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Abstract

In complicated, interacting auctions, a fundamen-
tal problem is the prediction of prices of goods in
the auctions, and more broadly, the modeling of
uncertainty regarding these prices. In this paper,
we present a machine-learning approach to this
problem. The technique is based on a new and
general boosting-based algorithm for conditional
density estimation problems of this kind, i.e., su-
pervised learning problems in which the goal
is to estimate the entire conditional distribution
of the real-valued label. This algorithm, which
we present in detail, is at the heart AT Tac-
2001, a top-scoring agent in the recent Trading
Agent Competition (TAC-01). We describe how
AT Tac-2001 works, the results of the competi-
tion, and controlled experiments evaluating the
effectiveness of price prediction in auctions.

example above, to determine the value of the camera, we
need to guess the price of the flash; the amount that we
are willing to spend on the camera then is the difference
between the value of the camera-flash combination and the
estimated price of the flash alone. Thus, a fundamental
challenge when bidding for multiple goods is predicting the
prices of all of the relevant goods before they are known.

To attack the price prediction problem, we propose a
machine-learning approach: gather examples of previous
auctions and the prices paid in them, then use machine-
learning methods to predict these prices. Moreover, for our
strategy, we needed to be able to model the uncertainty as-
sociated with predicted prices; in other words, we needed
to be able to sample from a predicted distribution of prices
given the current state of the game. This can be viewed
as aconditional density estimatioproblem, that is, a su-
pervised learning problem in which the goal is to estimate
the entire distribution of a real-valued label given a de-

scription of current conditions typically in the form of a
feature vector. In this paper, we devise and present inldetai
a new boosting-based algorithm for solving such general

Auctions are becoming an increasingly popular method foProblems.

transacting business, especially over the internet. In afye also describe how we successfully applied the algorithm
auction for a single good, it is fairly straightforward to g the problem of price prediction in auctions. It was imple-
create auto_mqted b|d_d|ng strategies; for instance, antagemented as a part &T Tac-2001, a top-scoring agehin the

can keep bidding until reaching a target reserve price, or ikecond Trading Agent Competition (TAC-01), which was
can monitor the auction and place a winning bid just beforeye|q in Tampa, Florida on October 14, 2001. In this com-
the closing time. petition, each agent must bid simultaneously for multiple
When bidding for multiple interacting goods in simulta- Intéracting goods. As observed above, the key challenge in
neous auctions, on the other hand, agents must be able §/ch auctions is the modeling of uncertainty in the even-
reason about uncertainty and make complex value assesdtal prices of goods: with complete knowledge of eventual
ments. For example, an agent bidding for a camera anfrices, there are direct methods for determining the opti-
flash may end up buying the flash and then not being able tg'al bids to place. Our guiding principle in the design of
find an affordable camera. Alternatively, if bidding for the AT Tac-2001 is to have the agent model uncertainty and, to

same good in several auctions, it may purchase two flashdge greatest extent possible, analytically calculatengiti
when only one was needed. bids. AT Tac-2001 uses a predictive, data-driven approach
T S to bidding based on expected marginal values of all avail-
When bidding in any auction, it is important to be able to able goods. The price-predictor presented in this paper is
evaluate how much each item is worth to the agent. gt the heart of the algorithm.

interacting auctions, this also requires being able toipted
the price of other items in the auction. For instance, in the

1. Introduction

Top-scoring by one metric, and second place by another.



In addition to the results of the trading agent competitionHotel Rooms (8): There are two different types of hotel
itself, we also present controlled experiments explofmegt rooms—the Tampa Towers (TT) and the Shoreline Shanties
degree to which accuracy in price prediction affects overal(SS)—each of which has 16 rooms available on days 1-
performance in the auction. 4. The rooms are sold in a 16th-priascending English)
auction, meaning that for each of the 8 types of hotel rooms,
the 16 highest bidders get the rooms at the 16th highest

bl d broadlyv. th ditional densit price. The ask price is the current 16th-highest bid and
problém, and more broadly, the new conditional density €Sy, \oa tions clear only when the auction closes. No bid

timation algorithm that we developed as a solution. We als ithdrawal or resale is allowed, though the price of bids

sketch other aspects Afl Tac-2001 with emphasis on how may be lowered provided the agent does not reduce the

the price pr_edlct_or IS mcorpqrated. Further details of OUr, umber of rooms it would win were the auction to close.
agent are given in a companion paper (Stone et al.,

2002)Onerandomly chosehotel auction closes at minutes 4-11
of the 12-minute game.

