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Abstract 

Time-sensitive Wireless Sensor Network (WSN) applications require finite delay bounds in critical 

situations. This paper provides a methodology for the modeling and the worst-case dimensioning of cluster-

tree WSNs. We provide a fine model of the worst-case cluster-tree topology characterized by its depth, the 

maximum number of child routers and the maximum number of child nodes for each parent router. Using 

Network Calculus, we derive “plug-and-play” expressions for the end-to-end delay bounds, buffering and 

bandwidth requirements as a function of the WSN cluster-tree characteristics and traffic specifications. The 

cluster-tree topology has been adopted by many cluster-based solutions for WSNs. We demonstrate how to 

apply our general results for dimensioning IEEE 802.15.4/Zigbee cluster-tree WSNs. We believe that this 

paper shows the fundamental performance limits of cluster-tree wireless sensor networks by the provision of 

a simple and effective methodology for the design of such WSNs. 
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Abstract 

Time-sensitive Wireless Sensor Network (WSN) applications 

require finite delay bounds in critical situations. This paper 

provides a methodology for the modeling and the worst-case 

dimensioning of cluster-tree WSNs. We provide a fine model of 

the worst-case cluster-tree topology characterized by its depth, 

the maximum number of child routers and the maximum 

number of child nodes for each parent router. Using Network 

Calculus, we derive “plug-and-play” expressions for the end-

to-end delay bounds, buffering and bandwidth requirements as 

a function of the WSN cluster-tree characteristics and traffic 

specifications. The cluster-tree topology has been adopted by 

many cluster-based solutions for WSNs. We demonstrate how 

to apply our general results for dimensioning IEEE 

802.15.4/Zigbee cluster-tree WSNs. We believe that this paper 

shows the fundamental performance limits of cluster-tree 

wireless sensor networks by the provision of a simple and 

effective methodology for the design of such WSNs. 

1. Introduction 

In time-sensitive Wireless Sensor Network (WSN) 

applications, it is important that time-critical messages arrive 

to their destination prior to the expiration of their deadlines [1]. 

This requires a priori dimensioning of the available resources 

of the WSN to provide an end-to-end guaranteed service from 

the source node to the sink (e.g. control station).  

Typically, wireless sensor networks can be organized in 

unstructured peer-to-peer or structured cluster-based 

topologies. In spite of a greater flexibility, the peer-to-peer 

model is, in general, not suitable to provide predictable service 

guarantees, mainly due to its unstructured nature, and also to 

the typical use of contention-based Medium Access Control 

(MAC) mechanisms. On the other hand, structured cluster-

based topologies are quite suitable for WSNs with demanding 

requirements in terms of Quality of Service (QoS) support and 

real-time communications. In the literature, cluster-based 

topologies have been deployed to improve service guarantees 

in WSNs, by either using deterministic MAC protocols based 

on Time Division Multiple Access (TDMA) [2, 3] or two-

tiered architectures [4, 5]. The cluster-tree topology is a 

particular case of cluster-based topologies, which uses multi-

hop tree routing to transport data from the source to the 

destination. The tree defines a backbone that consists of a set 

of routers (also called cluster-heads) that collect data from 

sensor nodes belonging to their cluster, and forward it to the 

next level routers in the tree until reaching the sink. 

A common feature of cluster-tree WSNs is that each node 

(or a subset of nodes) can be granted a minimum service 

guarantee all along the path through which the data is relayed, 

by the allocation of some resources (e.g. time slots in TDMA 

or bandwidth sharing) in each intermediate router. The 

communication path between two nodes in the cluster-tree 

network will then have an end-to-end predictable service 

guarantee, thus enabling the evaluation of worst-case 

performance metrics, namely the delay bounds and resource 

requirements. In what follows, we refer to resource 

requirements to denote bandwidth and buffering requirements 

in each router. 

In this paper, we show that a cluster-tree topology can be 

modeled by three parameters: its depth, the maximum number 

of child nodes and the maximum number of child routers per 

parent router. In a cluster-tree topology, a node is a simple 

device that collects sensory data and forwards it to the parent 

router to which it is associated. A router is a device that has 

more advanced networking capabilities, in addition to the node 

functionalities. 

Given such a network model, it is then possible to predict 

the end-to-end performance of the WSN in terms of delay 

bounds and resource requirements, at design time. The purpose 

of this paper is to provide a methodology that permits this 

worst-case dimensioning of cluster-tree wireless sensor 

networks. The problem that we tackle in this paper can be 

roughly formulated as follows. 

Having a WSN organized in a cluster-tree topology, 

with a given number of nodes, a given number of 

routers, and a given depth, and provided that a 

minimum service is guaranteed to every node and 

router, what are the delay bounds for flows originated 

from nodes at a given depth in the WSN, and what are 

the minimum resource requirements in each router? 

A practical motivation that drives this work is that the 

cluster-tree topology is supported by the IEEE 

802.15.4/Zigbee protocol standards [6, 7], recently defined for 

Low-Rate Wireless Personal Area Networks (WPANs), with a 

great potential for deployment in WSN applications [8]. 

Hence, and just as an example of instantiation, we apply the 

general solution of the aforementioned problem to the specific 

case of cluster-tree WSNs based on the IEEE 802.15.4/Zigbee 

protocols. Notably, our approach can easily be applied to any 

other cluster-tree WSN offering service guarantees, such as 

LEACH [2].  
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2. Related Work and Contributions 

The prediction of the worst-case performance of WSNs has 

recently attracted several recent research works. In [9], the 

authors have defined the concept of real-time capacity of 

wireless networks as the ability of the network to deliver data 

by their deadlines. They also derived a sufficient schedulablity 

condition for a class of non-preemptive fixed priority 

scheduling algorithms. The analysis presented in this paper is 

topology-independent. Even though this work is a relevant 

contribution to the understanding of the real-time capacity of 

multi-hop WSNs, the applicability of the results to a real WSN 

remains constrained by the restrictive assumption of an ideal 

MAC, implementing a medium arbitration with zero overhead. 

Another line of research works dealing with the prediction 

of the worst-case performance of WSNs has considered the 

extension of the Network Calculus methodology [10] to WSNs 

[11-13]. Network Calculus is a theory for designing and 

analyzing deterministic queuing systems, which provides a 

mathematical framework based on min-plus and max-plus 

algebras for delay bound analysis in packet-switched networks. 

