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We consider a particular type of continuous time random walk where the jump lengths between subsequent waiting times are
correlated. In a continuum limit, the process can be de
ned by an integrated Brownian motion subordinated by an inverse �-stable
subordinator. We compute the mean square displacement of the proposed process and show that the process exhibits subdi�usion
when 0 < � < 1/3, normal di�usion when � = 1/3, and superdi�usion when 1/3 < � < 1. 	e time-averaged mean square
displacement is also employed to show weak ergodicity breaking occurring in the proposed process. An extension to the fractional
case is also considered.

1. Introduction

Anomalous di�usion is found in a wide diversity of systems
(see review articles [1–4] and references therein). In one
dimension, it is characterized by a mean square displacement
(MSD) of the form

⟨(Δ�)2⟩ (�) ∝ 	��� (1)

with � ̸= 1, which deviates from the linear dependence
on time found in normal di�usion. 	e coe
cient 	� is
generalized di�usion constant. It is called subdi�usion for0 < � < 1 and superdi�usion for � > 1 [2].

A fundamental account to anomalous di�usion is pro-
vided by a stochastic process called continuous time random
walk (CTRW), which was originally introduced by Montroll
and Weiss in 1965 [5]. In a continuum limit, the process
has been considered by Fogedby [6] via coupled Langevin
equations

��
�
 = � (
) ,
��
�
 = � (
) ,

(2)

where �(
) is a white Gaussian noise with ⟨�(
)⟩ = 0,⟨�(
)�(
�)⟩ = �(
 − 
�), and �(
) is a white �-stable Lévy noise,
taking positive values only and independent of �(
).

In (2), the randomwalk �(�) is parametrized in terms of a
continuous variable 
, which is subjected to a random time
change. 	is random time change to the physical time � is
described by the second equation. 	e combined process in
the physical time is then given by �(�) = �(
(�)), where 
(�)
is the inverse process to �(
) de
ned as


 (�) = inf {
 : � (
) > �} . (3)

Mathematically, the fundamental approach to describe
the combined process �(�) = �(
(�)) is based on subordi-
nation technique, which was 
rst introduced by Bochner [7].
Using the notation of subordination, the process �(
), �(
),
and 
(�) are named parent process, subordinator, and inverse
subordinator, respectively.

In recent years, (2) consisting of Brownian motions with
or without external 
eld and inverse �-stable subordinator
are becoming a hot topic [8–17]. 	ere are also several
other processes considered as parent processes within the
subordination framework, for example, Lévy-stable process
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[18, 19], arithmetic Brownian motion [20], geometric Brow-
nian motion [21, 22], Ornstein-Uhlenbeck process [23, 24],
tempered stable process [25], fractional Brownian motion
[26, 27], and fractional Lévy-stable process [28]. Here, we
note that, apart from inverse �-stable subordinator, inverse
tempered �-stable subordinator and in
nitely divisible sub-
ordinators are also considered in the literatures [16, 20, 25–
31].

In the simplest CTRW process, a�er each jumps, a new
pair of waiting time and jump length is drawn from the
associated distributions, independent of the previous values.
	is independence giving rise to a renewal process is not
always justi
ed, for instance, by observations of human
motion patterns [32] and active biological movements [33] or
in 
nancial market dynamics [34]. Recently, three correlated
CTRW models are introduced to model the random walks
with some forms of memory [35–37]. Some advances in
the 
eld of CTRWs with correlated temporal or/and spatial
structure can be also found in [38–45].

