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Abstract We propose Markov random fields (MRFs) as a
probabilistic mathematical model for incorporating the in-
ternal states of other agents, both human and robotic, into ro-
bot decision making. By using estimates of Theory of Mind
(ToM), the mental states of other agents can be incorporated
into decision making through statistical inference, allowing
robots to balance their own goals and internal objectives
with those of other collaborating agents. The MRF model
is well-suited to domains in which the joint probability over
latent (action) and observed (perceived) variables can be
factored into pairwise interactions between these variables.
Specifically, these interactions occur through functions that
evaluate “local evidence” between an observed and latent
variable and “compatibility” between a pair of latent vari-
ables. We will describe how experimental findings from the
ToM literature can be explained using MRF models, and
then show how this framework can be applied to a social
robotics task. We will also describe how to use belief prop-
agation on a multi-robot MRF as a novel approach to multi-
robot coordination, with parallels to human collaboration
strategies.
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1 Introduction

Humans often appear to use their expectations about the be-
liefs and intentions of other agents to inform their decision
making. This understanding of others’ mental states,1 com-
monly referred to in cognitive science as Theory of Mind
(ToM), can often be explicitly communicated or inferred
from the observed actions of others. Significant previous ef-
forts have hypothesized how individuals perceive the world
and the intentions and beliefs of others [2, 18, 28, 43], fo-
cusing mostly on the development of these abilities in young
children. Such work has informed the creation of socially
interactive robots [4, 36]. To complement such work, our
aim is to develop mathematical models capable of incor-
porating domain knowledge from ToM (or social processes
more generally) with probabilistic inference. Mathematical
models of probabilistic inference have proven to be viable
explanatory frameworks for children’s cognitive develop-
ment [19], and have been applied to problems in theory of
mind [17]. Our approach is to treat the intended action of
an agent (either robot or human) as a latent random variable
that is conditioned on both the agent’s own perceptual ob-
servations (estimated from their own unique sensing) of the
physical world and the agent’s inferences about the inten-
tions of other agents.

In the form of a generative statistical model, we will
describe ToM probabilistically as a Markov Random Field

1While robots do not have mental states, to simplify the terminology
we may refer to their internal states as mental states periodically.
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(MRF), where interactions among variables drive the proc-
ess. Casting ToM in a MRF, latent variables represent the
state of each agent and observed variables represent the
observations of each agent. In the form of a graph, these
variables are nodes where dependencies between variables
are represented by connecting edges. This graph expresses
the joint probability of the state of all the agents condi-
tioned on all their observations and permits the use of vari-
ous inference algorithms for coordination [6]. However, the
essence of the model is in its defined edge potentials. These
edges correspond to local evidence and pairwise compati-
bility, which dictate interactions between variables. Local
evidence edges connecting pairs of latent and observed vari-
ables define how the physical observations influence agents’
states. Pairwise compatibility edges between pairs of latent
variables indicate how agents influence each others’ states.
Similar to a Bayes filter [41], we hypothesize that MRFs can
be crafted to describe various ToM processes and adapted to
human-robot situations through appropriate selection of ev-
idence and compatibility functions.

We will review the mathematical and computational fun-
damentals of the MRF model and describe its application
to modeling coordination among distributed collections of
agents, either human or robot. We consider findings on hu-
man interaction as observed in previous Theory of Mind ex-
periments from cognitive science researchers, relating to re-
liability and uncertainty, which can be modeled within the
MRF framework. We additionally describe our previously
published example of successful multi-robot coordination
using belief propagation on a MRF for the task of visibil-
ity chain formation [38]. Our ultimate goal of expanding the
use of this model to coordinating human-robot teams could
then be achieved by the combination of these two results,
replacing some of the robots with humans and using robotic
ToM tools to estimate the humans’ mental states.

1.1 Related Work

Theory of Mind refers to the ability of humans to under-
stand the intentions and mental processes of themselves and
others. Understanding others’ mental states, including their
desires, intentions, and beliefs, is an important tool for un-
derstanding and predicting others’ behavior [43]. There is
considerable debate among cognitive scientists as to how
ToM is represented and the nature of ToM development (for
a review, see e.g., Carruthers and Smith [8]). Our intent here
is not to speculate on how ToM is represented or acquired in
human beings. Rather, our goal is to consider the effect that
ToM has on decision making and construct a sound math-
ematical model for including ToM in the decision making
process of robots. However, the form of ToM representation
will have an effect on how the state of a robot is defined.

