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Abstract

IPSec has become the defacto standard protocol for secure
Internet communications, providing traffic integrity, confiden-
tiality and authentication. Although IPSec supports a rich set
of protection modes and operations, its policy configuration
remains a complex and error-prone task. The complex seman-
tics of IPSec policies that allow for triggering multiple rule ac-
tions with different security modes/operations coordinated be-
tween different IPSec gateways in the network increases signif-
icantly the potential of policy misconfiguration and thereby in-
secure transmission. Successful deployment of IPSec requires
thorough and automated analysis of the policy configuration
consistency for IPSec devices across the entire network.

In this paper, we present a generic model that captures var-
ious filtering policy semantics using Boolean expressions. We
use this model to derive a canonical representation for IPSec
policies using Ordered Binary Decision Diagrams. Based on
this representation, we develop a comprehensive framework to
classify and identify conflicts that could exist in a single IPSec
device (intra-policy conflicts) or between different IPSec de-
vices (inter-policy conflicts) in enterprise networks. Our test-
ing and evaluation study on different network environments
demonstrates the effectiveness and efficiency of our approach.

1 Introduction

The Internet Protocol Security architecture (or IPSec) [17]
has been proposed by IETF to provide integrity, confidentiality
and authentication of data communications over IP networks.
The end users can specify the security protocol (AH or ESP)
and mode (tunnel or transport) to accommodate the traffic se-
curity requirements. IPSec devices typically encrypt and en-
capsulate the outgoing IP packets, while the receiving devices
decapsulate and decrypt the incoming packets in order to ver-
ify integrity and authenticity. IPSec operations can be per-
formed either at the traffic source and destination (transport
mode) or at intermediate security gateways (tunnel mode) in
order to allow for source-based or domain-based security, re-
spectively. Due to the flexibility and application transparency
of IPSec, it is widely used today as a very cost-effective means
to establish Virtual Private Networks (VPNs) or secure chan-
nels between corporate networks over the Internet. Users or
administrators write the security policy at each device interface

to define IPSec protection operations for each specific traffic.
The IPSec policy consists of lists of rules that designate the
traffic to be protected, the type of protection, such as authen-
tication or confidentiality, and the required protection param-
eters, such as the encryption algorithm [16]. Packets are se-
quentially matched against the rules until one (single-trigger)
or more (multiple-trigger) matching rules are found [7, 17].

Deploying IPSec policy rules at many hosts and gateways
provides incredible flexibility for customizing the appropriate
protection mechanisms for different applications and network
requirements. However, the lack of automated verification
of IPSec security policies significantly increases the potential
of policy inconsistency and conflicts allowing for more net-
work vulnerability. Many challenges confront the verification
of IPSec policy configuration in enterprise networks. First,
the sequential rule matching and multi-trigger semantics make
policy verification of single or distributed IPSec policies a very
complex and error-prone task, particularly when large number
of rules and devices exist. Second, the interaction between
different IPSec policies, such as cascaded protection and over-
lapping tunnels, can lead to inefficient or incorrect data protec-
tion. Third, the existence of various action types (e.g., bypass,
discard, encrypt/tunnel, authenticate/transport, etc.) poses an-
other challenge when modeling and analyzing IPSec policies.
Rule conflicts can occur due to IPSec misconfiguration within
a single policy (called intra-policy conflicts) or due to the in-
consistency between policies in different devices (called inter-
policy conflicts). These conflicts may result in incorrect opera-
tion of IPSec and can lead to serious security threats including
transmitting traffic insecurely, dropping legitimate traffic, and
allowing undesired traffic into secure networks.

Therefore, successful deployment of IPSec security is
highly dependent on the availability of IPSec policy analysis
techniques with minimal human intervention. Our contribu-
tion in this paper is two-fold. First, we present a generic model
that uses Boolean expressions to capture the single-trigger and
multi-trigger semantics of a wide range of filtering policies.
Second, we introduce a novel framework that uses this model
implemented in Ordered Binary Decision Diagrams (OBDDs)
to provide comprehensive identification and classification of
IPSec policy conflicts. Based on this framework, we develop
a set of techniques to discover intra- and inter-policy conflicts
in any general IPSec policy configuration. These techniques
are implemented in the “Security Policy Advisor” tool, which
proved effective in discovering IPSec policy conflicts with ac-
ceptable processing and memory overhead.



access list := access rule[. . . , access rule]

access rule := order, filter, action

filter := protocol, src ip, src port, dst ip, dst port

action := protect | bypass | discard

map list := map rule[. . . , map rule]

map rule := priority, filter, transform list

transform list := transform[. . . , transform]

transform := sec protocol, encaps mode, parameters

sec protocol := AH | ESP

encaps mode := Transport | Tunnel tunnel dst

Figure 1. Typical IPSec policy syntax.

Although IPSec has been deployed for many years, most
of the related research work has been focused on address-
ing IPSec implementation problems. One related work [10]
discovers the conflicts of overlapping IPSec tunnels using a
simulation-based technique. Recent work [1] studies the pol-
icy conflicts particular to firewalls that are limited to “accept”
and “deny” actions. Other related works [9, 15, 21] use a
query-based approach to analyze firewall policies. None of the
related work used formal methods to comprehensively identify
IPSec policy conflicts. Therefore, we consider this work novel
and significant not only in the area of IPSec but also for any
filtering-based security policy such as firewalls and intrusion
detection and prevention systems.

