Modeling and Verification of a
Telecommunication Application using Live
Sequence Charts and the Play-Engine Tool *

Pierre Combes!, David Harel?, and Hillel Kugler?

! France Telecom Research and Development, Paris, France
Pierre.Combes@francetelecom.com
2 The Weizmann Institute of Science, Rehovot, Israel
dharel@weizmann.ac.il
3 New York University, New York, NY, USA
kugler@cs.nyu.edu

Abstract. We apply the language of live sequence charts (LSCs) and
the Play-Engine tool to a real-world complex telecommunication service.
The service, called Depannage, allows a user to make a phone call and
ask for help from a doctor, the fire brigade, a car maintenance service,
etc. This kind of service is built on top of an embedded platform, us-
ing both new and existing service components. The complexity of such
applications stems from their distributed architecture, the various time
constraints they entail, and the fact the underlying systems are rapidly
evolving, introducing new components, protocols and associated hard-
ware constraints, all of which must be taken into account. We present
the results of our work on the specification, animation and formal veri-
fication of the Depannage service, and draw some initial conclusions as
to an appropriate methodology for using a scenario-based approach in
the telecommunication domain. The complete specification of the De-
pannage application in LSCs and some animations showing simulation
and verification results are made available as supplementary material. !

1 Introduction

The challenging complexity of telecommunication systems, together with a high
demand for rapid deployment, encourages development of innovative techniques
in order to design and deploy new applications in a quick and secure manner [2].
In the telecommunication domain, components play a crucial role. The majority
of these components is embedded in a large and complex architecture which
involves hard and soft real-time constraints and requirements. Moreover, non-
functional requirements, in particular time dependent properties, also play an
important role. A telecommunication application is always built from a set of

* This research was supported in part by the European Commission project OMEGA
(IST-2001-33522) and by the Israel Science Foundation (grant No. 287/02-1).
! http://cs.nyu.edu/~kugler/Depannage/

embedded service components, and in the emerging architecture a challenge is
providing a ubiquitous environment for telecommunication users. This means
that the telecommunication applications should be provided in several contexts
with a high level of quality of service, and always in a comprehensive way to the
end-users. Nowadays, due to openness of the telecommunication architecture, a
multiplicity of services and service features could be provided by several teams
or companies, and must be dynamically added and updated. The consistent
use of components and service features is becoming more critical in order to
ensure that undesired behaviors do not occur [11]. The time seems ripe to go
from ad-hoc techniques for component composition toward more integrated and
formal ones. Such techniques should be based on the use of formal languages for
design and verification. The languages and design models should be readable in
order to facilitate the communication between telecommunication engineers and
specialists in formal verification. A comprehensive animation tool is also very
important in order to enhance the understanding of the model, and in order
to show verification results to engineers and clients [4]. A proposed approach
should enable quick and secure telecommunication service creation, answering
questions like how to build an architecture based on a set of components (reused
or/and shared by several services) in such a way that we can guarantee providing
complete applications respecting quality of service and safety requirements.

2 Live sequence charts and the Play-Engine

Understanding system and software behavior by looking at various “stories”
or scenarios seems a promising approach, and it has focused intensive research
efforts in the last few years. One of the most widely used languages for specifying
scenario-based requirements is that of message sequence charts (MSCs), adopted
long ago by the ITU [15], or its UML variant, sequence diagrams [14]. Sequence
charts (whether MSCs or their UML variant) possess a rather weak partial-order
semantics that does not make it possible to capture many kinds of behavioral
requirements of a system. To address this, while remaining within the general
spirit of scenario-based visual formalisms, a broad extension of MSCs has been
proposed, called live sequence charts (LSCs) [6]. Among other things, LSCs
distinguish between behaviors that must happen in the system (universal) from
those that may happen (existential). A universal chart contains a prechart, which
specifies the scenario which, if successfully executed, forces the system to satisfy
the scenario given in the actual chart body. Existential charts specify sample
interactions between the system and its environment, and must be satisfied by
at least one system run. They thus do not force the application to behave in
a certain way in all cases, but rather state that there is at least one set of
circumstances under which a certain behavior occurs. The distinction between
mandatory (hot) and provisional (cold) applies also to other LSC constructs,
e.g., conditions and locations, thus creating a rich and powerful language, which
among many other things can express forbidden behavior (“anti-scenarios”).