In this work, we consider a jump-correlated CTRW
model which has the subordination form �(�) = �(
�(�)).
Here, the parent process �(
) is an integrated Brownian
motion, de
ned by

�(
) = ∫�
0
� (
�) �
� (4)

and inverse subordinator 
�(�) is the inverse of one-side �-
stable Lévy process �(
), de
ned by


� (�) = inf {
 > 0 : � (
) > �} . (5)

	e integrated Brownian motion �(
) is called the ran-
dom acceleration process in the physical literature and has
been studied by many authors. For instance, it appears in the
continuum description of the equilibrium Boltzmann weight
of a semi�exible polymer chain [46]. It also appears in the
description of statistical properties of the Burgers equation
with Brownian initial velocity [47]. Some further results of
the integrated Brownian motion can be found in the paper
[48] reviewing this subject.

	e structure of the paper is as follows. In Section 2, we
introduce the jump-correlated CTRW model. In Section 3,
we compute MSD of the proposed process and observe
the corresponding anomalous di�usive behaviors. 	e time-
averaged MSD is also employed to show weak ergodicity
breaking occurring in the proposed process. In Section 4, we
generalize the integrated Brownian motion to the fractional
integral of Brownianmotion and compute the corresponding
MSD.	e conclusions are given in Section 5.

2. Model

We begin by recalling the general framework for CTRW the-
ory. Let {��}�≥1 be the sequence of nonnegative independent
identically distributed (IID) random variable representing
waiting times between jumps of a particle. We set �(0) = 0
and �(�) = ∑��=1 ��, that is, the time of the �th jump. Let {��}�≥1
be the sequence of IID jump lengths of the particle, which are
assumed to be independent of waiting times.We set�(0) = 0

and �(�) = ∑��=1 ��, that is, the position of the particle a�er
the �th jump. 	en, the position of the particle at time � is
given by

� (�) = � (� (�)) = �(	)∑
�=1

��, (6)

where �(�) = max{� ≥ 0 : �(�) ≤ �} is the number of jumps
up to time �. 	e process �(�) = �(�(�)) is called CTRW.

In what follows, we analyze a particular type of CTRW
where the jump lengths are correlated. Assume that each
jump is equal to

�� = �1 + �2 + ⋅ ⋅ ⋅ + ��, (7)

where �
 are IID randomvariables with 
nite secondmoment
(for simplicity we assume that their second moment is
equal to 1). Moreover, we assume that each waiting time�� is nonnegative IID random variable, whose characteristic
function !̂(") is given by

!̂ (") = exp {− |"|� exp (−%&�
2 sgn ("))} ,

0 < � ≤ 1.
(8)

In the continuous limit, we get the following set of
coupled Langevin equations for the position � and time � of
the CTRW

�� (
)
�
 = ∫�

0
� (
�) �
� = � (
) ,

�� (
)
�
 = � (
) ,

(9)

where �(
) and �(
) are the same as those in (2) and �(
) is
the standard Brownian motion with ⟨�(
)⟩ = 0, ⟨�(
)�(�)⟩ =
min(
, �).

An equivalent representation of (9) in the form of
subordination is

� (�) = � (
� (�)) . (10)

Here the parent process�(
) has the form
�(
) = ∫�

0
� (
�) �
�, (11)

and the inverse subordinator 
�(�) is de
ned by


� (�) = inf {
 > 0 : � (
) > �} , (12)

where �(
) = ∫�0 �(
�)�
� is an �-stable totally skewed Lévy

motion with characteristic function

⟨6−�	(�)⟩ = exp {−8�
} , 0 < � ≤ 1. (13)

3. Discussions

At 
rst, let us compute the MSD of subordinated process�(�) = �(
�(�)).
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Assume that ;(�, �), ?(�, 
), and @(
, �) are PDFs of
subordinated process �(�), parent process �(
), and inverse
subordinator 
�(�), respectively. In terms of subordination,
we have

; (�, �) = ∫∞
0

? (�, 
) @ (
, �) �
. (14)

Since the 
rst moment of parent process �(
)
⟨� (
)⟩ = ⟨∫�

0
� (
�) �
�⟩ = ∫�

0
⟨� (
�)⟩ �
� = 0 (15)

and the second moment

⟨�2 (
)⟩ = ⟨∫�
0
� (
�) �
� ⋅ ∫�

0
� (
��) �
��⟩

= ∫�
0
�
� ∫�
0
⟨� (
�) � (
��)⟩ �
��

= ∫�
0
�
� ∫�
0
min {
�, 
��} �
�� = 
3

3 ,

(16)

we obtain

⟨� (�)⟩ = ∫∞
0

�; (�, �) ��
= ∫∞
0

��∫∞
0

�? (�, 
) @ (
, �) �

= ∫∞
0

⟨� (
)⟩ @ (
, �) �
 = 0,
(17)

⟨�2 (�)⟩ = ∫∞
−∞

�2; (�, �) ��
= ∫∞
−∞

��∫∞
0

�2? (�, 
) @ (
, �) �

= ∫∞
0

⟨�2 (
)⟩ @ (
, �) �

= 1

3 ∫∞
0


3@ (
, �) �
.

