Nordic Journal of Computing

MODELING AND VERIFICATION OF CRYPTOGRAPHIC
PROTOCOLS USING COLOURED PETRI NETS AND
Design/CPN

Issam Al-Azzoni Douglas G. Down
Ridha Khedri
McMaster University
1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
{alazzoi, downd, khedri t@mcmaster.ca

Abstract. In this paper, we present a technique to model and analyse cryptographic pro-
tocols using coloured Petri nets. A model of the protocol is constructed in a top-down
manner: first the protocol is modeled without an intruder, then a generic intruder model is
added. The technique is illustrated on the TMN protocol, with several mechanisms intro-
duced to reduce the size of the occurrence graph. A smaller occurrence graph facilitates
deducing whether particular security goals are met.

ACM CCS Categories and Subject Descriptors: D.4.6 [Security and Protec-
tion]: Authentication, Verification; D.2.2[Jesign Tools and Techniques]:
Petri nets; F.4.3Nlathematical Logic and Formal Languages]: Formal
Languages; C.2.2Network Protocols]: Protocol verification;

Key words: Cryptographic protocols, Protocol analysis, Coloured Petri nets, Design/CPN,
Security goals.

1. Introduction

Cryptographic protocols play a crucial role in achieving security in today’s com-
munication systems. They are used in the Internet and in wired and wireless net-
works to ensure privacy, integrity and authentication. A cryptographic protocol
is a communication protocol that uses cryptographic algorithms (encryption and
decryption) to achieve certain security goals [5, 11].

Generally, a cryptographic protocol involves two communicating agents who ex-
change a few messages, with the help of a trusted server. The exchanged messages
are composed from components such as keys, random numbers, timestamps, and
signatures [42, 44]. At the end of the protocol, the agents involved may deduce cer-
tain properties such as the secrecy and authenticity of an exchanged message [41].

In analysing a cryptographic protocol, all possible actions by an intruder must be
considered. An intruder is an attacker who wants to undermine the security of a
protocol. An intruder can perform the following actions to mount attacks [41]: pre-
vent a message from being delivered, copy messages, intercept a message by pre-
venting it from reaching its destination and making a copy, fake a message, modify

Received 26th October 2005.

2 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

a message, replay a message, delay the delivery of a message, and reorder mes-
sages. A fake message is fully generated using material gleaned from past ex-
changed messages while a modified message is a genuine message that the intruder
partially altered.

The intruder manipulates messages as outlined above to mount an attack on the
protocol. In this paper, we are concerned with attacks that result from flaws in-
herent in the protocol. Flaws in cryptographic protocols may allow an intruder
to authenticate as someone else, or gain information that should not be otherwise
revealed. We assume cryptographic algorithms are setardt is not possible
to decrypt a ciphertext without knowledge of the decryption key. This assumption
allows us to focus on finding flaws inherent in the analysed protocol structure.

1.1 Literature review and motivation

The verification of cryptographic protocols has gained a lot of interest in the re-
search community, due to several factors. First, these protocols play a major role
in the security of communication systems. Second, although these protocols are
simple looking (only a few lines), they are extremely difficult to verify. Finally,
such protocols are excellent candidates for formal analysis methods. In fact, most
of the ongoing research about cryptographic protocols i$oomal methodsf
verification. Formal methods used for the analysis of cryptographic protocols can
be classified as follows:

1) Methods based on logithese methods build a logic model for the protocol,
and reason in terms of logical propositions. Such methods inddéd¢ lo-
gic[5], GNY logic[17], andMAO logic[30].

2) Methods based on algehr#éhese methods involve modeling the protocol as
an algebraic system, and reason in terms of the algebraic properties of the
model. Such methods include tR&SP algebrd41].

3) Methods based on state machindsese methods involve modeling the pro-
tocol in terms of a general modeling tool that enumerates the state space, and
then analyzing the model in terms of state invariants. Such methods include
Inajo [23], andNRL Analyzef32].

A good survey of the different formal methods for verification of cryptographic
protocols is provided in [31], and [40].

There is no one method that can be used to model all aspects of cryptographic
protocols, and thus detect all types of flaws [31]. The best a formal method can
do is to guarantee that a security property is satisfied by a certain cryptographic
protocol, given that a set of assumptions hold. For instance, one of the assumptions
all formal methods make is that secure cryptographic algorithms are used. Usually,
more than one formal method is used to prove different security properties of a
protocol.

The following lists a few aspects in which formal methods may differ:

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 3

1) Automated tools: several formal methods have a computerized tool to help
in the analysis. Most of the state machine based methods use an automated
tool to construct and analyze the state space. On the other hand, logic based
methods are hard to automate since they involve non-trivial proofs.

2) Proof abilities: some methods, especially those based on logic and algebra,
can be used to formally prove that a security property is satisfied by a given
cryptographic protocol [15]. Such methods state the properties of intruder
actions and reason in terms of deduction rules. Other methods, most of those
based on state machines, are geared toward determining the existence of cer-
tain flaws rather than guaranteeing that flaws do not exist in a given crypto-
graphic protocol [18]. Such methods require explicitly stating the possible
intruder attacks. Thus, they will not be of any help in detecting attacks not
included in the model.

3) Systematic approach: protocol analyzers may find certain methods more sys-
tematic than others in constructing the required model of the cryptographic
protocol. For instance, a protocol needs to be converted to an idealized form
before being analyzed under the BAN logic. Rubin and Honeyman claim
that “there is no clear transformation method presented” [40] to convert a
protocol into an idealized form. This can be attributed to the fact that the
idealization step depends on the verifier's understanding of the protocol as
well as its assumptions.

In this paper, we explore the use of coloured Petri nets [19, 20] in the verification
of cryptographic protocols. In [19, page 69], Jensen states that these nets are ana-
logous to directed graphs and non-deterministic finite automata. Therefore, from
the perspective of the classification of formal methods given on page 2, the tech-
niques that are based on coloured Petri nets belong to the class of methods based
on state machines.

The ability to model concurrent behaviour has made coloured Petri nets an ap-
propriate analysis tool for cryptographic protocols. There are two distinctive ad-
vantages of using coloured Petri nets: they provide a graphical presentation of the
protocol, and they have a small number of primitives making them easy to learn
and use. Furthermore, there exists a large variety of algorithms for the analysis of
coloured Petri nets. Several computer tools aid in this process.

In the literature, we find many papers where the authors report on projects that
investigated the practicability of using CP-nets and the CPN tools for the specific-
ation, verification, validation, or performance analysis of the considered system.
For examples of industrial use of CP-nets dbesign/CPN we refer the reader
to [8, 7, 6], and [21, Chapter 7]. In [47], Wheeler describes a technique to use
CP-nets and the CPN tools to model and analyse a sub-network reconfiguration
protocol for a Metropolitan Area Network. In [36], Mnhaouer et al. report on the
usage of CP-nets and the CPN tools in modeling the centralised architecture of
the timed-token Fieldbus protocol. In [9] and [21, Chapter 3], the authors outline
how they used CP-nets and the CPN tools to verify a protocol used in audio/video

4 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

systems. de Figueiredo et al. [14] report on a part of a large modeling project con-
ducted in co-operation with Hewlett-Packard. They give the models and the ana-
lysis performed on a number of variants of the TCP protocol. In [25, 26], we find
applications of CP-nets and their supporting computer tools in the development of
communication protocols for interconnecting backbone networks and mobile ad-
hoc networks. An exhaustive summary on the usage of CP-nets as well as CPN
tools in a variety of areas can be found at the website [13].