Scassellati [36] discussed two important models of ToM
(those of Leslie [28] and Baron-Cohen [2]) and the impli-
cations of these models to robotics. This work also imple-
mented some of the essential skills needed for a robot to
have a ToM, such as gaze-tracking and distinguishing be-
tween inanimate and animate objects. However, he points
out that the interactions between the various modules in the
psychological descriptions proposed by Leslie and Baron-
Cohen are not suitably well-defined for generalizable robot-
ics implementation. Our belief is that MRFs can be useful
in providing a mathematical structure that allows a robot to
factor in its estimate of the intentions of other agents as well
as its own local computation into its decision-making.

An appeal of the MRF framework is that it allows us to
consider recent work in children’s ToM, which examines
children’s credulity and trust in testimony [11, 20, 21, 27].
These investigations suggest that children develop ontolog-
ical commitments about the world, particularly about so-
cially constructed information or about events they cannot
directly observe, from information garnered from other peo-
ple. In doing so, children take into account the nature of how
that information is transmitted, particularly in terms of the
confidence of the teacher and the reliability of an individual
as a source of information.

Significant previous work in social robotics has pursued
estimation of the mental states of other agents, both in terms
of using social cues and simulating differing perspectives.
Work in social cue interpretation uses a robot’s local per-
ception of human gaze, pointing, and other gestures to esti-
mate their intentions and attentional focus [4, 37]. Our focus
is not on the mechanism of observing and inferring others’
mental states, but on how these states, once observed, fac-
tor into decision making. The mental states estimated from
the local perception of social cues fit within our MRF frame-
work as distributions over other agents’ latent variables. Per-
spective taking [3] occurs where the robot must include esti-
mates of other agent’s perspectives (or at least physical state)
in their own state, which we phrase as a function of com-
patibility. The Polyscheme [9] architecture has been used
to estimate the distribution over possible states of another
agent through simulating situations from the perspective of
the other agent [42]. With their Leonardo robot, Breazeal et
al. [3, 4] have explored various forms of perspective taking.
In our MRF framework, we would consider this line of work
as ambiguity in the form of the agent’s own state variable,
similar to how one would express state (or robot pose) for
a Bayes filter. Specifically, does the agent maintain physi-
cal and/or intentional information about others within their
state? Hoffman and Breazeal [22] have explored anticipa-
tion as a mechanism for robots to predict and more appropri-
ately respond to human partners. Thinking of the Bayes fil-
ter again, anticipation is essentially a prediction mechanism
about collective state (or situations) that could occur in the



Int J Soc Robot (2009) 1: 41–51 43

future. In the MRF framework, prediction can be conceptu-
alized as a form of compatibility where an agent’s estimation
about future state is influenced by its own intentions and ob-
servations as well as their compatibility with the recognized
intentions of other agents.

In autonomous robotics, multi-robot coordination de-
scribes the space of methods for controlling groups of au-
tonomous robots. This coordination can often be expressed
as multi-robot task allocation (MRTA), which has been well
explored in previous work [1, 25, 31]. Dias and Stentz [14]
have proposed auction-based methods for MRTA. They
phrase MRTA as a market economy where leaders develop
plans for a group of robots and bid for tasks against other
leader robots at an auction. Gerkey and Matarić [15] took a
large step towards creating a common framework for MRTA
problems by phrasing a wide variety of MRTA problems
as already well-studied problems in optimization. We pre-
viously were able to express several existing approaches to
MRTA as forms of inference within MRF models [6] and
propose probabilistic belief propagation as an alternative
form of distributed inference [38].

Graphical models have been previously used in the co-
ordination of static sensor networks. Techniques have de-
veloped that use belief propagation [13, 23, 33] or junction
trees [32] for distributed inference on stationary sensor net-
works. However, their extension into non-static robotics do-
mains, especially those involving human interaction, is not
straightforward. While these approaches to distributed sen-
sor networks provide a good foundation, the issues of inten-
tion recognition, defining compatibility and local evidence
functions, non-stationary distributions over time, as well as
basic issues of representing state remain open issues.