In [9,10] a methodology for specifying and validating requirements, termed
the “play-in/play-out approach”, is described, as well as a supporting tool called
the Play-Engine. According to this approach, requirements are captured by the
user playing in scenarios using a graphical interface of the system to be developed
or using an object model diagram. The user “plays” the GUI by clicking buttons,
rotating knobs and sending messages (calling functions) to objects in an intuitive
manner. By similarly playing the GUI, the user describes the desired reactions
of the system and the conditions that may, must or may not hold. As this is
being done, the supporting tool, the Play-Engine, constructs a formal version
of the requirements in the form of LSCs. Note that it is not always necessary
to spend much time designing a fancy graphical interface. In many cases, it is
enough to use a standard object model diagram. The Play-Engine tool, supports
class diagrams and allows to work with internal objects that are not reflected in
the GUI.

Play-out is a complementary idea to play-in, which, rather surprisingly, makes
it possible to execute the requirements directly. In play-out, the user simply plays
the GUI application as he/she would have done when executing a system model,
or the final system implementation, but limiting him/herself to “end-user” and
external environment actions only. While doing this, the Play-Engine keeps track
of the actions and causes other actions and events to occur as dictated by the
universal charts in the specification. Here too, the engine interacts with the GUI
application and uses it to reflect the system state at any given moment. This pro-
cess of the user operating the GUI application and the Play-Engine causing it to
react according to the specification has the effect of working with an executable
model, but with no intra-object model having to be built or synthesized.

Smart play-out [7] is a powerful technique for executing scenario-based re-
quirements using verification methods. It can be used for driving the execution
of the system, or for checking if a given existential chart can be satisfied without
violating any of the universal charts. Smart play-out is integrated in the Play-
Engine tool and allows developers to apply formal verification methods at early
design stages in a user-friendly manner.

3 Components and System Architecture

3.1 The Telecommunication application

We apply LSCs and the Play-Engine to a telecommunication service called De-
pannage, provided by France Telecom. The Depannage service allows a user to
make a phone call and ask for the help of a doctor, fire brigade, car maintenance,
etc. The service invocation software first asks for authentication of the calling
user, and then searches for the calling location. Once the calling location is found,
the software searches in a data base for numbers of potential service providers
corresponding to the Depannage society members in the vicinity of the caller.
Once various numbers are found, the service tries to connect the caller to one of
the potential called numbers (in a sequential or parallel way). In any case the
caller should be connected to a secretary or to a vocal box. In parallel a second

logic will make periodic location requests to the Depannage society members in
order to record their latest locations in the data base. The Depannage service
is implemented as a layered application consisting of several components. Each
layer or component is described by a group of scenarios; the connection between
layers is very clean and precise. The objects in each layer communicate only
among themselves and with the objects in the adjacent layers. This architecture
enables applying methodological approaches to break down the complexity of
the system.

3.2 Components and composites

A telecommunication system is based on a set of components — reusable software
units specified by their interfaces. The specification of these interfaces should be
given by the signatures of the required and provided methods and signals, and
by the description of the dynamic behaviors. Components should be reusable,
thus they should be specified independently of any embedding system.

+Instsearch Search

ocationService earchService —Searchipi

+HnstLocation : Location[0.. 20}
—L

SearchToCC

ServiceTolboation ServiceTogearch

PpiES +|nstApiCa'II_:ﬁEé(rDSall

Service oo
APITofC
epannagelocation I—\I:leyznannageSearc:h '—bepannmge.&pil
—pi
+HnstDepannage: Depannage[0.. 20} +Hnstlser USERS

Fig. 1. The architecture of the Depannage application

A composite structure will be specified as a white box by the set of embedded
components and the connections between these components [14]. Such structural
design could use hierarchical composition. The top-level of the composite struc-
ture will correspond to the complete system provided to the client, in our case
the telecommunication service Depannage.

Fig. 1 shows a partial view of the complete application (using UML compos-
ite structure diagram), the main components involved and the communication
between these components using ports and connectors.