During the 1990s, several researchers applied coloured Petri nets in the verifica-
tion of cryptographic protocols [4, 38, 43, 3]. The techniques developed by these
researchers use a form of coloured Petri nets that is lower level than Jensen’s CP-
nets [19]. For instance, the following features have not been used: arc inscription,
guard expression, CPN/ML statements, fusion places, and functions on the values
of the coloured tokens. Having such features would result in having smaller, easier
to understand, and extendable models.

Furthermore, the computer toblesign/CPN[12, 33] has not been explored as
a potential automated verification tool to deal with cryptographic protocols. We
claim that given the power ddesign/CPN one can construct a coloured Petri net
model of a cryptographic protocol and use advanced features to allow stronger
and more efficient verification. Examples of such features include: inscriptions,
occurrence graph tools, hierarchical features, and ML queries.

In this paper, we are motivated to explore the use of Jensen’s form of coloured
Petri nets andesign/CPNin the verification of cryptographic protocols. In the
process, we develop a new technique that addresses limitations of the techniques
presented in [4, 38, 43]. We focus on benefiting from the high level constructs of
Jensen’s coloured Petri nets, as well as ugiegign/CPN

1.2 Background

A Petri netis a directed, weighted, bipartite graph consisting of two kinds of nodes:
places and transitions. It iermally defined37] as a 5-tuple(P, T, F, W, M),
where:P is a finite set of places[is a finite set of transitiond; € (P x T) U
(TxP)isasetofarcalV: F — {1,2,3,...} is the weight function, ani¥ly : P —
{0,1,2,...}is the initial marking.

There are many varieties of coloured Petri nets. We, however, are concerned
with one particular varietyJensen’s coloured Petri nef&9]. From now on, we
refer to Jensen’s coloured Petri netsGi3-nets CPN refers to a single Jensen’s
coloured Petri net. CP-nets u€#N ML as an inscription language. CPN ML
is an extended version &L (Meta Language) which is a popular functional lan-
guage standard [39, 46]. This is what distinguishes CP-nets from other varieties of
coloured Petri nets [19].

1.2.1 Jensen’s Coloured Petri Nets

CP-nets are one of many different modeling languages. Here, we provide a formal
definition for non-hierarchical CP-nets [19].

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 5

A multi-setmsover a domairX is a function that maps each elemert X into a
numbemgx) e N. We represent a multi-set as a formal spijpx mgx)’x, where
mgx) is the number of occurrences wfn ms mgx) is called the coefficient ok
in ms For examplemsl = 2’a + 1’candms = 3'b+1’c are two multi-sets defined
on{a, b, c}. Note thaimg denotes the size of the multi-seis |mg = > cx MIX),
e.g.|msl| = 3. Use useXys to denote the set of all multi-sets ovér

A CPN[19]isatupleCPN=(Z, P T, AN, C, G, E, |I) whereX is a set of
non-empty typesaoplour set$, P is a set of placesT is a set of transitions, anél
isasetofarcsN: A— Px T UT x Pis anode function that maps each arc
€ Ainto a pair(sourcda), destinatiora)), wheresourcga) anddestinatioria) are
the source and destination nodesapfespectively. Given an ag; the source and
destination nodes @& must be of different types.,e. one must be a place while the
other is a transitionC is a colour function that maps each plgeto a colour set
C(p) specifying the type (colour set) of tokens that canreside I8 : T — Bis
a guard function that maps each transitiagmto a boolean expression (a predicate)
G(t). E is an arc expression function that maps eachaanto an expressioi(a),
which must be of typ€(p(a))ms Wherep(a) denotes the place d(a). Finally,
| is the initialization function which maps each plgeéo a multi-setl (p) of type
C(p)ms specifying the initial marking of the plaqe

An example of a Design/CPN model is provided in [22]. A comprehensive guide
to the practical use of CP-nets and Design/CPN can be found in [24]. Analysis
methods and theoretical background are provided in [16, 19, 20, 37].

The set of variables of a transitidns denotedvar(t). Typgv) € denotes the
type ofv. A binding element, b) is a pair consisting of a transitidrand a binding
b of values to all of the variables afsuch that the evaluation of the guagdt)
returns true. We write binding elements in the fofim(vy = C1,---,Vh = Cp))
whereVar(t) = {vi1,---,Vy} andcy, - -, cy are colours (data values) such tliat
Typdv;) for 1 <i < n. The initial marking of a CPN is denoted . M(p)
denotes the marking of a plagein a given markingM. A stepY is a non-empty
and finite multi-set of binding elements. Itis represented by listing the (ia§))
whereY(t) # 0. Y(t) is the multi-set of bindings forin Y. A stepY is enabled
in a given markingM if all of its binding elements are enabled . A binding
element(t, b) is enabledin a markingM if each input placep of t is marked with
at least the multi-sefE(a)(b) of tokens, where is the arc whose source nodegs
and destination node ts E(a)(b) returns the multi-set of tokens that results from
evaluating the arc expressid&(a) using the bindind. A transitiont is enabled
in a markingM if there is an enabled binding elemghtb), with a bindingb, in
M. In this case, we say thatis enabled inM for the bindingb. When a step
Y is enabled in a markiniyl;, it may occur. If it occurs, it changes the marking
M; to another markindgvl, by removing tokens from the input places and adding
tokens to the output places, as determined by the arc expressions evaluated for the
step bindings. In this case, we say tih\d is directly reachabldrom M1 by the
occurrence of the steyy we denote this bi1[Y)M>. A finite occurrence sequence
is a sequence of markings and stépg Y1) M2[Y2)Ms - - - Mp[Yn) M1 Wheren e
N andM;i[Y;)Mi,1 fori € 1,--- ,n. Aninfinite occurrence sequenigan infinite
sequence of markings and statdg[Y1)M2[Y2)M3 - - -, such thatM;[Y;)M;,, for

6 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

i € N*. A marking M” is reachablefrom a markingM’ if there exists a finite
occurrence sequence havikl as an initial marking an®1”” as a final marking.

1.2.2 Hierarchical CP-nets

Hierarchical nets allow us to construct large CP-nets by combining smaller nets.
Two CPN constructs exist that allow us to create hierarchical nets: substitution
transitions and fusion sets. A non-hierarchical CPN is callpdge In Design/-

CPN, each page hagmge hameand apage numberin this paper, we use the page
name to refer to a page. gubstitution transitions a transition which is described

in more detail in a separate CPN page. The page with the substitution transition
is called thesuperpage The page that defines a substitution transition is called a
subpage Each substitution transition corresponds tdrestanceof the subpage it

is related to. Information on how a superpage is glued to a subpage is provided
in the port assignmentThe port assignment for a substitution transition assigns a
place from the subpage (callpdrt) to a place in the superpage (calkmtke}. We

note that, in Design/CPN, if the socket and its related port have identical names,
then their assignment is not shown in the hierarchical inscriptions. In our work, we
consider two types of portsnput andoutputports. An input port is a place in the
subpage that must be related to a socket that is an input place to the corresponding
substitution transition. On the other hand, an output port is a place in the subpage
that must be related to a socket that is an output place from the corresponding sub-
stitution transition. To enable a specifier to state that a set of places are considered
to be identical, the notion dusion of placess used. The set of such places is
called afusion set The places that participate in a fusion set may therefore belong
to one or more pages.

