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Verification is one of the most complex and expensive tasks in the current Systems-on-Chip design
process. Many existing approaches employ a bottom-up approach to pipeline validation, where the
functionality of an existing pipelined processor is, in essence, reverse-engineered from its RT-level
implementation. Our validation technique is complementary to these bottom-up approaches. Our
approach leverages the system architect’s knowledge about the behavior of the pipelined archi-
tecture, through architecture description language (ADL) constructs, and thus allows a powerful
top-down approach to pipeline validation. The most important requirement in top-down validation
process is to ensure that the specification (reference model) is golden. This paper addresses auto-
matic validation of processor, memory, and coprocessor pipelines described in an ADL. We present
a graph-based modeling that captures both structure and behavior of the architecture. Based on
this model, we present algorithms to ensure that the static behavior of the pipeline is well formed
by analyzing the structural aspects of the specification. We applied our methodology to verify spec-
ification of several realistic architectures from different architectural domains to demonstrate the
usefulness of our approach.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—Modeling
of computer architecture; C.0 [Computer Systems Organization]: General—Systems specifica-
tion methodology; I.6.4 [Computing Methodologies]: Simulation and Modeling—Model valida-
tion and analysis

General Terms: Verification, Algorithms, Design, Languages

Additional Key Words and Phrases: Modeling of processor pipeline, pipelined processor specifica-
tion, pipeline validation, architecture description language

1. INTRODUCTION

Traditional embedded systems consist of programmable processors, coproces-
sors, application specific integrated circuits (ASIC), memories, and input/output
interfaces. Figure 1 shows a traditional hardware/software codesign flow. The
embedded system is specified in a system design language. The specification
is then partitioned into tasks that are either assigned to software or hardware
(ASIC) based on design constraints (cost, power, and performance). Tasks as-
signed to hardware are translated into hardware description language (HDL)
descriptions and then synthesized into ASICs. The tasks assigned to software
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Fig. 1. Hardware/software codesign flow for embedded systems.

are translated into programs (either in high-level languages such as C/C++ or
in assembly), and then compiled into object code that resides in instruction
memory of the processor.

The traditional HW/SW codesign flow assumes that the embedded system
uses an off-the-shelf processor core that has the software toolkit (including
compiler and simulator) available. If the processor is not available, the soft-
ware toolkit needs to be developed for the intended processor. This is a time-
consuming process. Moreover, during early design space exploration (DSE),
system designers would like to make modifications to programmable architec-
ture (processor, coprocessor, and memory subsystem) to meet diverse require-
ments such as low power, better performance, smaller area, and higher code
density. Early time-to-market pressure coupled with short-product lifetimes
make the manual software toolkit generation for each exploration practically
infeasible.

The architecture description language (ADL) based codesign flow (shown in
Figure 1) solves this problem. The programmable architecture of the embed-
ded system is specified in an ADL and the software toolkit can be generated
from this description. Figure 2 shows a simplified framework for ADL driven
exploration. During early DSE, the system designer modifies the ADL specifi-
cation of the architecture to exploit the application (software tasks) behavior.
The ADL driven DSE has been addressed extensively in both academia: ISDL
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Fig. 2. ADL driven design space exploration.

[Hadjiyiannis et al. 1997], Valen-C [Inoue et al. 1998], MIMOLA [Leupers and
Marwedel 1998], LISA [Zivojnovic et al. 1996], nML [Freericks 1993; Rajesh
and Moona 1999], and industry: ARC [ARC ], Axys [Axys ], RADL [Siska 1998],
Target [Target ], Tensilica [Tensilica ], MDES [Trimaran 1997]. The ADL spec-
ification is used to generate software toolkit including compiler and simulator
to enable architectural exploration. The ADL specification has also been used
to generate hardware implementations for rapid system prototyping [Leupers
and Marwedel 1998; Mishra et al. 2003; Schliebusch et al. 2002].

However, the validation of the ADL specification has not been addressed
so far. It is important to validate the ADL description of the architecture to
ensure the correctness of both the architecture specified, as well as the gener-
ated software toolkit and hardware implementation. The benefits of validation
are twofold. First, the process of any specification is error prone and thus ver-
ification techniques can be used to check for correctness and consistency of
specification. Second, changes made to the processor during exploration may
result in incorrect execution of the system and verification techniques can be
used to ensure correctness of the modified architecture.

Furthermore, the validated ADL specification can be used as a golden refer-
ence model for processor pipeline validation. One of the most important prob-
lems in today’s processor design validation is the lack of a golden reference
model that can be used for verifying the design at different levels of abstrac-
tion. Thus, many existing validation techniques employ a bottom-up approach
to pipeline verification, where the functionality of an existing pipelined proces-
sor is, in essence, reverse engineered from its RT-level implementation. Our
validation technique is complementary to these bottom-up approaches. Our ap-
proach leverages the system architects knowledge about the behavior of the
pipelined processor, through ADL constructs, and thus allows a powerful top-
down approach to pipeline validation.

In this paper, we present an automatic validation framework, driven by
an ADL. A novel feature of our approach is the ability to model the pipeline
structure and behavior for the processor, coprocessor, as well as the memory
subsystem using a graph-based model. Based on this model, we present
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Fig. 3. ADL-driven validation and exploration flow.

algorithms to ensure that the static behavior of the pipeline is well formed
by analyzing the structural aspects of the specification. Figure 3 shows the val-
idation flow in our framework. In our ADL driven exploration flow, the designer
starts by describing the programmable architecture in an ADL. The graph
model of the architecture can be generated automatically from this ADL de-
scription. Several properties are applied to ensure that the architecture is well
formed. To enable rapid exploration, the software toolkit can be generated from
this golden reference model and the feedback can be used to modify the ADL
specification of the architecture. We applied our methodology to verify pipeline
specification of several realistic architectures from different architectural do-
mains (RISC, DSP, VLIW, and Superscalar) to demonstrate the usefulness of our
approach.