The rest of this paper is organized as follows. In Section 2
we highlight the main components and present our formal
model of the IPSec policy. In Sections 3 and 4, we identify
and define IPSec intra-policy and iter-policy conflicts respec-
tively and we present techniques to discover them. In Sec-
tion 5 we present a usability and performance study of our
proposed techniques. In Section 6 we give a summary of the
related work. Finally, in Section 7 we present our conclusion
and plans for future research.

2 Modeling of Filtering Security Policies

A solid and flexible formal model that is capable of cap-
turing the underlying policy semantics is needed to perform
robust policy analysis. In this section, we show the compo-
nents of IPSec policies, and present a formal model for any
general filtering policy including IPSec.

2.1 IPSec policy components

The protection offered by IPSec to certain traffic is based
on requirements defined by security policy rules defined and
maintained by the system administrator [7, 16]. In general,
packets are selected for a packet protection mode based on net-
work and transport layer header information matched against
rules in the policy, i.e., transport protocol, source address and
port number, and destination address and port number. To de-
fine traffic protection rules, the IPSec standard specifies the
policy operational guidelines that should be implemented by
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Figure 2. Example of an IPSec configuration.

vendors rather than a specific policy model [17]. In this work,
we use a generic policy format that resembles the format used
in a wide range of IPSec implementations [6]. This policy
model is composed of two lists of packet-filtering rules:

Crypto-access list: consists of ordered filtering rules that
specify required actions for packets that match the rule condi-
tions. All traffic is matched against the access rules sequen-
tially until a matching rule is found. The matching rule action
is either “protect” for secure transmission, “bypass” for inse-
cure transmission, or “discard” to drop the traffic.

Crypto-map list: consists of prioritized filtering rules that
determine the cryptographic transformations required to pro-
tect the traffic selected for protection by the access list. A traf-
fic may match multiple rules resulting in applying more than
one transformation on the same traffic such that higher priority
transformations are applied first.

IPSec policy rules can be written using the syntax shown
in Fig. 1. The access list is used to define IPSec protection
rules, while the map list is used to define IPSec transforma-
tion rules. A transform is any cryptographic service that can
be used to protect network traffic. These security services are
IPSec AH and ESP protocols operating either in transport or
tunnel mode along with the cryptographic algorithm and the
necessary cryptographic parameters. Fig. 2 shows an exam-
ple of a typical outbound IPSec policy. The policy at each
device is defined in terms of the access-list (upper section)
and the map-list (lower section). In our work, we consider
that inbound traffic arriving at a device interface is matched
against a mirror image of the outbound IPSec policy of this in-
terface,i.e., the inbound policy is similar to the outbound pol-
icy after swapping the packet filters for source and destination
addresses [6].

2.2 Filtering policy representation

Although our discussion in this section will focus on IPSec
filtering policies, the presented framework can be used to
model and analyze generic filtering policies.

Definition 1 An access policy, P = R1, R2, . . . , Rn, is a se-
quence of n filtering rules that determine the appropriate ac-
tion performed on any incoming packet.



Definition 2 A filtering rule, Ri, consists of a set of con-
straints on a set of k filtering fields, F = {f1, f2, . . . , fk},
together with an action, acti, from the set of all actions, A.

Each rule can be written in the form:

Ri := Ci � acti

where Ci is the constraint on the filtering fields that must be
satisfied for the action acti to be triggered. The condition Ci

can be represented as a Boolean expression over the filtering
field values fv1

i , fv2
i , . . . , fvk

i as follows:

Ci = fv1
i ∧ fv2

i ∧ · · · ∧ fvk
i

For IPSec, a filtering field value fv is typically given
as a binary expression representing the binary value of a
specific IP address (123.45.201.5), a block of IP addresses
(123.45.201.*), a specific port number (80 for http) or a range
of port numbers (137-139 for netbios). Finally, the actions al-
lowed are simply protect, bypass or discard.

Definition 3 A single-trigger access policy is an access pol-
icy where only one action is triggered for a given packet. A
multi-trigger access policy is an access policy where multiple
different actions may be triggered for the same packet.

IPSec crypto-access rules form a single-trigger access pol-
icy. Once a traffic matches a certain rule, its action is triggered
and no further matching is performed. This is in contrast to
crypto-map rules where a particular traffic may match multi-
ple rules causing multiple actions to be triggered.

2.2.1 Formalization of single-trigger policies

The semantics of a single-trigger policy P = R1, R2, . . . , Rn

can be represented as a collection of Boolean expressions,
[[P ]] = {Pa1 , Pa2 , . . . , Pam

}, one for each possible action
am ∈ A. The expression for an action should evaluate to true
for all packets that trigger the action and false otherwise. The
fact that [[P ]] is a single-trigger policy implies that, for any
given packet, only one policy expression evaluates to true, and
all other expressions evaluate to false. In general, we can con-
struct a Boolean expression for Pa by using the rule constraints
from each rule as follows:

Pa =
∨

i∈index(a)

(¬C1 ∧ ¬C2 ∧ . . . ∧ ¬Ci−1 ∧ Ci)

where index(a) is the set of indices of rules that have a as
their action. In other words,

index(a) = {i | Ri = Ci � a}.
This formula can be understood as saying that a packet will
trigger action a if it satisfies the condition Ci for some rule
Ri with action a, provided that the packet does not match the
condition of any prior rule in the policy.