(18)

	us, the MSD of the subordinated process �(�) is
⟨(Δ�)2⟩ (�) = ⟨�2 (�)⟩ − ⟨� (�)⟩2

= 1
3 ∫∞
0


3@ (
, �) �
. (19)

Let us turn to the inverse subordinator 
�(�). Observing
the equivalence from (12)


� ≤ 
 ⇐⇒ � (
) > �, (20)

we obtain the relation

G (
� ≤ 
) = G (� (
) > �) = 1 − G (� (
) ≤ �) , (21)

which gives the formula for the PDF @(
, �) in terms of the
PDF ℎ(�, 
):

@ (
, �) = − I
I
 ∫
	

0
ℎ (��, 
) ���. (22)

Taking the Laplace transform for (22) about variable �, we get
@̃ (
, 8) = − I

I

1
8 ℎ̃ (8, 
) = 8�−1 exp {−8�
} ,

0 < � ≤ 1.
(23)

	us, the MSD of the subordinated process �(�) in
Laplace space is

⟨(Δ̃�)2⟩ (8) = 1
3 ∫∞
0


3@̃ (
, 8) �

= 1

3 ∫∞
0


38�−1 exp {−8�
} �
 = 2
83�+1 ,

(24)

which implies that the MSD of �(�) is
⟨(Δ�)2⟩ (�) = 2

Γ (3� + 1) �3�, 0 < � ≤ 1. (25)

It is easy to observe from (25) that the process is
subdi�usive when 0 < � < 1/3, normally di�usive when� = 1/3, and superdi�usive when 1/3 < � ≤ 1.

It is well-known that the MSD of the process given by (2)
is of the form

⟨(Δ�)2⟩ (�) = ��
Γ (1 + �) 0 < � < 1. (26)

Comparing (25) with (26), we see that Fogedby’s model can
only represent anomalous subdi�usion, but our model can
represent subdi�usion, normal di�usion, and superdi�usion.

Next, we study weak ergodicity breaking of the subordi-
nated process �(�).

In an ergodic system, one can 
nd the equivalence

⟨(Δ�)2⟩ (Δ) = ⟨�2 (Δ)⟩ . (27)

Here, �2(Δ) is the time-averaged MSD of the process �(�),
de
ned as

�2 (Δ) = 1
� − Δ ∫
−Δ

0
[� (� + Δ) − � (�)]2 ��, (28)

where Δ is the lag time and � is the overall measure time.
For anomalous di�usion, the behavior of the ensemble

MSD ⟨(Δ�)2⟩(Δ) and the time-averaged MSD (28) may be

fundamentally di�erent. 	e disparity ⟨(Δ�)2⟩(Δ) ̸= ⟨�2(Δ)⟩
is usually calledweak ergodicity breaking (orweak nonergod-
icity) [49]. In recent years, weak nonergodicity of anomalous
di�usion process attracts more and more attentions [49–55].

Since, for any O > 0, parent process�(
) satis
es
� (O
) = ∫��

0
� (
�) �
� = O∫�

0
� (OP) �P =� O3/2�(
) , (29)
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where =� means an equality in distribution, we have