1.2.3 Petri nets analysis approaches

There are three different approaches to analyzing Petri nets. The first approach
involves enumerating all possible states.re@chability tree sometimes referred

to as aroccurrence graphis used to record all reachable states and dependencies
among the states. A reachability tree is a directed graph where a node identifies the
current marking, while an edge identifies a transition. An edge going from Aode

to nodeB labeledt in a reachability tree indicates that this transittomoves the

net from the state identified by nodeto the state identified by node

The second approach involves analyzing the Petri net by meastatefinvari-
ants A Petri net state invariant is a statement that is satisfied by all reachable
markings of the net. This approach requires representing the net as well as its
dynamic behaviour as matrix equations or other mathematical constructs. State
invariants are then formally proved using established rules.

The third approach involves the reduction of the Petri net to a standard form that
preserves the properties of the original net. Assume a Petri net is to be analyzed in
terms of a specified property, then certaensformation rulesnay exist that pre-
serve such a property in the reduction process. Once arriving at a reduced version

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 7

of the Petri net, the verification of the property under investigation is simplified.
The results then apply to the original Petri net.
In this work we use the first analysis approach which employs occurrence graphs.

1.3 Structure of the paper

In the next section, we give an outline of the new technique. In Section 3, we
demonstrate the technique by using it in the modeling and analysis of the Tatebay-
ashi, Matsuzaki, and Newman (TMN) [45] protocol. Finally, Section 4 summarises
the benefits of the technique and suggests possible extensions. This paper is an ex-
tended version of [2]. A more extended version of this work can be found in [1].

2. Outline of the Technique

Our technique is a finite-state analysis method [18]. Thus, it involves modeling
the protocol as a coloured Petri net, then an automated Dadign/CPN is used

to generate all possible states. Insecurities are discovered if an insecure state is
reachable in the CPN occurrence graph.

We provide several technical features not existing in other cryptographic protocol
verification techniques using Petri nets. One of these features is the use of a central
place to hold the tokens intercepted by the intruder; we call this place a DB-place.
Its marking models the accumulated intruder knowledge. It is implemented by us-
ing a global fusion set of places. Although the pages of the illustrative example
presented here are not big enough to fully illustrate the advantages of the use of
fusion places, their use is extremely advantageous when one deals with more com-
plex protocols. The colour set of this fusion set is defined to be the union of the
colour sets of tokens that can be possessed by the intruder. The use of the DB-place
makes the intruder model simple and clear.

We implement a token-passing scheme to prevent unnecessary interleaving of
the firings of protocol entity transitions. This results in a smaller occurrence graph.
Other techniques [4, 38, 43] handle the issue of state explosion differently. They
restrict the behaviour of the intruder by introducing new assumptions. On the other
hand, the intruder model in our technique is less restricted. This implies that our
technique may capture a larger variety of attacks.

We use a top-down modeling approach. At the highest level of abstraction, an
entity is modeled as a substitution transition. Each substitution transition is defined
in a separate subpage that provides a lower level description of the behaviour of the
entity.

In modeling a cryptographic protocol, we follow these steps:

1) Build a model with no intruder: In this step

(a) using CPN ML notation, we declare the colour sets, functions, variables,
and constants that will be used in the net inscriptions of the CPN model,

(b) we build a top-level model in which the protocol entities are modeled as
substitution transitions;

(c) we define the substitution transitions from the top-level model.

8 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

2) Add the intruder to the model: In this step,

(a) we extend the CPN declarations to include the intruder;

(b) we add the intruder transition to the top-level model;

(c) we define the intruder substitution transition.

(d) we Implement a token-passing scheme.

(e) we specify security requirements stated in terms of CPN markings.

(f) we analyse the resulting occurrence graph by using OG queries to locate
markings that violate a security requirement.

3. The Technique

In this section, we first present our sample protocol, the TMN protocol, and then,
using our technique, we build its model. The selection of the TMN protocol to
illustrate our technique is motivated by its familiarity. Any other protocol listed
in [28] could have been used.

3.1 The TMN Protocol

The TMN protocol is a key exchange cryptographic protocol for mobile commu-
nication systems. The protocol involves two entitidsand B, and a server), to
facilitate the distribution of a session ké¢ug. The attack illustrated in this paper
is a known one. The reader can find very similar attacks in [28, 29]. Moreover,
three other known attacks on this protocol are given in [28].

Initially, the TMN protocol assumes that bo#handB know the public key of],
K5". We use the following notatior(i) A — B: Xto indicate that in théth step of
the protocol agenh sends messagéto agentB. We writeA — B : X, Y to denote
“A sendsB the messag& along with the messageé’. Furthermore keydata)
denotes the messadataencrypted using the keyey The protocol proceeds as
follows:

(l) A—-J:B, Kgb(KAJ) (3) B-J:A Kgb(KAB)
(Z)J—> B:A (4)J—>AZ B, KAJ(KAB)

When A (the initiator) wants to start a session wiBh(the responder)A chooses
a keyKay, encrypts it using the public key df (K", and sends it along with the
identity of B to the served (step 1). Upon receiving the first message, the server
decryptsKi®(Kaj) using its private keyK7) and obtaind{a;. Then, in the second
step,J sends a message Bcontaining the identity oA. WhenB receives this
message, it chooses a session Kay, encrypts it usinK’, and sends it along
with the identity ofAto J (step 3). Upon receiving the third message, the server
decryptsKi*(Kap) using its private keyK) and obtainKag. Then,J sends to
A the keyKag encrypted undeKaj along with the identity oB (step 4). When
A receives this message, it decrypts it using thelkgy, to obtain the session key
K/_\B.

The keysKaj andKag are symmetric keys freshly created AyandB, respect-
ively. The keyKaj must be known only té\ andJ; and is used to sendag in an

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 9

encrypted form as indicated in step 4 of the protocol. Thekgymust be known
only to A, BandJ, and it is used as a session key. ThiigjsesKag to encrypt
messages it sends B) and vice versa. When the communication session between
AandB is over,Kag is discarded. A new session key is used in every protocol run.

3.2 Modeling the Protocol with no Intruder
3.2.1 CPN ML Declarations

In our modeling of cryptographic protocols, messages are composed of fields.
Some of these fields are atomic, they include entity identities, keys, and nonces.
The other fields are constructed from the atomic fields. For instance, a ciphertext
K(A) can be viewed as an ordered p@it K), whereA is the identity anK is the
encryption key.

For the TMN protocol, we define the following:

1) Colour sets:

a) The atomic fields are the set of identiti¢s; {A, B}, and the set of keys,
K = {Kag, Kag, Kgb, Kgr}.

b) All ciphers have the same formatl (k2), wherekl andk2 are of typeK.
For instanceK[(Kay) is the ciphertext of the first messagtc Thus,
the ciphertext colour s& is defined a& = K x K.

c) Messages are generally composed of an identity and a cipher. For in-
stance, in the TMN protocol, the first messagg(BsK["(Kaj)) and
the third message i6A, KJ°(Kag)). Thus, the message colour ddt
is defined asM = | x C. Note that the second message of the protocol
only includes an identity. Hencé,is used as the colour set for such
messages.

d) The TMN protocol implicitly assumes thdtknows the originator of the
first message it receives. To model this, we define the colouviset
MxI. Thus, the first message thhteceives is actually composed of two
fields: the message contentB, K7(Ka;)), and the sender’s identi.

e) We use a special colour skt = {e} to prevent an infinite number of
transition firings. For instance, by using a construct such as in Fig-
ure 3.1, we force the transitioh to fire at most once. Using such con-
structs is needed whenever a transition has double input arcs. As we
show later, the labels of double arcs are used to indicate tokens inher-
ent to an entity, or tokens that are to be used in subsequent subtasks
performed by the entity.

