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Abstract. Modeling and assessing the factors that drive for-

est fire ignitions is critical for fire prevention and sustain-

able ecosystem management. In southern Europe, the anthro-

pogenic component of wildland fire ignitions is especially

relevant. In the Alps, however, the role of fire as a component

of disturbance regimes in forest and grassland ecosystems is

poorly known. The aim of this work is to model the proba-

bility of fire ignition for an Alpine region in Italy using a re-

gional wildfire archive (1995–2009) and MaxEnt modeling.

We analyzed separately (i) winter forest fires, (ii) winter fires

on grasslands and fallow land, and (iii) summer fires. Pre-

dictors were related to morphology, climate, and land use;

distance from infrastructures, number of farms, and num-

ber of grazing animals were used as proxies for the anthro-

pogenic component. Collinearity among predictors was re-

duced by a principal component analysis. Regarding igni-

tions, 30 % occurred in agricultural areas and 24 % in forests.

Ignitions peaked in the late winter–early spring. Negligence

from agrosilvicultural activities was the main cause of igni-

tion (64 %); lightning accounted for 9 % of causes across the

study time frame, but increased from 6 to 10 % between the

first and second period of analysis. Models for all groups of

fire had a high goodness of fit (AUC 0.90–0.95). Temperature

was proportional to the probability of ignition, and precipi-

tation was inversely proportional. Proximity from infrastruc-

tures had an effect only on winter fires, while the density of

grazing animals had a remarkably different effect on sum-

mer (positive correlation) and winter (negative) fires. Impli-

cations are discussed regarding climate change, fire regime

changes, and silvicultural prevention. Such a spatially ex-

plicit approach allows us to carry out spatially targeted fire

management strategies and may assist in developing better

fire management plans.

1 Introduction

Wildland fires drive the dynamics of vegetation in many

parts of the world (Thonicke et al., 2001; Bond and Keeley,

2005), shaping landscape patterns and influencing the provi-

sion of productive and regulatory ecosystem services (Can-

non, 2001; Conedera et al., 2003). Fire is part of the natural

dynamics of ecosystems, but it may become a nuisance or

a hazard for human settlements and activities. In this con-

text, knowing where wildland fire hazard is higher is a fun-

damental support to distribute and make prevention actions

more efficient. Spatially explicit fire databases are used rou-

tinely for hazard zoning (Zumbrunnen et al., 2011; Vacchi-

ano et al., 2016). However, in a context of changing anthro-

pogenic and natural drivers of fire occurrence – such as the

increase of mean and extreme temperatures, altered precipi-

tation patterns (Beniston, 2006), and land use change (aban-

donment and/or higher tourist and urban pressures) in the

wildland–urban interface (WUI) (Moreira et al., 2011) – fire

hazard maps and or danger indices based on past conditions

may not be able to forecast the future influence of environ-

mental and social drivers onto fire ignition. These processes

could imply higher risk even in areas where fires were not
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traditionally considered a frequent and/or severe disturbance

and risk agent, such as in the Alps (Bebi et al., 2017). In such

context, modeling the factors that drive ignitions (Ganteaume

et al., 2013) can help us to choose the most appropriate fire

prevention actions even under changing environmental and

social conditions (Chuvieco et al., 2014).

Considerable research has been carried out to quantify

the influence of natural (climate, vegetation, topography, and

landscape connectivity) and anthropogenic drivers of wild-

land fire ignitions (Cardille and Ventura, 2001; Yang et al.,

2007; Martínez et al., 2009; Renard et al., 2012), but the rel-

ative importance of each factor is still debated. The prevail-

ing paradigm at the planetary scale is that climate (Carcaillet

et al., 2001; Whitlock et al., 2003), fire weather (Schoen-

nagel et al., 2004), or fuel (Krawchuk et al., 2006) is the

most important factor. Moreover, forest management and hu-

man actions may strongly influence the spatiotemporal pat-

tern of fire ignitions (DeWilde and Chapin, 2006), especially

in highly developed regions such as southern Europe, where

most of the wildland fires are human-induced. Here, several

studies have shown the significance of the distance of for-

est fires to roads, settlements, and infrastructure or specific

land uses or even its abandonment as predisposition for fire

ignition (Vega-Garcia et al., 1995; Goldammer, 2003; Catry

et al., 2009; Martinez et al., 2009).