� (�) = � (
� (�)) =��(��
� (1))
=� (�3�

2 )� (
� (1)) = �3�/2� (1) . (30)

	us,

⟨�2 (Δ)⟩ = ⟨�2 (1)⟩
� − Δ ∫
−Δ

0
[(� + Δ)3�/2 − �3�/2]2 ��

= ⟨�2 (1)⟩
� − Δ ∫
−Δ

0
[(� + Δ)3� + �3�

− 2�3�/2 (� + Δ)3�/2] ��

= ⟨�2 (1)⟩
� − Δ { 1

(3� + 1) [�3�+1 − Δ3�+1

+ (� − Δ)3�+1] − 2V1} ,

(31)

where V1 = ∫
−Δ0 �3�/2(� + Δ)3�/2��.
In the limit Δ ≪ �,
V1 = ∫
−Δ

0
�3�/2 (� + Δ)3�/2 ��

= �3�+1 ∫1−Δ/

0

(P + Δ
�)3�/2 P3�/2�P

≃ �3�+1 ∫1−Δ/

0

P3��P = 1
3� + 1 (� − Δ)3�+1 .

(32)

Hence,

⟨�2 (Δ)⟩ ≃ ⟨�2 (1)⟩
� − Δ

⋅ 1
3� + 1 [�3�+1 − Δ3�+1 − (� − Δ)3�+1]

= ⟨�2 (1)⟩
� − Δ

1
3� + 1

⋅ �3�+1 [1 − (Δ�)3�+1 − (1 − Δ
�)3�+1] ≃ ⟨�2 (1)⟩

⋅ Δ
�1−3� .

(33)

Since

⟨(Δ�)2⟩ (Δ) = 2
Γ (3� + 1)Δ3�, 0 < � ≤ 1, (34)

comparing (33) with (34), we see that the linear lag time

dependence of ⟨�2(Δ)⟩ is di�erent from the power-law formΔ3� of ⟨(Δ�)2⟩(Δ), which implies that subordinated process�(�) is weakly nonergodic.

At last, we consider the propagator ;(�, �) associated
with the subordinated process �(�). By the total probability
formula, we obtain an integral representation of ;(�, �):

; (�, �) = ∫∞
0

? (�, 
) @ (
, �) �
. (35)

For 
xed 
 > 0, the random variable�(
) = ∫�0 �(
�)�
� is
normally distributed. From (15) and (16), we have

? (�, 
) = √3
√2&
3 exp(−

3�2
2
3 ) . (36)

It follows from

@̃ (
, 8) = 8�−1 exp {−8�
} , 0 < � ≤ 1, (37)

and the Laplace transform 
 _→ a for @̃(
, 8) that we obtain
̃̃@ (a, 8) = 8�−1

8� + a . (38)

A�er taking the inverse Laplace transform 8 _→ � for ̃̃@(a, 8),
we get

@̃ (a, �) = b� (−a��) , (39)

where

b� (c) =
∞∑
�=0

c�
Γ (�� + 1) (40)

is the Mittag-Le�er function with parameter � [56].

4. An Extension to the Fractional Case

In this section, we introduce the dependent sequence of jump
lengths �� in the following manner:

�� =
�∑

=1

d(% − e + 1) �
, (41)

whered(⋅) is a memory function. 	e continuous limit is of
the form

�� (
)
�
 = ∫�

0
d(
 − 
�) � (
�) �
�

= ∫�
0
d(
 − 
�) �� (
�) .

(42)

Integrating (42) we get

� (
) = ∫�
0
�
� ∫�

�

0
d(
� − 
��) �� (
��) . (43)

A�er taking d(�) = �−�/Γ(1 − f) (0 < f < 1) and using
the integration by parts, (43) can be written as

� (
) = 1
Γ (1 − f) ∫

�

0

� (
�)
(
 − 
�)� �


� = 0V�	 � (
) , (44)
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where 0V�	 is the Riemann-Liouville fractional integration
operator of order ;, de
ned by [56]

0V�	 ? (�) = 1
Γ (;) ∫

	

0
(� − P)�−1 ? (P) �P, (; > 0) . (45)

As a result, the jump-correlated CTRW has the subordi-
nation form �(�) = �(
�(�)), where parent process �(
) is of
the form (44), and inverse subordinator 
�(�) is de
ned by
(12).

Here, we are interested in the competition between the
memory parameter f and stability index �. In what follows,
we will not discuss any properties of motion other than the
MSD.

