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Abstract—The potential of successful cognitive radio networks
operating in TV White Spaces (and other future bands re-
allocated for unlicensed operation) has led to significant upsurge
of interest in their design optimization - particularly those that
are cross-layer in nature, involving both MAC protocols as well
as physical layer aspects such as channel sensing. Typically,
these seek to optimize a network-level metric (notably, aggregate
throughput) of secondary (cognitive) network subject to interfer-
ence constraints on the primary. In turn, this requires suitable
sensing by cognitive users to detect availability of primary
channels (currently unused by the protected incumbents) for
opportunistic usage.
To date, most studies have used largely hypothetical as-

sumptions regarding channel idleness and resulting spectrum
availability due to primary user dynamics. For example, idleness
of channels over any spectrum are typically assumed to be an
independent and identically distributed Bernoulli sequence. In
contrast, nearly all real-time measurements suggest that channel
idleness is frequency dependent, i.e., the probability that a channel
is idle depends on the channel location 1. Cognitive radio research
thus increasingly needs more realistic and validated models
for channel idleness as the foundation of credible cross-layer
analysis; this is the primary contribution of our work.
We use two sets of real-time measurements conducted in

disparate geographic locations over four distinct time intervals to
show that channel idleness is appropriately modeled as indepen-
dent but non-identical (i.n.i.d.) Bernoulli variables characterized
by pi, the probability of idleness for the i-th channel. We validate
that Beta distribution can be used for modeling the variations in
channel idleness probabilities; the Beta distribution parameters
are estimated from the data to produce the best model fit.
Based on the validated i.n.i.d. model, we build a predictive
model by computing the availability probability of k channels,
i.e, P{Nidle = k}, where Nidle denotes the number of idle channels
over the spectrum of N channels. However, the combinatorial
complexity inherent in the computation of P{Nidle = k} suggests
the need for efficient approximations. We accomplish this by
classifying idleness of channels based on the magnitude of pi, and
propose a novel Poisson-normal approximation for computing
P{Nidle = k}. For validation, the distribution obtained from our
technique is compared with the exact distribution and normal
approximation using the approximation error criterion.

Index Terms—channel idleness, spectrum availability, Poisson-
normal approximation, Beta distribution, KS test.
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1Such frequency dependence of idleness becomes more pronounced as the

operating spectral bandwidth increases, relative to the resolution bandwidth
for sensing.

Detected signal power from 8:00 pm to 9:00 pm over 2000 
channels (1500-1900 MHz) in Maastricht, Netherlands

Detected signal power from 7:00 am to 8:00 am over 2000 
channels (20-420 MHz) in Aachen, Germany

Fig. 1. Dynamic spectral occupancy in a spectrum of 400 MHz conducted
at two disparate geographic locations over a stretch of an hour on a weekday

I. Introduction

THE INCREASING popularity of mobile devices (lap-
tops, cellular phone, and smart phones) and demands

for multimedia services via wireless access have resulted in
exponentiating demands on present-day 3G networks. One
approach (currently favored by regulatory authorities such
as the Federal Communications Commission) is to expand
the availability of new unlicensed spectrum - such as TV
White Spaces made available by the transition to digital TV
broadcasting - for use by cognitive radio networks [1], [2],
where secondary users enabled by local sensing and spectrum
mapping capabilities are able to detect and use channels that
are temporarily idle due to licensed (primary) user inactivity,
subject to non-interference with primary reception.
Clearly, allowing such opportunistic secondary usage leads

to improved overall spectrum utilization (as measured by
achieved aggregate throughput per unit Hz per unit area).
However, optimizing the operation of such cognitive networks
requires credible models for the occupancy patterns of primary
users. To date, only a few efforts [3] - [6] have been reported
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that capture the requisite temporal and frequency-dependent
dynamics of primary user occupancy. This is the primary moti-
vation for our work, anchored by available spectrum utilization
measurements from experiments conducted [3] at Aachen,
Germany and at Maastricht, Netherlands over 20-1500 MHz
and 1500-3000 MHz spectra, respectively. Spectrum occu-
pancy patterns in 1500−1900MHz band at Maastricht between
8 - 9 pm and in 20-420 MHz band at Aachen between 7 - 8
am are shown in Figure 1.
It is already known and established using real-time mea-

surements that spectrum availability possesses temporal and
spatial variations. In absence of efficient planning on spec-
trum allocation and operation, network performance may be
sacrificed significantly from reduced throughput and increased
collisions to unlicensed secondary networks and inadmissible
interference to licensed incumbents. Till date, no predictive
models have been developed to facilitate spectrum scheduling
at a centralized location. In this paper, we utilize publicly
available and accredited data collected over several spectra
in order to build a predictive model on spectrum availability.
In the due process of model building, first, based on the
detection threshold, we compute probability of idleness for
all the channels under consideration. Then, using real time
measurement results, we made an endeavor to validate that
these channel idleness probabilities can be modeled by a Beta
distribution with appropriate α and β values.
Most work to date within the academic cognitive radio

community [7] - [10] assume hypothetical channel idleness
models, notably as a set of Bernoulli, independent, and
identically distributed (i.i.d.) variables for channel idleness
probabilities (CIPs). The above measurements directly con-
tradict this precept, and suggest that independent but not
identically distributed (i.n.i.d.) Bernoulli random variables
may be more apropos. Based on the above i.n.i.d. model
for CIPs, we next compute spectrum availability probability
(SAP), P{Nidle = k}, where Nidle represents the number of idle
channels in a spectrum of N channels at any given instant
of time. Our work is centered around 1st-order statistical
characterization of Nidle. Simultaneously, we compute SAPs
over multiple such spectral bands, since knowledge of these
SAPs allows spectrum selection, i.e., choosing the “best”
spectrum region (e.g., that with highest value of Nidle and in
turn, highest probability of idleness) 2. However, traditional
approaches for computing the probability distribution of Nidle
has a combinatorial complexity with i.n.i.d. CIPs. Therefore,
we propose a novel Poisson-normal approximation technique
with reduced computational complexity while maintaining
acceptable modeling fidelity.
In summary, the main contributions of the paper are as

follows:

• Validate the i.n.i.d. model for CIPs over two sets of real-
time measurements at two disparate geographic locations
using McNemar’s and Pearson’s Chi-square tests;

• Validate the use of Beta distribution for non-identical
CIPs by a) using data-driven estimates of its parameters
α, β and b) using Kolmogorov-Smirnov (KS) and Chi-
square goodness-of-fit tests over the same set of mea-

2This is a building block for any future adaptive sensing strategy.

surements;
• Develop a Poisson-normal approximation technique
based on the i.n.i.d. model for CIPs in order to compute
probability distribution of Nidle and validate it’s accuracy
and efficiency with reference to the exact distribution and
a normal approximation.