Although developed in the context of the trading agent com
petition, this paper focuses mainly on the price-predictio

2. TAC Entertainment Tickets (12): Alligator wrestling, amuse-

We first describe the TAC domain in order to motivate themMent park, and museumtickets are each sold for days 1-4in

need for our new algorithm. continuous double auctions. Here, agentstmaynand sell
tickets, with transactions clearing immediately when one

We instantiated our approach as an entry in the second Tragdgent places a buy bid at a price at least as high as another

ing Agent Competition (TAC), as described in this section.agent's sell price. Unlike the other auction types in which

Building on the success of TAC-00 held in July 2000 (Well- the goods are sold from a centralized stock, each agent

man et al., 2001; Stone & Greenwald, to appear), TAC-Olstarts with a (skewed) random endowment of entertainment
included 19 agents from 9 countries. A key feature of TACtjckets.

is that it requireciutonomous bidding agertsbuy and sell

multiple interacting gooda auctions of different types. It Each TAC agent has eight clients with randomly assigned
was designed as a benchmark problem in the complex angavel preferences. Clients have parameters for ideal ar-
rapidly advancing domain of e-marketplaces, motivatingrival day,|AD (1-4); ideal departure dafpD (2-5); hotel
researchers to apply unique approaches to a common tasfsremium, HP ($50-$150); and entertainment valu&/

A TAC game instance pits eight autonomous bidding agent§$0_$200) for each type of entertainment ticket.

against one another. Each TAC agent is a simulated travethe utility obtained by a client is determined by the travel
agent with eight clients, each of whom would like to travel package that it is given in combination with its preferences
from TACtown to Tampa and back again during a 5-dayTo obtain a non-zero utility, the client must be assigned a
period. Each client is characterized by a random set ofeasibletravel package consisting of an inflight on some
preferences for the possible arrival and departure dates, harrival dayAD, an outflight on a departure d&yD, and

tel rooms, and entertainment tickets. To satisfy a clienthotel rooms of thesame typgTT or SS) for the days in

an agent must construct a travel package for that client byetween. At most one entertainment ticket of each type can
purchasing airline tickets to and from TACtown and secur-pe assigned, and no more than one on each day. Given a
ing hotel reservations; it is possible to obtain additionalfeasible package, the client’s utility is defined as

bonus’es by providing entertainment tickets as well. ATAC 1 59_ travelPenalty + hotelBonus + funBonus

agent’s score in a game instance is the difference between
the sum of its clients’ utilities for the packages they reeei Where

and the agent's total expenditure. We provide selected de- o travelPenalty= 10Q|AD — IAD| + |DD — IDD))

tails about the game next; for full details on the design o hotelBonus HPif the clientis in the TT, 0 otherwise.
and mechanisms of the TAC server and TAC game, see o funBonus= sum of EVs for assigned entertainment

http://tac. eecs. un ch. edu. tickets.

TAC agents buy flights, hotel rooms and entertainmenttick-:o TAC agent'sscoreis the sum of its clients’ utilities in
ets through auctions, run from the TAC server at the Unithe optimal allocation of its goods (computed by the TAC
versity of Michigan. Each game instance lasts 12 minuteserver) minus its expenditures.

and includes a total of 28 auctions of 3 different types: ) ) -
TAC-01 was organized as a series of four competition

Flights (8 auctions): There is a separate auction for eachphases, culminating with the semifinals and finals on Oc-
type of airline ticket: to Tampariflights) on days 1-4 and  tober 14, 2001 at the EC-01 conference in Tampa, Florida.
from Tampa ¢utflight9 on days 2-5. There is an unlim- First, the qualifying round, consisting of about 270 games
ited supply of airline tickets, and their ask price changegyer agent, served to select the 16 agents that would partici-
randomly every 30 seconds or so, with an increasing biapate in the semifinals. Second, the seeding round, consist-
upwards. When the server receives a bid at or above thgyg of about 315 games per agent, was used to divide these
as_k price, the transaction is cleared immediately at the asggents into two groups of eight. After the semifinals on
price and no resale is allowed. the morning of the 14th, four teams from each group were
selected to compete in the finals during that same afternoon.