We express the IPSec crypto-access policy, S, as a single-
trigger policy composed of three action expressions, i.e.,

[[S]] = {Sprotect, Sbypass, Sdiscard}. Therefore, based on
the above formalization, the IPSec protection access policy
Sprotect can then be defined as follows:

Sprotect =
∨

i∈index(protect)

(¬C1 ∧ ¬C2 ∧ . . . ∧ ¬Ci−1 ∧ Ci)

2.2.2 Formalization of multi-trigger policies

The semantics of a multi-trigger policy [[P ]] can also be rep-
resented as a collection of Boolean expressions, one for each
action allowed by the policy. Like the single-action case, the
expression for an action should evaluate to true for all pack-
ets which trigger the action and to false otherwise. Since [[P ]]
is a multi-trigger policy, more than one action expression may
evaluate to true for any given packet. Using the rule constraints
from each rule, the Boolean expression for any possible action
a ∈ A is constructed as follows:

Pa =
∨

i∈index(a)

Ci

The formula means that a packet will trigger action a if it sat-
isfies the condition Ci for any rule Ri with action a.

We express the IPSec crypto-map policy, T , as a set of ex-
pressions each of which represents the condition that triggers a
specific transform, i.e., [[T ]] = {Tt1 , Tt2 , ..., Ttm} where Ttm

could be for example TESP-tunnel, TAH-transport and so on. Thus,
in general, the traffic transformation policy Tt that triggers a
certain transform t can be represented as follows:

Tt =
∨

i∈index(t)

Ci

2.2.3 Policy representation using OBDDs

The main objective of our policy representation as Boolean
expressions is to formalize and facilitate policy analysis and
rule conflict identification. Using Boolean expressions allows
us to use ordered binary decision diagrams (OBDDs) [4] in
our analysis techniques. OBDDs provide a canonical and con-
cise representation for Boolean expressions and support all the
common Boolean operations. Their usefulness can be high-
lighted by pointing out that two policies which are syntacti-
cally different (they have different rules) but are semantically
equivalent (they exhibit identical behavior) will have the same
OBDD representation. Policies can then be built up, com-
bined, and compared using Boolean operations on the OBDDs
representing them.

3 IPSec Intra-policy Analysis

In this section, we use our formal model to identify all pos-
sible types of conflicts that may exist in the policy of a single
IPSec device. These conflicts may exist between rules in the
crypto-access or crypto-map lists. We also prove that our con-
flict analysis is comprehensive.
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Figure 3. Example for IPSec intra-policy crypto-
access list conflicts.

3.1 Classifying and discovering access-list conflicts

The ordering of access rules is crucial in determining IPSec
access policy semantics. This is because the packet filter-
ing process is performed by sequentially matching the packet
against filtering rules until a match is found. If filtering rules
are disjoint, the ordering of the rules is insignificant. However,
it is very common to have filtering rules that are inter-related,
i.e., exactly matched, inclusively matched or correlated [2]. In
this case, if the related rules are not carefully ordered, some
rules may never get triggered because of other rules, result-
ing in an incorrect policy. In this section, we classify different
conflicts that may exist among the rules in an access policy
and then describe a technique for discovering these conflicts.

We apply our policy model on IPSec crypto-access lists as a
special case of the single-trigger policy. The policy expression
Sai

represents a policy that incorporates rule Ri where ai =
acti, while S′

ai
represents the policy with Ri excluded.

Intra-policy shadowing A rule is shadowed when every
packet that could match this rule is matched by some preceding
rule with a different action. Subsequently, the shadowed rule
will never be activated. Based on our OBDD representation,
a rule is shadowed if the policy expression for the rule action
does not change when this rule is removed, and the rule is not
implied in the modified policy expression. Formally, rule Ri

is shadowed if the following condition is true:

[(S′
ai

⇔ Sai
) = true] and [(Ci ⇒ S′

ai
) �= true] (1)

The first condition means that the policy semantics does not
change after removing the rule, while the second condition
means that the rule condition is not included in the policy se-
mantics1. As an example for this case, rule 6 is shadowed by
rule 5 in Fig. 3. Shadowing is a critical conflict because the
shadowed rule never takes effect. This might cause a desired
traffic to be discarded or an undesired traffic to be bypassed.

Intra-policy redundancy A rule is redundant when every
packet that could match this rule is matched by some other

1The result of an OBDD operation evaluates either to true for a satisfying
assignment, false for a non-satisfying assignment or a predicate representing
the expression resulting from an incomplete assignment.

rule that have a similar action, such that if the redundant rule
is removed, the security policy will not be affected. In OBDD
representation, a rule is redundant if the policy expression for
the rule action does not change when this rule is removed, and
the rule is implied in the modified policy expression. Formally,
rule Ri is redundant if the following condition is true:

[(S′
ai

⇔ Sai) = true] and [(Ci ⇒ S′
ai

) = true] (2)

Referring to Fig. 3, rule 2 is redundant to rule 3. Redundancy
is considered a critical conflict because a redundant rule adds
to the size of the filtering rule list, increasing the search time
and space requirements of the packet filtering process.

Intra-policy correlation A rule is in correlation with an-
other rule if they have different filtering actions, and the pre-
ceding rule matches some packets that match the following
rule and vice versa. Using OBDDs, a rule is in correlation with
another rule if the policy changes when this rule is removed,
and this rule is not fully implied in the modified policy expres-
sion. Formally, correlation exists if the following condition is
true:

[(S′
ai

⇔ Sai
) �= true] and [(Ci ⇒ ¬S′

ai
) �= true] (3)

Rule 3 is in correlation with Rule 4 in Fig. 3. The two rules
with this ordering imply that all traffic that is coming from
1.1.1.* and going to 2.2.2.* is protected. However, if their or-
der is reversed, the same traffic will be bypassed. Correlation
is considered a potential conflict because the relative order of
the correlated rules directly affects the policy semantics.