2) Variables: We use variables of the defined colour sets as inscriptions for arcs
of the CPN. They arekl, k2, andk of typeK, c of typeC, i of typel, andm
of type M.

3) Functions:

a) The functionDecryptionKeyk : K) returns the decryption key of a
given keyk.

10 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

. (K1, k2) .C

Figure 3.1 By using theE set, transitiorT can fire at most one time.

b) The functionS haredKefi : |) returns the shared key between entity
B and the entityi. For instanceS haredKefA) is Kag. We use this
function to model the behaviour &in which it generates a session key
based on the initiator’s identity, as shown in step 2 of the protocol.

The TMN protocol declarations are given in Figure 3.2 ustigN ML notation.

color I =with A| B
color K=wth Kaj | Kip | K pr | Kab;
color C = product K*K;
color M = product |1*C

color M = product ©MI;
color E=wth e;
var k1, k2, k: K;

var c: G

var i:1;

var m M

fun DecryptionKey(k: K): K = case k of Kaj => Kaj
| Kjp => Kjpr;

fun SharedKey(i:l1):K= case i of A => Kab;

Figure 3.2 The declarations for the TMN model

3.2.2 The Top-Level Model

The computer todDesign/CPNsupports hierarchical net construction. This makes
it possible to model cryptographic protocols in a modular way. Thus, the model
of a protocol is constructed by using sub-models of its agents. In CP-nets, this is
implemented by using substitution transitions.

First, we focus on the messages exchanged between the protocol entities. At this

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 11

EntityJ#3

P2->P10
M P4->P19

P3->P12
(i.c) 0 (i.c)

T1 T2

Hs | [EntityAnt i .
P1->P8 (mi) (mi)
P4->P9

T3

EntityB#2

P3->P7
P2->P1

Figure 3.3 The TMN top-level model with no intruder

level, protocol entities are modeled as transitions. Figure 3.3 shows a top-level
model of the TMN protocol. This net is described as follows:

1) TransitionT 1 represents entitk. In the first step of the protocoh generates
a token of typeM|. This corresponds to the first message thaends taJ,
along with the identity oA to inform J about the initiator. In the last step of
the protocol A consumes a token of typd.

2) TransitionT 2 represents entity. In the first step of the protocal,consumes
a token of typeMI. Then,J sends a token of type modeling the second
protocol step. In the third step of the protocdlconsumes a token of type
M generated by. Finally, J generates a token of typd modeling the last
message of the protocol.

3) TransitionT 3 represents entitf. Entity B consumes a token of typdn the
second step, and generates a token of Wgda the third step of the protocol.
3.2.3 Defining the Top-Level Substitution Transitions

We consider in detail the model of the initiathiand we give the models of entities
B and J without further elaboration (see [1] for more details about the models

12 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

M
(i,c) m i
- (D ()

k1
1B T ¢ @ (k1, k2)
(i,

Figure 3.4 PageEntityA

of entitiesB and J). The following is an informal description for the behaviour
the initiator of the communication sessioh, Thus,A always sends the message
B, K*(Kaj). The replyA receives is in the formd(t, c), wherei is an identity and

c is a cipher. EntityA checks that = B. If this is true, A decryptsc with Kaj.

If ¢ was decrypted withKaj, A accepts the received session key, and uses it for
communication withB in the current session.

Figure 3.4 shows the CPN model of entlyIt contains two subnets: one models
the subtask oA initiating a protocol run in step 1, while the second models the
subtask ofA receiving the last message frain

Port assignments are used to relate the top-level page, namMbkl with the
entity models. As the port assignments for the substitution transitioh sifow
(Figure 3.3), the sockd?l is related to the output poR8 of EntityA , while the
socketP4 is related to the input poR9 of EntityA

In EntityA , we use the instance fusion s@&s= {P1, P10} andKaj = {P2,
P12}. Fusion sets are used to allow an entity to control the order of subtasks and
check the validity of messages. For instant@as to remember the key it chooses
(Kayj) in the first step, in order to decrypt the ciphertext it receives in the last step.

In a similar way, we build the models of entiti@and J given respectively in
Figure 3.5 and Figure 3.6. Figure 3.7 shows the hierarchy page.

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 13

TABLE I: Instance fusion sets iBntityA

Instance Fusion Set Members of the Fusion Set
B P1, P10
Kaj P2, P12

. M
O —()"
T3 » P7

T2 P5

(Shar edKey(i), k2)

Figure 3.5. PageEntityB

Figure 3.6 PageEntityJ

14 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

Hierarchy#10

r = -
{ T

- — —- -

e — -y

- —— -

- ——
-

T2

Figure 3.7: The hierarchy page

3.3 Modeling the Protocol with an Intruder

The intruder is modeled as a separate entity that controls the communication chan-
nels between the protocol entities. Thus, it intercepts the exchanged messages and
stores them for future use. Then, it attempts to decrypt the encrypted portions of
the intercepted messages. Finally, it attempts to modify the message contents, or
even to generate new messages to replace the intercepted ones.

3.3.1 Extending the CPN ML Declarations

In order to add the intruder to the model, one must extend the CPN ML declar-
ations. The identity of the intruddn is added to the colour sét Also, an in-
truder keyKi is added to the colour sé&t. The DecryptionKeyand S haredKey
functions are extended to handle the new colol¥scryptionKeyKi) = Ki and
SharedKefin) = Ki.

During the execution of the protocaol, the intruder stores the intercepted messages
for future use. We model the intruder memory as a global fusion set that we call
the DB fusion set (DB stands for database). We refer to a place that is a member
of the DB fusion set as BB-place

A DB-place is expected to hold tokens of atomic and non-atomic types. In the
TMN protocol, a DB-place should hold keys, identities, and ciphers. Thus, we
define the DB colour set as DB 1 U K U C, and we use DB as the colour set of a
DB-place.

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 15

In CPN ML, DB is declared as follows:
color DB=union cl:l + cK:K + cC:C;

Here,cl, cK, andcC are selectors [33]. Thus, the intruder's possessiol@f is
modeled as reaching a marking where a tok€(Kab) is in a DB-place. Figure 3.8
contains the final CPN ML declarations.

color I =with A| B| In;

color K=wth Kaj | Kip | Kpr | Kab | Ki;
color C = product K*K;

color M = product |*C;

color M = product MI;

color DB = union cl:I + cKkK + cC G

color E=wth e;

var k1, k2, k: K;

var c: G

var i:1;

var m M

fun DecryptionKey(k: K): K = case k of Kaj=> Kaj
| Kip => K pr | Kab=>Kab | Ki=>Ki;

fun SharedKey(i:l):K=case i of A=> Kab | In =>
Ki | B=>Kab;

color S=with s;

Figure 3.8 Declarations used in the TMN model with an intruder

3.3.2 The Top-Level Model with an Intruder

Figure 3.9 shows the top level model of the TMN protocol with an intruder. The
substitution transitioT 4 represents the intruder, which was not included in the
earlier top level model given in Figure 3.3.