In terms of (44), we get

⟨�2 (
)⟩ = 1
Γ2 (1 − f)

⋅ ∫�
0

�
�
(
 − 
�)� ∫

�

0

⟨� (
�) � (
��)⟩
(
 − 
��)� �
��

= 1
Γ2 (1 − f) ∫

�

0

�
�
(
 − 
�)� ∫

�

0

min {
�, 
��}
(
 − 
��)� �
��

= 1
Γ2 (1 − f) ∫

�

0

�
�
(
 − 
�)� [∫

��

0


��
(
 − 
��)� �


��

+ ∫�
��


�
(
 − 
��)� �


��] .

(46)

By denoting V(
) = ∫�0 (�
�/(
 − 
�)�) ∫��0 (
��/(
 − 
��)�)�
�� and
exchanging the order of quadratic integral V(
), we obtain

V (
) = ∫�
0

�
��
(
 − 
��)� ∫

�

���

��

(
 − 
�)� �

�. (47)

	us,

⟨�2 (
)⟩
= 2

Γ2 (1 − f) ∫
�

0


�
(
 − 
�)� �


� ∫�
��

1
(
 − 
��)� �


��

= 2
(1 − f) Γ2 (1 − f) ∫

�

0

� (
 − 
�)1−2� �
�

= 	�
3−2�, (0 < f < 1) ,

(48)

where 	� = 2�(2, 2 − 2f)/(1 − f)Γ2(1 − f) and �(O, i) =
∫10 ��−1(1 − �)�−1�� is Beta function.

We observe from (48) that, in the limiting case f → 0,
memory functiond(�) = 1, the parent process �(
) de
ned
by (43) reduces to the form de
ned by (11), and the second

moment of �(
) computed by (48) reduces to 	0
3, where	0 = 2�(2, 2) = 1/3, the same form as (16). We are also
interested in the limiting case f → 1. At the moment, the

memory function d(�) is a Dirac �-function; �(
) de
ned
by (43) reduces to the standard Brownian motion.

Let us turn to the MSD of the subordinated process �(�).
In terms of (18) and (48), we obtain

⟨(Δ�)2⟩ (�) = ⟨�2 (�)⟩ = 	� ∫
∞

0

3−2�@ (
, �) �
. (49)

In the Laplace space, the MSD is of the form

⟨(Δ̃�)2⟩ (8) = 	�8�−1 ∫
∞

0

3−2�6−����


= 	� Γ (4 − 2f)
8�(3−2�)+1 .

(50)

Taking the inverse Laplace transform for ⟨(Δ̃�)2⟩(8), we have
⟨(Δ�)2⟩ (�) = 	�,���(3−2�), 0 < f < 1, 0 < � ≤ 1, (51)

where 	�,� = 	�Γ(4 − 2f)/Γ(�(3 − 2f) + 1). In the limiting
case f → 0, the parameter	�,� reduces to

	0,� = 	0Γ (4)Γ (3� + 1) = 2
Γ (3� + 1) . (52)

	us, (51) reduces to (25).
It is easy to observe from (51) that there exists a compe-

tition between the memory parameter f and stability index�. For the case � ≤ 1/3, the subordinated process exhibits
subdi�usive behaviors. For the case 1/3 < � < 1, the process
is subdi�usive when 1 < 3−2f < 1/�, normal di�usive when3 − 2f = 1/�, and superdi�usive when 1/� < 3 − 2f < 3.
5. Conclusions

We introduce an integrated Brownian motion subordinated
by inverse �-stable one-sided Lévy motion, which is a
continuous limit of a jump-correlated CTRW. In terms of the
ensembleMSD of the proposed process, we conclude that the
process is subdi�usive when 0 < � < 1/3, normal di�usive
when � = 1/3, and superdi�usive when 1/3 < � ≤ 1. 	e
time-averagedMSD is also employed to showweak ergodicity
breaking occurring in the proposed process.

We also generalize the process to the case, where the
parent process is fractional integral of Brownian motion. In
terms of the MSD, we observe a competition between the
memory parameter f and stability index �. Other types of
inverse subordinators may be also candidates.
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