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ABSTRACT

ProVerif is an automatic symbolic protocol verifier. It sup-
ports a wide range of cryptographic primitives, defined by
rewrite rules or by equations. It can prove various security
properties: secrecy, authentication, and process equivalences,
for an unbounded message space and an unbounded number
of sessions. It takes as input a description of the protocol
to verify in a dialect of the applied pi calculus, an exten-
sion of the pi calculus with cryptography. It automatically
translates this protocol description into Horn clauses and
determines whether the desired security properties hold by
resolution on these clauses. This survey presents an overview
of the research on ProVerif.

Bruno Blanchet (2016), “Modeling and Verifying Security Protocols with the Applied
Pi Calculus and ProVerif”, Foundations and TrendsR© in Privacy and Secruity: Vol.
1, No. 1-2, pp 1–135. DOI: 10.1561/3300000004.
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1
Introduction

Verifying security protocols

The verification of security protocols has been an active research area
since the 1990s. This topic is interesting for several reasons. Security
protocols are ubiquitous: they are used for e-commerce, wireless net-
works, credit cards, e-voting, among others. The design of security
protocols is notoriously error-prone. This point can be illustrated by
attacks found against many published protocols. For instance, a famous
attack was discovered by Lowe (1996) against the Needham-Schroeder
public-key protocol (Needham and Schroeder, 1978) 17 years after its
publication. Attacks are also found against many protocols used in
practice. Important examples are SSL (Secure Sockets Layer) and its
successor TLS (Transport Layer Security), which are used for https://
connexions. The first version dates back to 1994, and since then many
attacks were discovered, fixed versions were developed, and new attacks
are still regularly discovered (Beurdouche et al., 2015; Adrian et al.,
2015). Moreover, security errors cannot be detected by functional test-
ing, since they appear only in the presence of a malicious adversary.
These errors can also have serious consequences. Hence, the formal
verification or proof of protocols is particularly desirable.

2
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Verifying security protocols 3

Modeling security protocols

In order to verify protocols, two main models have been considered:

• In the symbolic model, often called Dolev-Yao model and due
to Needham and Schroeder (1978) and Dolev and Yao (1983),
cryptographic primitives are considered as perfect blackboxes,
modeled by function symbols in an algebra of terms, possibly
with equations. Messages are terms on these primitives and the
adversary can compute only using these primitives. This is the
model usually considered by formal method practitioners.

• In contrast, in the computational model, messages are bitstrings,
cryptographic primitives are functions from bitstrings to bitstrings,
and the adversary is any probabilistic Turing machine. This is the
model usually considered by cryptographers.

The symbolic model is an abstract model that makes it easier to build
automatic verification tools, and many such tools exist: AVISPA (Ar-
mando et al., 2005), FDR (Lowe, 1996), Scyther (Cremers, 2008),
Tamarin (Schmidt et al., 2012), for instance. The computational model
is closer to the real execution of protocols, but the proofs are more
difficult to automate; we refer the reader to (Blanchet, 2012a) and to
Chapter 6 for some information on the mechanization of proofs in the
computational model.

Most often, the relations between cryptographic primitives given
in the symbolic model also hold in the computational model.1 In this
case, an attack in the symbolic model directly leads to an attack in the
computational model, and a practical attack. However, the converse is
not true in general: a protocol may be proved secure in the symbolic
model, and still be subject to attacks in the computational model. For
this reason, the computational soundness approach was introduced: it
proves general theorems showing that security in the symbolic model
implies security in the computational model, modulo additional assump-
tions. However, since the two models do not coincide, this approach

1Sometimes, one may also overapproximate the capabilities of the adversary in
the symbolic model.
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4 Introduction

typically requires strong assumptions on the cryptographic primitives
(for instance, encryption has to hide the length of the messages) and
on the protocol (for instance, absence of key cycles, in which a key is
encrypted under itself; correctly generated keys, even for the adversary).
This approach was pioneered by Abadi and Rogaway (2002). This work
triggered much research in this direction; we refer to (Cortier et al.,
2011) for a survey.

Even though the computational model is closer to reality than the
symbolic model, we stress that it is still a model. In particular, it
does not take into account side channels, such as timing and power
consumption, which may give additional information to an adversary
and enable new attacks. Moreover, one often studies specifications of
protocols. New attacks may appear when the protocol is implemented,
either because the specification has not been faithfully implemented, or
because the attacks rely on implementation details that do not appear
at the specification level.