4 Overall view of a design methodology based on
verification

A classical problem in telecommunication is that of “feature interaction” [11].
Telecommunication infrastructure and applications are in a continuous evolution,
new services and service features are developed and deployed in the network
along with existing ones. They are developed by several teams in parallel, in order
to satisfy new customer requirements. The feature interaction problem occurs
when the introduction of a new service (feature) causes the new system to violate
an existing service requirement. This is a critical problem in telecommunication
— involving significant loss of time and money during testing and operation
phases. It can be properly solved only by identifying the problems during the
design and modeling phases.

To address these issues we present a methodology that supports an incre-
mental paradigm for specifying and developing telecommunication applications.
First, we describe a high level specification of the service and component be-
havior, including the behavior of the communication between these components.
This description includes timed constraints. Then the consistency of this high
level specification is validated, and testing is performed with respect to end-to-
end requirements. The analysis is performed initially by simulation and anima-
tion methods. In a second step, smart play-out is used in order to formally verify
some of the requirements.

5 High level specification

The wish to specify components in a reusable way requires that the component
specification should be done independently of any embedding architecture. Such
specification should correspond in a universal LSC to an abstract view of the
component, describing how the component will react to events coming from its
provided ports and how (and when) this component will act on its required ports
(execution flows).

For the system — i.e., the complete application — the specification should
be enhanced by universal LSCs describing the communications between these
components. Such LSCs could include time constraints and delays on the com-
munication. The end-to-end requirements are expressed by existential LSCs and
will be validated during the simulation/animation of the model.

In this paper, we will focus our presentation on the Search component, the
Users component and the communication between these components. A detailed
description of the entire model is available online at [5].

5.1 Search component

This component has two ports, SearchService for communicating with the ap-
plication that will use it and SearchApi in order to communicate with platform
components and indirectly with the users and the environment.

‘ Searchi ‘ SearchApi1| SearchSerl
< .< ____________ E_SEB_'J_'I_Sh??_a{c_h[] N ,
e et Taeet(T rue]
i LesDest3l, _>,

__L__J___I__

< < ____________ E_st_a_b_ll_SbSP_ath _\‘ .

.....

Fig. 3. First LSC for Search Component - Symbolic

The universal chart SearchiExact, appearing in Fig. 2, requires that when-
ever SearchSer1 sends the EstablishSearch method to Searchl, as specified
in the prechart, the Searchl port sets the value of Tset to TRUE and then sends
the LegDest (3) method to SearchApil.

In order to specify this requirement in a generic way, so it will hold for all
other instantiations of the classes SearchService, Search and SearchApi, we
use symbolic instances [12] as shown in the chart Searchi in Fig. 3. Whenever
an instance of class SearchService sends the EstablishSearch method to an
instance of class Search, the Search instance sets the value of Tset to TRUE
and then sends the LegDest (3) method to a searchApi instance which has an
ID that is identical to the ID of the Search instance. This is done by storing
the Search ID using an assignment to variable X7, and in the ellipse above the

! ID=x380

{
LR /

%360 = SearchlD] |

E stablish chRetum(T rLje,M abilz]

;

Fig. 4. Second LSC for Search Component

SearchApi instance specifying the binding condition .ID = x7, meaning that
an instance of class SearchApi with ID equal to the value stored in X7 will be
bound to this chart, and then later the LegDest (3) method will be sent to it.

The universal chart Search2, appearing in Fig. 4 specifies a behavioral re-
quirement that is relevant when the SearchApi gets information on the
LegCallReturn and forwards it to the Search port. The prechart of Fig. 4 con-
tains a scenario and not a single message as in Fig. 3. The chart will be activated
if an instance of class Search sends the LegDest (3) method to a searchApi in-
stance, and this searchApi instance sends the LegCallReturn message back to
the Search instance.

Another LSC feature introduced in Fig. 4 is the If-Then-Else construct used
to specify conditional behavior. In the main chart, if the parameter of
LegCallReturn is FALSE (the parameter is stored in variable X337) then Search
sends LegDest (2) to the SearchApi instance and sets the value of Tset to TRUE.
Otherwise, the other part of the subchart is taken, which involves a nested If-
Then-Else construct. Here we branch according to the time that has elapsed
since the LegDest (3) message was sent. If this time is less than 1 time unit

Lk
</_ | _Caltrived] >. \

><32? T\me /

5 \nglaPhUneS Userdction=quickanswer

[x]

vt

4_ + Userdction]answer)

Fig. 5. The Mobile Phone

Search sends LegDest(2) and sets the value of Tset to TRUE as before. This
corresponds to a situation in the system where a very quick answer by the
mobile phone means that we will be connected to its vocal box, a situation
which should be avoided in the Depannage service. If the time that has elapsed
since the LegDest (3) message was sent is greater than or equal to 1 time unit
the message EstablishSearchReturn (TRUE, Mobile) is sent to the appropriate
SearchService instance, corresponding to continuing the process of connecting
to the mobile phone.