Each place in Figure 3.3 is replaced with two corresponding places as shown in
Figure 3.9: one is an input place to the intruder while the second is an output place.
For instance, placB1 in Figure 3.3 is replaced witR1 andP2 in Figure 3.9. This
is needed to model the intruder’s ability to receive a message (the input place), to
deal with it (transitionT4), and to substitute it with a new message (the output
place).

3.3.3 Defining the Intruder Substitution Transition

The intruder substitution transitiom4 in Figure 3.9) is defined by the subpage
intruder shown in Figure 3.10.

16 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

EntityJ#3
P7->P20
P3->P11
P2->P1
P6->P13

EntityA#1
P1->P8
P8->P9

T2

»

EntityB#2
P5->P7
P4->P1

Figure 3.9 The TMN top-level model with an intruder

TABLE Il: The intruder subprocesses

Pair Places | Colour | The Corresponding
Input | Output | Set Intruder Subprocess
P1 P2 Mi intrudermi
P3 P4 I intruderi
P5 P6 M intruderm
P7 P8 M intruderm

The intruder model is constructed by using several intruder subprocesses. Each
intruder subprocess models the intruder’s possible actions to intercept tokens that
belong to a given colour set (type). Table Il lists the intruder subprocesses, along
with their input/output places.

The intruder subprocess@gruder _mi, intruder _m andintruder _i
are defined in separate pages. Titeuder page has one instanceiofru -
der _mi (which definesT1), one instance ointruder _i (which definesT2),
and two instances oftruder _m(which defineT 3 andT4).

Theintruder _msubprocess is given in Figure 3.11. It models what an intruder
can do to intercepted tokens of typé. A token of typeM has two fields: an
identity and a cipher. The intruder first stores these fields of the intercepted token.
Then, it tries to decrypt the ciphertext using one of the keys stored in its database.
Finally, the intruder forms a new message to be sent in place of the intercepted

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 17

M M

m m
[P] out T4 intruder_m instance 3
[P]m
intruder_m#4
P8->P10
P7->P1
M M
[PIm G (mi) Tl intruder_mi instance 1 (mi) a
[P] out
intruder_mi#7

P2->P6

i i
Eom T2 intruder_i instance 2

intruder_i#6 [P]m
Pa->P5
P3->P1
M M
m m
7] T3 intruder_m instance 2
In [P]out
intruder_m#

4
P6->P10
P5->P1

Figure 3.1Q Theintruder page

one. The intruder uses one of the ciphers stored in the database, or constructs a
new ciphertext by using keys stored in the database.

Theintruder _i subprocess models what an intruder can do to intercepted
tokens of typd. Itis constructed in a similar manneriasruder _m(for details,
see [1]). Thantruder _mi subprocess models what an intruder can do to inter-
cepted tokens of typkll. A token of typeMI has two fields: an identity and a mes-
sage. Thusintruder _mi can be constructed using instancesndfuder i
andintruder _m as shown in Figure 3.12. An instanceiatfruder _i is used
to handle the identity field, and an instancardfuder _mis used to handle the
message field.

The last step in defining the intruder is to specify its initial knowledge. One
specifies the initial intruder knowledge by setting the initial marking of a DB-place.
As the initial marking ofP4 in intruder _mindicates (Figure 3.11), tHeBis set
initially to {K;j, K7, A, B, In}.

3.4 Applying a Token-Passing Scheme

Using our technique as outlined up to this point, most models of cryptographic
protocols result in a large occurrence graph. The large size of the occurrence graph
can be explained by two aspects of the model: the nondeterministic behaviour of
the intruder, and the interleaved subprocesses.

The intruder model is nondeterministic in the sense that there are many possible
actions the intruder can take at a given time. For instance, assume that in the TMN
model the intruder has the kels andK?, and it has three identitieg, B, andl.

18 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

DB
E 1'e oB
DB@ © @
g el (i)
0 > : G cK(k1)
M] 0B .
@ (i,¢) cq(c) CC((kl.kZ)) ek(k1) [Fc] o8
‘—b T —>.<_ N .@
T2 . cK(k2) e E 1e
E in o8 .
- - @ 3

DB cK(Decryptionkey(k2))

[Fe] oe
[7S] oe

1° cK(Ki) ++1° cK(Kj p) ++1' cl (A) ++1' cl (B) ++1' cl (I n) (i, (KL K2))

. A

Figure 3.11 Pageintruder _m

Then, there are 12 possible messa@es the intruder can use. Each choice will
have different implications in terms of the resulting markings.

The second factor attributing to the size of the occurrence graph is the inter-
leaving of subprocesses. Transitions of an entity and the intruder instances can be
interleaved, causing an unnecessary increase in the size of the occurrence graph.
For instance, consider a state where transifidrof EntityA has not yet fired.

At this state, many transitions of the intruder instances are enabled. The different
order of firing such transitions will result in different markings and paths in the
occurrence graph. The same thing happens after firihgf EntityA etc.

Let & be the set of finite occurrence sequences of the possible execution of the
agentsA, B, andJ. For every sequence, the intruder observes the s&t of rel-
evant information (keys, messages, and agent identities) that are caried by
R={(ag,a2) | a1 € EAa2 € EAS,, = Sg,}. The relationR is an equivalence
relation. It is clear that every sequence in the set of sequences generated by an
interleaving of subprocesses belongs to the sReguivalence class as any se-
guence in their sequential execution. Hence, there is no need to include all of the
unnecessary interleaving of subprocesses in the occurrence graph.

The model can be extended to prevent the unnecessary interleaving of subpro-
cesses. The goal is to allow a single subprocess to be enabled at a given time. This
is achieved using a token-passing scheme. For instanEefitiyA has the token,
no transitions from other subprocesses should fire. This results in a reduction in
the size of the occurrence graph.

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 19

i ntruder _n#4
P4->P14
P2->P1

intruder_m instance 1

T2

T3

intruder_i instance 1
intruder_i#6
P3->P1

Figure 3.12 Pageintruder _mi

We note that applying the token-passing scheme does not restrict the model as-
sumptions. This is because it is assumed that an intruder would not obtain more
knowledge by the simultaneous execution of protocol entities than it would by the
interleaving of such executions. In other words, true-concurrency is assumed not
to affect properties of cryptographic protocols.

To apply the token passing strategy, a new colour set is defiied,{s}. We
will refer to a place of colout as anS-place The tokensis the token exchanged
among entities.

The following rules are the changes required to apply this scheme.

1) Add an inputS-place to every substitution transition in the top level page.
Similarly, add an outpus-place from every substitution transition in the top
level page. All of thes&-places should be added to a single instance fusion
set. Thus, there is one resultig@place. It must be initialised with one
s-token. This rule is demonstrated in Figure 3.13.

2) Add anS-place input port and a8-place output port to every subpage. The
input port should have an outgoing arc to the first transition in every sub-
process of the subpage. Similarly, the output port should have an incoming
arc from the last transition in every subprocess of the subpage. Figure 3.14
shows the application of this rule to thmtityA page.

