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Modeling and Vector Control of
Planar Magnetic Levitator

Won-jong Kim, Member, IEEE, David L. Trumper,Member, IEEE, and Jeffrey H. Lang,Fellow, IEEE

Abstract—We designed and implemented a magnetically lev-
itated stage with large planar motion capability. This planar
magnetic levitator employs four novel permanent-magnet lin-
ear motors. Each motor generates vertical force for suspension
against gravity, as well as horizontal force for drive. These linear
levitation motors can be used as building blocks in the general
class of multi-degree-of-freedom motion stages. In this paper, we
discuss electromechanical modeling and real-time vector control
of such a permanent-magnet levitator. We describe the dynamics
in a dq frame introduced to decouple the forces acting on
the magnetically levitated moving part, namely, the platen. A
transformation similar to the Blondel–Park transformation is
derived for commutation of the stator phase currents. We provide
test results on step responses of the magnetically levitated stage.
It shows 5-nm rms positioning noise inxxx and yyy, which demon-
strates the applicability of such stages in the next-generation
photolithography in semiconductor manufacturing.

Index Terms—dq theory, linear permanent-magnet motor,
magnetic levitation, photolithography, precision position control,
vector control.

I. INTRODUCTION

M ANY traditional mechanical stages for– position-
ing, such as used in wafer steppers in semiconductor

manufacturing, have either crossed-axis-type or gantry-type
configurations [1]–[3]. The -axis linear stage is typically
driven by another -axis stage moving orthogonally to the

axis. The mechanical bearing tolerance for these precision
position control systems must be very tight, so they are
expensive to make. Some precision planar positioners also
use a piezoelectric fine-motion stage on top of a coarse–
mechanical stage. Vertical (axis) motions for focusing are
generated by additional independent mechanical means. Such
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systems are complicated and expensive and have complex
dynamics which limit high-speed operation.

It is a trend that the industry has come to use planar motors
for two-dimensional positioning applications more frequently
than ever. The Sawyer motor is one of the earliest inventions in
this category [4]. Since its motion is tightly constrained to a
plane, a Sawyer motor cannot provide focus range or local
leveling without using fine-motion actuators. However, the
magnetically levitated stage presented herein can generate all
six-degrees-of-freedom (6-DOF) motions required for focusing
and alignment, and large planar motions for positioning using a
single magnetically levitated moving part, namely the platen.
This is a significant advance over other existing techniques
described previously, thanks to the resulting mechanical sim-
plicity. The platen can be designed to have a high natural
frequency and, thus, can be moved more rapidly than multi-
element stages which have more complex dynamics. This
allows higher speed and, thus, increases machine throughput.
Magnetic levitation can also achieve the nanometer-order po-
sition resolution required for deep-submicrometer lithography
when appropriate position sensors are used.

The actuators for this planar magnetic levitator are three-
phase surface-wound surface-permanent-magnet linear mo-
tors. Error motions due to cogging and nonlinear effects
are expected to be minimal [5]. The linear motor uses a
Halbach magnet array for its power efficiency and low field
distortion [6], [7]. Induction motors are avoided, since they
dissipate heat in the moving part and are generally hard to
control. Variable-reluctance motors, such as stepper motors,
have inevitable cogging forces. Multiphase permanent-magnet
motors are capable of generating suspension force, as well as
drive force [8], [9], so that they do not need any other actuators
for suspension and fine position adjustments.

We provided a general design and analysis framework for
permanent-magnet machines in a previous paper [10]. There,
we derived field solutions, force equations, and an electrical
terminal relation for a general class of surface-wound linear
permanent-magnet motors. Here, we use these results to derive
dynamic equations of motion and a commutation law for the
planar magnetic levitator.

In this paper, we discuss the modeling and vector control
of our planar magnetic levitator. In Section II, we present an
overview and the basic working principles of the magnetically
levitated stage. A lumped decoupled model usingdecompo-
sition theory is presented in Section III. We derive in Section
IV linearized dynamic equations of motion of the magnetically
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Fig. 1. Planar magnetic levitator.

levitated stage. Finally, the real-time controller design and test
results are presented in Section V.