Intra-policy exception A rule is an exception of a follow-
ing rule if they have different actions, and the following rule
is a superset match. Based on OBDDs, a rule is an excep-
tion of a general rule if the policy changes when this rule is
removed, and the rule is implied in the complement of the
modified policy expression. Formally, exception exists if the
following condition is true:

[(S′
ai

⇔ Sai) �= true] and [(Ci ⇒ ¬S′
ai

) = true] (4)

Rule 1 is an exception of rule 3 in Fig. 3. These two rules
imply that all the traffic coming from the address 1.1.1.* will
be protected, except the traffic coming from 1.1.1.1. Exception
is considered a non-critical conflict because it is often desired
to make exceptions of some general rule, and it is usually the
case for rules that are only related to the default rule [2]. How-
ever, it is important to identify rule exceptions because they
partially change the policy semantics and can lead to violation
of the policy requirements.

Theorem 1 The intra-policy access-list conflict conditions
(Cases 1-4) are complete in the sense that every rule in a pol-
icy must satisfy one of the conflict conditions.
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Figure 4. Example for IPSec intra-policy
overlapping-session conflicts.

Proof sketch The logical disjunction of the four conditions
is equivalent to true. The complete proof can be found in [13].

To discover intra-policy access-list conflicts, the analysis is
performed for every possible action in the access policy; i.e.,
protect, bypass and discard. For every rule in the access list
that has the same action a, we build the policy BDD (Sa) as
well as the test BDD (S′

a). If both BDDs are identical, the
rule is either redundant or shadowed based on testing if the
rule is implied in S′

a. If the BDDs are not identical and the
rule implication test is true, then the rule is an exception of a
more general rule, otherwise it is correlated to another rule in
the policy. To find the related rule, every rule in the policy is
sequentially matched against this rule and the first matching
rule is reported. The full discovery algorithm with detailed
description are presented in [13].

3.2 Classifying and discovering map-list conflicts

In this section, we identify the rule conflicts that may exist
in a single IPSec crypto-map list and result in security policy
violation or unnecessary traffic protection.

3.2.1 Intra-policy overlapping-session conflicts

IPSec allows nesting multiple IPSec sessions on the same traf-
fic from a source to different remote peers. In this case, in or-
der to construct correct nesting, the traffic must be delivered to
the closer peer first and then to the farther peer. In other words,
in the map-list, the rule priority of the farther peer should be
higher than the rule priority of the closer peer. This is manda-
tory because if the traffic is decapsulated at the farther peer
first, it will be transmitted to the closer peer in the opposite di-
rection, resulting in transmitting the traffic back to the destina-
tion without protection. The example in Fig. 4 illustrates this
situation. In this example, two map rules apply to the traffic
flowing from A to B. The first rule encapsulates the traffic in
a tunnel to SGA, then the second rule re-encapsulates the traf-
fic in another tunnel to SGB . The traffic is first received and
decapsulated by SGB and then forwarded back to SGA. SGA

decapsulates the traffic and forwards it to B as clear text. No-
tice that this conflict can only occur with two tunnel transforms
or with a transport transform followed by a tunnel. Other rule
combinations will send the traffic to the same destination node.
Also notice that if the nested sessions terminate at the same
end point, the rule ordering is not required because all decap-
sulation will be performed at the same node.

Formally, the intra-policy overlapping-session conflict
occurs when the following condition is true for any two
tunnel-mode map-list rules Ri and Rj :

[(Ci ∧ Cj) �= false] and (i < j) and
Location(Ri[tunnel dst]) < Location(Rj [tunnel dst]) (5)

The first condition expresses the fact that the two rules must
match some common traffic, and the other conditions verify
that the tunnel end-point of the preceding rule comes before
the tunnel end-point of the following rule in the path from
Ri[src ip] to Ri[dst ip]. A similar condition holds for any
transport rule followed by a tunnel rule, but using Ri[dst ip]
instead of Ri[tunnel dst]. Later in Section 4.2.1, we prove
that these conditions are comprehensive.

To discover intra-policy overlapping-session conflicts, we
search for the rules that match the same traffic and satisfy the
conflict conditions. The topology of the network can be en-
coded using OBDDs in a manner similar to what is done in
symbolic model checking [5]. The location of every node can
be encoded using OBDDs such that the locations of any two
nodes can be retrieved and compared relative to a certain node.
We start the analysis by finding every two rules that partially
or completely overlap, thus matching the same traffic. A path
conflict is reported if one rule specifies a tunnel transform ter-
minating at a further point than the end point of a preceding
overlapping rule. The full discovery algorithm and a detailed
description of the technique are provided in [13].

3.2.2 Intra-policy multi-transform conflicts

IPSec also allows for multiple transforms to be applied to the
same traffic simultaneously. This gives the user the flexibility
to combine different IPSec protection methods to achieve the
traffic security goals. However, some of these combinations
provide weak protection, such as applying ESP transport af-
ter AH transport because ESP transport does not provide IP
header protection. Moreover, other combinations may not im-
prove traffic protection but cause performance overhead, such
as applying AH tunnel followed by AH transport [3].