5.2 The users

We model only a simple view of the user behavior, focusing for a fixed phone on
three possible states, corresponding to user actions : busy, answer with a delay,
or noanswer. The specification of a mobile phone, shown in Fig. 5 introduces an
additional state quickanswer. In reality, if a mobile phone is reachable but in
a disconnected state, the communication will quickly be connected to the vocal

box of the phone. This behavior should be taken into account carefully while
designing the service. Some service logics should not connect the calling party
to a vocal box. In the Depannage service we want to be connected to a person
which is available or to a secretary or in the worst case to the vocal box of the
depannage company, but not to the vocal box of the mobile phone of one of the
Depannage service providers.

5.3 The communication view

DepToSearchl DepToSearch2

s T
< E_s[qb_li_sh_Sp@[c_hg \ . < Establlshs earc|

| %135 = DepannageSearch.|D h]
: EstablishSearct&] :

__J____l__ __J____l__

< EstabllshBearchHetum%; 7x518] \: < EstabllshEearchFletum $a13514) \:

E | %138 := DepannageSearch.|D h]
: Establishb sarchi eturnp@;‘l 3x514)

tal (8=}

Fig. 7. Connectors between components Search and Depannage

DepTolocl DepToloc2

429 Cldx430)
s e enee o e e £
bepannage:DeplannageLocallioh:icationS arvice!: Dep:annageLocallidIicationS envice: ! Lacation:

S S

< Bearchlocationf} A . < Bearchlocationt} A :
| %429 := Depannagelocation.|d Ij E | #4320 := LocationS ervice.|d Ij

; Times 352 + 12 ; pearchLocationd

Bearchlocationt} ; : :

WASZ = Time 5

Fig. 8. Connectors between components Depannage and Location

Developing a new telecommunication application is performed by taking ex-
isting components (each such component is already specified by a set of LSCs),
and connecting them together. In our methodology this assembly of components
is also done by specifying universal LSCs defining the connection between com-
ponents. Following the architecture diagram, these LSCs will specify the com-
munications between components. Such LSCs for connector behaviors may be
simple or complex, depending on time constraints and delays, on the parallelism
of thread execution, and the fact that, in the system architecture, a component
port could be connected to several other component ports (for example the port
ApiES of the component ApiCall in Fig. 1).

To specify the communication between two components following an architec-
tural diagram, we have to construct two LSCs for each event. Consider the con-
nection between the components Depannage and Search. We have to express that
the event EstablishSearchrequired by the component Depannage and provided
by the component Search should go through the port DepannageSearch of the
component Depannage and the port SearchService of the component Search.
This is described in the charts DepToSearch1 and DepToSearch? in Fig. 6(a),(b).
Similar LSCs are also specified for the return event EstablishSearchReturn in
Fig. 7(a),(b).

The connection between the components Depannage and Location is de-
scribed in Figs. 8, 9. In these LSCs we also introduce time delay on the communi-
cation. The LSC DepToLoc1 of Fig. 8 specifies that the method SearchLocation
will take between 1 and 2 time units. The method SearchLocation is an asyn-
chronous method, designated by the open arrow, in contrast to the closed arrows
for synchronous methods. This time constraint is specified by storing the time
in variable x452 immediately after sending SearchLocation and adding the two

LocToDepl LocToDep2

¢ ld=xaz VD434
o £
! Lacation: : LCicationServic:IBBp:“:lnnageLocallion:: LcicationServicIBBplannageLocallion:bepannage:i
< SeachLocationRetup{<431) \‘: < SearchLocationRetur<433) \:
| %432 = LocationService.|d D] E | %434 .= Depannagelocation. | d D]

; Timesd50 + 125 i SearchLocatiorRey
SearchLacationk etur1}p<431 [: | |

o o H
#4850 = Time < !