3) Applying the first two rules does not prevent the intermediate intruder trans-
itions from firing. These are the transitions that have double input arcs com-
ing from DB-placese.g. transitionsT2 and T3 in intruder _m We must
allow these transitions to fire only when the corresponding subprocess has the
stoken. To apply this, we create an instance fusiorSsen every intruder
subpage, to hold thetoken that is passed to the active intruder subprocess.
To be more precise, the creation®fs carried out by performing the follow-
ing actions:

20 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

Figure 3.13 The TMN page after adding th®-places

(a) Add an output arc from the first transition of the intruder subpage to a
place that belongs to the fusion &t

(b) Add an input arc from a place that belongs to the fusiorBgetthe last
transition of the intruder subpage.

(c) Add double arcs from a place that belongs to the fusionSsai the
intermediate intruder transitions.

These changes are demonstrated in Figure 3.16. For example, trariERiand
T3ofintruder _mwill not fire until the s-token arrives to the subprocess, which
means transitiof 1 fires, consuming the-token from the input pors PL. When
the stoken is returned back by the intruder subprocéss transitionT4 fires
and thes-token is deposited back to the output p8rE2), transitionsT2 and T3
become disabled.

Note that the intruder intermediate subpageg, intruder _mi, must be ex-
tended to pass the received token to the lower level subpages. This is demonstrated
in Figure 3.15.

The application of these rules to the pagedityB , Entityd , intruder
andintruder i is provided in [1].

3.5 Identifying Security Requirements

Before simulating the model, one needs to identify the security requirements that
must be met by the protocol. These requirements should be stated in terms of
conditions on the CPN markings.

We consider the following requirement. The protocol must guarantee the secrecy
of the session kel ag. Thus, in a given sessioKag must be known only by, B,

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 21

T2

|
O :
C
1B T4 ¢

@ (k1, k2)

(i,c
M

Figure 3.14 TheEntityA page after adding thg-places

and J. In other words, the intruder should never knéixg. In terms of CPN
markings, this translates into the requirement that a token with célabmever
reaches a DB-place.

Other security requirements that the TMN protocol aims to satisfy are discussed
and verified in [1].

3.6 Analysing the Occurrence Graph

The final step in the analysis of the model is to construct and analyse the occurrence
graph. We use the OG tool Design/CPNto automate this process. The goal is to
find nodes (markings) that violate a security requirement.

We use thé@cc Menuo invoke commands related to the occurrence graph [34].
Given the CPN model for a cryptographic protocol, we construct the full occur-
rence graph, and then run CPN queries to find the insecure markings.

The security requirement that we consider states that a token with ddbdur
never reaches a DB-place. In CPN ML, we use the following predicate:

fn n => cf(cK(Kab), Mark.intruder mP4 1 n) >0 .

Given a markingn, this predicate evaluates to true if the DB-pld&kof intru -
der _m(first instance) contains at least one tokd€(Kab), and evaluates to false

22 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

S s i ntruder _n#4 S
- | P3->SpP2
P4->P14

| P2- >SP1
P2->P1

s

T2

intruder_m instance 1

intruder i instance

T3

intruder_i#6
IP5->SP2

1P4->SP1 TP] out

BD P3->P1

Figure 3.15 Theintruder _mi page after adding th®-places

otherwise. Note thatf is the coefficient function [33]. It takes two arguments: a
colour and a multiset of tokens, and returns the coefficient of the specified colour in
the specified multiset. For instanaf(A, 5 A) returns 5. Thus;f(cK(Kab),
Mark.intruder _m'P4 1 n) returns the coefficient afK(Kab) in the multi-
set of tokens irP4 of the first instance ohtruder _min markingn.

The following function returns all nodes of the occurrence graph where the DB-
place has at least one tokeK(k). It uses the predicate defined above.

fun SecrecyViolation1(k:K):

Node list

= PredAlINodes (fn n => cf(cK(k),
Mark.intruder _m'P4 1 n) >0);

Thus,SecrecyViolation1(Kab) returns all nodes of the occurrence graph
that violate the considered security requirement.

The full occurrence graph generated for the model has 19,237 nodes and 22,419
arcs. It took 19 seconds to construct the occurrence graph using a 1-GHz, 16GB
machine.

ExecutingSecrecyViolationl returns a non empty node list. One of the
nodes returned b$ecrecyViolationl is node 19170. We use thesign/-

CPN Occurrence Graph (OG) tool to find a path from the initial marking (node

1 in the OG) to the insecure marking (node 19170). This path is represented by
the following occurrence sequence. Each line in the occurrence sequence repres-
ents a step that has a single binding element. Each line contains the following
information: the page name, the instance number (if missing, then there is a single
instance), the transition, and the binding. For instance, the line identified by (*),
on its right side, represents the stgR(in the first instance ointruder _m

(k1 = Kab, k2 = Ki)).

EntityA
EntityA
EntityA
intruder
intruder
intruder
intruder
intruder
EntityB
EntityB
EntityB
intruder
intruder
intruder
EntityJ

EntityJ

EntityJ

EntityJ

intruder
intruder
EntityJ

EntityJ

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS

cl(i

1l'e

B
=208

[F<] os

8

2
3]

o8 DB

8

cK(DecryptionKey(k2))

[Fe] os

[F6] o8
(i, (k1,k2))

Figure 3.16 Theintruder _mpage after addin§-places

T1

T3
_mi T1
il T1
il T2
m1l T1
i2 T2

T1

T2

T3
m2 T1
m1l T3
_mi T4

T1

T2

T3

T4
i2 T1
m2 T4

T5

T6

kl=Kajk2=Kjp

i =B,c=(KajKjp)

i =Am= (B, (KajKjp))
m= (B, (Kaj,Kjp)),i = A
i=A

i=A

i =B,c=(KajKjp)
i=A

i=A

i=Ak2=Kjp

i =Ac=(KabKjp)

i =Ac=(KabKjp)
kl=Ki,k2=Kjp,i=A
i =Am=(A(Ki,Kjp))
i=Am= (A (Ki,Kjp))
i=AcC= (KI’KJp)
kl=Ki,k2=Kjp
i=Ak=Ki

i=A

i =Ac=(KabKjp)

i =Ac=(KabKjp)
kl=Kabk2=Kjp

s \
™) Ol So=k
S
0B
cC((K1, k2)) o8

. (i,c) " cC(¢c) . o cK(k1) .

Fn
s 7 SS
Elr\ FG SG

1° cK(Ki) ++1° cK(Kj p) ++1‘ cl (A) ++1' cl (B) ++1' cl (I n)

pe °K(k2) E Le

23

24 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

EntityJ T7 k1l = Kab, k2 = Ki
EntityJ T8 i = A c=(Kab,Ki)
intruder _-m 3 T1 i=Ac=(KabKi)
intruder m1 T2 kl1=Kabk2=Ki (¥
intruder _m 2 T2 k1= Kab k2= Ki
intruder -m3 T3 i=Bkl=Kik2=Kjp
EntityA T4 i=B,c=(Ki,Kjp)

Note the reachability oK, to a DB-place in the step identified by (*). This
attack is stated in a high level description as follows, noting th&} denotes
impersonatingA. Thus, a step of the formI(A) — B : X” means thatl poses
asA and send(to B, whereas a step of the fornB“— 1(A) : X" means that
intercepts the message originally sent fromB to A.