2 ToM as Markov Random Fields

A pairwise MRF [45] is a graphical model that factors a
system into a finite set of observed and hidden, or latent,
variables with pairwise interactions between them. Hidden
variables, which are the variables to be inferred, are con-
ditional on an associated observed variable and the neigh-
boring hidden variables. Variables in our case are vector-
valued random variables, meaning that they are multidimen-
sional probability distributions. Each agent i maintains one
observed and one hidden variable. The observed variable yi

represents an agent’s perception of the physical world (akin
to what Leslie [28] calls a Theory of Body, and/or what
Wellman and Bartsch [44] consider the input to belief-desire
reasoning, see also Wellman [43]). These perceptions are de-
rived from a robot’s own sensing information and pertain
only to information about physical objects in the world. Lo-
cal evidence only includes observations about other agents
in a mechanical sense; it does not contain any observations

of the other agents’ beliefs or intentions. The state, which
is represented by the hidden variable xi , is a vector con-
sisting of variables important to the agent’s behavior. The
state vector can contain variables representing intended ac-
tions for the agent, plans for other agents, knowledge about
the environment (such as localization information or object
classification), or other high level information relevant to the
current task.

In our ToM MRF model, the state of an agent is condi-
tional on its observed variable and the states of other agents
whose states it can observe. From the perspective of a single
agent, the other nodes are actually the inferred states of other
agents because robots and people are unable to access a hu-
man’s actual mental state. For the purposes of this paper we
will make no distinction between inferred state and actual
state of others. Because we are concerned with collaboration
between agents acting cooperatively, there is no reason for
agents to deceive each other and any information about state
can be explicitly communicated. Considering state to be in-
ferred state will simplify the model and allow us to model
a collaborative team as a single graph with agents mutually
affecting each other (Fig. 1).

Given the observed and hidden variables, a pairwise MRF
factors a collaborative team action x into two functions:
pairwise compatibility ψj,i(xj , xi) between each agent pair
(ij) and local evidence φi(xi, yi). The joint probability dis-
tribution can then be stated as follows:

Pr(x) = 1

Z

∏

(ij)

ψj,i(xj , xi)
∏

i

φi(xi, yi) (1)

The normalization constant Z ensures that the distribution
sums to 1. The formulation in (1) has two key benefits: we
factor the global coordination and local computation into
distinct terms; and we can express a spectrum of multi-robot
action selection methods by modifying these terms.

The local evidence φ(xi, yi) is a function that is used to
form a distribution for agent i over possible states, xi , given
only its physical observations yi . Computationally, the local
evidence produces a scalar output proportional to how well
a particular assignment of state xi reconciles with percepts
of reality yi . Integrating over all possible states given yi and
then normalizing will produce a distribution over xi . For-
mation of this distribution over xi is analogous to making
decisions without any information about the mental states
of others (i.e., without taking into account information from
ToM), even though that information is provided by other
agents. Representing the state as a distribution over possible
values allows the model to contain the uncertainty in deci-
sion making and perception. The local evidence function is
analogous to likelihood models as they are used in Bayes
filters [41] for localization.

The pairwise compatibility ψj,i(xj , xi) is a function that
encodes the influence of agent j ’s state on agent i’s state.
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Fig. 1 An illustration of the
ToM Markov Random Field
model and the related functions
from the viewpoint of agent 1

Similarly to local evidence, a compatibility function returns
a scalar output proportional to the compatibility of agents i

and j taking on specific state assignments. This function can
be used to encourage agreement (or disagreement) between
perceptual information from multiple agents, to produce
compatibility in plans, or inform predictions about changes
in the environment (such as those that will be brought about
by another agent).