The rest of the paper is organized as follows. Sections 2 and 3 present re-
lated work addressing ADLs and validation of pipelined processors. Section 4
presents a graph-based modeling of processor, memory, and coprocessor
pipelines. Section 5 proposes several properties that must be satisfied for valid
pipeline specification. Section 6 illustrates validation of pipeline specifications
for several realistic architectures. Finally, Section 7 concludes the paper.

2. ARCHITECTURE DESCRIPTION LANGUAGES

Traditionally, ADLs have been classified into two categories depending on
whether they primarily capture the behavior (instruction set) or the structure
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of the processor. Recently, many ADLs have been proposed that captures both
the structure and the behavior of the architecture.

nML [Freericks 1993] and ISDL [Hadjiyiannis et al. 1997] are examples
of behavior-centric ADLs. In nML, the processor’s instruction set is described
as an attributed grammar with the derivations reflecting the set of legal
instructions. The nML has been used by the retargetable code generation envi-
ronment CHESS [Lanneer et al. 1995] to describe DSP and ASIP processors. In
ISDL, constraints on parallelism are explicitly specified through illegal opera-
tion groupings. This could be tedious for complex architectures such as DSPs,
that permit operation parallelism (e.g., Motorola 56K) and VLIW machines
with distributed register files (e.g., TI C6X). The retargetable compiler system
by Inoue et al. [1998] produces code for RISC architectures starting from an
instruction set processor description, and an application described in Valen-C.
Valen-C is a C language extension supporting explicit and exact bit width for
integer type declarations, targeting embedded software. The processor descrip-
tion represents the instruction set, but does not appear to capture resource
conflicts, and timing information for pipelining.

MIMOLA [Leupers and Marwedel 1998] is an example of an ADL that pri-
marily captures the structure of the processor wherein the net-list of the target
processor is described in a HDL like language. One advantage of this approach
is that the same description is used for both processor synthesis and code gen-
eration. The target processor has a microcode architecture. The net-list de-
scription is used to extract the instruction set [Leupers and Marwedel 1997]
and produce the code generator. Extracting the instruction set from the struc-
ture may be difficult for complicated instructions, and may lead to poor quality
code. The MIMOLA descriptions are generally very low level and laborious to
write.

More recently, languages which capture both the structure and the behavior
of the processor, as well as detailed pipeline information (typically specified
using reservation tables) have been proposed. LISA [Zivojnovic et al. 1996] is
one such ADL whose main characteristic is the operation-level description of
the pipeline. RADL [Siska 1998] is an extension of the LISA approach that fo-
cuses on explicit support of detailed pipeline behavior to enable generation of
production quality cycle-accurate and phase-accurate simulators. FLEXWARE
[Paulin et al. 1994] and MDes [Trimaran 1997] have a mixed-level struc-
tural/behavioral representation. FLEXWARE contains the CODESYN code-
generator and the Insulin simulator for ASIPs. The simulator uses a VHDL
model of a generic parameterizable machine. The application is translated from
the user-defined target instruction set to the instruction set of this generic
machine.

The MDes [Trimaran 1997] language used in the Trimaran system is a
mixed-level ADL, intended for DSE. Information is broken down into sections
(such as format, resource-usage, latency, operation, register, and so on), based
on a high-level classification of the information being represented. However,
MDes allows only a restricted retargetablility of the simulator to the HPL-
PD processor family. MDes permits the description of the memory system,
but is limited to the traditional hierarchy (register files, caches, and so on).
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The EXPRESSION ADL [Halambi et al. 1999] follows a mixed-level approach
(behavioral and structural) to facilitate automatic software toolkit generation,
validation, HDL generation, and DSE for a wide range of programmable embed-
ded systems. The ADL captures the structure, behavior, and mapping (between
structure and behavior) of the architecture.

3. RELATED WORK

An extensive body of recent work addresses architectural description language
driven software toolkit generation and DSE for processor-based embedded sys-
tems, as described in Section 2. The ADL specification has also been used to
generate hardware implementations for rapid system prototyping [Leupers and
Marwedel 1998; Mishra et al. 2003; Schliebusch et al. 2002]. However, none of
these approaches address the validation issue of the ADL specification. The val-
idation is necessary to ensure the correctness of the generated software toolkit
and hardware implementation. It is important to ensure that the reference
model (specification) is golden, and it describes a well-formed architecture with
intended execution style.

Several approaches for formal or semi-formal verification of pipelined pro-
cessors have been developed in the past. Theorem proving techniques, for ex-
ample, have been successfully adapted to verify pipelined processors [Cyrluk
1993; Sawada and Hunt 1997, 1998; Srivas and Bickford 1990]. However, these
approaches require a great deal of user intervention, especially for verifying
control intensive designs. Hosabettu [2000] proposed an approach to decompose
and incrementally build the proof of correctness of pipelined microprocessors
by constructing the abstraction function using completion functions.

Burch and Dill [1994] presented a technique for formally verifying pipelined
processor control circuitry. Their technique verifies the correctness of the imple-
mentation model of a pipelined processor against its instruction-set architec-
ture (ISA) model based on quantifier-free logic of equality with uninterpreted
functions. The technique has been extended to handle more complex pipelined
architectures by several researchers [Skakkebaek et al. 1998; Velev 2000; Velev
and Bryant 2000]. The approach of Velev and Bryant [2000] focuses on effi-
ciently checking the commutative condition for complex microarchitectures by
reducing the problem to checking equivalence of two terms in a logic with equal-
ity, and uninterpreted function symbols.

Huggins and Campenhout [1998] verified the ARM2 pipelined processor us-
ing abstract state machine. Levitt and Olukotun [1997] presented a verification
technique, called unpipelining, which repeatedly merges last two pipe stages
into one single stage, resulting in a sequential version of the processor. A frame-
work for microprocessor correctness statements about safety that is indepen-
dent of implementation representation and verification approach is presented
in Aagaard et al. [2001].

Ho et al. [1998] extract controlled token nets from a logic design to perform
efficient model checking. Jacobi [2002] used a methodology to verify out-of-
order pipelines by combining model checking for the verification of the pipeline
control, and theorem proving for the verification of the pipeline functionality.
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Compositional model checking is used to verify a processor microarchitec-
ture containing most of the features of a modern microprocessor [Jhala and
McMillan 2001]. There has been a lot a work in the area of module level vali-
dation, such as verification of floating-point unit [Ho et al. 1996], and protocol
validation, such as verification of cache coherence protocol [Pong and Dubois
1997].

