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Abstract
In complicated, interacting auctions, a fundamen-
tal problem is the prediction of prices of goods in
the auctions, and more broadly, the modeling of
uncertainty regarding these prices. In this paper,
we present a machine-learning approach to this
problem. The technique is based on a new and
general boosting-based algorithm for conditional
density estimation problems of this kind, i.e., su-
pervised learning problems in which the goal
is to estimate the entire conditional distribution
of the real-valued label. This algorithm, which
we present in detail, is at the heart ofATTac-
2001, a top-scoring agent in the recent Trading
Agent Competition (TAC-01). We describe how
ATTac-2001 works, the results of the competi-
tion, and controlled experiments evaluating the
effectiveness of price prediction in auctions.

1. Introduction

Auctions are becoming an increasingly popular method for
transacting business, especially over the internet. In an
auction for a single good, it is fairly straightforward to
create automated bidding strategies; for instance, an agent
can keep bidding until reaching a target reserve price, or it
can monitor the auction and place a winning bid just before
the closing time.

When bidding for multiple interacting goods in simulta-
neous auctions, on the other hand, agents must be able to
reason about uncertainty and make complex value assess-
ments. For example, an agent bidding for a camera and
flash may end up buying the flash and then not being able to
find an affordable camera. Alternatively, if bidding for the
same good in several auctions, it may purchase two flashes
when only one was needed.

When bidding in any auction, it is important to be able to
evaluate how much each item is worth to the agent. In
interacting auctions, this also requires being able to predict
the price of other items in the auction. For instance, in the

example above, to determine the value of the camera, we
need to guess the price of the flash; the amount that we
are willing to spend on the camera then is the difference
between the value of the camera-flash combination and the
estimated price of the flash alone. Thus, a fundamental
challenge when bidding for multiple goods is predicting the
prices of all of the relevant goods before they are known.

To attack the price prediction problem, we propose a
machine-learning approach: gather examples of previous
auctions and the prices paid in them, then use machine-
learning methods to predict these prices. Moreover, for our
strategy, we needed to be able to model the uncertainty as-
sociated with predicted prices; in other words, we needed
to be able to sample from a predicted distribution of prices
given the current state of the game. This can be viewed
as aconditional density estimationproblem, that is, a su-
pervised learning problem in which the goal is to estimate
the entire distribution of a real-valued label given a de-
scription of current conditions typically in the form of a
feature vector. In this paper, we devise and present in detail
a new boosting-based algorithm for solving such general
problems.

We also describe how we successfully applied the algorithm
to the problem of price prediction in auctions. It was imple-
mented as a part ofATTac-2001, a top-scoring agent1 in the
second Trading Agent Competition (TAC-01), which was
held in Tampa, Florida on October 14, 2001. In this com-
petition, each agent must bid simultaneously for multiple
interacting goods. As observed above, the key challenge in
such auctions is the modeling of uncertainty in the even-
tual prices of goods: with complete knowledge of eventual
prices, there are direct methods for determining the opti-
mal bids to place. Our guiding principle in the design of
ATTac-2001 is to have the agent model uncertainty and, to
the greatest extent possible, analytically calculate optimal
bids. ATTac-2001 uses a predictive, data-driven approach
to bidding based on expected marginal values of all avail-
able goods. The price-predictor presented in this paper is
at the heart of the algorithm.

1Top-scoring by one metric, and second place by another.



In addition to the results of the trading agent competition
itself, we also present controlled experiments exploring the
degree to which accuracy in price prediction affects overall
performance in the auction.

Although developed in the context of the trading agent com-
petition, this paper focuses mainly on the price-prediction
problem, and more broadly, the new conditional density es-
timation algorithm that we developed as a solution. We also
sketch other aspects ofATTac-2001with emphasis on how
the price predictor is incorporated. Further details of our
agent are given in a companion paper (Stone et al., 2002).

2. TAC

We first describe the TAC domain in order to motivate the
need for our new algorithm.