Fig. 9. Connectors between components Location and Depannage

hot conditions requiring Time > x452 + 1 and Time <= x452 + 2. A similar
requirement that the method SearchLocationReturn will take between 1 and
2 time units is specified in Fig. 9.

In some of the cases, describing the connection between components using
LSCs is quite straightforward, as shown in the examples above. We propose
that in the future such LSCs could be derived automatically by the tool using
appropriate annotations on the architecture diagram.

6 Simulation using play-out

Play-out allows a convenient way to debug requirements at an early stage and
to detect problems in the design. For this purpose we can use anti-scenarios,
behavioral requirements that are forbidden in the system. Consider the chart
NoQuickAnswer?2 in Fig. 10. It specifies that whenever SinglePhone3 makes a
quick answer by sending the self message UserAction(quickAnswer) and after
that DepSearchl sends the message EstablishSearch Return(True, Mobile)
to Depannagel, then the condition FALSE specified in the main chart must hold
— which can never occur — implying that this sequence of messages specified in
the prechart corresponding to a connection to the vocal box of a mobile phone
must never occur.

In play-out mode, if this chart participates in the execution, the prechart will
be traced and if it is completed the user will get a message that the system has
aborted due to the violation of a hot condition, as shown in Fig. 11. In this case
the violation was caused by a time delay in the APICall which is triggered by
setting the property CondTime of this object to TRUE. In general, once a violation

NoQuickAnswer2

%inglePhone# Feps earchl ’Ilepannage‘l

/ E"'_-_'_: UserActiori1[quic:kanswer] i ﬂ\\
[Cime—=—
o N — . } '

] EstablishSearchFleturnLT_ﬁje,Mobile] /r

\ P /

< FALSE >

Fig. 10. A forbidden scenario - No connection to the vocal box of a mobile phone

QuickAnswer2

%ingleF‘M Feps earchl

|3;w4nage1

%, Play-In Scenario Message

Falze Haot Condition Encountered. Chart MoQuickanswer2 caused System Abortl.
Clasing diagram ...

/

Fig. 11. Violation of a forbidden scenario during play-out

is detected it indicates a problem in the specification or the design of the service
and should be looked into carefully to identify and fix the cause of the violation.

7 Verification using smart play-out

Smart play-out [7] uses verification methods, mainly model-checking, to execute
and analyze LSCs. There are various modes in which smart play-out can work. In
one of the modes smart play-out functions as an enhanced play-out mechanism,
helping the execution to avoid deadlocks and violations. Thus, in this mode smart
play-out utilizes verification techniques to run programs, rather than to verify
them. In another mode, smart play-out is given an existential chart and asked
if it can be satisfied without violating any of the universal charts. If it manages
to satisfy the existential chart the satisfying run is played out, providing full
information on the execution and reflecting the behavior in the GUIL.

answer

% | FPhonel | ’Jepannagﬂ ‘ Phoned ‘
___l___i___l___l_ ______

.....

—
| L ClickCall_y; . |
—-—— :
| S |
I : : : ﬁ___ Tset Usertction]quickanswer] |
ey N
| CrEETD |
| |

Fig. 12. An existential chart implying connection to the vocal box of a mobile phone

UserCallForward

%
__J,___l__\

< L Cle(Cal)

T1 T Tt forwardachif{True)

Fig. 13. A new feature of forwarding calls

In the Depannage application we mainly used existential charts for specifying
scenarios that should not occur, and then asked smart play-out if they can be
satisfied. If the existential chart was satisfied, this means we have discovered an
error in our specification model, and the execution can provide insights on what
went wrong. A cleaner way would have been to specify these scenarios as anti-
scenarios, as shown in Fig. 10. An enhancement to smart play-out is currently
being developed to support this work-flow.

Consider the existential chart shown in Fig. 12. It describes a scenario that
implies a user (on Phonel) being connected to the vocal box of a mobile phone
(Phone3d), an undesired behavior since then the user does not get a personal
response to his request as is desired for the Depannage service. Smart play-
out proves given the universal charts in the model that this scenario cannot be
satisfied.

We then added a new feature to our telecommunication model, forwarding
calls, shown in Fig. 13, applied smart play-out, and it found a way to satisfy

% |:Jepannagz31 | Phanel @
S e o S S

Aocess] Locationl

Fig. 14. Timing Requirements

the chart of Fig. 12. The interaction of the new feature of the forwarding calls
allowed an erroneous situation in which a user is connected to a vocal box. A
short animation of this behavior is shown in [5].