Formally, the intra-policy multi-transform conflict occurs
when the following conditions are true for any two map-list
rules Ri and Rj :

[(Ci ∧ Cj) �= false] and (i < j) and
Strength(Ri[transform]) > Strength(Rj [transform])
Location(Ri[tunnel dst]) ≥ Location(Rj [tunnel dst]) (6)

Here we introduce the transform strength concept as the
level of protection the transform provides for a particular
traffic. For flexibility, the strength of any transform ti
can be user-defined, and we refer to it as Strength(ti). If
Strength(ti)>Strength(tj), then the transform ti provides bet-
ter protection than tj , and vice versa. The first condition ex-
presses the fact that the two rules must match some common
traffic, and the second find if a weaker transform is applied on
a stronger one. The third condition verifies that the tunnel end-
point of the preceding rule comes after the tunnel end-point of
the following rule in the path from Ri[src ip] to Ri[dst ip].



A similar condition holds for any transport rule followed by
a tunnel rule, but using Ri[dst ip] instead of Ri[tunnel dst].
If the third condition is not true, the conflict reduces to the
overlapping-session conflict described earlier in Section 3.2.1.
We prove that these conditions are comprehensive later in Sec-
tion 4.2.2.

Multi-transform intra-policy conflicts can be easily discov-
ered by searching the map policy for rules that contain conflict-
ing transforms. We start by building the OBDDs for map-list
entries that include any two conflicting transforms. Then we
get the intersection OBDD that represents the overlap condi-
tion where both transforms are applicable. For every map-list
rule that intersects with the overlap condition, we check if it
provides the weaker protection. In this case, a conflict is re-
ported for this rule provided that the rule end point satisfies
the location condition. The full discovery algorithm with de-
tailed description are presented in [13].

4 IPSec Inter-policy Analysis

In this section, we identify all policy conflicts that may exist
between any two different IPSec devices. These include con-
flicts between rules of the crypto-access lists or crypto-map
lists in different IPSec devices. We also prove the comprehen-
siveness of our conflict analysis.

4.1 Classifying and discovering access-list conflicts

Because of the decentralized nature inherent to the IPSec
security policy, the potential of conflicts between policies in
different IPSec devices is significantly high. Even if every
IPSec device policy in the network does not contain any of the
intra-policy conflicts described in Section 3, conflicts could
exist between policies of different IPSec devices. For exam-
ple, an upstream device might protect a traffic that is bypassed
by a downstream device or vice versa. In the first case, the
traffic will be dropped at the upstream peer because SA nego-
tiation will fail. In the second case, the traffic will be dropped
at the downstream peer because it will not be able to perform
the decapsulation. In this section, we first define the conflicts
that may exist between an upstream and a downstream access
policy, and then we describe a technique to discover these con-
flicts.

In this discussion, Sk resembles the access policy of an
IPSec device Dk that exists along a certain network path. Also
in our discussion, for simplicity and without loss of generality,
we analyse the policies of only two devices on any network
path, the upstream device (Du) and the downstream device
(Dd). However, the analysis can be performed iteratively on
every two IPSec devices in the network in order to verify the
IPSec policies in the entire network. Based on these assump-
tions, we can now formally define IPSec inter-policy conflicts
as follows.

Inter-policy shadowing Traffic is shadowed if the upstream
policy Su blocks some traffic permitted by the downstream
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3: TCP   1.1.1.3 : any   2.2.2.3 : any   bypass

1: TCP   2.2.2.1 : any   1.1.1.1 : any   protect
2: TCP   2.2.2.2 : any   1.1.1.2 : any   bypass
3: TCP   2.2.2.3 : any   1.1.1.3 : any   protect

Figure 5. Example for IPSec inter-policy crypto-
access list conflicts.

policy Sd. Formally, inter-policy shadowing exists if the fol-
lowing condition is true:

[(Su
discard∧¬Sd

discard)∨(Su
protect∧¬Sd

protect)] �= false (7)

This expression represents the filtering condition that results
in shadowing some traffic by Du. The first term represents the
traffic discarded by Du but permitted by Dd while the second
term represents the traffic that requires protection by Du but is
not protected by Dd. In the second case, SA negotiation fails
and the traffic is discarded at the upstream device. Rule 2 in
SGA and rule 2 in SGB show an example of inter-policy shad-
owing. Shadowing is considered a critical conflict because it
prevents the traffic desired by some nodes from flowing to the
end destination.

Inter-policy spuriousness Traffic is spurious if the up-
stream policy Su permits some traffic blocked by the down-
stream policy Sd. Formally, inter-policy spuriousness exists if
the following condition is true:

[(Su
bypass ∧ ¬Sd

bypass) ∨ (Su
protect ∧ Sd

discard)] �= false (8)

This expression represents the filtering condition that results
in spurious traffic flowing to Dd. The first term represents
the traffic permitted by Du but not permitted by Dd, while
the second term represents the traffic protected and permitted
by Du but discarded by Dd. The second case applies when
intermediate downstream IPSec devices are not configured to
bypass the protected traffic. Rule 3 in SGA and rule 3 in SGB

show an example of inter-policy spuriousness. Spuriousness is
a critical conflict because it allows unwanted traffic to flow into
the network, increasing the network vulnerability to various
network attacks such as port scanning, denial of service, etc.

Theorem 2 The inter-policy access-list conflict conditions
(Cases 7,8) are complete in the sense that any policy inconsis-
tency between two IPSec devices must satisfy one of the con-
flict conditions.

Proof sketch For any packet, an upstream device may per-
form one of three actions: bypass, protect, or discard. For that
same packet, a downstream device may perform one of the
same three actions. These means there are nine possible com-
binations. The only combinations that do not satisfy one of



the conflict conditions are combinations where the upstream
device and the downstream device perform the same action.
Clearly, these cases are not conflicts [13].