We instantiated our approach as an entry in the second Trad-
ing Agent Competition (TAC), as described in this section.
Building on the success of TAC-00 held in July 2000 (Well-
man et al., 2001; Stone & Greenwald, to appear), TAC-01
included 19 agents from 9 countries. A key feature of TAC
is that it requiredautonomous bidding agentsto buy and sell
multiple interacting goodsin auctions of different types. It
was designed as a benchmark problem in the complex and
rapidly advancing domain of e-marketplaces, motivating
researchers to apply unique approaches to a common task.

A TAC game instance pits eight autonomous bidding agents
against one another. Each TAC agent is a simulated travel
agent with eight clients, each of whom would like to travel
from TACtown to Tampa and back again during a 5-day
period. Each client is characterized by a random set of
preferences for the possible arrival and departure dates, ho-
tel rooms, and entertainment tickets. To satisfy a client,
an agent must construct a travel package for that client by
purchasing airline tickets to and from TACtown and secur-
ing hotel reservations; it is possible to obtain additional
bonuses by providing entertainment tickets as well. A TAC
agent’s score in a game instance is the difference between
the sum of its clients’ utilities for the packages they receive
and the agent’s total expenditure. We provide selected de-
tails about the game next; for full details on the design
and mechanisms of the TAC server and TAC game, see
http://tac.eecs.umich.edu.

TAC agents buy flights, hotel rooms and entertainment tick-
ets through auctions, run from the TAC server at the Uni-
versity of Michigan. Each game instance lasts 12 minutes
and includes a total of 28 auctions of 3 different types:

Flights (8 auctions): There is a separate auction for each
type of airline ticket: to Tampa (inflights) on days 1–4 and
from Tampa (outflights) on days 2–5. There is an unlim-
ited supply of airline tickets, and their ask price changes
randomly every 30 seconds or so, with an increasing bias
upwards. When the server receives a bid at or above the
ask price, the transaction is cleared immediately at the ask
price and no resale is allowed.

Hotel Rooms (8): There are two different types of hotel
rooms—the Tampa Towers (TT) and the Shoreline Shanties
(SS)—each of which has 16 rooms available on days 1–
4. The rooms are sold in a 16th-priceascending(English)
auction, meaning that for each of the 8 types of hotel rooms,
the 16 highest bidders get the rooms at the 16th highest
price. The ask price is the current 16th-highest bid and
transactions clear only when the auction closes. No bid
withdrawal or resale is allowed, though the price of bids
may be lowered provided the agent does not reduce the
number of rooms it would win were the auction to close.
Onerandomly chosenhotel auction closes at minutes 4–11
of the 12-minute game.

Entertainment Tickets (12): Alligator wrestling, amuse-
ment park, and museum tickets are each sold for days 1–4 in
continuous double auctions. Here, agents canbuy and sell
tickets, with transactions clearing immediately when one
agent places a buy bid at a price at least as high as another
agent’s sell price. Unlike the other auction types in which
the goods are sold from a centralized stock, each agent
starts with a (skewed) random endowment of entertainment
tickets.

Each TAC agent has eight clients with randomly assigned
travel preferences. Clients have parameters for ideal ar-
rival day,IAD (1–4); ideal departure day,IDD (2–5); hotel
premium,HP ($50–$150); and entertainment values,EV
($0–$200) for each type of entertainment ticket.

The utility obtained by a client is determined by the travel
package that it is given in combination with its preferences.
To obtain a non-zero utility, the client must be assigned a
feasibletravel package consisting of an inflight on some
arrival dayAD, an outflight on a departure dayDD, and
hotel rooms of thesame type(TT or SS) for the days in
between. At most one entertainment ticket of each type can
be assigned, and no more than one on each day. Given a
feasible package, the client’s utility is defined as

1000� travelPenalty + hotelBonus + funBonus

where

� travelPenalty= 100(jAD� IAD j+ jDD � IDD j)

� hotelBonus= HP if the client is in the TT, 0 otherwise.
� funBonus= sum of EVs for assigned entertainment

tickets.

A TAC agent’sscore is the sum of its clients’ utilities in
the optimal allocation of its goods (computed by the TAC
server) minus its expenditures.