This centralized approximation model, based on i.n.i.d.
channel idleness probabilities, may potentially serve as an
input to future cognitive medium access control protocol
architectures for adaptive spectrum selection at any instant of
time, where spectrum allocation can be planned based on the
spectrum availability computations over several blocks of non-
contiguous spectra. Moreover, adaptive spectrum selection can
lead to better network performance in terms of aggregate
throughput. However, the major focus of this paper is limited
to developing models for channel idleness and spectrum
availability and validation of network performance based on
aggregated throughput and latency based on this predictive
model will be left for future work.
The rest of the paper is organized as follows. Section II

discusses the related work on spectrum measurements and
modeling of primary users’ occupancy patterns for better ap-
preciation of modeling channel idleness. Section III illustrates
the i.n.i.d. model for the CIPs. In Section IV, we present the
novel Poisson-normal approximation method for computation
of the distribution of Nidle, a measure of spectrum availability
and its impact on network performance. Section V discusses
the process of validating the channel availability model using
statistical testing methods. Further, we evaluate the accuracy
and efficiency of our proposed Poisson-normal approximation
technique with respect to the conventional normal approxi-
mation and exact distribution. Finally, Section VI draws the
conclusion of our research.

II. RelatedWork

Study of spectrum occupancy begins with spectrum mea-
surement data as input, leading to models for channel idleness
and spectrum availability as output. McHenry et al. [11] -
[12] monitored spectrum occupancy for different channels at
multiple geographic locations. They deployed a high dynamic
range spectrum measurement system for spectrum monitoring
ranging from hours to days. Sanders et al. [13] used the
Radio Spectrum Measurement System to collect observations
periodically on channels in the 108 MHz- 10 GHz range
providing a vast trove of occupancy data. Roberson et al. [14]
used passive monitoring over 30 MHz - 3 GHz in order to
categorize the degree of utilization of the channels into three
different classes: (i) channels seldom used, (ii) channels used
during specific intervals of time, and (iii) channels heavily
used.
In our previous work [6], we have proposed the first val-

idated probabilistic model for channel occupancy using real-
time measurements in the paging band (928-948 MHz). There,
we captured the characteristics of primary user occupancies
based on variations in transmission powers, selection of center
frequencies, and time durations of operations. This leads to
estimates of durations for channel idleness and occupancy;
however, overall spectrum availability was not explored, which
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Channel idleChannel occupied 

x4 = 0 x(i+5) = 1

Sub = {1, 2, …, N}

Fig. 2. Spectrum occupancy of N channels by primary users at time t

is undertaken in the present work. Our channel idleness
model is inspired by [5] who first proposed the use of Beta
distribution to match channel occupancy seen in real-time
measurements. Initial model validation was pursued in [4];
in this paper, we have conducted more extensive validations
using the two measurement data sets described above.

III. SystemModel and Problem Formulation

In this section, we first describe a probabilistic model
for channel idleness. The spectrum of interest is divided
into N non-overlapping primary channels, denoted by Sub =
{1, 2, . . . ,N}. We note that typical real-time measurements use
a resolution bandwidth (for channel sensing) that is much
smaller compared to that of typical primary services. This
resolution bandwidth is limited by the available hardware
for the measurement set-up; in our case, 30 of 200 KHz
(corresponding to the resolution bandwidth) sub-channels span
one 6 MHz primary channel. The primary occupancy patterns
exhibit temporal dependencies, i.e., At ⊂ Sub, the subset of
occupied channels at time t, varies as a function of time index
t, as shown in Figure 2.
Let {x1, x2, · · · , xN} represent Bernoulli variables of (pri-

mary) channel status, whereby xi = 0 if ith channel is occupied
by a primary user and xi = 1 if it is idle, i = 1, 2, · · · ,N. The
CIP, i.e., pi = Pr(xi = 1) can be estimated empirically ( [11]
- [14]) by observing status of the ith channel at the same time
instant, averaged over several days.
Both the measurement data support the following observa-

tions:

• The CIP can be small, moderate, or large depending upon
the time of the day and its usage; and

• The random variables, xi’s, are statistically independent,
but unlike the assumption in majority of existing research,
are not identically distributed.

Therefore, xi’s are modeled as independent, non-identical
Bernoulli random variables, i.e., Pr(xi = 1) and Pr(x j = 1)
are different.
The Beta distribution is suggested in this paper in order

to model non-identically distributed CIPs over any operating
spectrum. This is reasonable in view of the fact that a Beta
distribution has the capability to approximate a wide range
of probability distributions on (0, 1) [15]. Additionally, it has
been observed from measurements that (i) majority of TV
broadcast channels being on-air leads to very low idleness
of such channels, (ii) channels allocated for space navigation,
telemetry, and governmental activities are rarely used (high

probability of idleness), and (iii) channels designated for
FM radio, paging, and text messaging have low-to-moderate
idleness.
The Beta probability density function, with parameters
α, β > 0 that largely determine the distribution shape, is
expressed as:

f (x;α, β) =
1

B(α, β)
xα−1(1 − x)β−1, 0 < x < 1, (1)

where

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt (2)

is a normalization constant.
To determine spectrum availability, we now define a (dis-

crete) random variable Nidle representing the total number of
idle channels in the N-set. Clearly, Nidle =

∑N
i=1 xi. Efficient

computation of the p.m.f of Nidle in an N-set swath is the
major contribution of our research and will be discussed in
the next section. Table I lists all the variables used in this
work.