In the Alps, however, the role of fire as a component of

disturbance regimes in forest and grassland ecosystems is

still poorly known. Historically, some ecosystems such as

forests dominated by Scots pine or European larch might

have evolved under medium- to high-frequency fire regimes

(Vazquez Moris et al., 2017). However, the frequency and

severity of fires have been heavily influenced by human ac-

tivities, such as widespread pastoral fires and a century-long

strict fire suppression policy. Such lack of knowledge is par-

ticularly upsetting in an area where WUIs are expanding un-

der the pressure of tourism and where, in recent decades,

burned area has been on the rise (e.g., +26 % increase in total

area burned by fires larger than 10 ha in 1981–2000 relative

to 1961–1980; Vacchiano and Motta, 2015). Since both sus-

tainable ecosystem management and effective fire prevention

must rely on understanding the characteristics and effects of

fire regimes (Vacchiano et al., 2014), it is important to im-

prove the understanding of spatiotemporal patterns of natural

and anthropogenic fire in the Alpine region, the most impor-

tant drivers and agents of change, and their potential effects

on fire severity and danger. In this paper, we fit spatially ex-

plicit multivariate models for fire ignition in Valle d’Aosta,

a dry, inner-alpine region of the western Italian Alps.

In doing so, we set out to answer to the following research

questions: (1) What are the current fire regimes in the study

area? (2) What are the most important environmental drivers

of summer vs. winter fires in forests, grasslands, and fal-

low lands? (3) How to solve the “curse of dimensionality”

when trying to fit fire ignition models while exploring a high-

dimensional space of many potentially collinear predictors

(Bar Massada et al., 2013)? (4) How sensitive are summer

and winter fire ignitions to climate vs. anthropogenic drivers

in the study area?

Using a 15-year database of temporally and spatially ex-

plicit fire ignitions allowed us to answer to such questions

without being hindered by current fire suppression, which

may bias fire behavior data when trying to reconstruct fire

regimes from observed burned areas and wildfire frequen-

cies. The results of our analysis can be used by land managers

to inform fire prevention actions and by ecologists to param-

eterize models of fire ignition for the simulation of future

landscape dynamics as a function of natural disturbances.

2 Methods

2.1 Study area

Our study area was the Aosta Valley region in northwest

Italy (Fig. 1). The region covers 3262 km2 and is shaped

by an east–west main valley with several north–south lat-

eral arms. More than 90 % of the land has an elevation of at

least 1000 ma.s.l., and 60 % is above 2000 m. Mean annual

temperature in Aosta (45◦26′ N, 7◦11′ E; 583 m) is 10.9 ◦C

(years 1961–1990; Tetrarca et al., 1999). Climate is warm-

summer continental (Dfb) according to the Köppen classi-

fication (Peel et al., 2007); mean temperatures of July and

January may differ by as much as 22 ◦C. Annual precipita-

tion in Aosta is much lower than in other central Alpine val-

leys (494 mm, years 1961–1990; Biancotti et al., 1998), with

a period of water deficit extending from June to September

and winter precipitation in the form of snow.

Forests cover 98 439 ha (Gasparini and Tabacchi, 2011),

a third of the region’s area. The dominant forest types are

conifers – mixed larch (Larix decidua Mill.) and Swiss stone

pine (Pinus cembra L.) (45 % of total forest cover), Norway

spruce (Picea abies [L.] Karst.) (19 %), and Scots pine (Pinus

sylvestris L.) (13 %). Broadleaf forest types such as chest-

nut (Castanea sativa Mill.), downy oak (Quercus pubescens)

(4 % each), and early seral secondary woodlands (12 %) are

common at lower elevations. Other forest cover types in the

region include silver fir (Abies alba Mill.) and beech (Fa-

gus sylvatica L.) (1 % each), Austrian pine (Pinus nigra J. F.

Arnold) (0.5 %), and riparian forests (0.5 %) (Gasparini and

Tabacchi, 2011). The maximum elevation of the tree line is

about 2300 ma.s.l. (Viglietti et al., 2010).