TAC-01 was organized as a series of four competition
phases, culminating with the semifinals and finals on Oc-
tober 14, 2001 at the EC-01 conference in Tampa, Florida.
First, the qualifying round, consisting of about 270 games
per agent, served to select the 16 agents that would partici-
pate in the semifinals. Second, the seeding round, consist-
ing of about 315 games per agent, was used to divide these
agents into two groups of eight. After the semifinals on
the morning of the 14th, four teams from each group were
selected to compete in the finals during that same afternoon.



3. Hotel Price Prediction

As discussed earlier, a central part of our strategy depends
on the ability to predict prices, particularly hotel prices,
at various points in the game. To do this as accurately as
possible, we used machine-learning techniques that would
examine the hotel prices actually paid in previous games to
predict prices in future games. This section discusses this
part of our strategy in detail, including a new boosting-based
algorithm for conditional density estimation.

There is bound to be considerable uncertainty regarding
hotel prices since these depend on many unknown factors,
such as the time at which the hotel room will close, who the
other agents are, what kind of clients have been assigned
to each agent, etc. Thus,exactlypredicting the price of a
hotel room is hopeless. Instead, we regard the closing price
as a random variable that we need to estimate, conditional
on our current state of knowledge (i.e., number of minutes
remaining in the game, ask price of each hotel, flight prices,
etc.). We might then attempt to predict this variable’s con-
ditional expected value. However, our strategy requires that
we not only predict expected value, but that we also be able
to estimate theentireconditional distribution of this random
variable so that we cansamplehotel prices.

To set this up as a learning problem, we gathered a set
of training examples from previously played games. We
defined a set of features for describing each example that
together are meant to comprise a snap-shot of all the relevant
information available at the time each prediction is made.
All of the features we used are real-valued; a couple of
the features can have a special value? indicating “value
unknown.” We used the following basic features:

� The number of minutes remaining in the game.
� The price of each hotel room, i.e., the current ask price

for rooms that have not closed or the actual selling
price for rooms that have closed.

� The closing time of each hotel room. Note that this
feature is defined even for rooms that have not yet
closed, as explained below.

� The prices of each of the flights.

To this basic list, we added a number of redundant varia-
tions, which we thought might help the learning algorithm:

� The closing price of hotel rooms that have closed (or
? if the room has not yet closed).

� The current ask price of hotel rooms that have not
closed (or? if the room has already closed).

� The closing time of each hotel room minus the closing
time of the room whose price we are trying to predict.

� The number of minutes from the current time until
each hotel room closes.

During the seeding rounds, it was impossible to know dur-
ing play who our opponents were, although this information
was available at the end of each game, and therefore during
training. During the semifinals and finals, we did know
the identities of all our competitors. Therefore, in prepara-
tion for the semifinals and finals, we added the following

features:

� The number of players playing (ordinarily eight, but
sometimes fewer, for instance if one or more players
crashed).

� A bit for each player indicating whether or not that
player participated in this game.

We trained specialized predictors for predicting the priceof
each type of hotel room. In other words, one predictor was
specialized for predicting only the price of TT on day 1,
another for predicting SS on day 2, etc. This would seem to
require eight separate predictors. However, the tournament
game is naturally symmetric about its middle in the sense
that we can create an equivalent game by exchanging the
hotel rooms on days 1 and 2 with those on days 4 and 3 (re-
spectively), and by exchanging the inbound flights on days
1, 2, 3 and 4 with the outbound flights on days 5, 4, 3 and
2 (respectively). Thus, with appropriate transformations,
the outer days (1 and 4) can be treated equivalently, and
likewise for the inner days (2 and 3), reducing the number
of specialized predictors by half.

We also created specialized predictors for predicting in the
first minute after flight prices had been quoted but prior to
receiving any hotel price information. Thus, a total of eight
specialized predictors were built (for each combination of
TT versus SS, inner versus outer day, and first minute versus
not first minute).