In this survey, we focus on the verification of specifications of proto-
cols in the symbolic model. Even though it is fairly abstract, this level
of verification is relevant in practice as it enables the discovery of many
attacks.

Target security properties

Security protocols can aim at a wide variety of security goals. The
main security properties can be classified into two categories, trace
properties and equivalence properties. We define these categories and
mention two particularly important examples: secrecy and authentica-
tion. These are two basic properties required by most security protocols.
Some protocols, such as e-voting protocols (Delaune et al., 2009), re-
quire more complex and specific security properties, which we will not
discuss.

Trace and equivalence properties

Trace properties are properties that can be defined on each execution
trace (each run) of the protocol. The protocol satisfies such a property

Full text available at: http://dx.doi.org/10.1561/3300000004



Verifying security protocols 5

when it holds for all traces. For example, the fact that some states are
unreachable is a trace property.

Equivalence properties mean that the adversary cannot distinguish
two processes (that is, protocols). For instance, one of these processes can
be the protocol under study, and the other one can be its specification.
Then, the equivalence means that the protocol satisfies its specification.
Therefore, equivalences can be used to model many subtle security
properties. Several variants exist (observational equivalence, testing
equivalence, trace equivalence) (Abadi and Gordon, 1999; Abadi and
Gordon, 1998; Abadi and Fournet, 2001). Observational equivalence
provides compositional proofs: if a protocol P is equivalent to P ′, P can
be replaced with P ′ in a more complex protocol. However, the proof
of equivalences is more difficult to automate than the proof of trace
properties: equivalences cannot be expressed on a single trace, they
require relations between traces (or processes).

Secrecy

Secrecy, or confidentiality, means that the adversary cannot obtain
some information on data manipulated by the protocol. Secrecy can be
formalized in two ways:

• Most often, secrecy means that the adversary cannot compute
exactly the considered piece of data. In this survey, this prop-
erty will simply be named secrecy, or when emphasis is needed,
syntactic secrecy.

• Sometimes, one uses a stronger notion, strong secrecy, which
means that the adversary cannot detect a change in the value
of the secret (Abadi, 1999; Blanchet, 2004). In other words, the
adversary has no information at all on the value of the secret.

The difference between syntactic secrecy and strong secrecy can be
illustrated by a simple example: consider a piece of data for which the
adversary knows half of the bits but not the other half. This piece
of data is syntactically secret since the adversary cannot compute it
entirely, but not strongly secret, since the adversary can see if one

Full text available at: http://dx.doi.org/10.1561/3300000004



6 Introduction

of the bits it knows changes. Syntactic secrecy cannot be used to
express secrecy of data chosen among known constants. For instance,
talking about syntactic secrecy of a boolean true or false does not make
sense, because the adversary knows the constants true and false from
the start. In this case, one has to use strong secrecy: the adversary
must not be able to distinguish a protocol using the value true from
the same protocol using the value false. These two notions are often
equivalent (Cortier et al., 2007), for atomic data (data that cannot be
split into several pieces, such as nonces, which are random numbers
chosen independently at each run of the protocol) and for probabilistic
cryptographic primitives. Syntactic secrecy is a trace property, while
strong secrecy is an equivalence property.

Authentication

Authentication means that, if a participant A runs the protocol appar-
ently with a participant B, then B runs the protocol apparently with
A, and conversely. One often requires that A and B also share the same
values of the parameters of the protocol.

Authentication is generally formalized by correspondence proper-
ties (Woo and Lam, 1993; Lowe, 1997), of the form: if A executes a
certain event e1 (for instance, A terminates the protocol with B), then
B has executed a certain event e2 (for instance, B started a session of
the protocol with A). There exist several variants of these properties.
For instance, one may require that each execution of e1 corresponds to
a distinct execution of e2 (injective correspondence) or, on the contrary,
that if e1 has been executed, then e2 has been executed at least once
(non-injective correspondence). The events e1 and e2 may also include
more or fewer parameters depending on the desired property. These
properties are trace properties.