Wildfires occur mainly in late winter and early spring

and are 95 % anthropogenic in origin (Vacchiano et al.,

2015). Surface fires usually start at the bottom of the val-

ley and spread upward, often transitioning into crown fires

in conifers due to the low moisture content of live foliage

during the dormant season. Most wildfires are small (aver-

age size of 5.8 ha); however, 70 % of the burned area is due

to sporadic but relatively large wildfires (up to 400 ha; Vac-

chiano et al., 2016). This fire regime is common to several

Nat. Hazards Earth Syst. Sci., 18, 935–948, 2018 www.nat-hazards-earth-syst-sci.net/18/935/2018/



G. Vacchiano et al.: Modeling anthropogenic and natural fire ignitions in an inner-alpine valley 937

Figure 1. Map of the study area.

inner-alpine valleys (Moser et al., 2010; Zumbrunnen et al.,

2011) and reflects the influence of strict fire suppression poli-

cies adopted in the last decades throughout the Alpine region

(Pezzatti et al., 2013; Valese et al., 2014). Fuel management

is not routinely carried out in the region, and prescribed fire

is prohibited by law. A fire ban is in place at certain times of

the year (depending on a fire danger rating calculated daily),

but it is often ignored (knowingly or otherwise).

2.2 Data analysis

We georeferenced all ignition points (N = 1118, excluding

re-ignitions from previously active fires) from a regional for-

est fire archive for the years 1995–2009, maintained by Re-

gional Forest Service staff (Fig. 2). Information available for

each point included the date and time of the ignition, du-

ration, cause of ignition, and main vegetation type. Since

the study area was covered by widely different vegetation

types, with presumably heterogeneous fire regimes, after pre-

liminary scrutiny of the frequency distribution of ignition

months and vegetation cover types we grouped fire ignitions

in three main categories, indicative of three broadly distinct

fire regimes:

i. summer ignitions (May to September), n = 246;

Figure 2. Fire ignitions in years 1995–2009 (red dots) and Corine

Land Cover (year 1990) vegetation types in the study area (yellow:

agricultural areas; light green: permanent meadows; dark green:

forests; blue: pastures and shrubs; grey: unvegetated; white: urban).

ii. winter ignitions (October to April) in forested areas, n =

316;

iii. winter ignitions in meadows and fallow lands, n = 556.

This study design was made because summer and win-

ter fires were hypothesized to be driven by different causes

(e.g., lightning vs. human management practices); then, fires

that were hypothesized to be preferentially caused from man-

agement (i.e., winter fires) were further subdivided between

forests and grasslands, because management practices of

these two land covers differ substantially and management-

related predictors could therefore play a different role.

For each group, we analyzed the effect of topography, cli-

mate, and land use (vegetation). We opted to study the rela-

tionship between fire ignition and mean climate, as opposed

to fire weather, because this allowed us to assess the long-

term relative fire danger in the study area during an “average”

fire season. Climate predictors (mean annual temperature,

BIO1; maximum temperature of the warmest month, BIO5;

minimum temperature of the coldest month, BIO6; yearly

temperature range, BIO7; average temperature of the wettest

quarter, BIO8; average temperature of the driest quarter,

BIO9; average temperature of the warmest quarter, BIO10;

average temperature of the coldest quarter, BIO11; yearly

precipitation sum, BIO12; precipitation sum of the wettest

month, BIO13; precipitation sum of the driest month, BIO14;

precipitation sum of the wettest quarter, BIO16; precipita-

tion sum of the driest quarter, BIO17; precipitation sum of

the warmest quarter, BIO18; precipitation sum of the cold-

est quarter, BIO19), with a spatial resolution of 1 km, were

obtained from the WorldClim dataset (Hijmans et al., 2005)

and resampled at a 30 m resolution by linear interpolation.

We used a digital elevation model (DEM) with a resolution

of 10 m to calculate elevation and slope and calculated a lin-

earization of aspect as cos(aspect − 225◦) as a proxy for
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evapotranspiration (Franklin and Tolonen, 2000), and heat

load index (McCune and Keon, 2002) as a proxy of solar

radiation.

Human activities were factored in using three predictors:

the distance of the ignition point from a main road or building

(DIST_INFR), as mapped by a regional vector cartography;

the number of grazing domestic animals (N_GRAZ_ANIM)

and the number of dairy and meat enterprises with graz-

ing animals (N_FARMS). The latter two variables were ex-

tracted for each municipality from the most recent national

agricultural survey (ISTAT, 2010) and scaled on the area of

pasture land in each municipality to derive unit-area values

(D_GRAZ_ANIM and D_FARMS).