3. Hotel Price Prediction features:

As discussed earlier, a central part of our strategy depends ® The number of players playing (ordinarily eight, but
on the ability to predict prices, particularly hotel prices sometimes fewer, for instance if one or more players
at various points in the game. To do this as accurately as  crashed).

possible, we used machine-learning techniques that would ® A bit for each player indicating whether or not that
examine the hotel prices actually paid in previous gamesto  player participated in this game.

predict prices in future games. This section discusses thigya ained specialized predictors for predicting the poice
partof our strategy in detai, including a new boostingehs each type of hotelroom. In other words, one predictor was

algorithm for conditional density estimation. specialized for predicting only the price of TT on day 1,

There is bound to be considerable uncertainty regardingnother for predicting SS on day 2, etc. This would seem to
hotel prices since these depend on many unknown factor§gquire eight separate predictors. However, the tournamen
such as the time at which the hotel room will close, who thegame is naturally symmetric about its middle in the sense
other agents are, what kind of clients have been assigndiat we can create an equivalent game by exchanging the
to each agent, etc. Thuexactlypredicting the price of a hotel rooms on days 1 and 2 with those on days 4 and 3 (re-
hotel room is hopeless. Instead, we regard the closing pricgpectively), and by exchanging the inbound flights on days
as a random variable that we need to estimate, conditiondl, 2, 3 and 4 with the outbound flights on days 5, 4, 3 and
on our current state of knowledge (i.e., number of minutes? (respectively). Thus, with appropriate transformatjons
remaining in the game, ask price of each hotel, flight pricesthe outer days (1 and 4) can be treated equivalently, and
etc.). We might then attempt to predict this variable’s con-likewise for the inner days (2 and 3), reducing the number
ditional expected value. However, our strategy requiras th of specialized predictors by half.

we notonly predict expected value, but that we also be ably,, 4154 created specialized predictors for predictingén th
to estimate thentireconditional distribution of this random first minute after flight prices had been quoted but prior to

variable so that we casamplehotel prices. receiving any hotel price information. Thus, atotal of éigh
To set this up as a learning problem, we gathered a sepecialized predictors were built (for each combination of
of training examples from previously played games. WeTT versus SS, inner versus outer day, and first minute versus
defined a set of features for describing each example thaot first minute).

together are meant to comprise asnap-shot of all the relevagy, ained our predictors to predict not the actual closing
information available at the time each prediction is madeﬁl

Al of the feat d l-valued- | rice of each room per se, but rather how much the price
of the Teatures we used are real-vaued, a Coupie ofyq|qincrease, i.e., the difference between the closiiogpr

the features can have a special valuéndicating *value 5,4 the current price. We thoughtthat this might be an easier
unknown.” We used the following basic features: guantity to predict, and, because our predictor never dsitpu
¢ The number of minutes remaining in the game. a negative number when trained on nonnegative data, this
e The price of each hotel room, i.e., the current ask priceapproach also ensures that we never predict a closing price
for rooms that have not closed or the actual sellingbelow the current bid.

price for rooms that have closed. ._From each of the previously played games, we were able
e The closing time of each hotel room. Note that thisq oyiract many examples. Specifically, for each minute of
feature is defined even for rooms that have not yejy,q game and for each room that had not yet closed, we
closed, as explained below. extracted the values of all of the features described above
* The prices of each of the flights. at that moment in the game, plus the actual closing price of
To this basic list, we added a number of redundant variathe room (which we are trying to predict).
tions, which we thought mighthelp the learning algorithm: Note that during training, there is no problem extracting

