Systems. Faculty of Natural

Sciences, Mathematics, and Computer

Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-

urable Network-on-Chip for streaming

DSP applications. Faculty of Electrical

Engineering, Mathematics & Computer

Science, UT. 2007-02

M. van Veelen. Considerations on Mod-

eling for Early Detection of Abnormali-

ties in Locally Autonomous Distributed

Systems. Faculty of Mathematics and

Computing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of

Process and Program Algebra. Faculty

of Natural Sciences, Mathematics, and

Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for

Model-based Testing: Real-time and

Coverage. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-

ence, UT. 2007-05

I. Loeb. Natural Deduction: Shar-

ing by Presentation. Faculty of Sci-

ence, Mathematics and Computer Sci-

ence, RU. 2007-06

M.W.A. Streppel. Multifunctional Geo-

metric Data Structures. Faculty of Math-

ematics and Computer Science, TU/e.

2007-07

N. Trčka. Silent Steps in Transition

Systems and Markov Chains. Faculty

of Mathematics and Computer Science,

TU/e. 2007-08

R. Brinkman. Searching in encrypted

data. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT.

2007-09

A. van Weelden. Putting types to good

use. Faculty of Science, Mathematics

and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Informa-

tion in Software Development Processes.

Faculty of Electrical Engineering, Math-

ematics & Computer Science, UT. 2007-

11

R. Boumen. Integration and Test

plans for Complex Manufacturing Sys-

tems. Faculty of Mechanical Engineer-

ing, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing

and Optimising System Behaviour in

Time. Faculty of Sciences, Division

of Mathematics and Computer Science,

VUA. 2007-13

C.F.J. Lange. Assessing and Improving

the Quality of Modeling: A Series of Em-

pirical Studies about the UML. Faculty

of Mathematics and Computer Science,

TU/e. 2007-14

T. van der Storm. Component-based

Configuration, Integration and Delivery.

Faculty of Natural Sciences, Mathemat-

ics, and Computer Science,UvA. 2007-

15

B.S. Graaf. Model-Driven Evolution of

Software Architectures. Faculty of Elec-

trical Engineering, Mathematics, and

Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi

for Reasoning with Binding. Faculty

of Mathematics and Computer Science,

TU/e. 2007-17

D. Jarnikov. QoS framework for Video

Streaming in Home Networks. Faculty

of Mathematics and Computer Science,

TU/e. 2007-18

M. A. Abam. New Data Structures and

Algorithms for Mobile Data. Faculty

of Mathematics and Computer Science,

TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-

derstanding the Electronic Voting Con-

troversy. Faculty of Science, Mathemat-

ics and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton

Proofs in PVS. Faculty of Science, Math-

ematics and Computer Science, RU.

2008-02

M. Bruntink. Renovation of Idiomatic

Crosscutting Concerns in Embedded

Systems. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Sci-

ence, TUD. 2008-03

A.M. Marin. An Integrated System

to Manage Crosscutting Concerns in

Source Code. Faculty of Electrical En-

gineering, Mathematics, and Computer

Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-based

Integration and Testing of High-tech

Multi-disciplinary Systems. Faculty of

Mechanical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-

tax: Syntax Definition, Parsing, and As-

similation of Language Conglomerates.

Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness

Alive: Design and Formal Verification

of Optimistic Fair Exchange Protocols.

Faculty of Sciences, Division of Math-

ematics and Computer Science, VUA.

2008-07

I.S.M. de Jong. Integration and Test

Strategies for Complex Manufacturing

Machines. Faculty of Mechanical Engi-

neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-

gebras. Faculty of Science, Mathematics

and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:

Two Taxonomies and a Toolkit. Faculty

of Mathematics and Computer Science,

TU/e. 2008-10

I.S. Zapreev. Model Checking Markov

Chains: Techniques and Tools. Faculty

of Electrical Engineering, Mathematics

& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-

imental Study of Geometric Networks.

Faculty of Mathematics and Computer

Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-

ifications Using Context-Sensitive Wild-

cards. Faculty of Electrical Engineering,

Mathematics & Computer Science, UT.

2008-13

F.D. Garcia. Formal and Computational

Cryptography: Protocols, Hashes and

Commitments. Faculty of Science, Math-

ematics and Computer Science, RU.

2008-14

P. E. A. Dürr. Resource-based Verifica-

tion for Robust Composition of Aspects.

Faculty of Electrical Engineering, Math-

ematics & Computer Science, UT. 2008-

15

E.M. Bortnik. Formal Methods in Sup-

port of SMC Design. Faculty of Mechan-

ical Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance

Analysis of Data-Independent Stream

Processing Systems. Faculty of Math-

ematics and Computer Science, TU/e.

2008-17

M. van der Horst. Scalable Block Pro-

cessing Algorithms. Faculty of Math-

ematics and Computer Science, TU/e.

2008-18

C.M. Gray. Algorithms for Fat Objects:

Decompositions and Applications. Fac-

ulty of Mathematics and Computer Sci-

ence, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems

with Data - Enumerative Methods and

Constraint Solving. Faculty of Electrical

Engineering, Mathematics & Computer

Science, UT. 2008-20

E. Mumford. Drawing Graphs for

Cartographic Applications. Faculty

of Mathematics and Computer Science,

TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured

Data, Theoretical and Experimental As-

pects of Pattern Evaluation. Faculty of

Mathematics and Natural Sciences, UL.

2008-22

R. Brijder. Models of Natural Compu-

tation: Gene Assembly and Membrane

Systems. Faculty of Mathematics and

Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-

ing and Its Certification. Faculty of

Mathematics and Computer Science,

TU/e. 2008-24

U. Khadim. Process Algebras for Hy-

brid Systems: Comparison and Develop-

ment. Faculty of Mathematics and Com-

puter Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time

in Process Algebras for Performance

Evaluation. Faculty of Mathematics and

Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software

Specification and Verification. Faculty of

Electrical Engineering, Mathematics &

Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from

Noisy Data Theory and Applications.

Faculty of Electrical Engineering, Math-

ematics & Computer Science, UT. 2008-

28

R.S. Marin-Perianu. Wireless Sensor

Networks in Motion: Clustering Algo-

rithms for Service Discovery and Provi-

sioning. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-

dating Distributed Embedded Real-Time

Control Systems. Faculty of Science,

Mathematics and Computer Science,

RU. 2009-01

	Title-page
	Preface
	Contents
	Chapter 1: introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7: conclusions and
	Bibliography
	Samenvatting
	Curriculum vitae
	Acknowledgements