IV. Computation of Pr(Nidle = k)

In this section, we introduce the method of computing spec-
trum availability using exact distribution and other approxima-
tion methods. Later on, we briefly discuss about the inter-
relation between spectrum availability and overall network
performance. We initiate this discussion with the following
Lemma that summarizes the combinatorial complexity in
computation of exact distribution of spectrum availability.
Lemma 1: When pi’s are not equal, the complexity in-

volved in computing Pr(Nidle = k) in an N-set is given by:[(
N
k

)
× N

]
− 1, k = 0, 1, 2, · · · ,N. (3)

Proof: Let A represent a generic symbol for any subset of Sub
representing idle channels and A

′
its complement. Then,

Pr(Nidle = k) =
∑
A

⎛⎜⎜⎜⎜⎜⎝
∏
i∈A

pi

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∏
j∈A′
(1 − p j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (4)

where the summation is taken over all subsets A ⊂ Sub
with cardinality k. Each expression inside the summation
symbol of Eq. (4) is a product of N terms and the summation
involves a total of

(
N
k

)
summands. Therefore, the computational

complexity of Eq. (4) is given by
((
N
k

)
× N

)
− 1. �

The calculation of the probability of Nidle = k is thus
extremely high per Lemma 1. For example, the probability
of exactly 15 idle channels, i.e., Pr(Nidle = 15), when N = 30,
incurs

(
30
15

)
� 155 million possible scenarios, where in each

scenario 30 numbers need to be multiplied. The complexity
in computing the full exact distribution of Nidle is given by

N∑
k=0

[((
N
k

)
× N

)
− 1

]
= 2N × N − (N + 1). (5)

This exhaustive amount of computation is a potential memory
constraint on a mobile device when fast, real-time spectrum
mapping is desired. Hence, an efficient technique is indispens-
able for real-time calculation of the distribution of Nidle. We
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TABLE I
Notation

N Number of channels in operating spectrum Sub Set of channels
xi Binary random variable indicating status of ith channel pi ith CIP
At Subset of channels occupied at time instant t A Subset of idle channels in Sub
Nidle Total number of idle channels Pr(Nidle = k) Exact probability of having Nidle=k
ε(k) Approximation error ε Overall approximation error
X Any discrete random variable SX Essential support of X
θ Decision threshold of SX PrNormal(Nidle = k) Normal approximation of Nidle = k
Nidle Mean of the normal approximation CN Variance of the normal approximation
Pth1 Threshold for selecting small pi’s Pth2 Threshold for selecting large pi’s
Subsmall Set of channels with 0 < pi ≤ Pth1 m Size of Subsmall
Nidlesmall Number of idle channels in Subsmall Submod Set of channels with Pth1 < pi < Pth2
n Size of Submod Nidlemod Number of idle channels in Submod
Sublarge Set of channels with pi ≥ Pth2 Nidlelarge Number of idle channels in Sublarge
Z Random variable with Poisson distribution λs Mean value of Nidlesmall
Xi ith Bernoulli random variable with pi S Sum of all Xi
PrPoi−Normal(Nidle = k) Poisson-normal approximated probability of Nidle = k λl Mean value of Nidlelarge
PrPoi(Nidlesmall = k) Probability of Nidlesmall = k using Poisson approximation

propose a suitable approximation technique and determine the
resulting approximation error.
Definition 1 (Approximation error ε(k)): For any approx-

imation, Prapp(Nidle = k), the corresponding pointwise error
ε(k) is given by

ε(k) =| Pr(Nidle = k) − Prapp(Nidle = k) | . (6)

We define ε = max0≤k≤N ε(k) - the over-all approximation
error - as the figure of merit of the approximation method.
Definition 2 (Essential support: SX): For any non-negative,

discrete variable X, the essential support SX is defined to be
the set SX = {k; Pr(X = k) ≥ θ} for small values of θ.
With this provision, we re-define the effective over-all

approximation error to be

ε = maxk∈SNidle ε(k). (7)

A. Approximation with Normal Distribution

The Central Limit Theorem [15] provides a well-known
baseline approach for approximating the limiting distribution
of a sequence of variables. Let Nidle =

∑N
i=1 pi be the mean

and CN = Var(Nidle) =
∑N
i=1 pi(1− pi) be the variance of Nidle.

For N and CN sufficiently large, Nidle can be approximated by
Normal(Nidle,CN). Hence the p.m.f. of the discrete variable
Nidle may be approximated by

Pr(Nidle = k) ≈
∫ k+ 12

k− 12

1√
2πCN

e
−
⎛⎜⎜⎜⎜⎜⎝ (x−Nidle)

2

2CN

⎞⎟⎟⎟⎟⎟⎠
dx

= PrNormal(Nidle = k), (8)

where k = 0, 1, · · · ,N.
The experimental results shown later in Section V reveal

that the normal approximation is not acceptable in terms of
accuracy, although it is computationally efficient. To improve
the accuracy, we propose a novel method by merging the Law
of Rare Events, Very High Frequency Events, and Moderate
Events, as described next.