¢ The closing price of hotel rooms that have closed (orthe closing times of all of the rooms. During the actual

L if the room has not yet closed). play of a game, we do not know the closing times of rooms
e The current ask price of hotel rooms that have notthat have not yet closed. However, we do know the exact
closed (orL if the room has already closed). distribution of closing times of all of the rooms that have no

e The closing time of each hotel room minus the closingyet closed. Therefore, to sample a vector of hotel prices, we
time of the room whose price we are trying to predict. can first sample according to this distribution over closing

e The number of minutes from the current time until times, and then use our predictor to sample hotel prices
each hotel room closes. using these sampled closing times.

During the seeding rounds, it was impossible to know dur- ) )
ing play who our opponents were, although this information4. The Learning Algorithm

was available at the end of each game, and therefore durirlgaving described how we set up the learning problem, we

training. During the semifinals and finals, we did know q d ibe the | . lacrithm th
the identities of all our competitors. Therefore, in prepar are SOWBr.e?CI y to es?:rl de th.e learn!ng ag%rllt mbt a:ct we
tion for the semifinals and finals, we added the following!S€d- Briefly, we solved this learning problem by first



Input: (z1,y1), ..., (Tm,ym) Wherez; € X,y; € R
positive integerg andT’

Compute breakpoints bo < b1 < --- < br+1 Where
e by = min; y;
® bpi1 = max y;

e bi,...,bp chosen to  minimize Zfzoqjlnqj
where qo,...,qr are fraction of y's in
[bo, b1), [b1,b2), .. ., [bk, br+1] (Using dynamic programing)

Boosting

o fort=1,...T:

1

[ COmpUte We|ghtWt(l,]) = m

wheres; (y) is as in Eq. (2)
e useW, to obtain base functioh; : X x{1,...,k} —

m k

R minimizing Z ZWt(i,j)e*sf(yi)ht(“’j) over
i=1 j=1

all decision stumps

Output sampling rule:
T

oletf=> h
t=1

o letf' = (f + f)/2 where

f(z,5) max{f(z,j') 1 j <j <k}
min{f(z,j) : 1< 5" <j}

f(x,5)
e to sample, give: € X
1

o letp = e

° |etpo = l,pk—+1 =0

e choosegj € {0, ..., k} randomly with probability; —
Pj+1

e choosey uniformly at random fronjb;, b; 1]

e outputy

Table 1.The boosting-based algorithm for conditional density es-
timation.

reducing to a multiclass, multi-label classification pehl
(or alternatively a multiple logistic regression probleand

then applying boosting techniques developed by Schapire

and Singer (1999; 2000) combined with a modification
of boosting algorithms for logistic regression proposed b
Collins, Schapire and Singer (2002). The resultis a ne
machine-learning algorithm for solving conditional déysi

estimation problems, described in detail in the remainde

of this section. Table 1 shows pseudo-code for the entire

algorithm.

Abstractly, we are given paifs1, y1), - - - , (T, ym ) Where
eachz; belongs to a spac& and eachy; isin R. In
our case, ther;’s are the auction-specific feature vectors
described above; for some X C (RU {L})". Each
target quantityy; is the difference between closing price
and current price. Given a new our goal is to estimate
the conditional distribution of givenz.

We proceed with the working assumption that all training
and test examplgs;, y) are i.i.d. (i.e, drawn independently

from identical distributions). Although this assumptien i
false in our case (since the agents, including ours, aregechan
ing overtime), it seems like a reasonable approximation tha
greatly reduces the difficulty of the learning task.

Ouir first step is to reduce the estimation problem to a clas-
sification problem by breaking the range of thés into
bins:

[bo7 bl): [b17 bZ)a N [bka bk+l]

for some breakpointgy < b1 < --- < by < b1 Where

for our problem, we chosk = 50. The endpointsy and
br+1 are chosen to be the smallest and larggstalues
observed during training. We choose the remaining break-
pointsby, . .., b, sothatroughly an equal number of training
labelsy; fall into each bin. (More technically, breakpoints
are chosen so that the entropy of the distribution of bin
frequencies is maximized).