Potential issues of collinearity between predictors were

addressed by running clustering on principal component

analysis (PCA) (Booth, 1994) of all independent variables

for the ignition subset. From each principal component (PC),

we selected only those variables that were correlated to the

component by a loading higher than 0.32, i.e., explaining at

least 10 % of the variance of that component (Booth, 1994);

in case more than one variable satisfied this rule, we selected

only the one with the highest loading. In order to accommo-

date nonlinear effects, each ignition group was modeled as

a function of the selected drivers by using MaxEnt v. 3.3.3.k

(Phillips et al., 2006), i.e., a maximum entropy algorithm

that produces a spatially explicit probability of ignition, un-

der the null hypothesis of uniform spatial distribution. Maxi-

mum entropy is a machine-learning general-purpose method

used to obtain predictions or make inferences from incom-

plete information (Phillips et al., 2006). Given a set of sam-

ples (i.e., fire occurrences) and set of features (environmental

variables), MaxEnt estimates “niches” for ignitions by find-

ing the distribution of probabilities closest to uniform (max-

imum entropy), constrained to the fact that feature values

match their empirical average (Phillips, 2004). Being based

on presence-only data, MaxEnt maximizes the information

available, without the need to draw assumptions about un-

known absence or pseudo-absence points (Jaynes, 1990).

The fitting algorithm in MaxEnt finds the best set of predic-

tors after attempting to carry out a set of mathematical trans-

formations, i.e., linear, product, power, hinge, threshold, and

categorical. Linear features model linear response to a co-

variate, while quadratic features model response to the vari-

able squared. Product features model interactions between

paired variables. Hinge features model piecewise constant

responses, while threshold features model abrupt boundary

relationships between covariates and response. Category fea-

tures are binary indicators used to indicate positive or null

response to each class within a categorical covariate. More-

over, a procedure called regularization is used in MaxEnt to

avoid overfitting. If the algorithm is overfitting at the ob-

served presence points, the response curves (i.e., trends in

the response variable y as a function of any individual pre-

dictor) will contain reversals of direction, sharp bends, and

other shapes that do not make biological sense. The ability

to change the regularization settings for each feature type is

available in MaxEnt, but typically regularization is adjusted

via a single setting that acts as a multiplier for the default

values. In this work, the regularization multiplier was set to

1.5, i.e., the value where preliminary MaxEnt tests produced

the best results in previous studies (Dudik et al., 2004).

For each subset, a model was calibrated on 70 % of ob-

servation and validated on the remaining 30 %. Data split-

ting was carried out by five bootstrap samples, i.e., the points

were assigned to the calibration (model fitting) and valida-

tion (model checking) sets not just once but several times

by random sampling with replacement, and final validation

statistics were averages of those computed on each of the

five validation sets. Model performance was assessed by the

area under the receiver operating characteristic curve (AUC)

(Fielding and Bell, 1997), ranging from 0 to 1, with 0.5 indi-

cating the absence of correlation between predictors and ob-

servation and 0.8 commonly considered the minimum thresh-

old for a good fit (Manel et al., 2001). Finally, we measured

the effect size of each individual predictor by a leave-one-out

procedure and ranked predictors by their percent permutation

importance (PPI), i.e., the normalized drop in AUC resulting

from randomly permuting the values of that predictor among

the training points (Phillips et al., 2006). Finally, the direc-

tion of the effect of individual predictors was assessed by

scrutinizing MaxEnt response curves, i.e., how each predic-

tor affects ignition when modeled by MaxEnt. The curves

show how the logistic prediction (bound between 0 and 1)

changes as each environmental variable is varied, keeping all

other environmental variables at their average sample value.

3 Results

Summer fires occurred at lower elevation and temperature,

and higher mean temperature and distance from infrastruc-

tures, than winter ignitions (Table 1; Fig. 3). Of the 1118 ig-

nitions analyzed for years 1995–2009, most (30.0 %) oc-

curred in agricultural areas, 23.7 % in forests, 20.5 % in per-

manent meadows, and 10.6 % in pastures and fallow lands.

The average yearly ignition density in each of these vegeta-

tion classes was 0.18, 0.16, 0.03, and 0.01 fireskm−1, respec-

tively. The frequency of ignitions peaked in the late winter–

early spring (February to April), with a secondary peak in the

summer (June to September) (Fig. 4).