II. PLANAR MAGNETIC LEVITATOR

Fig. 1 shows a photograph of the planar magnetic levitator
[11]. The planar motion coverage of the stage is 50 mm
50 mm, which can readily be scaled to accommodate the next
generation wafers. For focusing and alignment, the vertical
travel range is 200 m and the angular ranges of the stage
are 600 rad. We use three channels of laser interferometers
with subnanometer resolution to measure the position in the
plane and three channels of capacitance probes for the stage
position out of the plane. Thus, all motions required for
photolithography can be supplied by this single stage. The
design is also applicable to the newer classes of step-and-scan
lithography stages.

Fig. 2 is a perspective view of the prototype magnetically
levitated stage. The magnetic levitator contains four three-
phase linear permanent-magnet motors as its actuators. The
linear motor is designed to generate suspension (vertical) force,
as well as translational (lateral) force, as indicated in Fig. 2.
The unprimed frame (the inertial frame) is fixed to the
stators with its origin at the center of the stators on the plane
enclosing the three sensing surfaces of the capacitance probes.
The primed frame (the body frame) is fixed to the platen
with its origin at the platen center of mass.

With an arrangement of the motors as in Fig. 2, the platen
generates all 6-DOF motions for focusing and alignment and
large two-dimensional step-and-hold and scanning motions for
high-precision positioners, as used in wafer stepper stages
in semiconductor manufacturing. For example, we actuate
positive and in Fig. 3 to get a motion in the positive

direction.1 To generate a positive rotation around theaxis,
we put positive and and negative and . Motions
in the four other degrees of freedom are generated in similar
ways.

A TMS320C40 digital signal processor is used as a real-
time control processor to stabilize and control the planar

1The capitalXY Z frame is fixed to the platen and used as a reference
frame for the equilibrium conditions in the Appendix. TheX andY axes are
on the same plane that contains thex0 and y0 axes and are rotated by 45�

around thez0 axis.

magnetic levitator. To drive the motors, we constructed linear
transconductance power amplifiers. Their maximum current
and voltage ratings are 1.5 A and 22 V, respectively.
The nominal power dissipation per motor is 5.4 W at the
0.5-A nominal peak phase current. The suspension power
dissipation coefficient of the magnetically levitated stage is 7.2
mW/N . The nominal airgap clearance between the magnet
array and the stator is 250m. The nominal motor airgap
for the capacitance gap sensor is 250m larger than that
of the motor airgap, so that the capacitance probes are not
touched by the platen in any condition. The detailed electrical
and mechanical design of the platen and stators and the
instrumentation structure of the system are described in [11].

III. D ECOUPLED FORCE EQUATIONS

For modeling purposes, we measured the mechanical and
electrical parameters of the stage. The platen massis
measured as 5.58 kg. The inertia tensor of the platen about
the platen center of mass is calculated as

kg-m (1)

The resistance and the self-inductance of one phase of the
winding are 14.4 and 3.44 mH, respectively; the mutual
inductance is negligible because the stator is ironless. In the
rest of this section, we derive decoupled force equations with
a theory.

A. Decomposition

The decomposition in conventional rotary machines
is introduced to isolate the stator current component that
generates torque [12], [13]. The principal goal of the
decomposition is to express the electrical dynamics of the
stator and the rotor in a common reference frame. The direct
axis ( axis) and the quadrature axis (axis) are fixed to the
rotor frame and rotate with the rotor. Then, force equations
and commutation described in the frame do not contain the
position dependence with respect to the stator.

Each linear motor in our levitator is designed to generate
suspension force, as well as translational force, as indicated
in Fig. 2. Decoupling the two orthogonal force components
should be performed to control the two degrees of freedom
independently. As in Fig. 4, we define theaxis as the
axis in the platen frame. The axis leads the axis by a
quarter of the motor pitch, which is 90in electrical angle,
in the direction.