We trained our predictors to predict not the actual closing
price of each room per se, but rather how much the price
would increase, i.e., the difference between the closing price
and the current price. We thought that this might be an easier
quantity to predict, and, because our predictor never outputs
a negative number when trained on nonnegative data, this
approach also ensures that we never predict a closing price
below the current bid.

From each of the previously played games, we were able
to extract many examples. Specifically, for each minute of
the game and for each room that had not yet closed, we
extracted the values of all of the features described above
at that moment in the game, plus the actual closing price of
the room (which we are trying to predict).

Note that during training, there is no problem extracting
the closing times of all of the rooms. During the actual
play of a game, we do not know the closing times of rooms
that have not yet closed. However, we do know the exact
distribution of closing times of all of the rooms that have not
yet closed. Therefore, to sample a vector of hotel prices, we
can first sample according to this distribution over closing
times, and then use our predictor to sample hotel prices
using these sampled closing times.

4. The Learning Algorithm

Having described how we set up the learning problem, we
are now ready to describe the learning algorithm that we
used. Briefly, we solved this learning problem by first
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Table 1.The boosting-based algorithm for conditional density es-
timation.

reducing to a multiclass, multi-label classification problem
(or alternativelya multiple logistic regression problem), and
then applying boosting techniques developed by Schapire
and Singer (1999; 2000) combined with a modification
of boosting algorithms for logistic regression proposed by
Collins, Schapire and Singer (2002). The result is a new
machine-learning algorithm for solving conditional density
estimation problems, described in detail in the remainder
of this section. Table 1 shows pseudo-code for the entire
algorithm.
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We use a boosting-like algorithm described by Collins,
Schapire and Singer (2002) for minimizing objective func-
tions of exactly this form. Specifically, we build the func-
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Although we present results using this algorithm in the
trading agent context, we did not test its performance on
more general learning problems, nor did we compare to
other methods for conditional density estimation, such as
those studied by Stone (1994). This clearly should be an
area for future research.

When the first flight quotes are posted:
� ComputeG� with current holdings andexpected prices
� Buy the flights inG� for which expected cost of postponing

commitment exceeds theexpected benefit of postponing
commitment

Starting 1 minute before each hotel close:
� ComputeG� with current holdings andexpected prices
� Buy the flights inG� for which expected cost of post-

poning commitment exceedsexpected benefit of post-
poning commitment(30 seconds)

� Bid hotel room expected marginal valuesgiven hold-
ings, new flights, andexpected hotel purchases(30
seconds)

Last minute: Buy remaining flights as needed byG�

In parallel (continuously): Buy/sell entertainment tickets based
on theirexpected values

Table 2.ATTac-2001’s high-level algorithm. The italicized por-
tions use price prediction in some way.

5. ATTac-2001

Having described hotel price prediction in detail, we now
overview some of the other key componentsofATTac-2001

and how they use the price predictor. More details are given
in a companion paper (Stone et al., 2002).

Table 2 shows a high-level overview ofATTac-2001. The
italicized portions use the learned price predictor in some
way.

5.1. Goods Allocation

A core subproblem for TAC agents is the allocation prob-
lem: finding the most profitable allocation of goods to
clients, G�, given a set of owned goods and prices for
all other goods. We denote the value ofG

� (i.e. the score
one would attain withG�) asv(G�

). G

� andv(G�

) can be
found (usually within 0.01 seconds on a 650 MHz Pentium
II using the “LPsolve” package) via integer linear program-
ming (Stone et al., 2001). An approximation tov(G�

) can
be obtained reliably quickly via LP relaxation.

5.2. Hotel Expected Marginal Values

Using the hotel price prediction module as described above,
ATTac-2001 is equipped to determine its bids for hotel
rooms.

Every minute, for each hotel room that is still open,ATTac-

2001 assumes that that hotel will close next and computes
the marginal value of that hotel room given the predicted
closing prices of the other hotel rooms. If the hotel does
not close next, then it assumes that it will have a chance to
revise its bids. Since these predicted prices are represented
as distributions of possible futures,ATTac-2001 samples
from these distributions and averages the marginal values
to obtain an expected marginal value. Using the full minute
for computation between closing times (or 30 seconds if
there are still flights to consider),ATTac-2001 divides the



� For each hotel (in order of increasing expected price):
� Repeat until time bound:

1. Generate a random hotel closing order (only other
open hotels).
2. Sampleclosing prices from predicted hotel price
distributions.
3. Given these closing prices, computeV0; V1; : : : Vn.