In [11], the authors have defined a general analytical 

framework, which extends Network Calculus to be used in 

dimensioning WSNs, taking into account the relation between 

node power consumption, node buffer requirements and the 

transfer delay. The main contribution in [11] is the provision of 

general expressions modeling the arrival curves of the input 

and output flows at a given parent sensor node in the network, 

as a function of the arrival curves of its children. These 

expressions are obtained by direct application of Network 

Calculus theorems. Then, the authors have defined an iterative 

procedure to compute the internal flow inputs and outputs in 

the WSN, node by node, starting from the lowest leaf nodes 

until arriving to the sink. Using Network Calculus theorems, 

the authors have extended the general expressions of delay 

bounds experienced by the aggregated flows at each hop and 

have deduced the end-to-end delay bound as the sum of all per-

hop delays on the path.  

In [12], the same authors use their methodology for the 

worst-case dimensioning of WSNs under uncertain topologies. 

The key difference, as compared to [11], is the computation of 

the worst-case topology, i.e. the topology that experiments the 

worst-case behavior in terms of delay bounds and buffering 

requirements. The same models (expressions between input 

and output flows, and the iterative procedure) in [11] have 

been used in the analysis presented in [12]. In [13], the 

analysis has been extended to support multiple sinks. The main 

results of the Sensor Network Calculus methodology that we 

use in this paper will be presented in Section 2. 

In [14], the authors have analyzed the performance of 

general-purpose sink-tree networks using network calculus and 

derived tighter end-to-end delay bounds. 

In this paper, we apply and extend the Sensor Network 

Calculus methodology to the worst-case dimensioning of 

cluster-tree topologies, which are particularly appealing for 

WSNs with stringent timing requirements. Our work differs 

from the previous works and contributes to the state-of-the art 

in three aspects. First, we provide a fine general model for 

cluster-tree WSNs defined by a depth, the maximum number 

of child nodes and the maximum number child routers per each 

parent router, and consider input flows at each nodes bounded 

by a (b,r) arrival curve, where b is the maximum burst size of 

the flow, and r is its average rate. Our work differs from [14] 

in the system model used in the analysis. In [14], the authors 

have considered a general-purpose tandem of nodes, different 

from the cluster-tree model defined in this paper. Our model is 

more accurate in the context WSNs. Second, we address the 

particular problem of the worst-case dimensioning of cluster-

tree topologies, which we believe are of a great interest for 

time-sensitive WSN applications. We apply the Sensor 

Network Calculus theory to our model and derive simple 

recurrent equations that express the resource requirements at 

each node in the network, and the per-hop as well as end-to-

end delay bounds as function of the cluster-tree parameters. A 

first advantage of our work as compared to [11-13] is the 

provision of practical recurrent equations, thus avoiding 

iterative computations (node by node). The resulting time-

complexity of such an approach is not suitable for large-scale 

WSNs. In addition, Our model is more accurate for this 

specific WSN topology than the general WSN structures 

considered in [11-13], and the results presented in this paper 

accurately show its worst-case performance. We also propose 

to evaluate the end-to-end delay bound of a given individual 

flow differently from the approaches in [11-13]. Instead of 

computing the sum of per-hop delays for aggregate flows, we 

propose to compute the end-to-end service curve of every 

individual flow along its path from its source to its destination, 

using the concatenation theorem of Network Calculus [10]. 

This methodology was used in [14] and shows that it provides 

tighter end-to-end delay bounds. The numerical results that we 

present in this paper confirm the above conclusion. Third, we 

show how to apply these results in the dimensioning of the 

worst-case performance of IEEE 802.15.4/Zigbee WSNs, 

which helps to have a better understanding of the limits of this 

standardized technology.  

On the other hand, the deterministic performance of the 

IEEE 802.15.4 protocol has been addressed in some recent 

research works [15-17]. These works have basically addressed 

the evaluation and the improvement of the Guaranteed Time 

Slot (GTS) mechanism in IEEE 802.15.4 single-cluster star-

based networks. In [15], the authors have presented an 

analytical tool using Network Calculus for modeling and 

evaluating the delay bound guaranteed by the GTS mechanism 

in a star-based WSN. In [16, 17], some schemes for improving 

the GTS mechanism have been proposed and analyzed. The 

applicability of these results only holds for single-cluster star-

based WSNs. This paper contributes to the analysis of the GTS 

mechanism by extending it to a multi-hop cluster-tree 

topology. 

To our best knowledge, the analysis of deterministic 

guarantees in cluster-tree WSNs and its application to IEEE 

802.15.4/Zigbee networks has not been addressed yet.  

3. Background  

3.1 Network Calculus Fundamentals 

Network Calculus is a mathematical tool based on min-plus 

and max-plus algebras for designing and analyzing 

deterministic queuing systems [10]. A basic system 

representation is illustrated in Fig. 1. 
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Fig. 1. System representation in Network Calculus theory 

For a given data flow, the input function is the cumulative 

arrival function denoted by R(t), which represents the number 

of bits that arrive during the interval [0, t]. We denote by R
*
(t) 

the output function of the flow, which represents the number 

of bits that leave the system during the interval [0, t].  

Furthermore, Network Calculus theory assumes that: 

• It exists an arrival curve α (t) that upper bounds R(t) 

such that ( ) ( ) ( ),  0 ,  s s t R t R s t sα∀ ≤ ≤ − ≤ − . This 

inequality means that the amount of traffic that arrives to 

receive service in any interval ,s t⎡ ⎤⎣ ⎦  never exceeds 

( )t sα − . It is also said that R(t) is constrained by α(t), or 

R(t) ~ α(t). 

• It exists a minimum service curve β (t) guaranteed to 

R(t). This means that the output flow during any given 

busy period [t, t+Δ] of the flow is at least equal to β (Δ), 

i.e. ( ) ( ) ( )* *R t R t β+ Δ − ≥ Δ , where Δ > 0 is the duration 

of any busy period.  

The knowledge of the arrival and service curves enables the 

computation of the delay bound Dmax, which represents the 

worst-case response time of a message, and the backlog bound 

Qmax, which is the maximum queue length of the flow. 