To discover these conflicts, we analyze the upstream out-
bound access policy against the downstream inbound access
policy2. First, we construct the BDD for each of the conflict
conditions defined above. Each rule in the upstream policy is
checked if it intersects with any of the conflict conditions. If
an intersection is found, we look for the corresponding rule
in the downstream policy. Again, we match every rule in the
downstream policy against the conflict condition until we find
an intersecting rule. If the downstream rule also matches the
upstream rule, then the discovered conflict is reported along
with the involved rules. The full discovery algorithm with de-
tailed description are presented in [13].

4.2 Classifying and discovering map-list conflicts

In this section, we identify the conflicts that may occur be-
tween rules in different IPSec crypto-map lists and result in
security policy violation or unnecessary traffic protection.

4.2.1 Inter-policy overlapping-session conflicts

IPSec allows applying nested sessions on the same traffic at
different points on the traffic path to multiple remote peers.
Similar to the intra-policy case, the traffic must be transferred
to the closer peer first and then to the farther peer. In other
words, the packets should be decapsulated in reverse order
of their encapsulation at subsequent points on the traffic path,
otherwise unprotected traffic is transmitted to the destination.
The example in Fig. 6 illustrates this case. In this example,
two IPSec sessions are used to protect the traffic flowing from
A to B. The sessions start at A and SGA and encapsulate the
traffic in tunnels terminating at SGB and SGC respectively.
The traffic is first received and decapsulated by SGC and then
forwarded back to SGB . SGB decapsulates the traffic and for-
wards it to B as clear text. Notice that this conflict can occur
with either two tunneled transforms, or a transport transform
followed by a tunnel. Other rule combinations are not feasible
because IPSec transport sessions cannot be initiated at inter-
mediate security gateways.

Formally, the inter-policy overlapping-session conflict
occurs when the following condition is true for any two
tunnel-mode map-list rules Ru

i in the upstream device, and
Rd

j in the downstream device:

Ru
i [src ip] ⊆ Rd

j [src ip] and
Ru

i [tunnel dst] ⊆ Rd
j [dst ip] and

Location(Ru
i [tunnel dst]) < Location(Rd

j [tunnel dst]) (9)

The first two conditions express the fact that the traffic that
matches the upstream rule also matches the downstream rule.
The last condition verifies that the tunnel end-point of the up-
stream rule comes before the tunnel end-point of the upstream

2Recall that, in general, the inbound policy of an IPSec device is a mirror
image of the outbound policy.

IPSec Gateway

SG
A 

(5.5.5.5)

Host A (1.1.1.1) Host B (2.2.2.2)

TCP   1.1.1.1 : any   2.2.*.* : any   protect

TCP   1.1.1.1 : any   2.2.*.* : any   ESP Tunnel  6.6.6.6  {3DES}

TCP   1.1.*.* : any   6.6.*.* : any   protect

TCP   1.1.*.* : any   6.6.*.* : any   AH Tunnel 7.7.7.7 {MD5}

IPSec Gateway

SG
B 

(6.6.6.6)
IPSec Gateway

SG
C 

(7.7.7.7)

3
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Figure 6. Example for IPSec inter-policy
overlapping-session conflicts.

rule in the path from Ru
i [src ip] to Ru

i [dst ip]. A similar con-
dition holds for any transport rule followed by a tunnel rule,
but using Ru

i [dst ip] instead of Ru
i [tunnel dst] in the above

condition.

Theorem 3 The overlapping-session map-list conflict condi-
tions (Cases 5,9) are complete in the sense that any security
violation must satisfy one of the conflict conditions.

Proof sketch Nested IPSec sessions can start/terminate at
the same node or at different subsequent nodes on the traffic
path. Therefore, to create two nested IPSec sessions, we have
six possible scenarios. Only two of these scenarios correspond
to the decapsulation being performed in the wrong order. The
conflict conditions are the formal descriptions of exactly these
two cases [13].

A procedure similar to the one presented in Section 3.2.1
can be used to discover overlapping-session conflicts. For ev-
ery upstream device Du and downstream device Dd, we ana-
lyze the map-list rules that match the same traffic in both de-
vices but terminate at different end points. Every outbound
map-list rule in Du is checked against all the inbound map-
list rules of Dd. In tunnel mode rules, the source and desti-
nation filters are replaced by the tunnel end-points to resem-
ble the resulting packet header. If any two rules overlap, and
the downstream rule specifies a tunnel terminating at a farther
point than the end-point of the upstream rule, a session con-
flict is reported. The full discovery algorithm and a detailed
description of the technique are provided in [13].

4.2.2 Inter-policy multi-transform conflicts

IPSec also allows intermediate nodes to apply traffic pro-
tection on already protected traffic. However, this might be
unnecessary and can cause extra overhead particularly if the
new protection is weaker than the existing one. For example,
applying an AH tunnel on traffic already encapsulated in
an ESP tunnel does not improve the security protection [3].
Formally, the inter-policy overlapping-session conflict occurs
when the following condition is true for any two tunnel-mode
map-list rules Ru

i in the upstream device, and Rd
j in the

downstream device:



Ru
i [src ip] ⊆ Rd

j [src ip] and
Ru

i [tunnel dst] ⊆ Rd
j [dst ip] and

Strength(Ru
i [transform]) > Strength(Rd

j [transform])
Location(Ru

i [tunnel dst]) ≥ Location(Rd
j [tunnel dst]) (10)

Similarly, the same condition holds for any transport rule
followed by a tunnel rule, but using Ru

i [dst ip] instead of
Ru

i [tunnel dst] in the above condition.