B. Poisson-Normal Approximation

As noted, the idleness probabilities pi can be classified as
small, moderate, or large, by defining two thresholds: a lower
threshold Pth1 and an upper threshold Pth2 ( 0 < Pth1 < Pth2 <
1). All pi’s within the range 0 < pi ≤ Pth1 relate to channels
with small CIPs. For pi’s � Pth2, channels are classified into a
group with large CIPs. Otherwise, channels within the range
Pth1 < pi < Pth2 are categorized into a group with moderate
CIPs. With this, we have the following definitions.
Definition 3 (Subsmall): This is a set of all channels having

0 < pi ≤ Pth1. Let m be the size of Subsmall and Nidlesmall be
the number of idle channels in Subsmall.
Definition 4 (Submod): This is a set of all channels having

Pth1 < pi < Pth2. Let n be the size of Submod and Nidlemod be
the number of idle channels in Submod.
Definition 5 (Sublarge): This is a set of all channels having

pi � Pth2. The size of Sublarge is (N − m − n). Let Nidlelarge be
the number of idle channels in Sublarge.
Note that Pth1 is typically close to zero and Pth2 is close to

one. In order to find the distribution of Nidle, we first compute
the approximate distributions of Nidlesmall , Nidlemod , and Nidlelarge .
The distribution of Nidle is computed by using the relation

Nidle = Nidlesmall + Nidlemod + Nidlelarge . (9)

As observed from the real-time measurements, there are an
appreciable number Nidlesmall of channels with small CIPs
(and so the expectation Nidlesmall

∑
i∈S ubsmall pi is of intermediate

magnitude). Then, the distribution of Nidlesmall channels may
be approximated by the Poisson distribution [16], also called
law of rare events. Similarly, there are an appreciable number
Nidlelarge of channels with large CIPs. For such channels,
(1 − pi) is very small for the ith channel. This is true for all
Nidlelarge channels. Therefore, distribution of Nidlelarge channels
can also be approximated by Poisson distribution. Finally,
with moderate probabilities, the distribution of Nidlemod in
Submod can be approximated by a normal distribution. Hence,
with N channels comprising of Nidlesmall , Nidlemod , and Nidlelarge ,
we combine Poisson and normal approximations in order to
compute spectrum availability. We term this approximation
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method as Poisson-normal approximation and the details of
this method is illustrated below.
1) Approximate Distribution of Nidlesmall : The distribution of

Nidlesmall can be approximated by a Poisson distribution and the
probability that there are k idle channels is

Pr(Nidlesmall = k) �
λs

k e−λs

k!
= PrPoi(Nidlesmall = k), (10)

where λs =
∑
i∈S ubsmall pi. This approximation follows the so-

called Law of Rare Events. The following Lemma gives an
upper bound on the resulting approximation error.
Lemma 2: Let Z be a random variable that has a Poisson

distribution with parameter λs. We have

| Pr(Nidlesmall = k) − Pr(Z = k) | ≤
1 − e−λs
λs

×
∑

i∈S ubsmall
p2i ,

(11)

where k=0, 1, 2, . . ..
Proof: This follows the Law of Rare Events [16]. Suppose that

X1, . . . , Xs are independent Bernoulli random variables with
success probabilities p1, . . . , ps. If all the pi’s are sufficiently
small, then the Law of Rare Events asserts that the sum S =∑s
1 Xi is approximately Poisson distributed. More precisely, if

Z is a Poisson random variable with mean λ, then

| Pr(S = k) − Pr(Z = k) | ≤ 1 − e−λ
λ

×
s∑
i=1

p2i , k = 0, 1, . . . .

(12)

Here, S = Nidlesmall =
∑
i∈S ubsmall xi and λ = λs and (11) follows

directly from (12). �
From the upper bound, if N = 10, each pi ≤ 0.03, then∑10
i=1 p

2
i ≤ 0.009. Then, the exact probability Pr(Nidlesmall =

k) and the approximate Poisson probability Pr(Z = k) agree
in the first two decimal places, i.e., the approximation error
is less than 0.001. Therefore, in our analysis we have taken
Pth1 = 0.03 as the threshold value for small CIPs.
2) Approximate Distribution of Nidlemod : The distribution of

Nidlemod in Submod can be approximated by a normal distribution
and the probability that there are k idle channels is computed
as follows:

Pr(Nidlemod = k) �
∫ k+ 12

k− 12

1√
2πCn

e
−
⎛⎜⎜⎜⎜⎜⎝ (x−Nmod)

2

2Cn

⎞⎟⎟⎟⎟⎟⎠
dx

= PrNormal(Nidlemod = k), (13)

where n is the size of Submod, k = 0, 1, · · · , n, Nmod =

E[Nidlemod ] =
∑
i∈S ubmod pi, and Cn =

∑
i∈S ubmod pi (1 − pi) rep-

resents the variance of Nidlemod .
3) Approximate Distribution of Nidlelarge : The approximation

of the distribution for Nidlelarge essentially follows the method
for Nidlesmall . Since (1 − pi) is small for i ∈ Sublarge, using the
Law of Rare Events, the distribution of Nidlelarge can also be
approximated by a Poisson distribution and the probability that
there are k idle channels is expressed as:

Pr(Nidlelarge = k) �
e−λl λ(N−m−n−k)l

(N − m − n − k)! = PrPoi(Nidlelarge = k),
(14)

where λl =
∑
i∈S ublarge (1 − pi), k = 0, 1, · · · , (N − m − n).

Now, we illustrate the Poisson-normal approximation proce-
dure in order to compute the distribution of Nidle using Nidlesmall ,
Nidlelarge , and Nidlemod . To achieve computational efficiency, only
the essential supports, SNidlesmall and SNidlelarge of Nidlesmall and
Nidlelarge , respectively, are used in the computations. From
Eq. (9), we have Nidle = Nidlesmall + Nidlemod + Nidlelarge . As an
illustration, we consider two cases: Nidle = 0 and Nidle = 1.
Since Nidle = 0 implies no idle channels over the entire band,
by Eqs. (9), (10), (13), and (14):

Pr(Nidle = 0) = Pr(Nidlesmall = 0,Nidlelarge = 0,Nidlemod = 0)

� e−λs
e−λl λ(N−m−n)l

(N − m − n)! Pr(−
1
2
< Nidlemod <

1
2
)

� e−λs e−λl
(λl)(N−m−n)

(N − m − n)!
∫ 1

2

− 12
N(Nmod,Cn)dx.

Similarly, Nidle = 1 means that there is only one idle channel in
the N-set. This idle channel can be in one of S ubsmall, S ubmod,
or S ublarge. By Eqs. (9), (10), (13), and (14):

Pr(Nidle = 1) �
(
e−λs λs

) ⎛⎜⎜⎜⎜⎜⎝ e
−λl λ(N−m−n)l

(N − m − n)!