3 Modeling Experimental Findings

We can model findings from research into Theory of Mind
with respect to child behavior within our MRF framework.
Representing the action of the child as its state and choos-
ing appropriate local evidence and compatibility functions
for the task in each experiment, we illustrate that our model
generates predictions that agree with the experimental re-
sults. As with several previous endeavors to instantiate chil-
dren’s cognition as a probabilistic model [19, 39, 40], we
do not believe that this approach describes the processes
by which children engage in their behaviors. Rather, we of-
fer this description as a computational-level analysis [29]
of children’s cognitive abilities. We do not claim that chil-
dren represent MRFs in their heads when engaged in the
inferences described below, nor do we suggest that the hu-
man brain instantiates an MRF model. Rather, we believe
that this framework can be used to describe rational behav-
iors, which children appear to develop. An advantage to this
framework is that we can easily translate the descriptions of
inferences available to young children to assist in modeling
simple social robotic interactions.

3.1 Effects of Uncertainty

A study by Sabbagh and Baldwin [34] showed that the un-
certainty in another agent’s beliefs affected the beliefs of
the child participants receiving the information. Preschool-
ers were told that a friend of the experimenter’s wanted his
toy, which was a “blicket.” There were two conditions in the
experiment. Half of the children were instructed by a knowl-
edgeable experimenter, who picked up a particular object
that was novel to the children, and labeled it a blicket. The
other children were instructed by an uncertain experimenter,
who picked up the same object and gave it the same label but
with hesitance and doubt. Children were later tested on their
retention of this label, and those that were exposed to the
confident experimenter were more likely to be able to iden-
tify the toy correctly in later production and comprehension
tests.

To model this experiment with an MRF (Fig. 3), we con-
sider the state of each agent to be the name given to the toy
in question. To simplify the model we will consider only
two possibilities, the agent believes the object is a blicket
(xi = b) or the agent believes it is not a blicket (xi �= b).
The child is agent 1 and the teacher is agent 2. Because
the teachers are scripted, their local evidence functions are
fixed; φ(x2 = b) � φ(x2 �= b) for the certain teacher and
φ(x2 = b) > φ(x2 �= b) for the uncertain teacher. The object
is novel to the child so φ(x1) is uniform (i.e., without other
information, the child is equally likely to think that the ob-
ject is a blicket or is not a blicket). Children accept adults
as authorities on the names of new objects when there’s no
information to suggest otherwise [12], so the child’s com-
patibility will be higher when their beliefs agree with those
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Fig. 2 The thought bubbles in this figure contain the probability dis-
tribution over whether or not the toy in the center is a blicket. The child
initially has an even distribution, having no idea whether the object is
a blicket. However, when the teacher communicates their belief, the

compatibility function pushes the child’s distribution toward agreeing
with the teacher’s answer. However, the more confident the teacher is
(i.e. the more peaked the teacher’s distribution), the greater the influ-
ence on the child’s distribution

Fig. 3 A graphical representation of the MRF for the toy identification
task. Agent 1 is the child and agent 2 is the experimenter. Their states
are made up of a single value representing the name they give to the
toy. y1 is the child’s observation of the toy, while y2 represents the
script given to the experimenter

of the teacher (ψ(x1 = x2, x2) > ψ(x1 �= x2, x2)). We can
express the certainty with which a child believes that the ob-
ject is a blicket with (2)

Pr(x1 = b) = 1

Z
φ(x1 = b, y1)

× (ψ(x1 = b, x2 = b)φ(x2 = b)

+ ψ(x1 = b, x2 �= b)φ(x2 �= b)) (2)

Because children were assigned to one of the two groups
randomly, we assume all the functions that are inherent to
them (i.e., their initial belief about whether the novel ob-
ject in question is a blicket) remain unchanged across the
two conditions. However, φ(x2), the teacher’s belief about
the toy, is affected by the certainty of the teacher. Plugging
in the different values for φ(x2) into the equation changes

the child’s final distribution. Because ψ(x1 = b, x2 = b) >

ψ(x1 = b, x2 �= b), the children’s certainty with the new
word blicket increases with the certainty of the teacher, ex-
actly as shown by the experiment (see Fig. 2).