Theorem 4 The multi-transform map-list conflict conditions
(Cases 6,10) are complete in the sense that any unnecessary
protection between a pair of map-list rules must satisfy one of
the conflict conditions.

Proof sketch The two rules could be from the same policy
or from different policies. If a pair of rules do not satisfy ei-
ther of the conditions, then one or more of the following are
true: (1) there are no packets that match both rules, (2) the
protection offered by the earlier transform is weaker than the
protection offered by the later transform, and (3) the second
transformation is undone at a further point on the traffic path
than the first transformation. In the first two cases, the second
transformation does provide some added protection. The third
case is clearly an overlapping-session conflict [13].

Similar to the approach presented in Section 3.2.2, to dis-
cover this conflict we build the OBDDs for map list entries
that include two conflicting transforms in two different IPSec
devices. Then we get the intersection OBDD that represents
the traffic condition where both transforms are applicable. For
every rule in the downstream map-list, we verify that it does
not provide the weaker protection when the location condition
is satisfied. The full discovery algorithm with detailed descrip-
tion are presented in [13].

5 Usability and Performance Evaluation

We implemented the techniques described in Sections 3
and 4 in a software tool called the “Security Policy Advi-
sor” or SPA. The SPA was developed using the Java program-
ming language and BuDDy, an OBDD package implemented
in Java [18]. In this section, we present our evaluation of
the usability and the performance of the IPSec policy analy-
sis techniques described in this paper.

To assess the practical value of our techniques, we first used
the SPA tool to analyze real IPSec policy rules in our univer-
sity network as well as in some local industrial networks in
the area. In many cases, the SPA has shown to be effective by
discovering many policy conflicts that were not discovered by
human visual inspection. We made an attempt to quantitatively
evaluate the practical usability of the SPA by conducting a set
of experiments that consider the level of network administra-
tor expertise. In this experiment, we created two IPSec policy
exercises and recruited 38 network administrators with vary-
ing level of expertise in the field (7 experts, 12 intermediates
and 19 beginners) to complete each exercise. The exercise in-
cluded writing IPSec access list and map list rules based on a
set of access-control policy requirements for 9 interconnected

Experience Access-list Overlapping-session Multi-transform

Intra-Policy Conflicts
Expert (7) 14% 14% 0%
Intermediate (12) 42% 33% 8%
Beginner (19) 84% 63% 16%
Conflict type % 19% 9% 7%

Inter-Policy Conflicts
Expert (7) 29% 14% 14%
Intermediate (12) 50% 33% 17%
Beginner (19) 90% 53% 16%
Conflict type % 38% 16% 11%

Figure 7. The percentage of administrators who
created conflicts in the IPSec policy.

networks with 12 IPSec security gateways (intermediate and
end-point gateways). We then used the SPA tool to analyze the
rules and count different types of conflicts. The experiment re-
sults in Fig. 7 show the percentage of persons who introduced
various types of conflicts in their IPSec policy configuration.

The results show clearly that even the expert administra-
tors created policy conflicts. A total of about 29% of experts
created intra-policy and inter-policy conflicts. This figure is
even much higher for intermediate and beginner administra-
tors. The table also shows the average ratio of each conflict
type relative to the total number of discovered conflicts. The
results clearly indicate that access-list conflicts (38%) domi-
nate the misconfiguration errors made by administrators.

In the second phase of our evaluation study, we conducted
a number of experiments to measure the performance and the
scalability of policy conflict discovery under different filtering
policies and network sizes. Our experiments were performed
on a Pentium PIII 600MHz processor with 512MB RAM.

To study the performance of the intra-policy conflict dis-
covery techniques, we produced three sets of policy rules that
reflect different space and processing requirements. The first
set includes rules that have IP source and destination address
ranges to resemble the best case scenario. In the second set,
each rule has fully specified IP addresses for the source and
destination, representing the worst case scenario. The third set
includes rules that are randomly selected from the two previ-
ous sets in order to represent the average case scenario and
resembles a realistic IPSec policy. We used the SPA tool to
run the intra-policy analysis technique on each set using var-
ious sizes of rule sets (10-100 rules). In each case, we mea-
sured the processing time and memory space needed to pro-
duce the policy analysis report. The processing time results
we obtained are shown in Fig. 8-(a). Set 1 shows the least pro-
cessing time, Set 3 is expected to have the highest processing,
and Set 2 shows a moderate processing time. Even in the worst
case scenario (Set 3), the processing time looks very reason-
able; approximately 20-220 ms for 10-100 rules respectively.
The memory space needed in the analysis is plotted in Fig. 8-
(b). In the worst case, only 56 kbytes are needed to create the
OBDDs used to analyze a policy of 100 rules.