(I11) A — 1(J) : B,KP(Kay) (112)J = 1(A) : A
(12)1(J) > B: A (13) 1(A) - J : A KP(Knag)
(|3) B— |(J) DA Kgb(KAB) (||4) J—- |(A) CA K|(KAB)

(1) 1(A) - J: A KP(K,)

This attack involves two separate runs of the protocol; labélkatll . At the end
of 114, the intruder decryptK;(Kag) to obtainKag. Thus, the intruder is able to
impersonaté\. Note the replay oK °(Kag) in stepll 3 from |3,

4. Discussion

In this paper we have presented a promising technique that uses coloured Petri nets
for the verification of cryptographic protocols.

The main contribution of this work is the development of a new technique to
verify cryptographic protocols using Jensen’s form of coloured Petri nets. Further-
more, we:

e show how to us®esign/CPNin the construction and verification of the net
models.

¢ simplify the representation of the intruder’s knowledge by using the concept
of DB-place.

e apply a token passing scheme to reduce the size of the occurrence graph.
This reduction has no effect on the security assumptions. Without using
this scheme, the resulting occurrence graph would be extremely large and
it would be impractical to usBesign/CPN

¢ use the technique to model and verify the TMN key exchange protocol. This
technique was also used to model and verify the Needham-Schroeder public
key authentication protocols [1].

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 25

Our technique compares well with other finite-space methods [29, 32, 35]. It
includes the same verification assumptions and reveals the same patterns of attacks.
The same approach of reachability analysis is used. The generated number of states
is acceptable compared with other methods. Furthernbmsign/CPNfits well to
our technique, with several advantageous features such as the ability to control the
construction of the occurrence graph and the ability to stop searching when certain
criteria are met. In other terms, the capabilitiealsign/CPNenable us to grasp
the theoretical power of CP nets in practice for dealing with complex systems. The
state explosion problem can be slightly managed using for instance a token-passing
scheme, but not significantly reduced. In [10], fHveeep-line method introduced
to reduce both the space and the time used during state space exploration. One
avenue for future investigation would be to apply this method in the exploration of
the state space of more complex protocols modeled using the technique proposed
in this paper.

There are two features in our technique that facilitate the construction of the in-
truder model for cryptographic protocols. The first feature is the use of a DB-place
to hold all intercepted tokens. The second feature is that the intruder model is con-
structed by using several intruder subprocesses, where each intruder subprocess is
defined based on the colour of the intercepted token. For instance, if the intercep-
ted token is an identity, then the intruder first stores it and then it replays any other
identity it possesses. If the intercepted token is a cipher, the intruder has the ability
to try to decrypt the ciphertext and to form new ciphers. The net result of this is
clarity and simplicity of the intruder model, and the ability to construct the intruder
model in a systematic way.

Finally, the model presented for the TMN protocol involves a single instance of
each entity. Thus, an attack that involves multiple instances of a given entity in
multiple runs will not be captured under this restriction. Our model can easily be
extended to include more than one instance of a given entity by adding tokens to
the entity’sE-places. However, this would result in a dramatic increase in the size
of the occurrence graph. This problem also arises in other finite-state methods. In
such cases, analytic methods are applied to avoid generating the full reachability
tree. For the case of CP-nets, methods such as the matrix equation [20] seem to be
useful. Other techniques to yield a reduced representation of the occurrence graph
are applicable. These include the stubborn set method [27], and occurrence graphs
with equivalence classes [20].

Acknowledgements

The first author was supported by an Ontario Graduate Scholarship. This research
is also supported by grants from the Natural Sciences and Engineering Research
Council of Canada. The authors wish to thank Ryszard Janicki and the anonymous
reviewers ofMOMPES 2003%or their comments that helped increase the quality

of the paper.

26

(1]
(2]

[4]

(5]

[7]

(8]

9]

(10]

(11]

(12]
(13]

(14]

(15]
(16]

(17]

ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

References

I. Al-Azzoni. The verification of cryptographic protocols using coloured Petri nets. Master’s
thesis, McMaster University, Hamilton, Ontario, Canada, 2004.

I. Al-Azzoni, D. G. Down, and R. Khedri. Modeling and verification of cryptographic pro-
tocols using coloured Petri nets and Design/CPN. In J. Lilius, R. J. Machado, D. Truscan,
and J. ao M. Fernandes, editoPsid International Workshop on Model-based Methodologies
for Pervasive and Embedded Software (MOMPES 20@&ume 39 ofTUCS General Pub-
lication, pages 1-19, Rennes, France, June 2005. Turku Centre for Computer Science. ISBN
952-12-1556-9, ISSN 1239-1905.

S. Aly and K. Mustafa. Protocol verification and analysis using colored Petri nets. Technical
Report TR-04-003, The School of Computer Science, Telecommunication and Informations,
August 2004. http://www.cs.depaul.edu/research/technical.asp. (Accessed August 23, 2005).
A. Basyouni and S. Tavares. New approach to cryptographic protocol analysis using coloured
Petri nets. InProceedings of the Canadian Conference on Electrical and Computer Engineer-
ing (CCECE’97) pages 334—-337, St. John’s, Newfoundland, May 1997.

M. Burrows, M. Abadi, and R. Needham. A logic of authenticatickCM Transactions on
Computer System8(1):18-36, February 1990.

C. Capellmann, S. Christensen, and U. Herzog. Visualising the behaviour of intelligent net-
works. In T. Margaria, B. Steffen, R.iRkert, and J. Posegga, editoBgrvices and Visual-
ization, Towards User-Friendly Desigrolume 1385 ofLecture Notes in Computer Science
pages 174-189. Springer-Verlag, 1998.

C. Capellmann and H. Dibold. Petri net based specifications of services in an intelligent net-
work: Experiences gained from a test case application. In M. Ajmone-Marsan, éqitdica-

tion and Theory of Petri Nets 1993. Proceedings of the 14th International Petri Net Conference,
Chicago 1993volume 691 ofLecture Notes in Computer Sciengages 542-551. Springer-
Verlag, 1993.

C. Capellmann, H. Dibold, and U. Herzog. Using high-level Petri nets in the field of intelligent
networks. In J. Billington, M. Diaz, and G. Rozenberg, editépplication of Petri Nets to
Communication Networksvolume 1605 of_ecture Notes in Computer Sciengages 1-36.
Springer-Verlag, 1999.

S. Christensen and J. Jgrgensen. Analysing Bang & Olufsen’s BeoLink Audio/Video system
using coloured Petri nets. In G. Balbo and P. Azema, edifgpplication and Theory of Petri
Nets. Proceedings of the 18th International Petri Net Conference, Toulousel9idre Notes

in Computer Science, pages 387—406. Springer-Verlag, 1997.

S. Christensen, L. M. Kristensen, and T. Mailund. A sweep-line method for state space explor-
ation. InProceedings of TACAS 200¢olume 2031 ofLecture Notes in Computer Science
pages 450-464. Springer-Verlag, 2001.

J. Clark and J. Jacob. A survey of authentication protocol literature. Technical Report 1.0,
SVRC, The University of Queensland, School of Information Technology and Electrical Engin-
eering, Queensland, November 1997. http://www.cs.york.acjaklpapers/ drareview.ps.gz.
(Accessed August 23, 2005).

CPN Group at the University of Aarhus. Design/CPN Online, 2004.
http://www.daimi.au.dk/designCPN/. (Accessed February 17, 2004).
CPN Group at the University of Aarhus. Main page, 2005.

http://www.daimi.au.dk/CPnets/cpngroup.html. (Accessed August 25, 2005).