The delay bound, Dmax, for a data flow with an arrival 

curve ( )tα  that receives the service curve ( )tβ  is the 

maximum horizontal distance between ( )tα and ( )tβ  (see 

Fig. 2), and is expressed as follows: 

( ) ( )( ){ } ( )max
0

sup inf 0   ,
s

D s s d t tτ α β τ
≥

= ≥ ≤ + ≥ ∀  (1) 

The backlog bound, Qmax, for a data flow with an arrival 

curve ( )tα  that receives the service ( )tβ  is the maximum 

vertical distance between ( )tα and ( )tβ , and is expressed as: 

( ) ( )( ) ( )max
0

sup   ,
s

Q s s q t tα β
≥

= − ≥ ∀
 

(2) 

Fig. 2 presents an example of the delay and backlog bound 

computation for a linear arrival curve ( )t b r tα = + ⋅ that 

receives a rate-latency service curve ( ) ( ),R T t R t Tβ += ⋅ − , 

where R r≥  is the guaranteed bandwidth, T is the maximum 

latency of the service and ( ) ( )max 0,x x
+ = . 

 

Fig. 2. Delay and backlog bounds 

This service curve is typically used for servers that provide 

a bandwidth guarantee with a certain latency. The latency T 

refers to the deviation of the service (e.g. blocking factor of 

non-preemptive transmissions). 

The delay bound Dmax (presented in Fig. 2) guaranteed for 

the data flow with the arrival curve ( )t b r tα = + ⋅  (also called 

(b, r)-curve) by the service curve ( ) ( ),R T t R t Tβ += ⋅ −  is 

computed as follows [10]: 

max

b
D T

R
= +  (3)

and the backlog bound is expressed as [10]: 

maxQ b r T= + ⋅
 (4)

In our analysis, we will use the previous linear arrival curve 

and the rate-latency service curve since they accurately 

represent the system as it will be explained in Section 4.  

In Network Calculus, it is also possible to express an upper 

bound for the output flow and the equivalent service curve for 

the concatenation of two service curves. 

The output function R
*
(t), of a flow R(t) constrained by an 

arrival curve α(t) that traverses a system offering a service 

curve β(t), is constrained by output bound α∗ (t): 

( ) ( )( )* t tα α β=
 

(5) 

where  is the min-plus deconvolution defined for ,f g ∈F , 

where F  is the set of wide-sense increasing functions, as: 

( )( ) ( ) ( )( )
0

sup
s

f g t f t s g s
≥

= + −  

We consider the following corollary as an application of 

Eq. (5) to the case of a linear arrival curve and a rate-latency 

service curve. The proof can be found in [18].  

Corollary 1. Assume that a flow is constrained by an 

arrival curve ( )    t b r tα = + ⋅ and a FIFO node provides a 

guaranteed service curve ( ) ( ),R T t R t Tβ += ⋅ −  to the flow. 

Then, the output bound of the flow is expressed as: 

( ) ( )* t t r Tα α= + ⋅  (6) 

And for any constant K ∈ , we easily show that: 

( )( ) ( ) ( )( ), ,.R T R TK t t K tα β α β⋅ =  (7) 
 

Concatenation of Nodes. Assume that a flow R(t) traverses 

systems S1 and S2 in sequence, where S1 offers service curve 

β1(t) and S2 offers β2(t). Then, the resulting system S, defined 

by the concatenation of the two systems S1 and S2, offers the 

following service curve to the flow: 

( ) ( )( )1 2t tβ β β= ⊗
 (8) 

where ⊗ is the min-plus convolution defined for ,f g ∈F as: 

( )( ) ( ) ( )( )
0
inf

s t
f g t f t s g s

≤ ≤
⊗ = − +  

3.2 Network Flow Analysis 

Some results of the Sensor Network Calculus methodology 

that are relevant for our analysis are presented next.  

The sensor network model (refer to Fig. 3) considers that, 

for a given path, each node has one parent and one or more 

children (with the exception of end nodes). It is assumed that 

each node i has an input flow with an arrival curve ( )i tα . 

Hence, the total input of a given parent node i is the sum of its 

input and the outputs of its children as obtained by Eq. (5).  
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Fig. 3. The sensor network model 

As a result, the total input flow of a given parent node i is: 

( ) ( ) ( )*
( , )

1

n

i i Child i j

j

t t tα α α
=

= + ∑
 

(9) 

Applying Eq. (5) again to the parent node i, assuming that it 

has been guaranteed a service curve βi(t), its output flow is 

expressed as follows: 

( ) ( )( ) ( )* *
( , )

1

n

ii i i Child i j i

i

t t tα α β α α β
=

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= = +
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑
 

(10) 

Hence, the network flow analysis in the Sensor Network 

Calculus methodology consists in computing iteratively the 

output flow bound ( )*
i tα  using the above equations, from the 

bottom of the network until arriving to the destination (sink). 

Then, the per-hop delay bound is computed node by node 

using Eq. (1), and the end-to-end delay bound in a given path 

is then equal to the sum of all per-hop delay bounds.  

3.3 Aggregate Scheduling 

Consider a FIFO queue that multiplexes many flows and offers 

them a given guaranteed service curve β (t). Hence, applying 

Eqs. (1) and (2), it is possible to compute the delay and 

backlog bounds for the entire aggregate flow (the sum of all 

flows) that enters the FIFO queue, provided that this aggregate 

is bounded by an arrival curve. Note that while these delay and 

backlog bounds are global for all flows, it is also possible to 

compute the delay bounds for individual flows. We provide the 

following corollary for aggregate scheduling in Network 

Calculus, which will be used in our approach. This corollary is 

a direct result from Proposition 6.2.1 in [10], and the proof can 

be found in [19]. 

 Corollary 2. Aggregate Scheduling. Consider a FIFO 

node that multiplexes two flows 1 and 2. Assume that flow 2 is 

constrained by an arrival curve 2 2 2( )    t b r tα = + ⋅ and the 

FIFO node provides a guaranteed service curve 

( ) ( ),R T t R t Tβ += ⋅ −  to the aggregate of flows. Then, for any 

0θ ≥ , flow 1 is guaranteed the service curve: 

( ) ( ) ( )
{ }

2 21
2

2

1 t

b r T
t R r t T

R r
θ θ

θ
β

+

>

⎡ ⎤⎛ ⎞+ ⋅ −
= − ⋅ − +⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 (11) 

 

4. System Model 

In this section, we present the cluster-tree network model and 

the corresponding traffic model that we consider in the rest of 

this paper. We also discuss its validity for real-world WSNs. 

4.1 The Cluster-Tree Network Model 

Like in any tree network, the cluster-tree topology contains a 

special node called root, which identifies the entire network. In 

addition, in a tree network, some special devices may have the 

ability to allow the association from other nodes. These nodes 

are called routers. Other end devices with no ability to 

associate other devices are called child nodes. Both child 

nodes and routers are assumed to have sensing capabilities and 

are referred to as sensor nodes.  