The current version of smart play-out is still restricted in terms of the lan-
guage features it supports. Thus to use it some restrictions should be made on
the model: no symbolic-instances, and only one parameter for each signal. We
are currently working on lifting these restrictions. We have also abstracted and
simplified the model to avoid the well known state-explosion problem. In a simi-
lar manner we have verified also timed properties of the application, as specified
in Fig. 14. The entire model and the reduced versions are all available in [5].

8 Related work and Future directions

Scenario-based specification is very helpful in early stages of development [1],
and is used widely by engineers. A considerable amount of experience has been
gained from it being integrated into the MSC ITU standard [13] and the UML
[14]. The latest versions of the UML recognized the importance of scenario-based
requirements, and UML 2.0 sequence diagrams have been significantly enhanced
in expressive capabilities, inspired in part by the LSCs of [6]. In [8], we report
on the methodological experience gained by using LSCs and the Play-Engine in
several industrial case studies. (We briefly mention the Depannage application
t00.)

Performance requirements — the number of requests that a system can man-
age — are very important in telecommunication applications but are not consid-
ered in this work. Simulation techniques based on queuing theory can be used for
such performance evaluation. These techniques are, in many tools, based on the
description of dynamic behavior as execution flows between components and ma-
chines. Thus, LSCs seem to be a suitable language for integrating performance
evaluation and formal verification [3].

References

1.

2.

10.

11.

12.

13.
14.

15.

R. Alur, G.J. Holzmann, and D. Peled. An analyzer for message sequence charts.
Software Concepts and Tools, 17(2):70-77, 1996.

R. Castanet, A. Cavalli, P. Combes, P. Laurencot, M. MacKaya, A. Mederreg,
W. Monin, and F. Zaidi. A multi-service and multi-protocol validation platform-
experimentation results. In TestCom, volume 2978 of Lect. Notes in Comp. Sci.,
pages 17-32. Springer-Verlag, 2004.

P. Combes, F. Dubois, W. Monin, and D. Vincent. Looking for better integration
of design and performance engineering. In R. Reed, editor, SDL Forum, volume
2708 of Lect. Notes in Comp. Sci., pages 1-17. Springer-Verlag, 2003.

P. Combes, F. Dubois, and B. Renard. An Open Animation Tool: Application
to Telecommunications Systems. Computer Networks, 40(5):599-620, December
2002.

P. Combes, D. Harel, and H. Kugler. Supplementary material on the depannage
application. http://cs.nyu.edu/~kugler/Depannage/.

W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1):45-80, 2001. Preliminary version appeared in
Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-Based Distributed
Systems (FMOODS’99).

D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral
requirements. In Proc. 41" Intl. Conference on Formal Methods in Computer-Aided
Design (FMCAD’02), Portland, Oregon, volume 2517 of Lect. Notes in Comp. Sci.,
pages 378-398, 2002. Also available as Tech. Report MCS02-08, The Weizmann
Institute of Science.

D. Harel, H. Kugler, and G. Weiss. Some Methodological Observations Resulting
from Experience Using LSCs and the Play-In/Play-Out Approach. In Proc. Sce-
narios: Models, Algorithms and Tools, volume 3466 of Lect. Notes in Comp. Sci.
Springer-Verlag, 2005.

D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag, 2003.

D. Harel and R. Marelly. Specifying and Executing Behavioral Requirements: The
Play In/Play-Out Approach. Software and System Modeling (SoSyM), 2(2):82-107,
2003.

L. Logrippo and D. Amyot. Feature Interactions in Telecommunications and Soft-
ware Systems VII. 10S Press, 2003.

R. Marelly, D. Harel, and H. Kugler. Multiple instances and symbolic variables
in executable sequence charts. In Proc. 17th Ann. ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’02), pages 83-100,
Seattle, WA, 2002.

ITU-TS Recommendation Z.120 (11/99): MSC 2000. ITU-TS, Geneva, 1999.
UML. Documentation of the unified modeling language (UML). Available from
the Object Management Group (OMG), http://www.omg.org.

Z.120 ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva, 1996.