In previous work [10], we defined and as the real and
imaginary parts of the fundamental current density components
in the stator windings. Let and be the quadrature and
direct components of this current density, respectively. Then,
the following transformation from to
holds with the definitions in Fig. 4:

(2)
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Fig. 2. Perspective view.

Fig. 3. Free body diagram for force allocation.

where , and is a transformation matrix given
by

(3)

Fig. 4. dq frame fixed to the platen.

and

(4)

In the above equations, is the horizontal displacement of
the frame with respect to the frame in Fig. 4.

B. Force Equations

We derive decoupled force equations in steady-state sus-
pension in a dynamic equilibrium. Using the relationships

and , we rewrite the
relationship [10, eq. (20)] between the total lateral and vertical
forces and and the peak current componentsand .
For motors II and IV, this results in

(5)
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For our design, the parameters have the following values: the
magnet remanence is T; the winding turn density
is turns/m ; the number of active magnet
pitches is ; the pitch is mm; the absolute
value of fundamental wave number is m ;
the magnet array width is mm; and the nominal
motor airgap is m. The magnet array thickness is

and the winding thickness is , determined
via the power optimal design presented in [7]. The constant

contains the effects of the motor geometry and is equal to
m [10]. The same force equation is valid for

motors I and III by changing the variable to .
From (2) to (5), we can decouple the lateral and verti-

cal force components in the quadrature and direct current
components and :

(6)

(7)

where represents motors I–IV. With the motor airgap
fixed, the lateral and vertical forces are determined by multi-
plication of the constant magnet residual flux density
and the stator currents or .2 Thus, we produce with

and with . The quadrature current does not
influence the vertical force , and the same holds for
and . Substituting the above parameter values specific
to our motors,

N/A (8)

yield the motor horizontal and vertical forces.

C. Commutation

We derive the commutation for the three-phase current
densities , , and in the context of the theory
(Fig. 4). The stator current density is a function of the lateral
position on the stator frame. We can show that

(9)

The three-phase current densities, , , , , and
are located on the stator, the boundaries of which are at

, and so forth, and ,
, and . Then, the inverse Blondel–Park

transformation holds between and
in the balanced three-phase operation [14]. From this, it
follows that

(10)

2Recall the Lorentz force equationF = J�B. Other terms in (6) and (7)
are geometric constants.

Fig. 5. Schematic diagram of the decoupled lead–lag controller.

The factor of is introduced to match the definition of
. The transformation is defined by

(11)

The transformation matrix in the above has different elements
from the usual inverse Blondel–Park transformation [14]. The
difference arises from the phase current convention we are
using, and the above representation is consistent with our
previous work in [10].

Finally, the commutation law for the three-phase currents
and the desired forces be-

comes

(12)

We now have a relationship between the desired forces and
the phase currents.

IV. L INEARIZED EQUATIONS OF MOTION

In this section, we derive linearized equations of motion for
the vertical and lateral dynamics of the stage. They prove to be
second-order dynamic equations with a mass and a (positive or
negative) magnetic spring. To linearize these force equations,
we set , , , and ,
where is the nominal levitation height, which is 250m.
From (8), the nominal direct current componentis calculated
to be 500 mA, which generates 13.9 N per motor, about a
quarter of the weight of the platen; four motors support the
full platen weight of 54.7 N. The nominal quadrature current
component is zero, because the platen is in a dynamic
equilibrium with . The linearization in terms of
the small-signal quantities with tilde is discussed later in this
section.

A. Euler Angles

We need a transformation between the two coordinate
systems—the body frame of the platen and the inertial frame
of the stator. In other words, we describe the orientation of
the body frame with respect to the inertial frame
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Fig. 6. 5-�m step response inz with perturbed motions in the other five axes.

defined in Fig. 2. We follow the convention, which is
commonly used in engineering applications, to define Euler
angles [15]. Since the angular motions are small in our case,
the Euler angles , , and can be considered as rotations
around the , , and axes.