For each of the breakpoinks (j = 1,.. ., k), our learning
algorithm attempts to estimate the probability that a pew
(givenz) will be at leastb;. Given such estimatgs; for
eachb;, we can then estimate the probability thas in the

bin [b;,b;41) by pj+1 — p; (and we can then use a constant
density within each bin). We thus have reduced the problem
to one of estimating multiple conditional Bernoulli varies
corresponding to the evept> b;, and for this, we use a
logistic regression algorithm based on boosting techrique
as described by Collins, Schapire and Singer (2002).

Our learning algorithm constructs a real-valued function
fiX x{1,...,k} — Rwith the interpretation that

1
1+ exp(—f(z,7))

is our estimate of the probability that> b;, givenz. The
negative log likelihood of the conditional Bernoulli vabia
corresponding tg; being above or below; is then

In (1 + e—sj(yi)f(xi,j))

{

L)

where
+1
-1

ify >0b;
55(y) iy < b (2)

YWVe attempt to minimize this quantity for all training exam-
"‘bles(xi,yi) and all breakpoints;. Specifically, we try to

Find a functionf minimizing

i i In (1+ efsa'(yi)f(wi,j)) )

i=1j=1

We use a boosting-like algorithm described by Collins,
Schapire and Singer (2002) for minimizing objective func-
tions of exactly this form. Specifically, we build the func-
tion f in rounds. On each roundg we add a new base
functionh, : X x {1,...,k} — R. Let

-1
fi= Z hy

t'=1



be the accumulating sum. Following Collins, Schapire and/Nhen the first flight quotes are posted:

Singer, to construct eadh, we first let e ComputeG™ with current holdings andxpected prices
1 e Buythe flightsinG* for which expected cost of postponing
Wi(i,j) = ——————— commitment exceeds thexpected benefit of postponing
1+ esi(wife(@ind) commitment

be a set of weights on example-breakpoint pairs. We theRarting 1 minute before each hotel close:

chooséeh; to minimize e ComputeG* with current holdings anexpected prices
m k e Buy the flights inG™* for which expected cost of post-
Z Z Wt(i, j)e—sf(yi)ht(xivi) (3) poning commitment exceedxpected benefit of post-
i1 =1 poning commitmer(B0 seconds)

e Bid hotel room expected marginal valugsen hold-

over some space of “simple’_’ _base functions For this ings, new flights, andexpected hotel purchasé80
work, we considered all “decision stumpg’of the form seconds)
Aj if o(z) >0 Last minute: Buy remaining flights as needed by
hz,j) =1 Bj !f P(z) < In parallel (continuously): Buy/sell entertainment tickets based
C; ifo(x)=L on theirexpected values

whereg(+) is one of the features described above,@&nd;, L ) o

B, andC; are all real numbers. In other words, suchzan Table 2.ATTac—200.1 s hlglh-level algorithm. The italicized por-
simply compares one featugeto a threshold and returns ~ tions use price prediction in some way.

a vector of numbers(z, -) that depends only on whether

¢(z) is unknown (L), or above or below. Schapire and

Singer (2000) show how to efficiently search for the bes

suchh over all possible choices af, 0, A;, B; andC}. t5 ATTac-2001

(We also employed their technique for “smoothinty’, B;  Having described hotel price prediction in detail, we now
andCj.) overview some of the other key componentadfTac-2001

When computed by this sort of iterative procedure, Collins,2nd how they use the price predictor. More details are given
Schapire and Singer (2002) prove the asymptotic conver' @ Companion paper (Stone et al., 2002).

gence off; to the minimum of the objective function in Taple 2 shows a high-level overview AT Tac-2001. The

Eq. (3) over all linear combinations of the base func-jtgjicized portions use the learned price predictor in some
tions. For this problem, we fixed the number of roundsyyay,

tol' = 300. Letf = fry1 be the final predictor.