� V

i

� v(G

�

) if owning i of the hotel.
� Estimatev(G�

) with LP relaxation.
� Assume that no additional hotel rooms of this type

can be bought.
� For other hotels, assume outstanding bids above

sampled price are already owned (i.e. they cannot
be withdrawn).

� Note thatV0 � V1 � : : : � V

n

: the values are
monotonically increasing since having more goods
cannot be worse in terms of possible allocations.

� The value of theith copy of the room is the mean ofV
i

�

V

i�1 over all the samples.
� Note further thatV1�V0 � V2�V1 : : : � V

n

�V

n�1: the
values differences are monotonically decreasing since each
additional room will be assigned to the client who can derive
the most value from it.
� Bid for one room at the value of theith copy of the room
for all i such that the value is at least as much as the current
price. Due to the monotonicity noted in the step above, no
matter what the closing price, the desired number of rooms
at that price will be purchased.

Table 3.The algorithm for generating bids for hotel rooms.

available time among the different open hotel rooms and
generates as many price samples as possible for each hotel
room. In the end,ATTac-2001 bids the expected marginal
values for each of the hotels.

The algorithm is described precisely and with explanation
in Table 3.

5.3. Other Price Predictor Uses

ATTac-2001makes flight bidding decisions based on a cost-
benefit analysis: in particular,ATTac-2001 computes the
incremental cost of postponing bidding for a particular flight
versus the value of delaying commitment.ATTac-2001
takes the cost of postponing commitment to be the aver-
age predicted cost of the flight over the next several whole
minutes. It computes this cost based on a knowledge of
the general form of the price adjustment function and the
observed price points thus far in the current game.

Fundamentally, the benefit of postponing commitments to
flights is that additional information about the eventual hotel
prices becomes known. Thus, the benefit of postponing
commitment is computed by sampling possible future price
vectors and determining, on average, how much better the
agent could do if it bought a different flight instead of the
one in question. If it is optimal to buy the flight in all future
scenarios (price vectors), then there is no value to delaying
the commitment and the flight is purchased immediately.
However, if there are many scenarios in which the flight is

not the best one to get, the purchase is more likely to be
delayed.

The algorithm for determining the benefit of postponing
commitment is similar to that for determining the marginal
value of hotel rooms.

5.4. Entertainment Expected Values

The core ofATTac-2001’s entertainment-ticket-bidding
strategy is again a calculation of the expected marginal
values of each ticket. For each ticket,ATTac-2001 com-
putes the expected value of having one more and one fewer
of the ticket, again by sampling hotel prices and computing
the relative values ofv(G�

) with varying ticket supplies.
These calculations give bounds on the bid and ask prices it
is willing to post. The actual bid and ask prices are a linear
function of time remaining in the game:ATTac-2001 set-
tles for a smaller and smaller profit from ticket transactions
as the game goes on. Details of the functions mapping es-
timated ticket values and game time to bid and ask prices
remained unchanged from the previous year’s agent (Stone
et al., 2001).

6. Results

6.1. TAC-01 Competition

Of the 19 teams that entered the qualifying round,ATTac-

2001 was one of eight agents to make it to the finals on
the afternoon of October 14th. The finals consisted of 24
games among the same eight agents. In raw score,ATTac-

2001 ended up finishing a very close second tolivinga-

gents (Fritschi & Dorer, 2002), scoring an average of two
fewer points per game.

After the competition, the TAC team at the University of
Michigan conducted a regression analysis of the effects of
the client profiles on agent scores. Using data from the
seeding rounds, it was determined that agents did better
when their clients had:

1. fewer total preferred travel days;

2. higher total entertainment values; and

3. a higher ratio of outer days (1 and 4) to inner (2 and 3)
in preferred trip intervals.