B. Equations of Motion

Retaining zeroth- and first-order terms, the equilibrium
condition for the vertical direction becomes from (7)

(13)

where is the total vertical force, sum of , , ,
and . The factor of four in (13) results from assum-
ing that the four linear motors are equally responsible for
suspending the platen. When the platen is in dynamic equi-
librium, the weight of the platen should be matched
by . Now, the force equation
becomes

(14)

So, the equation of incremental motion in the vertical direction
is

(15)

When there is no control, , the vertical dynamics are
marginally stable. The equation of incremental motion in the
lateral direction is derived similarly [16], leading to

(16)

When there is no control, , the lateral dynamics show
its unstable nature.

With the levitator model in hand, we develop decoupled
controllers in the next section.

V. DECOUPLED VECTOR CONTROL

Classical decoupled lead–lag control is applied to stabilize
the platen motion. We also provide test results on positioning
noise and step responses in this section.



KIM et al.: MODELING AND VECTOR CONTROL OF PLANAR MAGNETIC LEVITATOR 1259

Fig. 7. 50-�rad step response in� with perturbed motions in the other five axes.

A. Vertical Mode Control

By substituting nominal and geometric parameters given
in Section III into (15), the decoupled vertical translational
dynamics can be presented as

(17)

The modal force is a sum of the decomposed vertical
force components , , , and . The uncompensated
resonant frequency of this platen mass-magnetic spring system
is calculated as 7.85 Hz, which is very close to the measured
natural frequency 8 Hz during testing.

To eliminate the steady-state error, the following lead–lag
controller with a pole at the origin is implemented for:

(18)

The crossover frequency of this controller is 70 Hz. Fig. 5 is
a block diagram of the closed-loop system with the controller.

The phase margin of this controller is 51, and it is fairly robust
to force perturbations. Fig. 6 shows a 5-m step response in

with this lead–lag controller.
Because of the geometrical symmetry inand of the levi-

tation system, they have identical controllers. These controllers
are

(19)

Their gains must be different from those in the , since
the numerical values of the moments of inertia (

kg-m ) are different from those of the mass.

B. Lateral Mode Control

By substituting nominal and geometric parameters into (16),
the decoupled lateral translational dynamics for thedirection
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Fig. 8. Positioning noises in 6-DOF position regulation with the decoupled lead–lag controllers.

for motors I and III can be presented as3

(20)

The modal force is a sum of the decomposed lateral force
components and . Here, we again use the lead–lag
controllers from (18) with a gain of N/m for
and . Similarly, the controller for has the same pole–zero
pattern as before with a gain of N/rad. Fig. 7 is
a 50- rad step response in. This completes the description
of the decoupled control design for 6-DOF stabilization of the
magnetic levitator.

C. Positioning Noise

Fig. 8 shows the position regulation under the decoupled
lead–lag controllers designed above. The positioning noise4

in and axes is on the order of 5 nm in the root-mean-
square sense. The positioning noise inis 0.025 rad rms.
The test result in Fig. 8 contains a strong 120-Hz component.
Laboratory floor vibration due to a large transformer in the lab-
oratory, or heating, ventilation, and air-conditioning (HVAC)
equipment located in the next room is believed to generate this
noise. The figure also shows the vertical displacementand
the velocity in the direction. The vertical displacement
shows a 15-nm-rms positioning noise in. The noise of the

3We need to replacex with y for motors II and IV.
4We use the terminologypositioning noisefor uncertainty in position due

to various disturbance and noise, such as electric noise in position sensors,
A/D and D/A quantization, floor vibration, etc.

A/D electronics used to sample the capacitance probe outputs
is primarily responsible for the poorer positioning noise in.