All the above techniques attempt to formally verify the implementation of
pipelined processors by comparing the pipelined implementation with its se-
quential (ISA) specification model, or by deriving the sequential model from
the implementation. Our validation technique is complementary to these for-
mal approaches. We define a set of properties that have to be satisfied for the
correct pipeline behavior. We apply these properties to ensure that the static
behavior of the pipeline is well formed by analyzing the structural aspects of
the specification using a graph-based model. Currently, we are developing tech-
niques to verify the dynamic behavior by analyzing the instruction flow in the
pipeline using a finite state machine based model to validate several architec-
tural properties, such as determinism and execution style, in the presence of
hazards and exceptions [Mishra and Dutt 2002; Mishra et al. 2002].

4. ARCHITECTURE PIPELINE MODELING

We present a graph-based modeling of architecture pipelines that captures both
the structure and the behavior. The graph model presented here can be derived
from a pipeline specification of the architecture described in an ADL, for ex-
ample, EXPRESSION [Halambi et al. 1999]. This graph model can capture
processor, memory, and coprocessor pipelines for wide variety of architectures,
namely, RISC, DSP, VLIW, Superscalar, and Hybrid architectures. Note that it is
important to capture the memory pipeline along with processor and coprocessor
pipelines, since any memory operation exercises both the processor and mem-
ory pipeline structures [Mishra et al. 2001]. In this section, we briefly describe
how we model the structure and behavior of an architecture. We also model the
mapping functions between structure and behavior.

4.1 Structure

The structure of an architecture pipeline is modeled as a graph GS

GS = (VS , ES). (1)

VS denotes a set of components in the architecture. VS consists of four types of
components

VS = Vunit ∪ Vstorage ∪ Vport ∪ Vconnection (2)

where Vunit is a set of units (e.g., ALUs), Vstorage a set of storages (e.g., register
files, caches), Vport a set of ports, and Vconnection a set of connections (e.g., buses).
ES consists of two types of edges

ES = Edata transfer ∪ Epipeline (3)
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Fig. 4. A structure graph of a simple architecture.

where Edata transfer is a set of data-transfer edges and Epipeline is a set of pipeline
edges.

Edata transfer ⊆ Vunit × Vport

∪ Vstorage × Vport

∪ Vport × Vconnection

∪ Vconnection × Vport

∪ Vport × Vunit

∪ Vport × Vstorage (4)
Epipeline ⊆ Vunit × Vunit. (5)

A data-transfer edge (v1, v2) ∈ Edata transfer indicates connectivity between two
components v1 and v2. Data are transferred from one component to another
via data-transfer edges. A pipeline edge specifies the ordering of units com-
prising the pipeline stages (or simply pipe-stages). Intuitively, operations flow
from pipe-stages to pipe-stages through pipeline edges. Both pipeline edges and
data-transfer edges are unidirectional. Bidirectional data-transfers are mod-
eled using two edges of different directions.

For illustration, we use a simple multi-issue architecture consisting of a
processor, a coprocessor, and a memory subsystem. Figure 4 shows the graph-
based model of this architecture that can issue up to three operations (an ALU
operation, a memory access operation, and a coprocessor operation) per cycle. In
the figure, normal boxes denote units, dotted boxes are storages, small circles
are ports, shaded boxes are connections, bold edges are pipeline edges, and
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Fig. 5. A fragment of the behavior graph.

dotted edges are data-transfer edges. For ease of illustration, we have shown
only few ports and connections. Each component has several attributes. The
figure shows only two of them, namely, capacity and timing for some of the nodes.
The capacity denotes the maximum number of operations which the component
can handle in a cycle, while the timing denotes the number of cycles taken
by the component to execute them. A path from a root node (e.g., Fetch unit)
to a leaf node (e.g., WriteBack unit) consisting of units and pipeline edges is
called a pipeline path. Intuitively, a pipeline path denotes an execution flow in
the pipeline taken by an operation. For example, one of the pipeline path is
{Fetch, Decode, ALU1, ALU2, WriteBack}. A path from a unit to main memory
or register file consisting of storages and data-transfer edges is called a data-
transfer path. For example, {MemCntrl, L1, L2, MainMemory} is a data-transfer
path. A memory operation traverses different data-transfer paths depending on
where it gets the data in the memory. For example, a load operation which is hit
in L2 will traverse the path (includes pipeline and data-transfer paths) {Fetch,
Decode, AddrCalc, MemCntrl, L1, L2(hit), L1, MemCntrl, WriteBack}. Similarly,
a coprocessor operation will traverse the path {Fetch, Decode, CP 1, EMIF 1,
CoProc, CP 2, EMIF 2}. However, in this path we have not shown different data
transfers. For example, EMIF 1 sends read request to DMA and DMA writes
data in coprocessor local memory which coprocessor uses during computation.
The coprocessor writes the result back to local memory and finally EMIF 2
requests DMA to write the result back to main memory.

4.2 Behavior

The behavior of an architecture is a set of operations that can be executed on
the architecture. Each operation in turn consists of a set of fields (e.g., opcode,
arguments) that specify, at an abstract level, the execution semantics of the
operation. We model the behavior as a graph GB, consisting of nodes VB and
edges EB.

GB = (VB, EB). (6)

The nodes represent the fields of each operation, while the edges represent
orderings between the fields. The behavior graph GB is a set of disjointed sub-
graphs, and each subgraph is called an operation graph (or simply an operation).
Figure 5 describes a portion of the behavior (consisting of two operation graphs)
for the example processor in Figure 4.
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Nodes are of two types: Vopcode is a set of opcode nodes that represent the
opcode (i.e., mnemonic), and Vargument is a set of argument nodes that represent
argument fields (i.e., source and destination arguments). Each operation graph
must have one opcode node. In Figure 5, the ADD and LD nodes are opcode
nodes, while the others are argument nodes.