Most ignitions (65 %) could not be assigned a definite

cause (Fig. 5). However, among known causes, negligence

from agricultural and forest activities was the main one (64 %

of all ignitions with a known cause). Arson accounted for

only 7 % of all ignitions with a known cause and lightning

for 9 %. The time window analyzed is too short, and the share

of unknown causes too high, to make a robust analysis of

temporal trends; however, among known causes, lightning-

induced fires showed the highest increase between the first

and second half of the study period (relative frequency of
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Table 1. Summary statistics of the candidate predictors for fire ignition across all ignitions points in the study area.

Independent variable Units Summer ignitions Winter ignitions

mean SD mean SD

Elevation ma.s.l. 893.3 533.52 1109.6 396.72

Slope ◦ 15.2 7.96 17.3 7.30

Aspect (linearized) – −0.5 0.60 −0.4 0.65

Heat load index – 0.5 0.34 0.5 0.34

DIST_INFR m 1843.2 737.27 1502.0 750.99

N_FARMS – 24.2 14.46 21.8 15.10

N_GRAZ_ANIM – 607.3 418.82 575.8 415.30

Mean annual temperature BIO1 ◦C 8.2 2.69 7.1 1.96

Maximum temperature of the warmest month BIO5 ◦C 22.8 3.63 21.4 2.64

Minimum temperature of the coldest month BIO6 ◦C −4.8 1.71 −5.6 1.23

Yearly temperature range BIO7 ◦C 27.6 1.99 26.9 1.50

Average temperature of the wettest quarter BIO8 ◦C 8.2 1.37 9.0 1.29

Average temperature of the driest quarter BIO9 ◦C 21.3 1.64 20.9 1.90

Average temperature of the warmest quarter BIO10 ◦C 16.4 3.07 15.2 2.26

Average temperature of the coldest quarter BIO11 ◦C −0.3 2.08 −1.2 1.51

Yearly precipitation sum BIO12 mm 967.8 245.89 1064.7 167.79

Precipitation sum of the wettest month BIO13 mm 121.0 40.33 124.2 31.05

Precipitation sum of the driest month BIO14 mm 48.4 15.61 62.1 21.42

Precipitation sum of the wettest quarter BIO16 mm 302.4 60.49 323.0 63.32

Precipitation sum of the driest quarter BIO17 mm 193.6 27.26 236.0 34.71

Precipitation sum of the warmest quarter BIO18 mm 271.7 57.04 292.1 41.64

Precipitation sum of the coldest quarter BIO19 mm 215.1 53.77 221.8 54.10

lighting fires was 6 and 10 % in 1995–2001 and 2002–2009,

respectively), while arson was almost unchanged (5 and 7 %)

and negligence-related factors decreased (81 and 75 %). The

relative incidence of summer fires increased with altitude (up

to about 40 % of all fires above 1500 m) (Fig. 6).

Variable selection by PCA loadings was carried out the

analysis of the first 13 PCs, which explained 99 % of

the cumulative proportion of variance. In all three sub-

sets, climatic/topographic and anthropogenic variables were

clearly orthogonal to each other in the most important

PCs. DIST_INFR and D_GRAZ_ANIM were selected (load-

ing > 0.32) in all three datasets, as were elevation, slope, and

at least one between heat load index and BIO1 and BIO10

were always collinear to other climatic predictors and were

discarded; however, in all subsets, at least one temperature-

and one precipitation-related variable were always selected

(Table 2).

All models had a high goodness of fit, with AUC rang-

ing from 0.90 (summer fires) to 0.94 (winter agropastoral

fires) and 0.95 (winter forest fires) (mean of five bootstrap

iterations). The most important predictors (PPI > 10 %) were

BIO5 and BIO13 for summer fires; BIO14, elevation, BIO9,

and DIST_INFR for winter forest fires; and elevation and

DIST_INFR for winter agropastoral fires (Table 3).

The effect of climatic predictors conformed to expecta-

tions, with temperature variables being monotonically pro-

portional to the probability of ignition and precipitation vari-

ables being inversely proportional. Elevation effects were

consistent with temperature ones. The most important an-

thropogenic driver, i.e., distance from infrastructures, had

a large effect only on winter fires, where it contributed to

a high probability of ignition at distances lower than about

1000 m (Fig. 7); however, its relative importance was never

higher than 28 %. Variables related to the density of grazing

animals were not particularly informative (PPI < 2 %), but

their effect on ignition probability was remarkably different

between summer (direct correlation) and winter fires (inverse

correlation) (Fig. 8). It is worthwhile to note that the animal

census data refer to whole years and did not allow us to break

apart the number of grazing animals by season. This number

does certainly vary due to common rangeland practices (cat-

tle are mostly in the plains during the winter). However, this

should not affect our results because grazing management

practices conducive to fire are carried out mostly in winter,

in the absence of cattle (e.g., burning grazing lands or residu-

als). Our working hypothesis is that areas hosting more cattle

during the grazing season would apply a more intensive pas-

ture management even during the winter months.