Fig. 4 presents an example of the cluster-tree network with 

the three types of nodes. A cluster-tree network is then a tree 

network where each router forms it own logical cluster. 

 

Fig. 4. The cluster-tree network model 

Basically, we aim to specify the worst-case cluster-tree 

topology, i.e. the network configuration that leads to the worst-

case delay bounds and resource requirements. This means that 

a dynamically changing cluster-tree WSN can assume different 

cluster-tree configurations, but, it can never exceed the worst-

case topology, in terms of maximum depth and number of 

child routers/nodes. 

For that purpose, we specify the worst-case cluster-tree 

topology model by the following three parameters: 

• maxDepth: represents the maximum depth of the 

network, which specifies the maximum number of 

logical hops for a message from a router to reach the 

root (including the root as final hop). This means that 

the network cannot expand more if the maximum 

logical distance from a router to the root is equal to 

maxDepth. The root is considered to be in a depth 

equal to zero. Hence, the maximum depth of a child 

node is then maxDepth+1 (see Fig. 4). 

• Nchild: the maximum number of child nodes that can be 

associated to a parent router and have been allocated 

resource guarantees (e.g. time slots or bandwidth).  

• Nrouter: the maximum number of child routers that can 

be associated to a parent router and have been allocated 

resource guarantees. 

The example illustrated in Fig. 4 corresponds to a setting 

where maxDepth = 3, Nrouter = 2 and Nchild = 3.  

Note that a cluster-tree WSN may contain additional 

routers/nodes per parent router than those defined by Nrouter and 

Nchild. However, these additional devices are not granted 

guaranteed resources. An illustrative example showing the 
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constraints on these parameters will be presented in the 

application to IEEE 802.15.4/Zigbee protocols, in Section 6. 

By convention, we say that a router at depth i is upstream to 

a router at a depth j, if and only if i < j. 

4.2 The Traffic Model 

Data flows can be upstream (from a sensor node to the sink) or 

downstream (from the sink to a given node). Typically, in 

WSNs, critical messages are forwarded from individual sensor 

nodes to the sink (e.g. control station), in the upstream 

direction. The downstream direction is more dedicated to 

queries sent by the control station. Without loss of generality, 

we assume that the control station is attached to the root, and 

thus we focus on critical flows in the upstream direction, from 

sensor nodes to the root. In this paper, the case of downstream 

flows is not considered due to space limitations. 

In critical situations, every child node/router in a WSN can 

be required to send a data flow to report its sensory data. In the 

worst-case scenario, all child nodes/routers that have allocated 

resources will have data to send to the sink. We assume that 

the maximum individual data flow that can be sent by each 

child node/router is bounded by the arrival curve 

( )data data datat b r tα = + ⋅ , where bdata is the maximum burst size 

of the data flow, and rdata is its average rate. Observe in Fig. 4 

that each child node and router has its sensory data input 

bounded by αdata(t). This is an advantage of using Network 

Calculus representation, since instead of considering the real 

flow, which may be variable (e.g. periodic traffic, aperiodic 

traffic, stochastic traffic), we merely consider an upper bound 

of the cumulative arrivals of the flow, independently from its 

nature. This traffic model also incorporates the classical 

representation of the periodic arrival model with or without 

jitter [20]. In case of heterogeneous traffic sources (different 

types of sensors), ( )data tα  will represent the curve of the 

highest cumulative arrival function. This may introduce more 

pessimism to the analysis if the variance between different 

node’s traffic is very significant. However, in most WSN 

applications, the variance between different traffic flows is 

likely to be small, since special events are commonly reported 

by similar sensory data (e.g. temperature measurements, 

electromagnetic signals). 

As for the service model granted for each flow, recall that 

we consider child nodes and routers that have been allocated 

guaranteed resources. Thus, since the arrival curve in every 

child node is constrained by αdata(t), it is assumed that each 

child node has a service guarantee from its parent router 

corresponding to the service curve ( ) ( )data data datat R t Tβ += ⋅ − , 

where data dataR r≥ is the guaranteed bandwidth and Tdata is the 

maximum latency of the service, which refers to the deviation 

of the service (e.g. blocking factor or non preemptive 

transmissions). The latency depends on the resource allocation 

mechanism. This service curve model fits any kind of 

bandwidth guarantees, such as fair queuing, TDMA slot 

allocation or IEEE 802.15.4 GTS mechanism [15]. 

On the other hand, child routers are also allocated 

guaranteed resources by their parent routers. Contrarily to the 

previous case, the amount of bandwidth required for each child 

router depends on the amount of traffic at its input. For 

instance, a router that is located at a higher depth in the tree 

(closer to the root) must provide more bandwidth and buffering 

resources than a router located at a lower depth (farther from 

the root), due to the accumulation of upstream data flows in 

the direction of the root. In addition, due to the symmetry of 

our model, the bandwidth and buffering requirements only 

depend on the depth of the router, i.e. all routers at the same 

depth must provide the same resource guarantees. As a result, 

we assume that any router j at a depth i provides a service 

guarantee to each of its child routers corresponding to the 

service curve ( ) ( )i i it R t Tβ += ⋅ − , where iR  is the guaranteed 

bandwidth, which must be higher than the overall rate of all 

the input flows, and Ti is the maximum latency of the service. 

Given such a cluster-tree topology model, we address the 

worst-case dimensioning and performance analysis of the 

WSN. In particular, we aim to characterize:  

• The minimum resource requirements in each router, 

in terms of (1) bandwidth requirement Ri and (2) 

buffering requirement, i.e. the maximum buffer size 

needed to store the bulk of data at the router’s input.  

• The maximum delay bound of the WSN, which 

represents the delay experienced by a data flow of a 

node in the lowest depth (maxDepth+1) to reach the 

root. 

5. Cluster-Tree Network Analysis 

In this section, we analyze the cluster-tree topology model for 

WSN presented in Section 4. To address the worst-case 

dimensioning problem, the first step is to derive recurrent 

equations of the input and output flows inside the WSN. Then, 

we characterize the resource requirements and the 

corresponding service curves at each router. Finally, with the 

knowledge of the input arrival curves and the service curves, 

we derive the delay bounds for individual data flows.  

To give a practical intuition on the general solution, let us 

consider the example in Fig. 4 corresponding to a cluster-tree 

WSN with maxDepth = 3, Nrouter = 2 and Nchild = 3. We propose 

to evaluate the input/output arrival curves and service curves, 

depth by depth, using the Sensor Network methodology 

starting from the lowest leafs. Then, we deduce the general 

recurrent expressions.  