⎞⎟⎟⎟⎟⎟⎠
∫ 1

2

− 12
N(Nmod,Cn)dx +

(e−λs)

⎛⎜⎜⎜⎜⎜⎝ e−λl λ(N−m−n−1)l

(N − m − n − 1)!

⎞⎟⎟⎟⎟⎟⎠
∫ 1

2

− 12
N(Nmod,Cn)dx +

(e−λs)
⎛⎜⎜⎜⎜⎜⎝ e
−λl λ(N−m−n)l

(N − m − n)!

⎞⎟⎟⎟⎟⎟⎠
∫ 3

2

1
2

N(Nmod,Cn)dx.

Following the modus operandi in the illustration presented
above, we now present a general expression for the probability
of k idle channels, where k1 of these idle channels are in
S ubsmall, k2 in S ubmod, and k3 in S ublarge such that k1+k2+k3 =
k.

=
∑

Pr(Nidlesmall = k1,Nidlemod= k2,Nidlelarge= k3)

=
∑

Pr(Nidlesmall = k1)Pr(Nidlemod= k2)Pr(Nidlelarge= k3)

� PrPoi(Nidlesmall = k1)PrNormal(Nidlemod= k2)PrPoi(Nidlelarge= k3)
= PrPoi−Normal(Nidle = k), (15)

where the summation is taken over all k1 ≥ 0, k2 ≥ 0, and
k3 ≥ 0 with k1 + k2 + k3 = k. By focusing on k1 ∈ SNidlesmall
and k3 ∈ SNidlelarge in Eq. (15), the amount of calculations can
be reduced considerably. In any practical situation, the sets
SNidlesmall and SNidlelarge are determined first, and then Eq. (15) is
implemented in obtaining an approximate distribution of Nidle.

C. Network Performance in terms of Spectrum Availability

In this sub-section, we evaluate the various cognitive radio-
based sensing parameters like probability of detection, Pd and
probability of false alarm, Pfa [17].
1) Detection Probabilities: Detection probability is defined

as the probability of detecting at least one idle channel during
the scanning period Ts, provided an idle channel is truly
available. Assuming a constant hold time τ, let us define two
events as follows:
E1: The secondary user detects an idle channel during hold
time τ;
E2: There is an idle channel available during the sensing period
Ts.
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Then, for constant τ during the sensing period, Pd is simplified
as Pd =

E1
E2
, since E1 ⊂ E2. Now, occurrence of event E1 is ex-

pressed as P(E1) = PrPoi−Normal[Nidle(δt+τ) ≥ 1] and similarly,
probability of E2 is deduced as P(E2) =

∏N
i=1CIPi(Ts) [17]

considering N channels. Therefore, from Eq. 15 and replacing
expressions for E1 and E2, Pd for constant hold time τ and
sensing threshold ε is expressed as:

Pd(τ, ε) =
εCPoi−Normal(τ)∏N

i=1 CIPi(Ts)
, (16)

where CPoi−Normal(τ) is the cumulative distribution function
(CDF) of the proposed Poisson-normal distribution.
For a target Pd expressed in Eq. 16, Pfa is expressed [18]

in terms of Pd as follow:

Pfa(ε, τ) = Q
( √
2γ + 1Q−1(Pd(ε, τ)) +

√
τ fsγ

)
, (17)

where γ is the signal-to-noise ratio at the secondary receiver
and fs is the sampling frequency for sensing N channels under
consideration.
2) Aggregate Throughput: For a spectrum, let us define

P(H0) as the probability when an available channel is detected
and P(H1) as the probability for which an idle channel is
not detected. Therefore, we have P(H0) + P(H1) = 1. The
secondary users can operate in such a spectrum under two
scenarios:

• S 1: An idle channel is detected and there is no false
alarm in sensing; throughput achieved on such a channel
is (T−Ts)T C0, where T is time slot reserved for a secondary
user and C0 is the data rate obtained in such a scenario.

• S 2: An idle channel is mis-detected although the channel
is truly not available; throughput on such a channel is
expressed as (T−Ts)

T C1.

The probabilities [18] for scenarios S 1 and S 2 are (1 −
Pfa(τ, ε))P(H0) and (1−Pd(τ, ε))P(H1), respectively. Defining
achieved throughput for S 1 and S 2 as R0 and R1, respectively,
they are expressed as:

R0(ε, τ) =
T − Ts
T

C0
(
1 − Pfa (ε, τ)

)
P(H0),

R1(ε, τ) =
T − Ts
T

C1 (1 − Pd (ε, τ)) P(H1). (18)

The average throughput of the secondary network is then
expressed as:

R(τ) =
T − Ts
T

C0
(
1 − Pfa (ε, τ)

)
P(H0) +

T − Ts
T

C1 (1 − Pd (ε, τ)) P(H1). (19)

Replacing expressions for Pd and Pfa from Eqs. 16 and 17,
system throughput can be obtained in terms of the spectrum
availability and CIPs.

V. Validation of Channel IdlenessModel and Comparative
Evaluation

In this section, we first validate the model for channel idle-
ness discussed in Section III. Then, we provide a comparative
study of the exact distribution, normal, and Poisson-normal ap-
proximations for spectrum availability using results obtained
from the experimental measurements. For validation purposes,

we have considered real-time measurements conducted on two
different bands:
(i) Measurement Set 1: 20-1500 MHz band with center
frequency 770 MHz inside a modern office building (Lati-
tude: 50◦47′24.01′′ North and Longitude: 6◦3′47.42′′ East) at
Aachen [3] and
(ii) Measurement Set 2: 1500-3000 MHz band [3] with cen-
ter frequency 2250 MHz on a rooftop location ((Latitude:
50◦50′23.34′′ North and Longitude: 5◦43′14.93′′ East)) in
a residential area at Maastricht. These measurements were
conducted over 8192 channels during December 2006 and
January 2007 over a simultaneous period of seven days.
The resolution bandwidth for each channel is fixed at 200
KHz. Average sweep time is considered to be 1.8 s. The
measurement set-up is discussed in [3].