The spatially explicit description of ignition probability

showed a pattern driven primarily by temperature and hu-

man presence, with valley bottoms and areas closed to de-

veloped settlements having the highest ignition probabilities,

especially in the summer (Fig. 9).

www.nat-hazards-earth-syst-sci.net/18/935/2018/ Nat. Hazards Earth Syst. Sci., 18, 935–948, 2018
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Figure 3. Spatial distribution of summer and winter fire ignition over (a) elevation, (b) aspect (linearized), (c) mean temperature of the

warmest quarter, (d) total precipitation of the wettest quarter, (e) distance from infrastructures, and (f) number of grazing animals per

municipality, plotted over the distribution of forest cover.

4 Discussion

4.1 Natural drivers of fire ignition

The sources of wildland fire ignition can be natural (light-

ning) or anthropogenic and either accidental or voluntary.

In the study area, fires exhibited a marked distinction be-

tween climate-driven summer fires and anthropogenic winter

fires. In this study, lighting represented on average 33 % of

all summer ignitions among those with a known cause and

38 % between June and August (comparable to other Alpine

regions, e.g., 40 % in Austria; Müller et al., 2012). Such a

Nat. Hazards Earth Syst. Sci., 18, 935–948, 2018 www.nat-hazards-earth-syst-sci.net/18/935/2018/
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Figure 4. Frequency of fire ignitions by month and vegetation cover

type.

high rate is indicative of the fact that summer fires in this

study area can still be considered a partially “natural” dis-

turbance regime, except for the fact that suppression poli-

cies are still quite aggressive and prevent a more complete

restoration of fire as an agent potentially useful for regenera-

tion and ecosystem functioning (Vazquez Moris et al., 2017).

In turn, in the study area the frequency of lightning-induced

fires is highly correlated with the summer Standardized Pre-

cipitation and Evaporation Index in Aosta (Castagneri et al.,

2015) (R = 0.55 for all months between May and September

and 0.69 for the month of July). Two consequences of such

correlation are an increase of lightning-induced fire from the

first to the second half of the study period (+130 % after vs.

before year 2001) and the extraordinary number of lightning-

induced fires in the summer 2003 (which accounted for one-

third of all lightning ignitions in the period). Both can be an

indicator of ongoing climate change, with year 2003 showing

extreme drought that could become the new norm in the mid-

dle or end of this century (Schar and Jendritzky, 2004). The

consequences of ongoing climate change on fire regimes can

be pervasive, not only for an expected increase in frequency

and intensity of fires in a warmer world (Kulakowski et al.,

2017; Seidl et al., 2017) but also because of a likely shift

in fire regime, from a winter-dominated to an all-year-round

seasonality.

Lightning-induced forest fires are ignited when lightning

reaches the forest floor, and they can smoulder in the or-

ganic soil layer until this is dry enough to carry a surface

fire (Wotton et al., 2003; Conedera et al., 2006). In turn, the

properties of fuel depend on forest type, weather conditions,

and vegetation structure (Schoennagel et al., 2004). Wall-to-

wall information on forest biomass, structure, and flamma-

Table 2. Principal component analysis and selected predictors. For

each principal component we retained only those variables with

a loading > 0.32, i.e., explaining at least 10 % of the variance of

that component (Booth, 1994).

PC Retained variable Loading

1 – –

2 BIO8 0.335

BIO1 0.359

BIO10 0.447

BIO5 0.469

3 D_GRAZ_ANIM 0.691

D_FARMS 0.691

4 Heat load −0.637

Aspect (linearized) −0.690

5 Slope −0.582

DIST_INFR −0.770

6 – –

7 – –

8 – –

9 – –

10 – –

11 BIO17 −0.362

BIO11 −0.409

BIO19 −0.448

BIO6 −0.475

12 – –

13 BIO17 −0.327

BIO18 −0.725

bility (e.g., Corona et al., 2014) was not available for the

study area; even without such factors, fire prediction models

had a very high accuracy. The effect of weather on ignition

confirmed our expectations and previous literature (e.g., Vi-

lar et al., 2010; Narayarnaraj and Wimberly, 2012; Nunes,

2012), with summer temperature and spring precipitations

driving summer ignitions, and temperature and precipitation

of the driest quarter (i.e., often winter), together with aspect

(i.e., stands located on drier, sunnier slopes), driving winter

fires. The main driver of fire density distribution in south-

ern Europe is precipitation, both off-season (which affects

vegetation growth and fuel accumulation) and during the fire

season, which limits fire ignition and spread (Oliveira et al.,

2012).

