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ABSTRACT OF THE DISSERTATION

Modeling Auditory Perception for
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Brian P. Strope
Doctor of Philosophy in Electrical Engineering
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Professor Abeer A. Alwan, Chair

While non-stationary stochastic modeling techniques and the exponential
growth of computational resources have led to substantial improvements in
vocabulary size and speaker independence, most automatic speech recognition
(ASR) systems remain overly sensitive to the acoustic environment, precluding
widespread applications. The human auditory system, speech production
mechanisms, and languages, on the other hand, are extremely well-tuned to
facilitate speech communication in noise. Better modeling of these systems and
mechanisms should illuminate robust strategies for speech processing applications.
In this work, models of temporal adaptation, spectral peak isolation, an explicit
parameterization of the position and motion of local spectral peaks, and the
perception of pitch-rate amplitude modulation cues are shown to reduce the error
rate of a word recognition system in noise by more than a factor of 4 over the typical

current processing.
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Chapter 1

Introduction

For the last half century, the development of speech recognition by machine
has been marked by disappointment and a repeating failure to meet expectations. A
few years ago, a colleague of mine in a very different field attempted to stay a step
ahead of my description of this research and commented: “So, with a computer, you
will be able to do better than a human.”

As scientists and teachers, we need to do a better job describing the
complexity of the problems we address, the realistic capabilities of the tools we use,
and the current state of our technologies. Quite plainly, fifty years of speech
recognition research still pales when compared to the experiences, the drive and the
necessity, a child has when learning to recognize and understand speech. But
perhaps more significantly, even given the relative explosion of technology over the

last two centuries, the tools available to researchers today are no match to those of



the child. Countless generations of selective pressures have evolved signal and
information processing machinery that we, as scientists, are unlikely to achieve in
the next century.

A recent review [Lippmann 1997] compares human speech recognition to
machine recognition across a wide range of tasks (10-65,000 words). Across all
tasks, machine error rates are typically found to be between one and two orders of
magnitude higher than those for humans. The relative performance of machines is
especially poor in noisy situations and in situations where grammatical structure
can not be used to constrain the task.

Understanding the failures of speech recognition as a technology leads to a
profound respect for natural auditory systems and to the optimistic realization that

such a potential wealth of information exists, well, right between our ears.

1.1 From Better Models to Robust Applications

While non-stationary stochastic modeling techniques and the exponential
growth of computational resources have led to substantial improvements in
vocabulary size and speaker independence, most automatic speech recognition
(ASR) systems remain overly sensitive to the acoustic environment, precluding
widespread applications. The human auditory system, speech production
mechanisms, and languages, on the other hand, are extremely well-tuned to
facilitate speech communication in noise. Better modeling of these systems will

illuminate robust strategies for speech processing applications.



Perceiving speech in an acoustically noisy environment requires intelligent
use of redundant multi-dimensional cues spread over wide-ranging time scales. A
majority of psychoacoustic and speech perception research has focused on spectral
cues (from roughly 400-8000 Hz) that are available through an auditory critical-
band filtering mechanism [Fletcher 1940, Zwicker et al. 1957, Patterson 1976,
Zwicker and Terhardt 1980, Glasberg and Moore 1990], and on nearly logarithmic
loudness growth [Stevens 1956, Delgutte 1996]. This type of processing is reflected
in the first stage of most ASR systems [Rabiner and Juang 1993] which obtains
sequences of perceptually-warped and logarithmically-compressed short-time
spectral estimations. Subsequent stages form a hierarchy of non-stationary
stochastic models operating at the progressively slower rates of the speech-frame,
phoneme, word, phrase and even sentence.

Despite these first-order similarities, the current ASR approach differs
significantly from human perception. The ASR front end rigidly locks spectral
estimates together across a frame, while human perception allows for nearly
independent processing, focusing on the position and motion of vocal tract
resonances in spectral regions with good signal to noise ratios [Allen 1994]. The
ASR front end is time-invariant, while human perception has a context-dependence
that can last for hundreds of milliseconds. The typical ASR front end also removes
perceptually-salient pitch-rate information from 80-300 Hz, and relies solely on

stochastic modeling of syllabic- or articulator-rate information from 2-20 Hz. We



should expect synergy from modeling improvements across all these areas.