5.1 Computation of Input and Output Flows 

Consider the following queuing system in Fig. 5, which is 

equivalent to the one in Fig. 4.  

 

Fig. 5. Queuing system model 

Analysis of depth maxDepth+1 (depth = 4) 

At depth maxDepth+1 (see Fig. 4), there is no router, and there 

are nodes with input data flows, each flow constrained by the 

arrival curve αdata(t). Since each node is granted a service 

curve βdata(t), then using Eqs. (5) and (6), the output flow of 

each child node can be expressed as follows: 

( ) ( )( ) ( )*
data data data data data datat t t r Tα α β α= = + ⋅  (12) 
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Analysis of depth maxDepth (depth = 3) 

At depth maxDepth (see Fig. 4 and Fig. 5), the total input of 

each router, denoted by ( )maxDepth tα , comprises its sensory 

data flow constrained by αdata(t), and the sum of the output 

flows of its child nodes. 

( ) ( ) ( )*
maxDepth data Child datat t N tα α α= + ⋅  

Thus, according to Eq. (12), we have: 

( ) ( ) ( )1maxDepth Child data Child data datat N t N r Tα α= + ⋅ + ⋅ ⋅  (13) 

Note that ( )1maxDepth child datar N r= + ⋅  is the resulting rate 

of the aggregate of ( )1childN +  input data flows, and 

( )1maxDepth child data Child data datab N b N r T= + ⋅ + ⋅ ⋅  is its resulting 

burst. 

The input flow ( )maxDepth tα  is forwarded by the router at 

depth maxDepth to its parent router at depth maxDepth-1. This 

child router is allocated a service curve 

( ) ( )1 1 1maxDepth maxDepth maxDeptht R t Tβ
+

− − −= ⋅ −  by its parent. 

Hence, according to Eq. (5), the output flow from a child 

router at depth maxDepth is then expressed as: 

( ) ( ) ( )( )*
1maxDepthmaxDepth maxDeptht t tα α β −=  

As a result, applying Eq. (6) we get: 

( ) ( )*
1maxDepthmaxDepth maxDeptht tα α σ −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

where 1 1maxDepthmaxDepth maxDepthr Tσ − −= ⋅  

(14) 

Analysis of depth maxDepth-1 (depth = 2) 

At depth maxDepth-1, the total input of each router, denoted by 

( )1maxDepth tα − , comprises its sensory data flow constrained 

by αdata(t), and the sum of the output flows of its child routers 

( )*
maxDepth tα  and the output of its child nodes ( )*

data tα . It 

results that: 

( ) ( ) ( )( ) ( )( )* *
1maxDepth data child data router maxDeptht t N t N tα α α α− = + ⋅ + ⋅  

Thus, according to Eqs. (13) and (14) we have: 

( )

( ) ( )

1

11

maxDepth

maxDepthrouter router maxDepth

t

N t N

α

α σ

−

−

=

⎛ ⎞+ ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (15) 

The input flow ( )1maxDepth tα −  is forwarded by the router at 

depth maxDepth-1 to its parent router at depth maxDepth-2. 

This child router is allocated a service curve 

( ) ( )2 2 2maxDepth maxDepth maxDeptht R t Tβ
+

− − −= ⋅ −  by its parent. 

Hence, according to Eq. (5), the output flow from a child 

router at depth maxDepth-1 is then expressed as: 

( ) ( ) ( )*
11 2maxDepthmaxDepth maxDeptht t tα α β−− −=  

As a result, applying Eqs. (6) and (15) we get: 

( ) ( ) ( )*
1

1 2

1 maxDepthrouter
maxDepth

router maxDepth maxDepth

N t
t

N

α
α

σ σ
−

− −

+ ⋅ +
=

⋅ +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where ( )2 21 maxDepthmaxDepth router maxDepthN r Tσ − −= + ⋅ ⋅  

(16) 

Analysis of depth maxDepth-1 (depth = 1) 

Similarly to the previous case, the input flow of each router 

at depth maxDepth-2 is expressed as follows: 

( ) ( ) ( )2

2
2

1 2

1 maxDepthrouter router
maxDepth

router maxDepth router maxDepth

N N t
t

N N

α
α

σ σ
−

− −

+ + ⋅
=

⋅ + ⋅

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (17) 

and the output flow from a child router at depth maxDepth-2 

for a service curve ( )3maxDepth tβ −  is then expressed as: 

( ) ( )*
22 3maxDepthmaxDepth maxDeptht tα α σ−− −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 where 

( )2
3 31 maxDepthmaxDepth router router maxDepthN N r Tσ − −= + + ⋅ ⋅  

(18) 

General expressions of input/output flows for depth 

maxDepth-i  

By recurrence, we can easily prove that the input flow of 

each router at depth (maxDepth-i) is expressed as follows: 

( )

( ) ( )( )
1

1

0 0

maxDepth i

i i
j i j

maxDepthrouter router maxDepth j

j j

t

N t N

α

α σ

−

−
−

− +
= =

=

⎛ ⎞
⎜ ⎟ ⋅ + ⋅
⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑

where

1

0

n
k

maxDepthmaxDepth n router maxDepth n

k

 N r Tσ
−

− −
=

⎛ ⎞
⎜ ⎟= ⋅ ⋅
⎜ ⎟
⎝ ⎠
∑   

(19) 

and the output flow from a child router at depth (maxDepth-i) 

for a service curve ( ) ( )1maxDepth i tβ − +  is then expressed as: 

( ) ( ) ( )

( ) ( )( )

*

0 0

1

1

maxDepth i

i i

i j
maxDepth router maxDepth-

j j

maxDepth i maxDepth- i

j
router j

t

N t N

tα

α σ

α σ−

−

= =

− +

+

=

⋅ + ⋅

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑

 (20) 

5.2 Per-Router Resource Requirements  

Bandwidth requirements  

So far, we have computed the internal input and output flows 

at each router as a function of its depth. Now, we propose to 

compute the resource requirements at each router that must be 

provided to its children to ensure bounded end-to-end delays 

and to avoid buffering overflow. 

First, in order to ensure bounded delays, it is mandatory that 

the amount of bandwidth guaranteed to the input flow at each 

router is greater than or equal to the input arrival rate.  