Concerning topography, we found a negative effect of el-

evation on fires. This is likely a result of the correlations

between increasing elevation and decreasing human activ-

ity density (Xu et al., 2006) and increasing elevation and

more positive evapotranspiration balance (Padilla and Vega-

Garcia, 2011). Moreover, when altitude increases, fuels are
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Figure 5. Fire ignitions by cause in the study period.

Figure 6. Absolute and relative frequency of summer (black) vs. winter (grey) fire ignitions in the study area by elevation class.

less abundant due to the abundance of non-vegetated areas

(rocks, sparse vegetation, snow).

4.2 Anthropogenic fires

In the study area, winter fires were mainly driven by proxim-

ity to human infrastructure, as opposed to summer ones. Win-

ter (October to April) ignitions followed an anthropogenic

cause in 99.6 % of cases. Human-induced ignitions mostly

depend on the moisture of fine fuels, e.g., cured needles or

leaves and small woody residues on the forest floor (Wot-

ton et al., 2003). Fuel structure and continuity then control

the eventual spread and intensity of fire in the post-ignition

phase (e.g., Ruffault and Mouillot, 2017).

Human presence usually directly influences fire density

and burned area where fire regimes are anthropogenic (Bar

Massada et al., 2013), while human-induced landscape frag-

mentation has a reverse effect on fire where regimes are

mostly natural (Parisien et al., 2004). In the Alps, the den-

sity of railroads, forest roads, and trails, together with agri-

cultural and forestry developments, contribute significantly

to fire danger (Arndt et al., 2013) due to accidental or neg-

ligent fires (Catry et al., 2009; Martinez et al., 2009; Vilar

et al., 2010; Narayanaraj and Wimberly, 2012; Oliveira et al.,

2012).

Reineking et al. (2010) assessed the importance of

weather, forest type, and human actions on forest fire igni-

tions in a fire-prone area of Switzerland over a 37-year pe-

riod. Drought was the most important driver of lightning-
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Table 3. Predictor PPI (percent permutation importance) in the models for ignition of summer, winter forest, and winter agropastoral fires.

Predictor Summer fires Winter forest fires Winter agropastoral fires

Bio16 0.76 0.22 1.19

Elevation 2.78 20.06 41.20

Bio5 38.59 5.69 2.76

Bio6 1.61 0.44 0.23

Bio12 0.01 0.39 1.52

Bio14 1.12 30.56 6.35

Aspect (linearized) 2.05 6.97 4.21

Bio18 9.67 3.36 0.95

DIST_INFR 2.58 10.59 28.13

Bio9 1.91 12.59 5.95

D_GRAZ_ANIM 1.91 1.12 1.55

Bio13 33.85 5.29 1.79

Figure 7. MaxEnt response curve for the effect of distance from infrastructures on ignition probability in winter forest (a) and agropastoral

fires (b).

induced fires, with a negligible effect of distance to human

infrastructures. Anthropogenic fires, in contrast, were sig-

nificantly associated to both distance to infrastructure and

weather. Also, anthropogenic fires occurred across a wider

range of weather conditions relative to naturally ignited ones,

since human activities may provide enough energy to ignite

a fire even under sub-optimal fuel moisture conditions.

Finally, the intensity of rangeland management practices

appeared to be inversely related to ignition probability in

winter fires (Fig. 8). In the region, fire is one of the preferred

tools to eliminate harvest and agricultural residues, clean

field margins, eliminate excess litter in tree orchards, and

clear undesired vegetation in pastures (Leone et al., 2009).

However, we interpret our result as a possible consequence of

the effectiveness of grazing animals in decreasing fuel load

(Bovio and Marchi, 2010). It is worthwhile to note that the

animal census data refer to whole years and do not allow

us to break apart the number of grazing animals by season.