This dissertation focuses on four aspects of auditory processing: short-term
temporal adaptation, an isolation of local spectral peaks, the parameterization of the
position and motion of spectral peaks, and the sensitivity to pitch-rate amplitude
modulation. Front end processing that incorporates adaptation, peak isolation, and
peak motion parameterization is shown to reduce the error rate of a speech
recognition system in noise by roughly a factor of 4 when compared to the current
common approach. In addition, a quantified model of pitch-perception is shown to
predict both amplitude modulation detection thresholds and the perceptual
detection of voicing for fricatives in noise.

The relative failure of speech recognition applications (and perhaps of
hearing aids) in realistically noisy environments may be directly linked to the lack
of successful computational models of the perception of dynamic sounds in noise.
The work here on auditory adaptation, the motion of local spectral peaks, and the
perception of amplitude modulation in noise represent initial steps toward improved

models and robust applications.

1.2 Speech Recognition Overview

In essence, typical speech recognition systems are maximum likelihood
detection mechanisms. For clarity, imagine a recognition vocabulary that includes
only the words ‘yes’ and ‘no. Further assume that a single (1-dimensional)

measurement has been developed which usually provides a larger value for ‘yes’



tokens and a smaller value in response to ‘no.” One possibility might be a measure
of the amount of high-frequency energy associated with the [s] in ‘yedraliothe
recognition system, we characterize the distributions of our measurement across a
training set of exemplars. We might construct a 2-parameter Guasgde! of

‘yes’ by estimating the mean and variance of our measurement given all the
examples of ‘yes’ in our training data, and then repeat the process for ‘no.” To use
these models for recognition, we make the same measurement for an unknown
word, estimate the probability for each of our models, and then choose (or
recognize) the word corresponding to the model that provides the highest

probability. Figure 1.1 shows an overview for this approach.

word models
A
frequency / \
of N(HnoOno) N(HyesOyes)
occurrence H ﬂ
p(xno), / m h
p(xlyes) | ]
magnitude of the (e.g. amount of high
feature measurement frequency energy)

Figure 1.1 Simplified overview of maximum likelihood speech recognition.

At least two issues complicate this process. While any sound can be
characterized as a 1-D pressure wave, the information in speech is clearly encoded

in a high-dimensional space; a single measurement will not provide sufficient



discrimination. For statistical recognition, the measurements become vectors and
the estimated distributions are multi-variate.

But the more significant complication is that speech is non-stationary. The
statistics that characterize the sound ‘yes’ change considerably across the word.
Within the word, there may be temporal segments where the statistics are nearly
stationary (e.g. during [s]), but the durations of these segments will also change with
different speaking styles and rates. In the current example, consistent differences in
these segments, compared across the words ‘yes’ and ‘no,’ provide a redundant and
robust encoding of the binary speech information in this task. To exploit this
redundancy, the recognition system uses measurements of sounds other than [s] to
discriminate the words. In other words, the probability of observing each segment,
given each word is estimated.

This motivates thalignmentproblem in speech recognition. In order to use
the potentially redundant information encoded in each segment of the non-
stationary sound, each segment must be aligned with an appropriate statistical
parameterization for that segment in that word. As discussed in more detail below,
the current approach to this problem is to model each segment as a state in a first-
order Markov process, to associate the parameters of the multi-variate distribution
for each segment with each state, and to find the best state alignment using a Viterbi
search.

Therefore, most modern speech recognition systems include an initial signal



processing front end which converts the (1-D) speech waveform into a sequence of
time-varying feature vectors, and a statistical pattern-comparison stage which
chooses the most probable phoneme, syllable, word, phrase, or even sentence, given
that sequence of feature vectors. Figure 1.2 shows a simplified block diagram for

this overview.

Speech Spectral Observation Pattern Recognition
—> , S —- . -
Extraction Sequence| Comparison
“Ears” “Higher-Level Brain”
Signal Processing Stochastic Modeling
DFT, LPC, Cepstrum Hidden Markov Models

Figure 1.2 Automatic speech recognition overview.

1.2.1 Front End Signal Processing

In the front end, the speech signal is typically divided in time into nearly-
stationary overlapping (10-30 ms) frames. Short-time spectral estimations of each
consecutive frame form the sequences of time-varying feature vectors analyzed by
the pattern matching stage. One common form of spectral estimation [Davis and
Mermelstein 1980] involves integrating an initial power spectrum estimate which is
weighted by bandpass-filter functions whose bandwidths approximate estimations

of auditory frequency selectivity. The magnitude of the power estimates from each



filter are then compressed using a logarithmic function. The resulting spectral
estimates reflect two of the most studied aspects of auditory signal processing:
frequency selectivity, and magnitude compression.