VB = Vopcode ∪ Vargument (7)
EB = Eoperation ∪ Eexecution (8)

Edges between the nodes are also of two types. Both types of edges are unidirec-
tional. Eoperation is a set of operation edges that link the fields of the operation
and also specify the syntactical ordering between them. For each operation
graph, operation edges must construct a path containing an opcode node. On
the other hand, Eexecution is a set of execution edges that specify the execution
ordering between the argument nodes:

Eoperation ⊆ Vopcode × Vargument

∪ Vargument × Vargument (9)
Eexecution ⊆ Vargument × Vargument. (10)

There must be no cycles consisting of execution edges. In Figure 5, the solid
edges represent operation edges while the dotted edges represent execution
edges. For the ADD operation, the operation edges specify that the syntactical
ordering is opcode followed by ADD SRC1, ADD SRC2 and ADD DST argu-
ments (in that order) and the execution edges specify that the ADD SRC1 and
ADD SRC2 arguments are executed (i.e., read) before the ADD DST argument
is executed (i.e., written).

4.3 Mapping between Structure and Behavior

An important component of our graph model is a set of functions that correlate
the abstract, high-level behavioral model of the architecture to the structural
model. We define a set of useful mapping functions that map nodes in the
structure to nodes in the behavior (or vice-versa). The unit-to-opcode (opcode-to-
unit) mapping is a bidirectional function that maps unit nodes in the structure
to opcode nodes in the behavior. It defines, for each functional unit, the set of
operations supported by that unit (and vice versa).

funit–opcode : Vunit → Vopcode (11)
fopcode–unit : Vopcode → Vunit (12)

For the example processor in Figure 4, the funit–opcode mappings include map-
pings from Fetch unit to opcodes {ADD, LD} , ALU unit to opcode ADD, AddrCalc
unit to opcode LD, and so on.

The argument-to-storage (storage-to-argument) mapping is a bidirectional
function that maps argument nodes in the behavior to storage nodes in the
structure. It defines, for each argument of an operation, the storage location
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that the argument resides in.

fargument–storage : Vargument → Vstorage (13)
fstorage–argument : Vstorage → Vargument (14)

The fargument–storage mappings for the LD operation (Figure 5) are mappings from
LD SRC1 to RegisterFile, from LD SRC MEM to L1 (Data Memory), and from
LD DST to RegisterFile.

The port-to-argument (argument-to-port) mapping is a bidirectional function
that maps port nodes in the structure to argument nodes in the behavior. It
defines, for each port, the arguments that access it.

fport–argument : Vport → Vargument (15)
fargument–port : Vargument → Vport (16)

The fargument–port mappings for the LD operation (Figure 5) are mappings from
LD SRC1 to port p4, from LD SRC MEM to port p7, and from LD DST to p1.

Each functional unit (with read or write ports) supports certain data-transfer
operations. This can be derived from the above three mapping functions. For
example, the Decode unit of Figure 4 supports register read (regRead) for
ADD and LD opcodes; the MemCntrl supports data read (dataRead) and data
write (dataWrite) from L1 data cache; the Fetch unit supports instruction read
(instRead) from L1 instruction cache; the WriteBack unit supports register write
(regWrite). Each storage supports certain data-transfer operations. For exam-
ple, the RegisterFile of Figure 4 supports regRead and regWrite; L1 data cache
supports dataRead and dataWrite, and so on.

We can generate a graph-model of the architecture from an ADL descrip-
tion that has information regarding architecture’s structure, behavior, and the
mapping between structure and behavior. We have chosen the EXPRESSION
ADL [Halambi et al. 1999] since it captures all the necessary information. We
generate automatically the graph model of the architecture pipeline consisting
of structure graph, behavior graph, and mapping between them using the mod-
eling techniques described above. Further details on graph model generation
can be found in Mishra et al. [2001].

5. ARCHITECTURE PIPELINE VERIFICATION

Based on the graph model presented in the previous section, specification of
architecture pipelines written in an ADL can be validated. In this section, we
describe some of the properties used in our framework for validating pipeline
specification of the architecture.

5.1 Connectedness Property

The connectedness property ensures that each component must be connected to
other component(s). As pipeline and data-transfer paths are connected regions
of the architecture, this property holds if each component belongs to at least
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one pipeline or data-transfer path.

∀vcomp ∈ VS , (∃GPP ∈ GPP, s.t. vcomp ∈ GPP)
∨(∃GDP ∈ GDP, s.t. vcomp ∈ GDP) (17)

where GPP is a set of pipeline paths and GDP is a set of data-transfer paths.
Algorithm 1 presents the pseudo code for verifying connectedness property.

The algorithm requires the graph model G of the architecture as input. It also

Algorithm 1: Verify Connectedness
Inputs: i. Graph model of the architecture G

ii. ListOfUnits: list of units in the graph G
iii. ListOfPorts: list of ports in the graph G
iv. ListOfConnections: list of connections in the graph G
v. ListOfStorages: list of storages in the graph G

Outputs: i. True, if the graph model satisfies this property else false.
ii. In case of failure, print the components which are not connected.

Begin
Unmark all the entries in all the input lists.
InsertQ(root, Q) /* Put root node of G in queue Q */
while Q is not empty

Node n = DeleteQ(Q) /* Remove the front element of queue Q */
Mark n as visited in G
case type of node n

unit: Mark n in ListOfUnits
for each port p in n

/* Insert p in the rear end of queue Q */
if p is not visited, InsertQ(p, Q) endif

endfor
for each children unit u of n

if u is not visited, InsertQ(u, Q) endif
endfor

port: Mark n in ListOfPorts
for each connection c in n

if c is not visited InsertQ(c, Q) endif
endfor
for each storage s associated with n

if s is not visited InsertQ(s, Q) endif
endfor
for each unit u associated with n

if u is not visited InsertQ(u, Q)
endfor

connection: Mark n in ListOfConnections
for each port p in n

if p is not visited InsertQ(p, Q) endif
endfor

storage: Mark n in ListOfStorages
for each port p in n

if p is not visited InsertQ(p, Q) endif
endfor

endcase
endwhile
Return true if all the entries are marked in all of the input lists;

false otherwise, and print the unmarked components.
End
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Fig. 6. An example processor with false pipeline paths.

requires all the component (unit, storage, port, and connection) lists as input.
The first step is to unmark the entries in all the input lists. Each input list con-
tains all the respective components in the graph. For example, the ListOfPorts
contains all the ports in the graph G. Next, the graph is traversed in breadth-
first manner and the visited components are marked. For example, when the
unit u is visited during traversal, it is marked in ListOfUnits. Finally, the algo-
rithm returns true if all the entries are marked in all the input lists. It returns
false if there are any unmarked entries in any of the input lists and it prints
them.