As noted above, given a new feature veatpwe compute  5.1. Goods Allocation
pj asin Eq. (1) to be our estimate for the probability that

b;, and we leppg = 1 andpy4+1 = 0. For this to make sense
we needp; > pp > --- > pg, Or equivalently,f(z,1) >

f(z,2) > --- > f(x,k), a condition that may not hold
for the learned functiory. To force this condition, we
replacef by a reasonable (albeit heuristic) approximationfound (usually within 0.01 seconds on a 650 MHz Pentium
f'thatis nonincreasing ify namely.f’ = (f + f)/2 where Il using the “LPsolve” package) via integer linear program-

 (respectively/) is the pointwise minimum (respectively, ming (Stone et al., 2001). An approximationa*) can
maximum) of all nonincreasing functiopshat everywhere  pe obtained reliably quickly via LP relaxation.
upper boundf (respectively, lower boung).

With this modified functionf’, we can compute modified 5-2. Hotel Expected Marginal Values
probabilitiesp;. To sample a single point according to the
estimated distribution off associated withf’, we choose
bin [b;, b;+1) with probabilityp; — p;11, and then select a

A core subproblem for TAC agents is the allocation prob-
" lem: finding the most profitable allocation of goods to
clients, G*, given a set of owned goods and prices for
all other goods. We denote the value@@f (i.e. the score
one would attain wittG*) asv(G*). G* andv(G*) can be

Using the hotel price prediction module as described above,
ATTac-2001 is equipped to determine its bids for hotel

. i ; rooms.
point from this bin uniformly at random. Expected value
according to this distribution is easily computed as Every minute, for each hotel room that is still opé, Tac-
k 2001 assumes that that hotel will close next and computes
Z(pj —pji1) (M) . the marginal value of that hotel room given the predicted
= 2 closing prices of the other hotel rooms. If the hotel does

not close next, then it assumes that it will have a chance to
Although we present results using this algorithm in therevise its bids. Since these predicted prices are repesdent
trading agent context, we did not test its performance oras distributions of possible future&T Tac-2001 samples
more general learning problems, nor did we compare tdrom these distributions and averages the marginal values
other methods for conditional density estimation, such aso obtain an expected marginal value. Using the full minute
those studied by Stone (1994). This clearly should be afior computation between closing times (or 30 seconds if
area for future research. there are still flights to consider\T Tac-2001 divides the



e For each hotel (in order of increasing expected price):  not the best one to get, the purchase is more likely to be

e Repeat until time bound: delayed.
1. Generate a random hotel closing order (only other
open hotels). The algorithm for determining the benefit of postponing
2. Sampleclosing prices from predicted hotel price  commitment is similar to that for determining the marginal
distributions. value of hotel rooms.

3. Given these closing prices, compig V4, ... V..

— Vi = (G") if owning i of the hotel. 5.4. Entertainment Expected Values

— Estimatey(G*) with LP relaxation. . The core of ATTac-2001’s entertainment-ticket-bidding
B ?:ﬁ%@%;ﬁ%thrt'o additional hotel rooms of this type  grateqy s again a calculation of the expected marginal
— For other hotels, assume outstanding bids above values of each ticket. For each tick@{ Tac-2001 com-
sampled price are already owned (i.e. they cannot putes t_he expect_ed value of_havmg one more and one fe_wer
be withdrawn). of the ticket, again by sampling hotel prices and computing
— Note thatVp < Vi < ... < V,: the values are the relative values of(G*) with varying ticket supplies.

monotonically increasing since having more goods These calculations give bounds on the bid and ask prices it

cannot be worse in terms of possible allocations.  is willing to post. The actual bid and ask prices are a linear
e The value of theth copy of the room is the mean 8 —  function of time remaining in the gameT Tac-2001 set-
Vi1 over all the samples. tles for a smaller and smaller profit from ticket transaction

e Note furtherthath — Vo > V2 —Vi... > V,, — V,_1: the

; \ Yn—1. as the game goes on. Details of the functions mapping es-
values differences are monotonically decreasing since eac

additional room will be assigned to the client who can derivetirnatecj ticket values and game time to bid and ask prices
the most value from it g remained unchanged from the previous year's agent (Stone