Consider a parent router at depth maxDepth-(i+1) that 

offers the service curve ( ) ( )1maxDepth i tβ − +  to one of its child 

routers with the input flow arrival curve ( )maxDepth i tα − . It is 

then necessary to have: 

( )1 maxDepth imaxDepth iR r −− + ≥  (21) 

According to Eqs. (19) and (20), we obtain: 

( )

*

0

i
j

maxDepth i maxDepthmaxDepth i router

j

maxDepthmaxDepth i router

r r N r

                             N rγ

− −
=

−

⎛ ⎞
⎜ ⎟= = ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

= ⋅

∑
 (22) 
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( )maxDepth i routerNγ −  is called the bandwidth increase 

factor at a given depth (maxDepth-i). Note that 

( )maxDepth routerNγ  refers to the total number of routers in the 

network. The parameter ( )maxDepth i routerNγ −  increases with 

the depth and Nrouter, and this factor represents the ratio of the 

additional bandwidth that a router, at a depth (maxDepth-i), 

must provide to each of its child routers as compared to the 

bandwidth guaranteed at the lowest depth maxDepth. 

 

a. Bandwidth increase factor as a 
function of the depth and Nrouter 

 

b. Feasible region for γi(Nrouter)=10
2
 

Fig. 6. Bandwidth increase factor (log-scale)  

Fig. 6 presents the variation of the bandwidth increase 

factor (logarithmic-scale) as a function of the depth of the 

router and Nrouter. 

It can be observed that if Nrouter is high (e.g. equal to 5) the 

impact of the depth on the bandwidth requirement is very 

significant. Note that the variation is very limited for the case 

of Nrouter = 1, even for a depth equal to 10. Depending on the 

maximum bandwidth increase factor allowed when 

dimensioning the WSN, high values of the Nrouter parameter 

can be tolerated if the maximum depth of the network is 

limited. For instance, if the cluster-tree WSN cannot tolerate a 

bandwidth increase factor more than 10
2
 (see Fig. 6.b) all 

points in the (X,Y,Z) axis located below the plan defined by 
2Z=10 ,  X,Y∀ are potential solutions to determine the pair 

(Nrouter, maxDepth). For example, with this bandwidth increase 

constraint, the maxDepth parameter cannot exceed 2 if Nrouter = 

5, while it can be set to 5 if Nrouter = 2. 

Buffering requirements 

The buffering requirement of a given router at a depth 

(maxDepth-i) stands for the minimum buffer size required to 

store the incoming bulk of data to avoid buffer overflow. Since 

( )maxDepth i tα −  is the input of a router at a depth (maxDepth-

i), the minimum buffer size must be greater than the burst size 

maxDepth ib −  of the input arrival curve ( )maxDepth i tα − . If we 

denote by QmaxDepth-i the minimum buffering requirement of a 

router at a depth (maxDepth-i), then according to Eq. (21), we 

obtain: 

( )( )
1

1

0 0

latencyburst
maxDepth i maxDepth i maxDepth i

i i
j i j

maxDepthrouter router maxDepth- j

j j

Q Q Q

N b N σ

− − −

−
−

+
= =

= + =

⎛ ⎞
⎜ ⎟ ⋅ + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑

 (23) 

Observe that the buffering requirement is the sum of two 

terms. The first term is related to the input burst and is a 

function of the ( )maxDepth i routerNγ −  factor, thus the same 

behavior as with the bandwidth requirement applies for this 

term. The second term represents the cumulative effect of the 

service latency at each depth. This term closely depends on the 

service curve guaranteed to the child routers. 

5.3 Delay Bound Analysis 

We propose to compute the maximum delay bound of the 

cluster-tree WSN, which is the delay bound of a data flow sent 

by a node in the lowest depth (maxDepth+1) to reach the root. 

There are two approaches to compute this delay bound.  

The First Approach (per-hop delay bounds for aggregates) 

The first approach consists in computing the per-hop delay 

bounds of the aggregate input flows, and then deducing the 

end-to-end delay bound as the sum of per-hop delays. This 

approach was used in [11, 12]. 

The maximum per-hop delay bound in a router at a depth 

( )maxDepth i−  can be obtained using Eq. (3) applied to the 

input arrival curve ( )maxDepth i tα −  and to the service curve 

( ) ( )1maxDepth i tβ − + . Assuming inequality (21) is satisfied, the 

delay bound is expressed as: 

( )
( )1

1

maxDepth i
maxDepth i maxDepth- i

maxDepth i

b
D T

R

−
− +

− +

= +  (24) 

where maxDepth ib −  is the burst size of ( )maxDepth i tα −  defined 

in Eq. (19). 

Hence, using this approach, the maximum end-to-end delay 

bound in the cluster-tree topology is the sum of all maximum 

per-hop delay bounds and is equal to: 

2
max

0

maxDepth

e e
data maxDepth i

i

D D D −
=

= + ∑   where 

data
data data

data

b
D T

R
= +  

(25) 

Note that Ddata is the delay bound guaranteed to a child node 

associated to a router at depth maxDepth. 

This approach is a bit pessimistic, since the delay bound at 

each hop concerns the aggregate input flow at each router. A 

tighter delay bound is derived next. 

The Second Approach (tighter delay bounds) 

The idea of the second approach is to use the aggregate 

scheduling corollary based on Eq. (11) and the service curve 

concatenation theorem based on Eq. (8). First, we aim to 

derive the service curve offered to a particular individual flow 

F among the aggregate by a router at a given depth, using Eq. 

(11). Then, we deduce the equivalent service curve for this 

particular flow along the path, using Eq. (8). The delay bound 

will be computed based on the equivalent service curve. This 

technique has been used in [14].  

We consider the tandem of service curve elements as 

presented in Fig. 5. The approach is based on the following 

algorithm: 

• Step 1. βlast is equal to the last service curve element 

(i.e. router) in the tandem. 

• Step 2. Compute the βeq equivalent service curve to an 

output flow of the previous service curve element βlast-1 

using Eq. (11). 

• Step 3.Replace βlast = βlast-1⊗βeq since the concatenation 

is also a service curve to the input of βlast-1. The length 

of the tandem is then reduced by one. 

• Step 4. if the tandem length is greater than one, then 

Go to Step 1; else, βlast is the equivalent end-to-end 

service curve. 

• Step 5. Compute the delay bound using the equivalent 

service curve applied to the input arrival curve.  



8 

It is easy to derive recurrent expressions for the delay bound 

using the above algorithm, as it is shown in [18]. In Section 6, 

we show that this approach provides tighter delay bounds than 

the first one.  