Each node of the graph is visited only once. The time and space complexity
of the algorithm is O(n), where n is the number of nodes in the graph G. Each
node of the graph can be one of the four components: unit, storage, port, or
connection.

5.2 False Pipeline and Data-Transfer Paths

According to the definition of pipeline paths, there may exist pipeline paths that
are never activated by any operation. Such pipeline paths are said to be false.
For example, let us use another architecture shown in Figure 6 that executes
two operations: ALU-shift (alus) and multiply-accumulate (mac). This processor
has unit-to-opcode mappings between ALU unit and opcode alus, between SFT
and alus, between MUL and mac, and between ACC and mac. Also, there are
unit-to-opcode mappings between each of {IFD, RD1, RD2, WB} and alus, and
each of {IFD, RD1, RD2, WB} and mac. This processor has four pipeline paths:
{IFD, RD1, ALU, RD2, SFT, WB}, {IFD, RD1, MUL, RD2, ACC, WB}, {IFD, RD1,
ALU, RD2, ACC, WB}, and {IFD, RD1, MUL, RD2, SFT, WB}. However, the last
two pipeline paths cannot be activated by any operation. Therefore, they are
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Fig. 7. An example processor with false data-transfer paths.

false pipeline paths. Since these false pipeline paths may become false paths
depending on the detailed structure of RD2, they should be detected at a higher
level of abstraction to ease the later design phases.

From the view point of systems-on-chip (SOC) architecture exploration, we
can view the false pipeline paths as an indication of potential behaviors that
are not explicitly defined in the ADL description. This means that further cost,
performance, and power optimizations may be possible if new instructions are
added to activate the false pipeline paths.

Formally, a pipeline path GPP(VPP, EPP) is false if intersection of opcodes
supported by the units in the pipeline path is empty.

⋂

vunit∈VPP

funit–opcode(vunit) = φ. (18)

Similarly, there may exist data-transfer paths in the specification that are
never activated by any operation. Such data-transfer paths are said to be false.
For example, let us use another architecture shown in Figure 7 which has seven
possible data-transfer operations: integer-register-read (IregRd), float-register-
read (FregRd), integer-register-write (IregWr), float-register-write (FregWr),
load-data-from-memory (ldData), load-instruction-from-memory (ldInst), and
store-data-in-memory (stData). The Decode (ID) unit has mappings for IregRd
and FregRd. There are mappings between each of {WB1, WB2} and {IregWr,
FregWr}, each of {IF, L1I, ISB} and ldInst, each of {LDST, L1D, DSB} and
{ldData, stData}, and each of {L2, DRAM} and {ldData, stData, ldInst}. This
processor has ten data-transfer paths: {IRF, ID}, {FRF, ID}, {WB1, IRF}, {WB1,
FRF}, {WB2, IRF}, {WB2, FRF}, {IF, L1I, L2, ISB, DRAM}, {LDST, L1D, L2,
DSB, DRAM}, {IF, L1I, L2, DSB, DRAM}, {LDST, L1D, L2, ISB, DRAM} . How-
ever, the last two data-transfer paths cannot be activated by any operation.
Therefore, they are false data-transfer paths. If ALU1 supports only floating-
point operations, the fourth path ({WB1, IRF}) becomes false data-transfer path.
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Formally, a data-transfer path GDP(VDP, EDP) is false if intersection of data-
transfer operations supported by the units and storages ( fnode−operation) in the
data-transfer path is empty:

⋂

vnode∈VDP

fnode–operation(vnode) = φ. (19)

Algorithm 2 presents the pseudocode for verifying false pipeline and data-
transfer paths. The algorithm requires the graph model G as input. It traverses
the graph in depth-first manner along each pipeline and data-transfer path.
Each unit u has a list of supported opcodes SuppOpListu. Each node n (unit
or storage) also maintains four temporary lists: OutOpListn, OutDTopListn,
InOpListn, and InDTopListn. The OutOpListn is the list of opcodes produced
by unit n and sent to its children units. The OutDTopListn is the list of data-
transfer operations produced by node (unit or storage) n and sent to its children
storages. The InOpListn is the list that is used by unit n to copy the OutOpListp,
the output list of the recently visited parent p. Similarly, the InDTopListn is the
list that is used by storage n to copy the OutDTopListp, the output list of the
recently visited parent p. Each unit n performs intersection of InOpListn and
SuppOpListn and send the result OutOpListn to its children units. If OutOpListn
is empty, all the pipeline paths that use the path from n to root (via recently
visited parents) are false pipeline paths. A unit with read or write ports com-
putes data-transfer operations using the method described in Section 4.3. A
storage computes OutDTopListn by performing intersection of SuppDTopListn
and the input list InDTopListn. If OutDTopListn is empty, all the data-transfer
paths that use the path from storage n to any unit via recently visited parents
are false data-transfer paths. The algorithm returns true if there are no false
pipeline or data-transfer paths. It returns false if there are any false pipeline
or data-transfer paths and prints them.

If there are n nodes, x pipeline and data-transfer paths in the graph and the
number of opcodes supported by the processor is p then the time complexity of
this algorithm is O(x × n × (x + p log p)) and space complexity is O(n × p). The
opcode list in each node is a sorted list.

5.3 Completeness Property

The completeness property confirms that all operations must be executable. An
operation op is executable if there exists a pipeline path GPP(VPP, EPP) on which
op is executable. An operation op is executable on a pipeline path GPP(VPP, EPP)
if both conditions (a) and (b) hold.