Asking children what a particular object is called (and
seeing if they will generate the novel label they previously
heard) or asking children to identify an object from a set
of objects given that novel label must involve the children’s
memory for the label they heard earlier in the experiment.
Our model, however, describes children’s belief state about
that label and does not specify how that belief is instantiated
in the ability to remember or encode information. We would
argue, however, that responding to being asked what an ob-
ject is called must be related to the child’s belief state about
that object having that label. The questions used by Sab-
bagh and Baldwin might be considered asking just about the
child’s memory, but they also might be conceptualized as a
way of operationalizing what the child believes these objects
are called since it is not possible to observe a child’s belief
states directly. Discerning how a model about beliefs relates
to memory processes is an open question. Casting these data
in this computational framework is intended to show that
the framework has explanatory power, which will allow us
to apply the framework to problems in social robotics.
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Fig. 4 The thought bubbles in this figure contain the probability dis-
tribution over whether the toy in the center is a dax or a wug. The
child initially does not have a preference between the two names.
However, when the adult confederates communicate their beliefs the
difference in compatibility functions means that the reliable teacher has

more influence. The large shift towards believing d from the reliable
teacher’s influence outweighs the smaller shift in the other direction
derived from the unreliable teacher’s influence. The resulting distribu-
tion leads the child to choose the answer given by the reliable teacher

3.2 Effects of Reliability

A study by Koenig and Harris [26] showed that children de-
pend more heavily on information from sources that have
demonstrated reliability in the past. These results point to
the fact that in addition to considering another’s knowledge
states, the agent needs to allow information gained from oth-
ers’ mental states to be factored into decisions differently
depending on the nature of the source of the knowledge. In
the experiment, preschoolers were shown a set of familiar
objects (i.e., objects that children of this age would easily
label accurately) and two adult confederates. Each confed-
erate was asked to generate the object’s label. One confed-
erate was always accurate (e.g., calling a shoe a shoe), while
the other confederate was always inaccurate (e.g., calling the
same shoe a ball). After this training, children were shown
a novel object, for which they did not know the name. Chil-
dren were asked which of the two confederates they would
ask to provide them with the label for this novel object,
and the majority of children picked the reliable confederate.
Each confederate also labeled the novel object, with the re-
liable and unreliable confederates generating different novel
labels (e.g., one called it a “dax”, the other a “wug”). When
asked to endorse one of the two labels, children generally
chose the label generated by the reliable confederate.

We can model this experiment with (3)

Pr(x1) = 1

Z
φ(x1, y1)

∏

i={R,U}

∑

xi

ψ(x1, xi)φ(xi) (3)

x1 represents the child, while xR and xU represent the reli-
able and unreliable confederates respectively (Fig. 5). Both
confederates appear equally certain, so φ(xR) = φ(xU)

when xR and xU are the answers given by the respective
confederate. The answer to the question (i.e., what the label

Fig. 5 A graphical representation of the MRF for the reliable and un-
reliable confederate experiment. The difference between the compati-
bility functions (ψ(x1, xR) and ψ(x1, xU )) will make it more probable
that x1 = xR

of the object is) is unknown to the child, so φ(x1) will be the
same for any answer presented to the child. Because of the
past differences in reliability, the child would have different
compatibility functions for each confederate. For the unreli-
able confederate the compatibility function would be nearly
uniform and for the reliable confederate it would be peaked
where x1 = xR . The effect of the difference in the compati-
bility functions is that the child’s final distribution is peaked
at the answer given by the reliable confederate (see Fig. 4).
The model predicts the same behavior found in the experi-
ment; children rely more heavily on the reliable individual.

3.3 Gaze Following

Most researchers in social cognitive development agree that
joint attention, particularly in the form of gaze following—
attending to an unseen position in space based on the at-
tentional focus of another agent—is an important aspect of
developing an adult-like theory of mind [5, 7, 30, 35]. Gaze
following has long been considered a precursor to more
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Fig. 6 (a) The robot’s distribution over possible objects of focus with-
out any understanding of ToM. The robot has a preference for the hu-
man face and two close objects. (b) The robot is using gaze tracking

to estimate the human’s mental state. The compatibility function gives
a high probability to looking at the same object as the human, in this
case the ball

adult-like mental-state understanding in theory of mind re-
search [2, 10, 24]. Critically, it is also an aspect of theory
of mind that has been implemented in robots with some suc-
cess. Both Breazeal [4] and Scassellati [36] include gaze fol-
lowing systems on their social robots. In both systems, the
robot has a preference for attending to some objects based
on its perception, preferring to look at faces, bright colors, or
moving objects. The robot also has a preference for attend-
ing to objects that are the focus of other agents. The goal
is for the robot to find a balance between these preferences,
alternately following the gaze of the human and then look-
ing back to the human face or other objects that attracted its
perception.