« Bid for one room at the value of thigh copy of the room €t al., 2001).
for all 7 such that the value is at least as much as the current
price. Due to the monotonicity noted in the step above, Nos Results
matter what the closing price, the desired number of rooms™"

at that price will be purchased. 6.1. TAC-01 Competition

Table 3.The algorithm for generating bids for hotel rooms. Of the 19 teams that entered the qualifying roufiiTac-
2001 was one of eight agents to make it to the finals on
the afternoon of October 14th. The finals consisted of 24
available time among the different open hotel rooms andyames among the same eight agents. In raw sédr€ac-
generates as many price samples as possible for each ho28l01 ended up finishing a very close secondliténga-
room. In the endAT Tac-2001 bids the expected marginal gents (Fritschi & Dorer, 2002), scoring an average of two

values for each of the hotels. fewer points per game.

The algorithm is described precisely and with explanationAfter the competition, the TAC team at the University of

in Table 3. Michigan conducted a regression analysis of the effects of
the client profiles on agent scores. Using data from the

5.3. Other Price Predictor Uses seeding rounds, it was determined that agents did better

when their clients had:
AT Tac-2001 makes flight bidding decisions based on a cost-
benefit analysis: in particulaAT Tac-2001 computes the 1+ fewer total preferred travel days;
incremental cost of postponing bidding for a particulattig
versus the value of delaying commitmenAT Tac-2001
takes the cost of postponing commitment to be the aver- 3, a higher ratio of outer days (1 and 4) to inner (2 and 3)
age predicted cost of the flight over the next several whole  in preferred trip intervals.
minutes. It computes this cost based on a knowledge of o ) )
the general form of the price adjustment function and théased on these significant measures, the games in the finals

observed price points thus far in the current game. could be handicapped according to each agents’ aggregate
client profiles. Doing so indicated thiatingagents’ clients

Fundamentally, the benefit of postponing commitments tqvere much easier to satisfy than those A¥fTac-2001,
flights is that additional information about the eventudBho  giving AT Tac-2001 the highest handicapped score.

prices becomes known. Thus, the benefit of postponing
commitment is computed by sampling possible future price
vectors and determining, on average, how much better the’
agent could do if it bought a different flight instead of the AT Tac-2001’s success in the competition demonstrates its
one in question. Ifitis optimal to buy the flight in all future effectiveness as a complete system. However, since the
scenarios (price vectors), then there is no value to dajayindifferent agents differ along several dimensions, the com-
the commitment and the flight is purchased immediatelypetition results cannot isolate the successful approat¢hes
However, if there are many scenarios in which the flight isthis section we report on controlled experiments designed

2. higher total entertainment values; and

2. Controlled Experiments



to test the efficacy oAT Tac-2001's machine-learning ap- [ Agent | _Relative Score]

proach to price prediction. Phase |
We attempted to determine experimentally how the qual- i?rr%ig%%rl iggg i 382
ity of ATTac-2001's hotel price predictions affects its per- AT Tac-2001, 578 £ 421
formance. To this end, we devised seven price predic- ConditionalMean,,, S6 L4172
tion schemes, varying considerably in sophistication and SimpleMean, . —288+451
inspired by approaches taken by other TAC competitors, CurrentBid —337+524
and incorporated these schemes into our agent. We then SimpleMean, —72.0+ 475
played these seven agents against one another repeatedly, ConditionalMean, | —1475+ 356
with regular retraining as described below. Phase 1l
Here are the seven hotel prediction schemes that we used, ,E?I'r'lllﬁl%%rl igig i j?’?’
in decreasing order of sophistication: ATTac:2001:S 561 L 447
e ATTac-2001,: This is the “full-strength” agent based ConditionalMean, 35+375
on boosting that was used during the tournament. SimpleMean, —539+401
e ConditionalMean,: This agent samples prices from SimpleMean, —716+428
the empirical distribution of prices from previously ConditionalMean, —914+419
played games, conditioned on the closing time of the CurrentBid —15714548
hotel room. In other words, it collects all historical Phase Il
hotel prices and breaks them down by the time at which ATTac-2001,,, 1662 + 20.8
the hotel closed (as well as room type, as usual). The AT Tac-2001, 1223 +£194
price predictor then simply samples from the collection EarlyBidder 1170+ 180
of prices corresponding to the given closing time. S!mp:eMeanm —115+217
e SimpleMean,: This agent samples prices from the %C:nz'i'oe;r;\%ea _gg&iig?
empirical distribution of prices from previously played CoEd:t:ogalMeazns :91'1 1176
games, without regard to the closing time of the hotel CurrentBid . —1988 £ 260
room (but still broken down by room type). :
® ATTac-2001,, ConditionalMean,,,, SimpleMean,,,:  Tapje 4.The average relative scores for eight agents in the three