Symbolic verification

Basically, to verify protocols in the symbolic model, one computes the
set of terms (messages) that the adversary knows. If a message does
not belong to this set, then this message is secret. The difficulty is
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Verifying security protocols 7

that this set is infinite, for two reasons: the adversary can build terms
of unbounded size, and the considered protocol can be executed any
number of times. Several approaches can be considered to solve this
problem:

• One can bound the size of messages and the number of executions
of the protocols. In this case, the state space is finite, and one can
apply standard model-checking techniques. This is the approach
taken by FDR (Lowe, 1996) and by SATMC (Armando et al.,
2014), for instance.

• If we bound only the number of executions of the protocol, the
state space is infinite, but under reasonable assumptions, one
can show that the problem of security protocol verification is
decidable: protocol insecurity is NP-complete (Rusinowitch and
Turuani, 2003). Basically, the non-deterministic Turing machine
guesses an attack and polynomially checks that it is actually an
attack against the protocol. There exist practical tools that can
verify protocols in this case, using for instance constraint solving
as in Cl-AtSe (Turuani, 2006) or extensions of model checking as
in OFMC (Basin et al., 2005).

• When the number of executions of the protocol is not bounded,
the problem is undecidable (Durgin et al., 2004) for a reasonable
model of protocols. Hence, there exists no automatic tool that
always terminates and solves this problem. However, there are
several approaches that can tackle an undecidable problem:

– One can rely on help from the user. This is the approach
taken for example by Isabelle (Paulson, 1998), which is an
interactive theorem prover, Tamarin (Schmidt et al., 2012),
which just requires the user to give a few lemmas to help the
tool, or Cryptyc (Gordon and Jeffrey, 2004), which relies on
typing with type annotations.

– One can have incomplete tools, which sometimes answer “I
don’t know” but succeed on many practical examples. For
instance, one can use abstractions based on tree-automata to
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8 Introduction

represent the knowledge of the adversary (Monniaux, 2003;
Boichut et al., 2006).

– One can allow non-termination, as in Maude-NPA (Meadows,
1996; Escobar et al., 2006).

The symbolic protocol verifier ProVerif represents protocols by
Horn clauses, in the line of ideas by Weidenbach (1999): Horn
clauses are first order logical formulas, of the form F1∧· · ·∧Fn ⇒
F , where F1, . . . , Fn, F are facts. This representation introduces
abstractions. It is still more precise than tree-automata because
it keeps relational information on messages. However, using this
approach, termination is not guaranteed in general.

Let us compare ProVerif with some other tools that verify protocol
specifications in the symbolic model. AVISPA (Armando et al., 2005)
is a platform that offers four different protocol verification back-ends:
SATMC (Armando et al., 2014) for bounded attack depth (which im-
plies bounded sessions and messages), Cl-AtSe (Turuani, 2006) and
OFMC (Basin et al., 2005; Mödersheim and Viganò, 2009) for bounded
sessions, and TA4SP (Boichut et al., 2006) for unbounded sessions.
In contrast, ProVerif focuses only on the case of unbounded sessions,
and the Horn-clause abstraction it uses is more precise than the tree-
automata abstraction of TA4SP, as mentioned above. SATMC supports
basic cryptographic primitives that can be defined by rewrite rules.
Cl-AtSe additionally supports exclusive or, Diffie-Hellman exponentia-
tion (including equations of the multiplicative group modulo p), and
associative concatenation. OFMC supports cryptographic primitives
defined by finite equational theories (theories under which every term
has a finite equivalence class) and subterm convergent theories (theories
generated by rewrite rules that are convergent, that is, terminating and
confluent, and whose right-hand side is either a subterm of the left-hand
side or a constant). However, in order to guarantee termination, it
bounds the number of instantiations of variables. TA4SP handles alge-
braic properties of exponentiation and exclusive or. ProVerif supports
cryptographic primitives defined by rewrite rules and by equations that
satisfy the finite variant property (Comon-Lundh and Delaune, 2005),
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Verifying security protocols 9

which excludes associativity. AVISPA focuses on trace properties, while
ProVerif can also verify some equivalence properties.

Maude-NPA (Meadows, 1996; Escobar et al., 2006) relies on narrow-
ing in rewrite systems. It is fully automatic and supports an unbounded
number of sessions, but in contrast to ProVerif, it does not make any
abstraction. Hence, it is sound and complete, but may not terminate. It
supports cryptographic primitives defined by convergent rewrite rules
plus associativity and commutativity (Escobar et al., 2007), as well as
homomorphic encryption (Escobar et al., 2011), while ProVerif does not
support associativity nor homomorphic encryption. It initially focused
on reachability properties and was recently extended to prove some
equivalences (Santiago et al., 2014), using the same idea as ProVerif
(see §3).