This behavior can be conceptualized as a natural conse-
quence of casting these preferences into our MRF model.
The same two-node graph from the uncertainty model (see
Fig. 3) would be used, but the state variable and the lo-
cal evidence and compatibility functions would change. The
state would be a variable representing the attentional focus
of each agent. The preferences based on the perceptual prop-
erties of the objects would be encoded into its local evidence
function. The compatibility function would express a pref-
erence for following the gaze of the human. This is similar
to the compatibility function used for the reliable teacher.
The compatibility function would be peaked where x1 = x2

(ψ(x1 = x2, x2) > ψ(x1 �= x2, x2)). The resulting distribu-
tion over possible directions of focus, conditioned on the hu-
man’s state, would have peaks at those locations where the
robot perceived objects of interest and also at the location of
the human’s gaze (see Fig. 6). Periodically sampling from
this distribution, or designing the local likelihood function
to prefer looking at a new object after a period, would cause
the robot to gaze at these locations of heightened interest.

4 MRF-based Multi-Robot Coordination

For multi-robot coordination, an MRF can be used to model
a robot team and any other agents with which the team will

be interacting. A single framework would be used to in-
corporate the states of other robots and human collabora-
tors. The compatibility functions and even the methods for
obtaining the state would be very different for robotic and
human collaborators. The simplest application of the MRF
model to multi-robot coordination is where the state is the
action to be taken and all the agents are robots. Then to
perform action selection with a multi-robot MRF, each ro-
bot must compute its piece of the joint probability distri-
bution (1). That is, for each robot i, we want to compute
the marginal probability pi(xi), which expresses the likeli-
hood of robot i taking an action, conditioned on both its own
observations and knowledge of the other robots’ actions.
Naively, this inference procedure would require communi-
cating all the robots’ observations to a centralized decision-
maker and the required computation would expand expo-
nentially with the number of robots. Instead, we propose ex-
ploiting the factored structure of the MRF to apply the belief
propagation (BP) algorithm [45], which performs inference
in a distributed manner.

4.1 Belief Propagation

Belief propagation operates by passing advice messages be-
tween robots, and using these messages, in combination
with local observations, to maintain a belief bi(xi) for each
robot i. In graphs without loops, BP quickly converges to
the exact marginal probability. In graph with loops, there
are no guarantees of convergence or correctness. In prac-
tice, when BP converges, the belief bi(xi) is approximately
equal to the marginal probability pi(xi) that we need for
coordinated action selection. Robot i exchanges messages
only with its neighbors N(i), ensuring that the algorithm
can scale to large teams.

Robot i’s belief bi(xi) is given by the following product,
with normalization constant Z:

bi(xi) = 1

Z
φi(xi, yi)

∏

j∈N(i)

mj,i(xi) (4)
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Fig. 7 A graphical representation of the how ToM may be incor-
porated into decision making through belief propagation. Andrew is
listening to incoming advice messages updating his beliefs about the

probability he should be doing each task. He will then transmit ad-
vice messages back to Claudia and Ben reflecting his updated beliefs

The term mj,i(xi) is an advice message from robot j to ro-
bot i suggesting how robot i should act, given what robot j

knows about the world. Robot j computes its message to a
neighboring robot i as a product of robot j ’s local evidence,
the pairwise compatibility between their actions, and incom-
ing messages from robot j ’s neighborhood (except for those
coming from robot i), summed over all possible actions xj :

mj,i(xi) =
∑

xj

φj (xj , yj )ψj,i(xj , xi)
∏

k∈N(j)\i
mk,j (xj ) (5)

Multi-robot belief propagation is performed through selec-
tive updating of inter-robot messages. The essence of infer-
ence with belief propagation lies in the pairwise messages
mj,i(xi). Messages between robots are continually but se-
lectively updated according to (5) and domain-specific com-
patibility and likelihood functions. Beliefs are computed
only when needed to make a decision. While belief propaga-
tion is a commonly used algorithm for inference on MRFs,
in this context it also takes on a human social interpretation
(see Fig. 7). People can give each other advice messages
about their intentions while modifying their strategy to take
into account their neighbors’ plans. This continues until con-

vergence, at which point the team has reached a stable strat-
egy.