These agents predict in the same way as their COrrgshases of a controlled experiment in which the hotel préaict

sponding predictors above, _bUt inste{;ld _Of rgturning Slgorithm was varied. The relative score of an agent is ibsesc
random sample from the estimated distribution of ho-minys the average score of all agents in that game.

tel prices, they deterministically return the expected
value of the distribution.

e CurrentBid: This agent uses a very simple predictor
that always predicts that the hotel room will close at
its current price.

seeding, semifinals and finals rounds as well as all of the
games played so far during the course of the experiment.
Finally, in Phase lll, lasting 622 games, we continued to

In every case, whenever the price predictor returns a priceetrain the agents once every six hours, but now using only
that is below the current price, we replace it with the curren data from games played during the course of the experi-
price (since prices cannot go down). ment, and not including data from the seeding, semifinals

In our experiments, we added as an eighth agerlyBid- and finals rounds.

der, inspired by thdivingagents agent. EarlyBidder uses  Table 4 shows how the agents performed in each of these
SimpleMean,,,, determines an optimal set of purchases, andhases. Much of what we observe in this table is consistent
then places bids for these goods at sufficiently high pricesvith our expectations. As expected, the more sophisticated
to ensure that they will be purchased ($1001 for all hoteboosting-based agent&{ Tac-2001, andAT Tac-2001,,5)
rooms, just asivingagents did in TAC-01) right after the clearly dominated the agents based on simpler prediction
first flight quotes. It then never revises these bids. schemes. Moreover, with continued training, these agents
improved markedly relative t&arlyBidder. We also see

Each of these agents requires training, i.e., data.from'-prev e performance of the simplest age@iyrentBid, which
9uh§kapIayec:jgamf:s. Hbc?weytetr, we v¥ﬁre faced with a sorc; 0gjoes not employ any kind of training, significantly decline
chicken and egg” problem: to run the agents, we needegy|4iive 1o the other data-driven agents.

to first train the agents using data from games involving the
agent, but to get this kind of data, we needed to first run thén the other hand, there are some phenomena in this table
agents. To get around this problem, we ran the agents ithatwere very surprising to us. Most surprising was the fail
phases. In Phase I, which consisted of 126 games, we usede of sampling to help. Our strategy relies heavily not only
training data from the seeding, semifinals and finals rounden estimating hotel prices, but also taking samples from
of TAC-01. In Phase Il, lasting 157 games, we retrained thaéhe distribution of hotel prices. Yet these results indicat
agents once every six hours using all of the data from théhat using expected hotel price, rather than price samples,
consistently performs better. We speculate that this may



be because an insufficient number of samples are beinigtic FCC Auction Simulator (Csirik et al., 2001; Reitsma
used (due to computational limitations) so that the num-et al., 2002).

bers derived from these samples have too high avarianc?h a2 more obvious aoplication. an extended version of
Another possibility is that the method of using samples PP ’

to estimate scores consistently overestimates the emect@Tgﬁg 2(())?%ocgrleljdupscgfsn\t/:/?wlgvt\)/ies%og?:ruesa(?[feu{rgce)i:e(?vlvg?;/ae\lel
score because it assumes the agent can behave with perfggt ’

knowledge for each individual sample—a property of Ourpackages.
approximation scheme.
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