A. Model Validation

1) Spectrum Idleness Model Validation: In this section, we
validate the i.n.i.d. observation for CIPs using the Pearson’s
chi-square statistic and McNemar’s test statistic.
Independence Validation:
Our intention is to validate that the CIPs of two adjacent

channels are statistically independent. Pearson’s chi-square
statistic, χ2Ind [19], is used to assess independence.We compute
χ2Ind from the experimental results of Measurement Set 1 for
random two adjacent channels 2500 (equivalently 520 MHz)
and 2501 (520.2 MHz) during the 7-8 am interval using
the 2 × 2 contingency table for them provided in Table II.
Due to space limitations, we have used same Table II for
Measurement Set 2 in order to report frequencies of two
adjacent channels 1700 (1840 MHz) and 1701 (1840.2 MHz)
during the morning (4-5 am) time interval.
Each observationOi, j consists of the values of two outcomes

in the (i, j) cell and the null hypothesis is that the occurrence of
these outcomes is statistically independent. Each observation
is allocated to one cell of the contingency table, according
to the values of the two outcomes. For instance, out of 2000
observations, Oi, j = 68 (180) when i represents channel 2500
(1700) being busy and j represents channel 2501 (1701) being
simultaneously busy. The theoretical frequency Ei, j for a cell,
given the hypothesis of independence, is expressed as:

Ei, j =

∑c
k=1Oi,k

∑r
k=1Ok, j

N
, (20)

where r is the number of rows, c is the number of columns
in the table, and degrees of freedom is (r − 1)(c − 1).
The value of the test statistic is given as:

χ2Ind =

r∑
i=1

c∑
j=1

(Oi, j − Ei, j)2
Ei, j

. (21)

For the test of independence, a p-value of less than or equal
to 0.05 is commonly interpreted as justification for rejecting
the null hypothesis.
Based on the results presented in Table II obtained from

Measurement Set 1, the value of χ2Ind from Eq. 21 is 1.8125.
The chi-squared statistic χ2Ind can then be used to calculate a
p-value by comparing its value to a chi-squared distribution
with specific Df . The corresponding p-value is 0.1782 for
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TABLE II
Contingency Table for Channels 2500(1700) and 2501(1701)

Observations
Ch. 2501 (1701) Busy Ch. 2501 (1701) Idle Row total

Ch. 2500 (1700) Busy 68 (180) 994 (852) 1062 (1032)
Ch. 2500 (1700) Idle 46 (167) 892 (801) 938 (968)
Column total 114 (347) 1886 (1653) 2000

Spectrum 1 data set. Since the p-value is greater than 0.05, we
accept the hypothesis of statistical independence of idleness
between channels 2500 and 2501. The value of χ2Ind for the
data set in Spectrum 2 during the 4-5 am and 4-5 pm intervals
are 0.0028 and 0.0014, respectively. The corresponding p-
values are 0.9578 and 0.9698. Since both these values are
higher than 0.05, we infer that the independence assumption
of channel idleness between channels 1700 and 1701 is valid
for the Maastricht measurements.
Similarly, we perform the same analysis with randomly

selected adjacent channels 562 and 563, 1819 and 1820, 3155
and 3156, 3519 and 3520, and 6435 and 6436 from both the
spectra. We need to emphasize here that independence test
proved to be successful in majority of the adjacent channels we
have randomly chosen from the Maastricht data set, especially
in the Global System for Mobile Communication (GSM) 1800
MHz cellular band. However, we must admit that there are a
few examples of adjacent channels like 3519 and 3520 and
1000 and 1001, which proved to have dependence in terms of
channel availability implying occupancy by the same primary
user.
Non-Identical Distribution Validation: For the validation

of the claim for non-identical distribution of idleness be-
tween adjacent channels, we again refer to the experimental
measurements and apply a non-parametric method called
the McNemar’s test [19]. The test is applied to the same
contingency table as in Table II, which tabulates the outcomes
of frequencies on adjacent channels 2500 (1700) and 2501
(1701) for the Aachen (Maastricht) measurements. Here, the
null hypothesis is the marginal homogeneity between these
two adjacent channels, i.e., probability of channel 2500 (1700)
being occupied and channel 2501 (1701) being idle (pbi)
subsequently is identical to the probability of channel 2500
(1700) being idle and channel 2501 (1701) being occupied
(pib) subsequently. In the sequel, pbi, etc. are the theoretical
probability of occurrences in cells with the corresponding
label.
The McNemar test statistic with Yates’ correction for conti-
nuity is given by:

χ2Iden =
(|b − c| − 0.5)2

b + c
, (22)

where b corresponds to the frequency (994 (852) from Table
II) in the cell of channel 2500 (1700) being busy and channel
2501 (1701) being idle subsequently and c corresponds to
the frequency (46 (167) from Table II) in the cell of channel
2500 (1700) being idle and channel 2501 (1701) being busy
subsequently. Based on the computations, the statistic χ2Iden
is equal to 862.3163 (452.89). The corresponding McNemar’s
test probabilities are less than 2.2e−16. For the test of marginal
homogeneity, the McNemar’s test probability of less than

TABLE III
Observed and Expected Frequencies of Spectrum Availability for Aachen,

Germany data

Time of the day Frequencies
0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Observed(7 − 8am) 21 5 5 1 15
Expected(7 − 8am) 22.27 3.72 3.11 3.49 14.4
Observed(12 − 1pm) 23 4 5 8 9
Expected(12 − 1pm) 23.3 5.56 4.55 4.76 10.83
Observed(3 − 4pm) 16 6 3 6 11
Expected(3 − 4pm) 16.86 3.98 3.41 3.85 13.9
Observed(11p − 12a) 15 10 1 4 12
Expected(11p − 12a) 15.6 5.16 4.47 4.87 11.9