The result of multi-robot belief propagation will be an
action posterior, a probabilistic belief distribution over ac-
tions for each robot. Whenever an individual robot needs to
make a new action decision, it computes its action posterior
as a belief from local evidence and incoming messages, ac-
cording to (4). This belief distribution can then be sampled
(e.g., using expectation or MAP estimators) to select a spe-
cific action for the robot to execute.

4.2 Multi-Robot Experiments

In previously published work [38], we found we used BP
with the MRF model to control teams of robots to work to-
gether to form chains of sight (COS). In COS, we assume
that multiple robots spread out in an environment where
there is a known start location and a goal object at an un-
known location. The group of robots searches for the goal
object and once found, forms a visibility chain between the
start and the goal. Individual robots can communicate within
some range and perceive other robots and the goal location
through their field of view.
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Fig. 8 A map showing three
robots forming a successful
chain of sight formation

Casting the problem into the MRF framework, the state
of the robot was taken to be its intended location (limited to
discrete values within a finite-size environment). The local
evidence function was the product of three functions:

φi(xi, yi) = D(xi, yi)G(xi, yi)O(xi, yi) (6)

The factor D(xi, yi) represents traveling distance and ex-
presses a robot’s preference for closer locations, G(xi, yi)

stands for goal attraction and assures that a robot does not
move if it sees the goal and O(xi, yi) expresses occupancy
of locations by other robots or obstacles. The compatibil-
ity function expresses a high compatibility between loca-
tions that are visible to each other and lie on the shortest
path toward the start location. Belief propagation is used to
find the conditional probabilities and each robot chooses its
most probable action, so robots coordinated without using
any centralized planning; instead the robots only use infor-
mation about each other’s intentions.

In this work, we conducted 50 COS trials in simula-
tion (Player/Gazebo [16]) with five Pioneer robots. In each
trial, inference using MRF produced successful action allo-
cations, causing the team to produce a chain of sight from
a start to a goal location (Figs. 8 and 9). The 50 trials con-
sisted of test runs on five different configurations of start,
goal and robot locations, resulting in 10 trials per config-
uration. The number of total messages transmitted before

Fig. 9 A screen shot from the Player/Gazebo [16] simulator showing
one of the Pioneer robots and a goal beacon

reaching a correct arrangement ranged from 10 messages, in
situations where only two robots were required for the COS,
to 80 messages for complicated arrangements. The number
of messages needed also varied over multiple runs on the
same scenario, an indication of the randomness involved in
the problem.
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5 Conclusion

We have proposed MRFs as a probabilistic model for incor-
porating domain knowledge from ToM into robotic decision
making. We have shown how MRFs can model some simple
situations which require the use of ToM for decision making.
Choosing intuitive local likelihood and compatibility func-
tions, we find the predictions from our model match experi-
mental results from ToM research with young children. Al-
though we recognize that other computational models might
also potentially account for these findings, we believe the
MRF framework has significant potential for phrasing hy-
potheses and predicting results from experimentation. For
instance, describing how the child’s belief states change as a
function of their compatibility with speakers (based on their
reliability) suggests that there might be domains of knowl-
edge that are unaffected by reliability. We are currently ex-
ploring this possibility empirically with preschoolers.

Local evidence and compatibility functions factor the de-
cision influences into internal objectives and the influences
of external agents. Although our application of MRFs to is-
sues in robotic theory of mind is still developing—for in-
stance, we have not described exactly how to define what
the state vector of each agent should contain—we did show
how the model could be applied to a limited task like gaze
following. We also demonstrated how this model was used
for multi-robot coordination in simulation. Our goal in the
future is to apply the model to other multi-robot coordina-
tion tasks, as well as expand into the area of human-robot
collaboration using estimates of state derived from robotic
ToM mechanisms as they develop.
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