6. Application to IEEE 802.15.4/Zigbee 

The aforementioned analysis is independent from any specific 

protocol. In addition, the proposed model is quite interesting 

for existing cluster-tree WSN protocols that provide 

guaranteed services, such as LEACH [2] or IEEE 

802.15.4/Zigbee [6, 7], and it can be easily used for their 

worst-case dimensioning. In this section, we show the practical 

applicability of our approach by instantiating the general 

model proposed in Section 5 for IEEE 802.15.4/Zigbee cluster-

tree WSNs, and provide a methodology for its worst-case 

dimensioning. The computations are made using MATLAB. 

6.1 The IEEE 802.15.4/Zigbee Protocol Features 

In IEEE 802.15.4 beacon-enabled mode, beacon frames are 

periodically sent by a central device, called PAN Coordinator, 

to identify its WPAN and synchronize nodes that are 

associated with it. Doing so, a superframe structure is defined 

by (see Fig. 7) (1) the Beacon Interval (BI), which defines the 

time between two consecutive beacon frames, (2) the 

Superframe Duration (SD), which defines the active portion in 

BI, and is divided into 16 equally-sized time slots, during 

which frame transmissions are allowed. Optionally, an inactive 

period is defined if BI > SD. During the inactive period (if it 

exists), all nodes may enter in a sleep mode to save energy. 

 

Fig. 7. Beacon Interval and Superframe concepts 

BI and SD are determined by two parameters, the Beacon 

Order (BO) and the Superframe Order (SO), respectively, as 

follows: 

 0 14
2

2  

BO

SO
for SO BO

BI aBaseSuperframeDuration

SD aBaseSuperframeDuration
≤ ≤ ≤

⎫= ⋅ ⎪
⎬

= ⋅ ⎪⎭
(26)

aBaseSuperframeDuration = 15.36 ms (assuming 250 kbps 

in the 2.4 GHz frequency band) denotes the minimum duration 

of the superframe, corresponding to 0SO = . 

During the SD, nodes compete for medium access using 

slotted CSMA/CA in the Contention Access Period (CAP). For 

time-sensitive applications, IEEE 802.15.4 enables the 

definition of a Contention-Free Period (CFP) within the SD, 

by the allocation of Guaranteed Time Slots (GTS). It has been 

shown in [15] that the GTS mechanism provides a rate-latency 

service curve to nodes that allocate time-slots, where the rate 

and the latency depend on BI, SD and the number of allocated 

time slots in the GTS. 

While IEEE 802.15.4 only supports the beacon-enabled 

mode only for star-based topologies, Zigbee has proposed its 

extension to cluster-tree topologies, where the PAN 

Coordinator (or Zigbee Coordinator) is identified as the root of 

the network, and the other coordinators as intermediate routers 

that also generate beacon frames to their child nodes (nodes 

that are associated to the network through the router). In order 

to avoid beacon collisions between multiple routers, the 

Zigbee standard has proposed a beacon scheduling approach 

such that the superframe durations are non-overlapping during 

a beacon interval. Fig. 8 illustrates a simple example of this 

approach for four nodes with the same SD and BI. This 

approach is suitable for WSNs operating in low duty cycles. 

 

Fig. 8. The beacon scheduling approach in Zigbee 

6.2 Dimensioning of an IEEE 802.15.4/Zigbee 

Cluster-Tree WSN 

Let us consider a WSN organized in a cluster-tree topology, 

with the same parameters as for the example in Fig. 4 

(maxDepth = 3, Nrouter = 2, Nchild = 3). Nrouter and Nchild are the 

number of routers and nodes that allocate GTSs from their 

parents. Since the standard does not allow more than seven 

GTS allocations, Nrouter and Nchild are constrained as follows: 

7router childN N+ ≤  (27)

In our application scenario, we assume that all routers have 

the same SD and BI, and the superframe durations are not 

overlapping with each other, as presented in Fig. 8. According 

to our traffic model, we assume that each sensor node (router, 

or child node) generates a data flow constrained by the arrival 

curve ( )data data datat b r tα = + ⋅ .  

BO and SO settings 

It has been shown in [15] that the service curve provided by 

a GTS allocation intrinsically depends on the setting of BI and 

SD. Hence, the first problem that we address is to determine 

the BO and SO parameters. First, let us assume that SO = 0, 

which corresponds to SD = 15.36 ms for all routers. On the 

other hand, the number of routers in cluster-tree topology is 

equal to ( )3 2 15γ = , according to Eq. (22). 

The first constraint is that BO must be set such that at least 

15 superframe durations with SO = 0 fit inside the beacon 

interval to have non-overlapping active periods (as in Fig. 8). 

It results that: 

( ) ( ) 0
3 32 2 2 2BOBI SDγ γ≥ ⋅ ⇔ ≥ ⋅  (28)

As a result, the minimum BO is defined as: 

( )( )min 2 3log 2 4BO γ⎡ ⎤= =⎢ ⎥  (29)

It is then possible to have 2
4
 = 16 SDs inside one BI. The 

resulting duty cycle for each router is equal to (1/16) = 6.25%.  

Bandwidth per time slot 

Each allocated time slot of a GTS has a portion used for 

effective data transmission and a portion used by overheads 

(inter-frame spacing, acknowledgement frames if required). 

According to [15], the maximum bandwidth guaranteed by a 

time slot for SO = 0 is equal to 9.38 kbps with 100% duty 

cycle. Hence, with the above network setting, the bandwidth 

guaranteed by one allocated time slot in a given superframe is 

equal to 9.38 kpbs 0.625TSR = ⋅ , which gives 0.586 kbpsTSR = . 
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Sensing input rate limits 

Each SD is divided into 16 equal time slots. The standard 

suggests to have a minimum CAP length of 7.04 ms, which 

corresponds to approximately 8 time slots with SO = 0. Hence, 

the maximum CFP length in this case is restricted to 8 time 

slots. Just for illustration purposes, we assume that the 

maximum CFP length is equal to LCFP = 14 (only two time 

slots are left for the CAP).  

With this constraint, a router cannot reserve more than LCFP 

time slots for its child nodes and routers. Assuming that each 

child node allocates at most one time slot (arrival rate of 

sensory data is smaller than RTS), thus the remaining time slots 

for the Nrouter child routers is equal to (LCFP – Nchild). Since the 

bandwidth requirement mainly depends on the arrival rate of 

the sensory data flow (see Eq. (22)), this parameter must be 

limited in order to not exceed the maximum bandwidth that a 

router can provide. 