Based on these significant measures, the games in the finals
could be handicapped according to each agents’ aggregate
client profiles. Doing so indicated thatlivingagents’ clients
were much easier to satisfy than those ofATTac-2001,
givingATTac-2001 the highest handicapped score.

6.2. Controlled Experiments

ATTac-2001’s success in the competition demonstrates its
effectiveness as a complete system. However, since the
different agents differ along several dimensions, the com-
petition results cannot isolate the successful approaches. In
this section we report on controlled experiments designed



to test the efficacy ofATTac-2001’s machine-learning ap-
proach to price prediction.

We attempted to determine experimentally how the qual-
ity of ATTac-2001’s hotel price predictions affects its per-
formance. To this end, we devised seven price predic-
tion schemes, varying considerably in sophistication and
inspired by approaches taken by other TAC competitors,
and incorporated these schemes into our agent. We then
played these seven agents against one another repeatedly,
with regular retraining as described below.

Here are the seven hotel prediction schemes that we used,
in decreasing order of sophistication:

� ATTac-2001

s

: This is the “full-strength” agent based
on boosting that was used during the tournament.

� ConditionalMean

s

: This agent samples prices from
the empirical distribution of prices from previously
played games, conditioned on the closing time of the
hotel room. In other words, it collects all historical
hotel prices and breaks them down by the time at which
the hotel closed (as well as room type, as usual). The
price predictor then simply samples from the collection
of prices corresponding to the given closing time.

� SimpleMean

s

: This agent samples prices from the
empirical distribution of prices from previously played
games, without regard to the closing time of the hotel
room (but still broken down by room type).

� ATTac-2001

ns

ConditionalMean

ns

, SimpleMean

ns

:
These agents predict in the same way as their corre-
sponding predictors above, but instead of returning a
random sample from the estimated distribution of ho-
tel prices, they deterministically return the expected
value of the distribution.

� CurrentBid: This agent uses a very simple predictor
that always predicts that the hotel room will close at
its current price.

In every case, whenever the price predictor returns a price
that is below the current price, we replace it with the current
price (since prices cannot go down).

In our experiments, we added as an eighth agentEarlyBid-

der, inspired by thelivingagents agent. EarlyBidder uses
SimpleMean

ns

, determines an optimal set of purchases, and
then places bids for these goods at sufficiently high prices
to ensure that they will be purchased ($1001 for all hotel
rooms, just aslivingagents did in TAC-01) right after the
first flight quotes. It then never revises these bids.

Each of these agents requires training, i.e., data from previ-
ously played games. However, we were faced with a sort of
“chicken and egg” problem: to run the agents, we needed
to first train the agents using data from games involving the
agent, but to get this kind of data, we needed to first run the
agents. To get around this problem, we ran the agents in
phases. In Phase I, which consisted of 126 games, we used
training data from the seeding, semifinals and finals rounds
of TAC-01. In Phase II, lasting 157 games, we retrained the
agents once every six hours using all of the data from the

Agent Relative Score

Phase I
EarlyBidder 140:3� 38:6
ATTac-2001

ns

105:2� 49:5
ATTac-2001

s

27:8� 42:1
ConditionalMean

ns

8:6� 41:2
SimpleMean

ns

�28:8� 45:1
CurrentBid �33:7� 52:4
SimpleMean

s

�72:0� 47:5
ConditionalMean

s

�147:5� 35:6

Phase II
EarlyBidder 152:8� 43:4
ATTac-2001

ns

131:6� 47:7
ATTac-2001

s

86:1� 44:7
ConditionalMean

ns

3:5� 37:5
SimpleMean

ns

�53:9� 40:1
SimpleMean

s

�71:6� 42:8
ConditionalMean

s

�91:4� 41:9
CurrentBid �157:1� 54:8

Phase III
ATTac-2001

ns

166:2� 20:8
ATTac-2001

s

122:3� 19:4
EarlyBidder 117:0� 18:0
SimpleMean

ns

�11:5� 21:7
SimpleMean

s

�44:1� 18:2
ConditionalMean

ns

�60:1� 19:7
ConditionalMean

s

�91:1� 17:6
CurrentBid �198:8� 26:0

Table 4.The average relative scores for eight agents in the three
phases of a controlled experiment in which the hotel prediction
algorithm was varied. The relative score of an agent is its score
minus the average score of all agents in that game.