For evaluating the performance of the inter-policy conflict
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Figure 8. Intra-policy conflict discovery (a) pro-
cessing time, (b) memory space.

discovery techniques, we conducted a similar experiment on a
network of IPSec devices resembling a realistic IPSec config-
uration. The topology is composed of several local networks
connected globally to the Internet. Each network contains one
IPSec security gateway and 30 IPSec enabled hosts protected
by the gateway. Each host can establish IPSec sessions with
60% of the hosts in other networks. We created three instances
of the topology each with an different number of intercon-
nected networks: 3 networks, 6 networks, and 9 networks. For
each IPSec node, we installed a random set of IPSec rules to
protect the traffic flowing to other networks. We then used
the SPA to run the inter-policy analysis technique on every
pair of interacting IPSec nodes in each topology with a vary-
ing number of policy rules (10-100 rules). For each topology,
we measured the total processing time and memory space re-
quired to perform policy analysis. The processing time results
are shown in Fig. 9-(a). We noticed that when the analysis
is performed on a small number of networks, the processing
time ranges from 40 seconds to 2 minutes. However, as more
networks are involved in the analysis, the policy conflict dis-
covery requires quadratically increasing processing time rang-
ing from 1 to 18 minutes depending on the rule complexity.
Fig. 8-(b) shows the memory space used in the analysis. The
plot reflects very reasonable memory requirements (less than
3 Mbytes) even for the large network.

6 Related Work

Since IPSec was published as an IETF draft in the late
nineties, it has gained much attention from networking ven-
dors and research institutions. However, most of these efforts
were mainly focused on IPSec implementation issues, the rea-
son why the IPSec standard is still under continuous review by
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Figure 9. Inter-policy conflict discovery (a) pro-
cessing time, (b) memory space.

the IETF community. A few research works were published
in the specific area of IPSec policy conflict analysis, however,
a significant amount of work has been reported in the area of
firewall and policy-based security management. In this sec-
tion, we shall focus our study on two aspects of related work:
(1) packet filter modeling, and (2) conflict discovery and pol-
icy analysis.

Several models have been proposed for packet filtering
rules. A humble attempt to use OBDDs to model firewall rules
was presented in [15]. This work focused on the hardware im-
plementation of firewalls and did not define a formal model for
filtering policies or present a framework for conflict detection.
Moreover, this approach was limited on firewall-specific rules
that use only “accept” and “deny” actions. Other models use
specialized data structures like hash tables, bucket filters, bi-
nary tries and geometric structures [12]. Because these models
were designed particularly to optimize packet classification in
high-speed networks, they are too complex to use for filtering
policy analysis. Interval diagrams are used in [11] to compact
firewall rules. However, this approach can only be used with
non-overlapping rules, which significantly restricts the practi-
cal use of this technique to analyze general filtering policies.

A variety of approaches have been proposed in the area
of policy conflict analysis. The most significant attempt for
IPSec policy analysis is proposed in [10]. The technique sim-
ulates IPSec processing by tracking the protection applied on
the traffic in every IPSec device and reports a conflict if the
IPSec policy is violated. Although this approach can discover
IPSec policy violations in a certain simulation scenario, there
is no guarantee that it discovers every possible violation that
may exist. In addition, the proposed technique only discov-
ers IPSec conflicts resulting from incorrect tunnel overlapping,
but do not address the other types of conflicts that we study in



this paper. Our previous work in firewall policy analysis [2, 1]
as well as the work in [19] were a significant advance in the
area. However, these works were limited to firewall policy
analysis and cannot be easily extended for IPSec. Both [8]
and [14] provide algorithms for detecting and resolving con-
flicts among general packet filters. However, they only detect
what we defined as correlation conflict because it causes ambi-
guity in packet classifiers. Other research work goes one step
forward by offering query-based tools for firewall policy anal-
ysis [9, 15, 21]. Even though these tools can be extended to
run queries to analyze IPSec policies, they cannot provide pre-
defined and automated conflict discovery. Moreover, they have
limited practical usability as they require high user expertise to
write the proper queries to identify different policy problems.
Other work in this area addresses general management poli-
cies rather than filtering policies [20]. Although this work is
very useful as a general background, it cannot be directly used
for IPSec conflict discovery.

Therefore, based on our search, we could not find any pre-
vious work offering a comprehensive conflict analysis frame-
work for IPSec policies using formal verification techniques.

7 Conclusions and Future Work

Although the IPSec standard provides various flexible data
protection schemes for IP networks, configuring IPSec poli-
cies manually can be extremely complex and error-prone, par-
ticularly in enterprise networks. An exhaustive analysis of pol-
icy rules in all IPSec gateways is required to discover policy
conflicts and avoid serious network security threats like inse-
cure transmission and flooding attacks. IPSec security, like
any other technology, requires proper management support, in-
cluding automatic conflict analysis and verification, in order to
provide the required security services.

In this paper, we attempt to bridge this gap by presenting
(1) a new formal model that covers the semantics of a wide
range of filtering policies including IPSec, and (2) a sound and
complete framework for analyzing IPSec policy conflicts. The
verification framework utilizes OBDDs, a well-known power-
ful verification tool that is widely used in many fields, to repre-
sent IPSec policies and derive solid formulation of policy con-
flicts. Based on this framework, we developed techniques for
identifying rule conflicts in IPSec policies of a single device or
across multiple inter-connected devices. Our approach is suf-
ficiently general to be used for verifying many other filtering-
based security policies such as firewalls, intrusion detection
systems and access control devices. We show that our imple-
mentation of these techniques in a tool called the “Security
Policy Advisor” is very effective in checking real-life IPSec
policies. For example, our tool was able to discover conflicts
in IPSec policies that were overlooked by up to 29% of expert
network administrators in our experiment. Our experiments
have also shown that the average processing time in intra- and
inter-policy conflict discovery is very reasonable for off-line
analysis in many network configurations.

There is much more research to pursue in the automation of
security policy management. Our future research plan includes

online discovery and recovery of conflicts created as a result
of policy updates, and discovery of conflicts between IPSec
devices and other security devices like firewalls and NATs.
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