(a) All units in VPP support the opcode op. More formally, the following condi-
tion holds where vopcode is the opcode of the operation op:

∀vunit ∈ VPP, vopcode ∈ funit–opcode(vunit). (20)

(b) There are no conflicting partial ordering of operation arguments and unit
ports. Let V be a set of argument nodes of op. There are no conflicting
partial ordering of operation arguments and unit ports if, for any two nodes
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Algorithm 2: Verify False Pipeline and Data-transfer Paths
Input: Graph model of the architecture G.
Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, print the list of false pipeline and data-transfer paths.
Begin

Push(root, S); FalsePPpathList = {}; FalseDPpathList = {} // Push root on stack S
while S is not empty

Node n = Pop(S); Mark n as visited /* Pop the top element of stack S */
case node type of n

unit: if n is the root node
OutOpListn = SuppOpListn /* Send OutListn to its children */

else
// Input list of n is the output list of the recently visited parent p
InOpListn = OutOpListp
/* Intersection of input list & supported opcode list */
OutOpListn = SuppOpListn ∩ InOpListn

endif
if n has read or write ports

OutDTopListn = ComputeDataTransferOps(OutOpListn)
if OutDTopListn is empty

for all the data-transfer paths fDP from n to any leaf nodes
Insert fDP in FalseDPpathList.

endfor
else

for each children storage node st of n, Push(st, S) endfor
endif

endif
if OutOpListn is empty

Record the pipeline path pp from n by tracing
recently visited parents till root
for all pipeline paths ppEnd from n to any leaf nodes

Append ppEnd to pp to generate false pipeline path fPP.
Insert fPP in FalsePPpathList.

endfor
else

for each children unit u of n, Push(u, S) endfor
endif

storage: InDTopListn = OutDTopListp
OutDTopListn = SuppDTopListn ∩ InDTopListn
if OutDTopListn is empty

Record the data-transfer path dp from n by tracing
recently visited parents till any unit
for all data-transfer paths dpEnd from n to any leaf nodes

Append dpEnd to dp to generate false data-transfer path
fDP. Insert fDP in FalseDPpathList.

endfor
else

for each children storage node st of n, Push(st, S) endfor
endif

endcase
endwhile
if FalsePPpathList and FalseDPpathList are empty return true;
else return false and print FalsePPpathList and FalseDPpathList.
endif

End
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v1, v2 ∈ V such that (v1, v2) ∈ Eexecution, all the following conditions hold:
� There exists a data-transfer path from a storage farg–storage(v1) to a unit

vu1 in VPP through a port farg–port(v1).
� There exists a data-transfer path from a unit vu2 in VPP to a storage

farg–storage(v2) through a port farg–port(v2).
� vu1 and vu2 are the same unit or there is a path consisting of pipeline

edges from vu1 to vu2.

For example, let us consider the ADD operation for the processor described
in Figures 4 and 5. To satisfy the condition (a), Fetch, Decode, ALU1, ALU2,
and WriteBack units must have mappings to the ADD opcode. On the other
hand, the condition (b) is satisfied because the structure has data-transfer paths
from RegisterFile to Decode and from WriteBack to RegisterFile, and there is
a pipeline path from Decode to WriteBack.

Algorithm 3 presents the pseudocode for verifying completeness property.
The algorithm requires the graph model G and the list of operations OpList as
input. It traverses the graph in depth-first manner for each operation op and
identify all the pipeline paths pp that support op. All the units n in the pipeline
path should have op in their supported opcode list SuppOpListn. The pipeline
path pp must have units that can read the source operands of op and write
the destination operands of op in correct order. If all the conditions are met, op
is executable in pipeline path pp and op is marked in OpList. The algorithm
returns true if all the entries in OpList are marked. It returns false if there are
unmarked entries and prints them.

Algorithm 3: Verify Completeness
Inputs: i. Graph model G of the architecture.

ii. The list of operations OpList supported by the architecture.
Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, print the list of operations that are not executable.
Begin

for each operation op supported by the architecture
opSrcList = list of sources in the operation op.
opDestList = list of destinations in the operation op.
Push(root, S) /* Put root node of G in stack S */
while S is not empty

Node n = Pop(S) /* Remove the top element of S */
Mark n as visited in G.
if op ∈ SuppOpListn /* op is supported by unit n */

for each port p of n
if p is a read or read-write port

for each unmarked source src in opSrcList
if src can be read via p, mark src in opSrcList with (p, n)
endif

endfor
endif
if p is a write or read-write port

for each unmarked destination dest in opDestList
if dest can be written via p

mark dest in opDestList with (p, n)
endif

endfor

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.



Modeling and Validation of Pipeline Specifications • 131

endif
endfor
if unit n is a leaf node

if ((all the sources in opSrcList are marked) and
(all the nodes r that read the sources are in expected order)
and (all the destinations in opDestList are marked) and
(all the nodes w that write the destinations are in expected

order)
and (all the nodes r and w are in the same pipeline path

and r appears before w))
Mark op in OpList /* this path supports op */
break /* one pipeline path is sufficient, exit while loop */

endif
else

for each children unit u of n, Push(u, S) endfor
endif

endwhile
endfor
Return true if all the entries in OpList are marked;

false otherwise, and print the unmarked entries in OpList.
End

If there are n nodes, x pipeline and data-transfer paths in the graph and the
number of opcodes supported by the architecture is p then the time complexity
of this algorithm is O(x × n × p × log p) and space complexity is O(n × p). The
opcode list in each unit is a sorted list.

5.4 Finiteness Property

The finiteness property guarantees the termination of any operation executed
through the pipeline. The termination is guaranteed if all pipeline and data-
transfer paths except false pipeline and data-transfer paths have finite length
and all nodes on the pipeline or data-transfer paths have finite timing.

The length of a pipeline or data-transfer path is defined as the number of
stages required to reach the final (leaf) nodes from the root node of the graph.