Obviously, due to the cumulative upstream flow effect, the 

maximum bandwidth requirement will be claimed by the child 

routers of the root. Hence, at the root level, the maximum 

number of time slots that can be allocated to each child router 

is equal to ( ) -   CFP child routerL N N⎢ ⎥⎣ ⎦ . The corresponding 

guaranteed bandwidth is equal to: 

0

 -  
   CFP child

TS
router

L N
R R

N

⎢ ⎥
= ⋅⎢ ⎥

⎣ ⎦
. 

According to Eq. (21), the maximum input rate from a child 

router at a depth equal to 1, i.e. 1r , satisfies: 

( )1 1

-CFP child
maxDepthTS router

router

L   N
r    R N r

N
γ

⎢ ⎥
= ⋅ = ⋅⎢ ⎥

⎣ ⎦
 

since ( )1maxDepth child datar N r= + ⋅ , we deduce that: 

( ) ( )
max

1

-

1

CFP child TS
data

router router child

L   N R
r   

N N Nγ
⎢ ⎥

= ⋅⎢ ⎥ ⋅ +⎣ ⎦
 (30) 

As a result for LCFP = 14, we get max 0.104 kbpsdatar = . In what 

follows, we assume that 200 bitsdatab =  and 0.1 kbpsdatar = .  

Bandwidth requirement and time slot number per router 

Depending on its bandwidth requirement, each child 

router/node must allocate a given number of time slots such 

that the resulting bandwidth is greater than the input rate, as 

mentioned in Eq. (21). Hence, we propose to compute the 

minimum number of time slots required for each child router 

in each depth, which will enable us to determine the rate-

latency service curve in each router. In fact, according to [15], 

a GTS with n allocated time slots provides a service curve 

( ),Rn Tn tβ , where the bandwidth  n TSR n R= ⋅  and the latency 

 nT BI n TS= − ⋅ . TS=SD/16 is the duration of the time slot.  

The bandwidth requirement maxDepth ir −  corresponding to 

each depth is computed using Eq. (22). Thus, based on Eq. 

(21), the corresponding number of time slots is expressed as:  

( )1

maxDepth iTS
maxDepth i

TS

r
N

R

−
− +

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥

 

Fig. 9 presents the results for the bandwidth requirement 

versus the reserved bandwidth per router, for each depth.  

 Observe that the maximum number of time slots is 

allocated by a router at depth 1, and is equal to 5. Since there 

are two child routers and three child nodes, the total number of 

allocated time slots is 13, which is smaller than LCFP = 14.  

 

Fig. 9. Bandwidth requirements versus reserved bandwidth  

per router as a function of the depth 

Buffering requirement per router 

To estimate the buffering requirement at each router, we apply 

Eq. (23). The results are presented in Fig. 10, which shows the 

impact of depth on the buffering requirement. 

 

Fig. 10. Buffering requirements per router as a function of the depth 

Observe that the cumulative effect of the input burst is more 

important than the cumulative effect of the service latency on 

the buffering requirement. This is mainly due to the fact that 

the input arrival rate is relatively low. The effect of the service 

latency may be more important for other settings of bdata, and 

rdata. Due to space limitations, we do not address the effect of 

different settings of the arrival curve on the buffering 

requirement. It can be observed that Q1 is roughly seven times 

greater than Q3, which is basically due to the impact of the 

( )maxDepth i routerNγ −  parameter. 

Delay bound evaluation 

Fig. 11 presents the per-hop delay bounds in each router 

computed using Eq. (24), and the end-to-end delay bounds 

obtained by the first approach (using Eq. (25)), and by the 

second approach (using the recursive algorithm).  

 

Fig. 11. Per-hop delay bounds and end-to-end delay bounds as a 

function of the depth 
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A first observation confirms that the first approach using 

the sum of per-hop delays is more pessimistic than the second 

one based on the computation of the end-to-end service curve. 

The end-to-end delay bounds are quite high, even though the 

bdata and rdata are low. This is typically due to the low duty 

cycle (6.25%). It is possible to reduce the delay bounds by 

allocating more time slots in a superframe (if possible), and 

also by finding another beacon scheduling approach such that 

the beacon interval would be smaller, leading to smaller 

service latencies and higher bandwidth guarantees, since the 

duty cycle will increase. Observe also that the per-hop delay 

bounds are relatively steady, since the buffering and bandwidth 

requirements are both proportional to the ( )maxDepth i routerNγ − .  

7. Concluding Remarks 

This paper improves on the state-of-the-art with the proposal 

of a general model for wireless sensor networks (WSNs) 

organized in a cluster-tree topology, and a methodology for 

dimensioning the required network resources and analyzing its 

timing performance. We assumed a worst-case topology 

defined by a maximum depth, the maximum number of child 

routers and child nodes per parent router. We have provided 

“plug-and-play” recurrent expressions to compute the resource 

requirements (bandwidth and buffering) and message delay 

bounds for our WSN model. In addition to this theoretical 

contribution that can be applied to any cluster-tree network 

with resource guarantees, we have demonstrated how to apply 

the general results to the case of cluster-tree IEEE 

802.15.4/Zigbee WSNs. 

Our methodology provides a practical means to choose the 

adequate settings of cluster-tree WSNs, for applications with 

real-time requirements, depending on the available resources, 

and the delay bound requirement. In fact, one of the important 

general results is the relation between the resource increase 

ratio as a function of the depth and the number of routers. For 

low arrival rates, the bandwidth and buffering requirement 

increase ratios are both proportional to the factor 

( )maxDepth i routerNγ − . In this case, the per-hop delay bounds 

are roughly steady, as it has been shown in Fig. 11. For higher 

arrival rates, the impact of the service latency on the buffering 

requirements would be more important, and consequently, 

leading to an increased variance on the per-hop delays.  

The work carried out in this paper can be extended to 

evaluate the cluster-tree topology in the downstream direction, 

and also to study the impact of data aggregation on reducing 

the resource requirements and the delay bounds.  

On the other hand, the model and the methodology that we 

have proposed trigger new research lines. For instance, they 

can be used to optimize the dimensioning of IEEE 

802.15.4/Zigbee networks. The basic beacon scheduling 

approach proposed by Zigbee is not adequate for an optimized 

behavior of cluster-tree WSNs. Thus, one open issue is to 

optimize the beacon scheduling mechanism in a way that 

routers at higher depths (closer to the root) will be operating at 

higher duty cycle than routers at lower depths. The problem is 

how to choose different SO and BO for each router depending 

on its depth (i.e. bandwidth requirement). Another research 

line concerns a more efficient use of the GTSs by allowing the 

allocation of the same GTS by more than one node at the same 

time, as proposed in [16] for the single cluster case. 
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