J. de Figueiredo and L. Kristensen. Using coloured Petri nets to investigate behavioural and
performance issues of TCP protocols. In K.Jensen, editoceedings of the 2nd Workshop on
Practical Use of Coloured Petri Nets and Design/CPN, Aarhus 1888es 21-40. Department

of Computer Science, University of Aarhus, 1999.

C. Fidge. A survey of verification techniques for security protocols. Technical Report 01-22,
Software Verification Research Centre, The University of Queensland, July 2001.

C. Girault and R. ValkPetri Nets for Systems Engineering: A Guide to Modeling, Verification,
and Applications Springer-Verlag, 2003.

L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic protocols.
In Proceedings of the 1990 IEEE Computer Society Symposium on Research in Security and

[18]

[19]
[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]
[30]
[31]
[32]
[33]

[34]
[35]

[36]

[37]

[38]

MODELING AND VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS 27

Privacy, pages 234—-248, 1990.

K. Heljanko. Can finite-state system verification methods help cryptographic protocol ana-
lysis? Technical report, Helsinki University of Technology, Laboratory for Theoretical Com-
puter Science, Finland, 1998.

K. JensenColoured Petri Nets: Basic Concepts, Analysis Methods and Practicaludgeme

1: Basic Concepts. Springer-Verlag, 2nd edition, 1996.

K. JensenColoured Petri Nets: Basic Concepts, Analysis Methods and Practicaludteme

2: Analysis Methods. Springer-Verlag, 2nd edition, 1996.

K. JensenColoured Petri Nets: Basic Concepts, Analysis Methods and Practicaludteme

3: Practical Use. Springer-Verlag, 2nd edition, 1996.

K. Jensen. A brief introduction to coloured Petri nets. In Brinksma, E., ediemture Notes

in Computer Science: Tools and Algorithms for the Construction and Analysis of Systems.
Proceedings of the TACAS’97 Workshop, Enschede, The Netherlandv@R@ie 1217, pages
201-208. Springer-Verlag, 1997.

R. Kemmerer. Analzying encryption protocols using formal verification techniqUEEE
Journal on Selected Areas in Communicatiof(@):448-457, May 1989.

L. Kristensen, S. Christensen, and K. Jensen. The practitioner’s guide to coloured Petri nets.
International Journal on Software Tools for Technology Transfer: Special section on coloured
Petri nets 2(2):98-132, 1998.

L. Kristensen and K. Jensen. Specification and validation of an edge router discovery protocol
for mobile ad hoc networks. Imtegration of Software Specification Techniques for Applica-
tions in Engineering: Priority Program SoftSpez of the German Research Foundation (DFG)
volume 3147, pages 248-269. Springer-Verlag, 2004.

L. Kristensen, J. Jgrgensen, and K. Jensen. Application of coloured Petri nets in system devel-
opment. InLectures on Concurrency and Petri Nets - Advanced in Petri Nets. Proceedings of
4th Advanced Course on Petri Netelume 3098 of_ecture Notes in Computer Scienpages
626-685. Springer-Verlag, 2004.

L. M. Kristensen and A. Valmari. Finding stubborn sets of coloured Petri nets without unfold-
ing. Lecture Notes In Computer Sciendd20:104-123, 1998.

Laboratoire Spcification et \grification. =~ SPORE security protocols open repository.
http://www.Isv.ens-cachan.fr/spore/table.html, 2005. (Accessed August 23, 2005).

G. Lowe and B. Roscoe. Using CSP to detect errors in the TMN protdERE Transactions

on Software Engineerin@3(10):659—669, October 1997.

W. Mao and C. Boyd. Towards the formal analysis of security protocolBrdoeedings of the
Computer Security Foundations Workshop pdges 147-158. IEEE Computer Society Press,
June 1993.

C. Meadows. Formal verification of cryptographic protocols: A surveyARIACRYPT: Ad-
vances in Cryptology — ASIACRYPT: International Conference on the Theory and Application
of Cryptology LNCS, Springer-Verlag, 1994.

C. Meadows. The NRL protocol analyzer: An overviedournal of Logic Programming
26(2):113-131, Feb 1996.

Meta Software CorporatiorDesign/CPN Reference Manual for X-Windowsrsion 2.0, 1993.

Meta Software CorporatiorDesign/CPN Occurrence Graph Manuy&kersion 3.0, 1996.

J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using
Murg. In IEEE Symposium on Security and Privapgges 141-153. IEEE Computer Society
Press, May 1997.

A. Mnaouer, T. Sekiguchi, Y. Fujii, T. Ito, and H. Tanaka. Coloured Petri nets based modelling
and simulation of the static and dynamic allocation policies of the asynchronous bandwidth in
the Fieldbus protocol. In J. Billington, M. Diaz, and G. Rozenberg, edifpplication of Petri

Nets to Communication Networkslume 1605 otecture Notes in Computer Scienpages
93-130. Springer-Verlag, 1999.

T. Murata. Petri nets: Properties, analysis and applicatioRsoceedings of the IEEE
77(4):541-580, April 1989.

B. Nieh and S. Tavares. Modelling and analyzing cryptographic protocols using Petri nets. In
Advances in Cryptology-ASIACRYPT ;9lume 718 ofLecture Notes in Computer Science
pages 275-295. Springer, 1992.

28 ISSAM AL-AZZONI, DOUGLAS G. DOWN, AND RIDHA KHEDRI

[39] L. Paulson.ML for the Working ProgrammerCambridge University Press, 2nd edition, 1996.

[40] A. Rubin and P. Honeyman. Formal methods for the analysis of authentication protocols.
Technical Report 93-7, Center for Information Technology Integration (CITI), October 1993.
http://www.citi. umich.edu/techreports/reports/citi-tr-93-7.ps.gz. (Accessed August 23, 2005).

[41] P. Ryan and S. Schneideirhe Modelling and Analysis of Security Protocols: the CSP Ap-
proach Addison-Wesley, 2001.

[42] B. SchneierApplied Cryptography: Protocols, Algorithms, and Source Code iddhn Wiley,
2nd edition, 1996.

[43] D. M. Stal, S. E. Tavares, and H. Meijer. Backward state analysis of cryptographic protocols
using coloured Petri nets. Workshop on Selected Areas in Cryptography, SAC '94 Workshop
Record pages 107-118, May 1994.

[44] D. Stinson.Cryptography: Theory and Practic€€RC Press, 2nd edition, 2002.

[45] M. Tatebayashi, N. Matsuzaki, and D. Newman. Key distribution protocol for digital mobile
communication systems. ldvances in Cryptology—CRYPTO'89 Proceedjnvgdume 435 of
Lecture Notes in Computer Scienpages 324334, 1990.

[46] P. Varhol. ML and colored Petri nets for modeling and simulation: a little language for a big
job. (ML: Meta Language functional programming languag®). Dobbs Journal 16(9):76—

81, September 1991.

[47] G. Wheeler. The modelling and analysis of IEEE 802.6’s configuration control protocol with
coloured Petri nets. In J. Billington, M. Diaz, and G. Rozenberg, edifgplication of Petri
Nets to Communication Networkslume 1605 oLecture Notes in Computer Scienpages
69-92. Springer-Verlag, 1999.