∃K , s.t. ∀path ∈ (GPP, GDP), num stages(path) < K (21)

Here, num stages is a function that, given a pipeline or data-transfer path,
returns the number of stages (i.e., clock cycles) required to execute it. In the
presence of cycles in the pipeline path, this function cannot be determined from
the structural graph model alone. However, if there are no cycles in the pipeline
paths, the termination property is satisfied if the number of nodes in VS is finite,
and each multi-cycle component has finite timing.

Algorithm 4 presents the pseudocode for verifying finiteness property. The
algorithm requires the graph model G and the list of operations OpList as input.
It traverses the graph in depth-first manner for each operation op and identify
all the pipeline paths op–pp that support op. For each opcode it colors different
pipeline paths op–pp with different color. A cycle is detected if the same colored
node is visited more than once during traversal. The pipeline path op–pp with
cycle will be stored in PathList. This property is also violated when there are
paths that are longer than MaxPathLength or when the execution time needed
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Algorithm 4: Verify Finiteness
Inputs: i. Graph model G of the architecture.

ii. The list of operations OpList supported by the architecture.
Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, prints the list of pipeline and data-transfer paths
that violates this property.

Begin
PathList = {};
for each operation op supported by the architecture

PathLength = 0;
Push(< root, PathLength >, S); /* Put root node and PathLength on stack S */
Unmark all the nodes in graph G;
ColorCode = 0;
while S is not empty

/* Remove the top element (node and PathLength pair) of S */
< n, PathLength > = Pop(S)
if op ∈ SuppOpListn /* op is supported by unit n */

PathLength = PathLength + 1;
timing = GetExecutionTime(op, n);
if ((n is already marked with ColorCode) or

(timing is greater than MaxExecutionTime) or
(PathLength is greater than MaxPathLength))

/* Insert path with nodes marked using ColorCode */
Insert < op, path > pair in PathList
break; /* exit while loop */

else
Mark n with ColorCode
if unit n is a leaf node

ColorCode = ColorCode + 1;
else

for each children node child of n
Push(< child, PathLength >, S);

endfor
endif

endif
else

ColorCode = ColorCode + 1;
endif

endwhile
endfor
Return true if PathList is empty

false otherwise, and print PathList.
End

by op in any node in that path is greater than MaxExecutionTime. The algorithm
returns true if PathList is empty. It returns false if there are entries in PathList
and prints them.

Our finiteness algorithm assumes that there are no cycles in the pipeline.
If the cycles are allowed in the pipeline due to the reuse of the resources, our
algorithm needs to be modified. Let us assume, a resource is reused by an
operation op for nop times. We can modify the algorithm to check for “already
marked with ColorCode for nop times” instead of checking “already marked with
ColorCode” for the operation op.
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If there are n nodes, x pipeline and data-transfer paths in the graph and the
number of opcodes supported by the architecture is p then the time complexity
of this algorithm is O(x × n × p × log p) and space complexity is O(n × p). The
opcode list in each unit is a sorted list.

5.5 Architecture-Specific Properties

The architecture must be well formed based on the original intent of the archi-
tectural model. To verify the validity of this property we need to verify several
architectural properties. Here we mention some of the architectural properties
we verify in our framework.

— The number of operations processed per cycle by a unit cannot be smaller
than the total number of operations sent by its parents unless the unit has a
reservation station. This is not an error if that specific unit kills certain oper-
ations based on certain conditions, for example, killing no operation (NOP).

— There should be a path from an execution unit supporting branch opcodes
to program counter (PC) or Fetch unit to ensure that PC is modified in case
of branch misprediction.

— The instruction template should match available pipeline bandwidth.
However, this is not an error because a machine with n operations in a
instruction and m (> n) parallel pipeline paths may have many multicycle
units. Similarly, the architecture may have m (< n) parallel pipeline paths
if it has reservation station and instruction fetch timing is large.

— There must be a path from load/store unit to main memory via storage
components to ensure that every memory operation is complete.

— The address space used by the processor must be equal to the union of
address spaces covered by memory subsystem (SRAM, cache hierarchies,
and so on) to ensure that all the memory accesses can complete.

These are only some of the properties we currently verify in our framework.
For every architecture with new architectural features we can easily add and
verify new properties for those features.

We first verify finiteness property before applying any other properties in our
framework. If there are paths with infinite length and timing, the finiteness
algorithm will display the path and exit. Next, we apply the connectedness
property followed by the false pipeline and data-transfer path property. The
remaining properties can be applied in any order. Algorithm 5 shows how we
apply these properties in our framework.

Algorithm 5: Verify Architecture Specification
Input: Graph model G of the architecture.
Output: True, if the graph model satisfies all the properties else false.
Begin

status = VerifyFiniteness (G, G.SupportedOpcodeList);
if (status == false) {

Print the paths that violates this property;
Return false;

}
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status = VerifyConnectedness (G, G.ListOfUnits,... );
if (status == false) {

Print the components that are not connected;
Return false;

}

status = VerifyFalsePipelineDataTransferPaths(G);
if (status == false) {

Print the list of false pipeline and data-transfer paths;
Return false;

}

status = VerifyCompleteness (G, G.SupportedOpcodeList);
if (status == false) {

Print the list of operations that are not executable;
Return false;

}

/* Apply other architecture specific properties */

.................

Return true;
End

6. EXPERIMENTS

In order to demonstrate the applicability and usefulness of our validation ap-
proach, we described a wide range of architectures using the EXPRESSION
ADL: MIPS R10K, TI C6x, PowerPC, DLX [Hennessy and Patterson 1990],
and ARM that are collectively representative of RISC, DSP, VLIW, and Su-
perscalar architectures. We generated the graph model of each of the archi-
tecture pipelines automatically from their ADL description. We implemented
each property as a function that operates on this graph. Finally, we applied
these properties on the graph model to verify that the specified architecture
is well formed. Table I shows the specification validation time for the DLX,
MIPS R10K, PowerPC, ARM, and TI C6x architectures on a 333 MHz Sun
Ultra-II with 128M RAM. This includes the time to generate the graph model
from the ADL specification of the architecture and to apply all the properties
on the graph model. The validation time depends on three aspects: number of
properties applied, complexity of the structure, and the number of operations
supported in the architecture.