Scyther (Cremers, 2008) is fully automatic, always terminates, and
can provide three different results: verification for an unbounded number
of sessions, attack, or verification for a bounded number of sessions.
It supports only a fixed set of cryptographic primitives (symmetric
and asymmetric encryption and signatures). It proves secrecy and
authentication properties. A version named scyther-proof generates
Isabelle proofs of security of the verified protocols (Meier et al., 2010).

Tamarin (Schmidt et al., 2012) verifies protocols for an unbounded
number of sessions, but often relies on the user to provide some lemmas
in order to guide the proof. It initially proved trace properties expressed
in temporal first-order logic, and was recently extended to prove some
equivalences (Basin et al., 2015), using the same idea as ProVerif. It
supports cryptographic primitives defined by subterm convergent equa-
tions, Diffie-Hellman exponentiation, bilinear pairings, and associative
and commutative operators (Schmidt et al., 2014). It also supports
mutable state and loops; the lemmas provided by the user basically give
loop invariants. Protocols in Tamarin are specified as multiset rewriting
systems; Kremer and Künnemann (2014) wrote a translator from an
extension of the applied pi calculus with state.

The rest of this survey focuses on ProVerif. We refer the reader
to (Blanchet, 2012b) for a more complete survey of security protocol
verification.

Full text available at: http://dx.doi.org/10.1561/3300000004



10 Introduction

Pi calculus + cryptography Secrecy, authentication, ...

Horn clauses Derivability queries

Resolution with selection

Automatic translator

Derivation:No derivation:

Protocol: Properties to prove:

The property is true Attack at the Horn clause level

Attack reconstruction

False attack
"I don’t know"

Attack at the pi
The property is false

calculus level

Figure 1.1: Structure of ProVerif

Structure of ProVerif

The structure of ProVerif is represented in Figure 1.1. ProVerif takes as
input a model of the protocol in an extension of the pi calculus with
cryptography, similar to the applied pi calculus (Abadi and Fournet,
2001; Abadi et al., 2016) and detailed in the next chapter. It supports
a wide variety of cryptographic primitives, modeled by rewrite rules or
by equations. ProVerif also takes as input the security properties that
we want to prove. It can verify various security properties, including se-
crecy, authentication, and some observational equivalence properties. It
automatically translates this information into an internal representation
by Horn clauses: the protocol is translated into a set of Horn clauses,
and the security properties to prove are translated into derivability
queries on these clauses. ProVerif uses an algorithm based on resolution
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Comparison with previous surveys 11

with free selection to determine whether a fact is derivable from the
clauses. If the fact is not derivable, then the desired security property
is proved. If the fact is derivable, then there may be an attack against
the considered property: the derivation may correspond to an attack,
but it may also correspond to a “false attack”, because the Horn clause
representation makes some abstractions. These abstractions are key to
the verification of an unbounded number of sessions of protocols.

Chapter 2 presents the protocol specification language of ProVerif.
Chapter 3 explains how ProVerif verifies the desired security properties.
Chapter 4 relates the protocol specification language of ProVerif to the
applied pi calculus (Abadi and Fournet, 2001; Abadi et al., 2016). Finally,
Chapter 5 summarizes some applications of ProVerif and Chapter 6
concludes.

Comparison with previous surveys

Previous surveys on ProVerif (Blanchet, 2011; Blanchet, 2014) focus only
on secrecy. The general protocol verification survey Blanchet (2012b)
also outlines the verification of secrecy in ProVerif. Previous journal pa-
pers present individual features of the tool: secrecy (Abadi and Blanchet,
2005a), correspondences (Blanchet, 2009), and equivalences Blanchet et
al. (2008). Our habilitation thesis (Blanchet, 2008b), in French, presents
a general survey of ProVerif that includes secrecy, correspondences, and
equivalences.

This survey is the first one to present all these features in English,
in a common framework. Moreover, it includes features that never
appeared in previous surveys: the extended destructors of (Cheval and
Blanchet, 2013), the proof of equivalences using swapping (Blanchet
and Smyth, 2016), as well as the link with the applied pi calculus
(Chapter 4), which was never published before.
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