VI. CONCLUSIONS

In this paper, we have presented the modeling and vector
control of our planar magnetic levitator. All the 6-DOF mo-
tions required for focusing and alignment in photolithography
and large planar motions for positioning across the wafer
surface can be generated by only one magnetically levitated
moving part. Thus, the mechanical structure of the planar
positioner is very simple. The actuators for the levitator are
four surface-wound slotless permanent-magnet linear motors
which exhibit no cogging force. The motors employ Halbach
magnet arrays for power efficiency and low field distortion.
Each of these actuators can generate vertical, as well as lateral,
forces; it is a two-degree-of-freedom actuator.

We developed a theory for our two-degree-of-freedom
actuator to decompose vertical and lateral force and current
components. With this decomposition and transformations,
we derived a commutation law to drive the four motors
to stabilize and control the magnetically levitated platen.
Linearized equations of motion were derived on the basis of
the previous analysis [10]. A vector control was successfully
realized for the planar magnetic levitator. We were able to
stabilize the platen in 6-DOF, which confirmed the validity of
our model and commutation law.

Decoupled real-time digital lead–lag controllers were de-
signed and implemented with a digital signal processor. As test
results, we presented step responses of the magnetically lev-
itated stage. This levitator shows 5-nm-rms positioning noise
and consumes only 5.4-W power per motor and is suitable
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for the next-generation photolithography in semiconductor
manufacturing.

APPENDIX

FORCE ALLOCATION

To implement decoupled digital controllers for 6-DOF sta-
bilization of the platen, we derived force equations and de-
coupled the platen dynamics in Section IV. Since the current
levitation stage is a redundant actuator system,5 we need to
allocate the modal forces and torques to the vertical and lateral
decomposed forces.

A. Vertical Force Allocation

The force allocation can be derived with a free body
diagram (Fig. 3) and dynamic equilibrium. The vertical force
components should generate three-degree-of-freedom focusing
and alignment motions, as well as support the mass of the
platen (5.58 kg). So, the nominal vertical forces must satisfy

N (21)

By symmetry, the two large-signal vertical force components
and are equal for the suspension purpose. It is

arbitrarily chosen that together they carry half of the platen
weight. So,

(22)

Then, and support the remaining half of the platen
weight according to

(23)

Let us use another equilibrium condition for torques around
the axis in Fig. 3. Since the moment arms of , , ,
and are , , , , respectively,

(24)

If we solve (21)–(24) for the force,

(25)

where the platen center-of-mass offsets are mm,
mm, and mm ( in) is the distance

between the centers of two adjacent magnet arrays. Thus,
with the force–current relationship (8), the nominal direct
components of the current are

A (26)

5We have eight force components as in Fig. 2 in the current magnetic
levitator. In fact, six independent force components are sufficient for 6-DOF
motion control.

These equilibrium conditions are also valid for small-signal
force components. Thus, we can use the same relations for the
small-signal vertical force allocation.

(27)

Since we do not want any net vertical force perturbation in
equilibrium, therefore,

(28)

Now consider the two other rotational degrees of freedom in
the vertical dynamics. The modal torques have the following
relationships with decomposed vertical force components:

(29)

(30)

By the symmetry of the problem for the rotations around
and axes,

(31)

Solving (28)–(31) for the force yields

m (32)

Thus, the allocation of direct components of current is using
(8)

A/N-m (33)

This completes the vertical force and current allocation with
the modal vertical force and torques.

B. Lateral Force Allocation

The two relationships for the lateral force components are

(34)

(35)

We need to generate the modal torque around theaxis with
the four lateral force components. We have freedom to achieve
this, and one choice is

(36)

(37)

So, we generate with and only in the above
force allocation. The force components, and do not
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participate in the torque generation. Thus, the motors in the
direction will assume an additional task for small-angle

adjustment around theaxis, which is also arbitrarily chosen.
Solving (34)–(37) for the force yields

m

m
m

m
m

(38)

Thus, the allocation of quadrature components of current is
using (8)

A/N
A/N A/N-m

A/N
A/N A/N-m

(39)

This completes the lateral force and current allocation with the
modal lateral forces and torque.
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