TABLE IV
Observed and Expected Frequencies of Spectrum Availability for

Maastricht, Netherlands

Time of the day Frequencies
0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Observed(4 − 5am) 45 19 13 9 14
Expected(4 − 5am) 40.97 18.27 14.62 13.02 13.12
Observed(1 − 2pm) 46 19 15 6 14
Expected(1 − 2pm) 43.11 17.73 14.0 12.43 12.74
Observed(4 − 5pm) 47 25 10 5 13
Expected(4 − 5pm) 48.54 16.37 12.52 10.99 11.58
Observed(9 − 10pm) 44 24 13 5 14
Expected(9 − 10pm) 42.91 18.64 14.56 12.49 11.39

or equal to 0.05 is commonly interpreted as justification
for rejecting the null hypothesis. Therefore, the hypothesis
of marginal homogeneity is rejected. Hence, the adjacent
channels are non-identical in terms of occupancy or idleness.
Similarly, we have performed the same analysis with randomly
selected adjacent channels 1819 and 1820, 3155 and 3156,
1000 and 1001, and 3519 and 3520 and the hypothesis of
non-identical distribution of occupancy or idleness were valid
for both the spectra.
The Beta distribution model for non-identically distributed

CIPs in a spectrum is validated here by using the above
mentioned two sets of measurements. In other words, we
have partitioned the measurements in Spectrum 1 into
four intervals of interest: (i) 7 to 8 am, (ii) 12 to 1 pm,
(iii) 3 to 4 pm, and (iv) 11 pm to 12 am. Similarly, the
measurements in Spectrum 2 are grouped into four intervals:
(i) 4 - 5 am, (ii) 1 - 2 pm, (iii) 4 - 5 pm, and (iv) 9 pm - 10 pm.

A total of 100 random channels are considered in each spec-
trum and the corresponding CIPs are evaluated by considering
the following detection thresholds: -114 dBm for channels
in Spectrum 1 and -107 dBm for channels in Spectrum
2 and normalizing the results over the one hour periods.
Idleness of a channel is decided based on whether the received
power is higher or lower than the detection threshold. At any
given time instant, if the received power is greater than the
detection threshold, the channel is said to be occupied and
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Fig. 3. Plot of Beta density over the histogram of channel idleness probabilities in two different geographical locations

idle if received power is lower than the threshold. The mean
availability μav and standard deviation σav are then computed
over the obtained CIPs. The four sets of μav and σav are as
follows:
Spectrum 1:

7 - 8 am: μav = 0.4176, σav = 0.1703, 12 - 1 pm: μav =
0.3756, σav = 0.1377,

3 - 4 pm: μav = 0.4654, σav = 0.1617, and 11 pm - 12 am:
43, μav = 0.4571, σav = 0.1396.

Spectrum 2:

4 - 5 am: μav = 0.3643, σav = 0.0953, 1 - 2 pm: μav =
0.3521, σav = 0.0961,

4 - 5 pm: μav = 0.3202, σav = 0.0962, and 9 - 10 pm: μav =
0.3462, σav = 0.0907.

Estimated α̂ and β̂ parameters for the Beta distribution are
computed using the following expressions [19]:

α̂ = μav

(
μav(1 − μav)
σav

− 1
)
,

β̂ = (1 − μav)
(
μav(1 − μav)
σav

− 1
)
. (23)

For Spectrum 1 we have:
7 - 8 am: α̂ = 0.1786, β̂ = 0.2492, 12 - 1 pm: α̂ = 0.2642, β̂
= 0.4392,
3 - 4 pm: α̂ = 0.2506, β̂ = 0.2879, and 11 pm - 12 am: α̂ =
0.3554, β̂ = 0.422.
Similarly, for Spectrum 2 the estimated parameters are as
follows:
4 - 5 am: α̂ = 0.5206, β̂ = 0.9086, 1 - 2 pm: α̂ = 0.4842, β̂
= 0.8909,
4 - 5 pm: α̂ = 0.4046, β̂ = 0.8590, and 9 pm - 10 pm: α̂ =
0.5179, β̂ = 0.9780.
Based on the CIPs computed, we have classified them into

five intervals of equal widths namely, 0.0-0.2, 0.2-0.4, 0.4-

0.6, 0.6-0.8, and 0.8-1.0. The frequency of idle channels in
each interval is specified as ‘Observed’ in Tables III and IV
for Spectrum 1 and Spectrum 2, respectively. The ‘Expected’
frequencies are obtained using the Beta distribution in Eq.
1 with the corresponding α̂ and β̂ parameters and specific
intervals. The ‘Observed’ frequencies and the Beta distribution
with the estimated parameters are shown in Figure 3 for both
the spectra. The figure indicates that the Beta distribution is a
good fit to the spectrum availability patterns in both Spectrum
1 and Spectrum 2 under investigation. Now we validate the
Beta distribution assumption for channel availability modeling
using KS and Chi-Square goodness-of-fit tests.

KS Test Validation: The null hypothesis under the KS test
[19] is that the instantaneous CIPs follow a Beta distribution.
Based on the computed CIPs, the corresponding p-values [19]
for the KS test on Spectrum 1 are as follows:
7 - 8 am: p-value = 0.1882, 12 - 1 pm: p-value = 0.766,
3 - 4 pm: p-value = 0.9103, and 11 pm - 12 am: p-value =
0.7156.
The null hypothesis should be rejected if the p-value is ≤ 0.05.
It is evident that the p-value for all the four cases are > 0.05.
Hence the null hypothesis of Beta distribution assumption for
the CIPs is accepted based on the KS test. Let us now focus
on Spectrum 2. The corresponding p-values are:
4 - 5 am: p-value = 0.06803, 1 - 2 pm: p-value = 0.0991,
4 - 5 pm: p-value = 0.004139, and 9 pm - 10 am: p-value =
0.1317.
The p-value of 0.004139 for the 4-5 pm interval suggests
that Beta distribution is not a valid assumption. However, as
observed from the rest of the scenarios, Beta distribution is a
valid model for non-identically distributed CIPs.