In the remainder of this section, we describe our specification validation ex-
periments. First, we describe the validation of the DLX specification in detail.
Next, we summarize the incorrect specification errors captured by our frame-
work during design space exploration of different architectures.

6.1 Validation of the DLX Specification

Our framework generated graph model G from the ADL specification of the
DLX architecture. Figure 8 shows the simplified graph model of the DLX
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Table I. Specification Validation Time for Different Architectures

Architecture ARM DLX TI C6x PowerPC MIPS R10K
Validation time (seconds) 0.2 0.1 0.2 0.3 0.5

Fig. 8. The graph model of the DLX architecture.

architecture. It does not show ports and connections. The oval (unit) and rect-
angular (storage) boxes represent nodes. The solid (pipeline) and dotted (data-
transfer) lines represent edges.

We applied all the properties (Algorithm 5) on the graph model G. We encoun-
tered two kinds of errors, namely, incomplete specification errors and incorrect
specification errors. An example of incomplete specification error we uncovered
is that the opcode assignment is not done for the fifth stage of the multiplier
pipeline. Similarly, an example of the incorrect specification error we found is
that only load/store opcodes were mapped for the memory stage (MEM). Since
all the opcodes pass through memory stage in DLX, it is necessary to map all
the opcodes in memory stage as well.

First, the finiteness property is applied on the graph model. It detects a
violation for the division operation since the multi-cycle division unit (DIV)
has undefined latency value. Once the latency for the division operation is
defined, the finiteness property is successful. Next, the connectedness prop-
erty is applied. It detects that the sixth stage of the multiplier unit (MUL6) is
not connected. Once it is connected properly (from MUL5 to MUL6, and from
MUL6 to MUL7), the connectedness property is successful. The false pipeline
and data-transfer path detection property is successful. Finally, the complete-
ness property is violated for the multiply operation. This operation is not de-
fined in the MUL5 unit. As a result, the multiply operation cannot execute
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in the pipeline. Once this is fixed, the validation of the DLX specification is
successful.

6.2 Summary of Property Violations

During design space exploration (DSE) of the architectures, we detected many
incorrect specification errors. Here we briefly mention some of the errors cap-
tured using our approach.

— We modified the MIPS R10K ADL description to include another load/store
unit that supports only store operations. The false data-transfer path prop-
erty was violated since there was a write connection from the load/store unit
to the floating-point register file that will never be used.

— We modified the PowerPC ADL description to have separate L2 cache for
instruction and data. Validation determined that there are no paths from L2
instruction cache to main memory. The connection between L2 instruction
cache and unified L3 cache is missing.

— We modified the C6x architecture’s data memory by adding two SRAM mod-
ules with the existing cache hierarchy. The property validation fails due to
the fact that the address ranges specified in the SRAMs and cache hierarchy
are not disjoint. Moreover, union of these address ranges does not cover the
physical address space specified by the processor description.

— We added a coprocessor pipeline to the MIPS R10K architecture that sup-
ports vector integer multiplication. This path is reported as a false pipeline
path since this opcode was not added in all the units in the path correctly. It
also violated the completeness property since the read/write connections to
integer register file was missing from the coprocessor pipeline.

— In the R10K architecture we decided to use a coprocessor local memory in-
stead of integer register file for reading operands. We removed the read con-
nections that was used to access the integer register file and added local
memory, DMA controller and connections to main memory. The connected-
ness property is violated for two ports in integer register file. These ports
were used by the coprocessor earlier whose connections were deleted but not
the ports.

— We modified the PowerPC ADL description by reducing the instruction buffer
size from 16 to 4. This generated the violation of architecture-specific prop-
erty. The fetch unit fetches eight instructions per cycle and decode unit de-
codes three instructions per cycle, hence there is a potential for instruction
loss.

Table II summarizes the errors captured during DSE of architectures. Each
column represents one architecture, and each row represents one property. An
entry in the table presents the number of violations of that property for the
corresponding architecture.1 The number in brackets next to each architecture

1Note that the error numbers will change depending on the number of DSE and type of modifications
done each time.
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Table II. Summary of Property Violations

ARM DLX C6x R10K PowerPC
(1) (2) (2) (3) (2)

Connectedness 0 0 1 2 1
False pipeline/data-transfer path 2 5 3 4 2
Completeness 1 2 3 3 2
Architecture-specific 2 4 5 12 6
Finiteness 0 0 0 1 1

represents the number of DSE done for that architecture. Each class of problem
is counted only once. For example, the DLX error mentioned above where one
of the unit has incorrect specification of the supported opcodes that led to false
pipeline path for most of the opcodes, we count that error once instead of using
the number of opcodes which violated the property.

Our experiments have demonstrated the utility of our validation approach
across a wide range of realistic architectures, and the ability to detect errors in
the architectural specification, as well as errors generated through inconsistent
modifications to an architecture during DSE.

7. CONCLUSIONS

Architecture description language (ADL) based codesign that supports au-
tomatic software toolkit generation is a promising approach to efficient de-
sign space exploration (DSE) of system-on-chip (SOC) architectures. The pro-
grammable portion of SOCs often includes pipelined processor, memory, and
coprocessor cores, whose pipeline structure and behavior are described in the
ADL. During architectural design space exploration, each instance of the archi-
tecture must be validated to ensure that it is well-formed. Moreover, validation
of the specification is essential to ensure that the reference model is golden so
that it can be used to uncover bugs in the design.

In this paper, we presented a graph-based modeling of architectures that
captures both the structure and the behavior of the processor, memory, and
coprocessor pipelines. Based on the model, we proposed several properties that
need to be satisfied to ensure that the architecture is well formed. We applied
these properties on the graph model of the MIPS R10K, TI C6x, ARM, DLX,
and PowerPC architectures, and demonstrated the usefulness of our approach
in detecting different types of errors that often appear in the architectural spec-
ification during exploration. New properties can be easily defined and applied
in our framework. Our ongoing work targets the use of this ADL specification
as a golden reference model in architecture validation flow.
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