seeding, semifinals and finals rounds as well as all of the
games played so far during the course of the experiment.
Finally, in Phase III, lasting 622 games, we continued to
retrain the agents once every six hours, but now using only
data from games played during the course of the experi-
ment, and not including data from the seeding, semifinals
and finals rounds.

Table 4 shows how the agents performed in each of these
phases. Much of what we observe in this table is consistent
with our expectations. As expected, the more sophisticated
boosting-based agents (ATTac-2001

s

andATTac-2001
ns

)
clearly dominated the agents based on simpler prediction
schemes. Moreover, with continued training, these agents
improved markedly relative toEarlyBidder. We also see
the performance of the simplest agent,CurrentBid, which
does not employ any kind of training, significantly decline
relative to the other data-driven agents.

On the other hand, there are some phenomena in this table
that were very surprising to us. Most surprising was the fail-
ure of sampling to help. Our strategy relies heavily not only
on estimating hotel prices, but also taking samples from
the distribution of hotel prices. Yet these results indicate
that using expected hotel price, rather than price samples,
consistently performs better. We speculate that this may



be because an insufficient number of samples are being
used (due to computational limitations) so that the num-
bers derived from these samples have too high a variance.
Another possibility is that the method of using samples
to estimate scores consistently overestimates the expected
score because it assumes the agent can behave with perfect
knowledge for each individual sample—a property of our
approximation scheme.

We were also surprised thatConditionalMean

s

and
ConditionalMean

ns

eventually performed worse than the
less sophisticatedSimpleMean

s

andSimpleMean

ns

. We
do not fully understand why this happened. One possibility
is that the simpler model happens to give predictions that
are just as good as the more complicated model, perhaps
because closing time is not terribly informative, or perhaps
because the adjustment to price based on current price is
more significant. The simpler model has the additional ad-
vantage that its statistics are based on all of the price data,
regardless of closing time, whereas the conditional model
makes each prediction based on only an eighth of the data
(since there are eight possible closing times, each equally
likely).

As a measure of the inaccuracy of the predictions made by
the three non-sampling agents, we measured the root mean
squared error of the predictions made in Phase III. These
were: 56.0 forATTac-2001

ns

, 66.6 for SimpleMean

ns

,
69.8 for CurrentBid and 71.3 forConditionalMean

ns

.
Thus, we see that the lower the prediction accuracy (ac-
cording to this measure), the higher the score (correlation
�0:88).

7. Conclusion

In this paper, we have introduced a boosting-based algo-
rithm for conditional density estimation. It is designed to
be applicable in any scenario in which one wishes to esti-
mate the probability distribution of real random variables
associated with objects of some sort (such as feature vec-
tors).

ATTac-2001 used this learning algorithm to compete suc-
cessfully in TAC-01, a domain featuring simultaneous auc-
tions for multiple interacting goods. We believe that price
prediction and the modeling of price uncertainty will be
key challenges in the design of agents for auctions and e-
commerce, and our results indicate that prediction accuracy
will be critical to achieving high performance. The gener-
ality of the technique described in this paper suggests that
it will be widely applicable in such domains.

One such real application is the Federal Communications
Commission’s auctioning off of radio spectrum (Weber,
1997; Cramton, 1997). Especially for companies that are
trying to achieve national coverage, the values of the differ-
ent licenses interact in complex ways. Perhaps autonomous
bidding agents will be able to affect bidding strategies in
such future auctions. Indeed, in related research we have
started down this path by creating bidding agents in a real-

istic FCC Auction Simulator (Csirik et al., 2001; Reitsma
et al., 2002).

In a more obvious application, an extended version of
ATTac-2001 could potentially become useful to real travel
agents, or to end users who wish to create their own travel
packages.
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