Chi-Square Goodness-of-Fit Validation: From Tables III
and IV, we have the ‘Observed’ and ‘Expected’ frequencies.
Let us denote nk for the observed frequency in the kth interval
and mk for the corresponding expected frequency. The Chi-
square statistic, χ2av, is defined as the weighted difference
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Fig. 4. Flowchart for computation of distribution of Nidle using Poisson-
normal approximation method

between nk and mk and is expressed as:

χ2av =

K∑
k=1

(nk − mk)2

mk
. (24)

The 5% critical value of χ2av for two degrees of freedom is
5.99. Referring to the ‘Observed’ and ‘Expected’ frequencies
from Tables III and IV, χ2av values for Spectrum 1 are 3.46,
3.00, 2.92, and 5.41, respectively. For Spectrum 2, χ2av values
are 1.91, 3.81, 8.54, and 5.83, respectively. It is apparent that
values of χ2av for both the sets of measurements are less than
the critical value, except for the measurements during 4-5
pm at Maastricht. Hence, we infer that the null hypothesis
for the non-identical distribution of CIPs defined by a Beta
distribution is accepted.
From both the KS and Chi-square goodness-of-fit tests, we

infer that Beta distribution is a good fit in order to model the
distribution of CIPs in an operating spectrum. However, it is
advisable to examine this assumption for exclusions like the
evening data in Maastricht prior to practical experimentations.

B. Distribution of Nidle

In this section, we compare the exact distribution of Nidle
with its normal and Poisson-normal approximations in terms
of over-all approximation error ε introduced in Section III.
As shown in Figure 4, we first consider a random N-

set of 50 channels from both Spectrum 1 and Spectrum 2.
The pi’s, i ∈ {1, 2, · · · , ..., 50}, shown in Figure 5(a), are
computed and normalized over an hour period (i.e., 2000 time
sweeps), a substantial number for statistical enumerations.
Now, we validate the i.n.i.d. model among the computed pi’s.
If validated, the CIPs are then segregated into low, moderate,
and large subsets. Otherwise, a new set of 50 channels has
to be selected. We consider pth1 = 0.03 and pth2 = 0.97 as
the lower threshold and upper threshold values, respectively.
The CIPs greater than pth1 and lesser than pth2 will be in the
moderate bin. Finally, we obtain the distribution of Nidle using

the proposed Poisson-normal approximation technique on the
three subsets as illustrated in Section IV.

For comparative studies, we compute the exact distribution
and the normal approximation of Nidle over the same set of
50 channels by using Eqs. (4) and (8), respectively, and plot
Figure 5 for both Spectrum 1 and Spectrum 2 along with the
proposed Poisson-normal approximation. As observed from
the figures, the normal approximation deviates substantially
from the exact distribution with over-all error ε, introduced in
Eq. 7, of 0.1663 for Spectrum 1 and 0.1829 for Spectrum 2. On
the other hand, the Poisson-normal approximation follows the
exact distribution closely with over-all approximation error ε
of 0.0236 for Spectrum 1 and 0.0830 for Spectrum 2. Here we
consider θ = 0.0004 and we neglect Pr(Nidle = k) < 0.0004 to
obtain the essential support. Additionally, the normal approxi-
mation achieves a mode at N = 37 with modal probability
0.1493. On the other hand, the exact distribution achieves
a mode at N = 33 while the Poisson-normal approximation
achieves a mode at N = 34 with respective modal probabilities
of 0.1472 and 0.1463. The essential support SNidle of the
Poisson-normal approximation is {25, · · · , 43}, which exactly
follows the essential support of the exact distribution. In
contrast, the essential support of the normal approximation is
{28, · · · , 44}. This implies that the normal approximation over-
estimates the number of idle channels in an operating spectrum
at a given time period. This may prove to be detrimental
for an adaptive spectrum sensing technique. However, our
proposed Poisson-normal approximation method provides a
close estimate of Nidle.
To advocate inefficiency of normal approximation and ac-

curacy of our proposed model, we further consider another
spectrum of 30 channels randomly selected from the real-time
measurements at Aachen. The CIPs are computed over an hour
period. The exact probabilities, approximate probabilities, and
approximation errors for each k in SNidle are provided in Table
V.

VI. Conclusion

In this paper, we have substantiated the observation that
the probabilities of channel idleness in a spectrum follow an
independent and non-identical distribution (i.n.i.d.) paradigm,
providing a counterpoint to the existing research of hypotheti-
cal i.i.d channel idleness models. Later on, we have validated
that the non-identically distributed channel idleness proba-
bilities can be suitably modeled by a Beta distribution with
appropriate values of α and β. The validation was performed
based on two disparate data sets conducted at two different
geographic locations. Based on this i.n.i.d. characteristics of
channel idleness, we have proposed a unique analytical model
for computing spectrum availability. We labeled this novel
approach as Poisson-normal approximation. Comparison of
results, using approximation error as the evaluation criterion,
derived from real-time measurements prove the efficacy of our
approximation model for spectrum availability and exhibits
the inefficiency of the conventional normal approximation
approach commonly used in the existing research work.
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Fig. 5. Channel idleness probabilities and the comparison among the exact distribution, normal approximation, and our proposed approximation

TABLE V
Comparison among Poisson-Normal approximation, Normal approximation, and exact distribution with ε(k) for 30 channels

Nidle = k
19 20 21 22 23 24 25 26 27 28

Pr(Nidle = k) 0.0004 0.0035 0.0199 0.0753 0.1876 0.2932 0.2664 0.1253 0.0262 0.0021
PrNormal(Nidle = k) 0.0023 0.0178 0.0784 0.1996 0.2928 0.2478 0.121 0.0341 0.0055 0.0005
ε(k) 0.0019 0.0143 0.0585 0.1243 0.1052 0.0454 0.1454 0.0912 0.0207 0.0016
PrPoi−Normal(Nidle = k) 0.0012 0.0093 0.0341 0.0989 0.1963 0.2991 0.2876 0.1437 0.0581 0.0062
ε(k) 0.0008 0.0058 0.0142 0.0236 0.0087 0.0059 0.0212 0.0184 0.0319 0.0041
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