This number would certainly vary due to common rangeland

practices (cattle are mostly in the plains during the winter).

However, this should not affect our results because grazing

management practices conducive to fire are carried out espe-

cially in winter, in the absence of cattle (e.g., burning grazing

lands or residuals). Our assumption is that areas hosting more

cattle during the grazing season would apply a more intensive

pasture management even during the winter months, but we

could not support the hypothesis that this was conducive to

more anthropogenic fires.

These results have important applications for fire preven-

tion and mitigation in the study area. Using evidence from

this study, prevention measures can be (a) tailored season-

ally (i.e., focusing on education and prevention of negligence

during the winter time when forest and pasture management

are carried out, and aimed at reducing fuel biomass before

the climatically driven summer fires) and (b) informed by

a spatially explicit risk assessment carried out by extrapolat-

ing model results to the whole land area of the region (Fig. 9).

4.3 Analytical approach

The relationship between fire ignitions and environmen-

tal drivers at the regional scale has been historically ana-

lyzed using many different statistical models. Due to the

need to accommodate nonlinearities, most works used lo-
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Figure 8. MaxEnt response curve for the effect of density of grazing domestic animals on ignition probability in summer fires (a), winter

forest (b), and winter agropastoral fires (c).

Figure 9. Ignition probability in the study area for summer fires (a), winter forest (b), and winter agropastoral fires (c).

gistic regression based on negative binomial or Poisson er-

ror distributions (e.g., Martinez et al., 2009; Chuvieco et al.,

2009; Prasad et al., 2008). Other authors have proposed

regression trees (Amatulli et al., 2006), neural networks

(Vega-García et al., 2007), Bayesian probability techniques

(Romero-Calcerrada et al., 2008), and generalized additive

models (Vilar et al., 2010). Compared to such algorithms,

most of which are parametric, the machine-learning approach

adopted by MaxEnt has been performing equally, if not bet-

ter (Bar Massada et al., 2013). Being based on presence-only

data, MaxEnt avoids the problem of dealing with false, unre-

liable, or pseudo-absences (Jiménez-Valverde et al., 2008).

The other characteristic of this study is the selection of

predictors before fitting the final model. Collinearity between

spatial predictors is common, especially when spatially cal-

ibrated climate grids are used (Vacchiano and Motta, 2015),

which can lead to unstable or unreliable model fit. Even if

MaxEnt is much less sensitive to collinearity (Kuemmerle

et al., 2010), its results would be less clearly interpretable

in the presence of strongly collinear predictors. The use of

PCA and PC loading thresholds to select the most important
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predictors allowed a reduction in collinearity of predictors

and a less ambiguous interpretation of model results (Cruz-

Cárdenas et al., 2014).

5 Conclusions

This study confirmed that fire regime in an alpine region has

distinct patterns and causes depending on the ecosystem (for-

est or grassland/cropland) and season involved (winter or

summer). Anthropogenic drivers, mainly from negligence-

related reasons, were the main causes of ignition, but the

incidence of fires starting from lightning has been recently

increasing. From a management point of view, the spatially

explicit approach we describe here allows us to carry out

spatially targeted fire management strategies and may be in-

tegrated into future fire management plans at regional and

local scale. Spatially explicit hazard assessments can sup-

port managers in carrying out appropriate preventive and pre-

suppression activities, to locate helicopter water points, to

plan fuel management interventions, and to parameterize fire

behavior and landscape dynamics models and simulate dif-

ferent fire scenarios with different fire-fighting tactics. Fur-

thermore, by combining the fire danger with the vulnerability

to fire (i.e., the ecological and economic fire impact), a cell-

by-cell assessment the resulting fire risk can be carried out.

As a consequence, in less vulnerable areas the strict fire sup-

pression approach may be reconsidered, and fires allowed to

burn a certain share of the land to restore historical distur-

bance regimes and improve the functionality of those forest

ecosystems that had co-evolved with fire (e.g., regeneration

of light-demanding species).

From the point of view of the drivers of fire ignition, the

present study highlights the importance of urban areas and

roads as potential sources of ignition, policies that regulate

development in the urban–wildland interface, and potentially

hazardous human activities close to hotspot fire locations and

during periods of increased weather risk. Under the current

scenarios of climate change and more frequent drought and

lightning, silvicultural prevention should be carried out more

frequently to reduce the load and continuity of forest fuels

for an effective reduction of wildfire risk.
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