Because the spectral estimates are somewhat smooth across filter number,
or highly correlated, each frame can be roughly decorrelated using a discrete cosine
transform (DCT) as an approximation of the Karunen-Loeve (KL) transform. After
the DCT, the resulting cepstral vectors, called Mel-frequency cepstral coefficients
(MFCC), are compact representations of the Mel-warped log-magnitude power
spectrum. (The frequency scale is called a Mel-scale after the pitch perception scale

that has a similar warping.) Figure 1.3 is an overview of the typical front-end

processing.
g
=]
[9]) .
3 time
a — >
| 0 | < | 4 | (frame numbers)
[ 1 | 3 | 5 |
| |
~10-20ms
(‘Excitation Pattern, Zwicker 1970)
Mel-Scale T
Auditory - LOQarithm  [e— DCT =
Filtering MFCC
Frequency Magnitude Decorrelate
Selectivity Compression Spectra

Figure 1.3 Front end signal processing: windowing, spectral estimation,
logarithmic compression, and decorrelation.



In Figure 1.4, sequences of spectral estimates for the digit string “nine six
one three” at a signal to noise ratio (SNR) of 10 dB are displayed as a spectrogram.
The spectrogram is a graphical representation of the sequence of spectral estimates
(observation features) provided by the front end as the input to the pattern matching
stage. The horizontal axis is frame number (time), the vertical axis is filter number

(warped frequency), and the intensity of the feature vector is mapped to darkness.

Hnine” HSiXH Hone” chree”

\

Keaeds

Time (2 sec.)

N
D

Filter Number

=

Figure 1.4 Mel-frequency spectrogram at 10-dB SNR.

1.2.2 Pattern Comparison using Stochastic Models

Hidden Markov models (HMM) are used to provide a generalized statistical
characterization of the non-stationary stochastic process represented by the
sequences of feature vectors. Each element of the vocabulary (word, syllable, or
phone) is modeled as a Markov process with a small number of states. During

recognition the current sound is compared to each of these models. The model with



the highest probability of observing the current sequence of feature vectors
determines which vocabulary element is recognized.

The model is hidden in the sense that the observed sequence of feature
vectors does not directly correspond to the current model state. Instead, the model
state specifies thgtatisticsof the observed feature vectors for a specific temporal
segment of the sound. State transitions are often limited so that the model can either
stay in its current state or move forward to the next. In this way, each state is used
to characterize statistics for a nearly stationary temporal segment of the vocabulary
element. In word-based recognition, the first state might characterize the beginning
of the word, and the last state might characterize the end. Figure 1.5 shows a

schematic representation of a four-state model for the word “six.”
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ORO0080
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(filter number)

time (frame number)

Figure 1.5 A schematic representation of a hidden Markov model for ‘six.’

When training an HMM, a set of exemplars corresponding to a particular
model are used to provide iterative improvements for both the estimates of the
multi-variate distributions of the feature vectors, and the state-transition
probabilities. During recognition evaluations, each trained model is compared to the
current input, and the most probable model determines the word recognized.
Therefore, both training and recognition require solving the temporal alignment

problem of matching particular observation frames with particular model states.

11



Once frames are aligned with specific states during training, new model parameters
(observation distributions, and state transition probabilities) are estimated from the
statistics of the associated observation frames and state transitions, leading to
iterative model improvements.

In general, there are two related approaches used to solve the temporal
alignment problem with HMM speech recognition. The first is an application of
dynamic programming or Viterbi decoding, and the second is the more general
forward/backward algorithm. Both methods can be used for iterative model training
and recognition evaluations.

Consider the 4-state model and the sequence of observation vectors (or
frames) shown in Figure 1.5. At any point in time, if the current state is known, the
probability of the model making a transition to the next state at the next frame is the
joint probability of making the state transition and observing the next frame in the
next state. For example, if at frame 0 we know the model is in state 0, then the

probability that the model transitions to state 1 for frame 1 is the produdt-af)(
times the probability density function (pdf) for stateN(d,,0,)) evaluated at the
feature vector measured in frame 1. In this same instance, the probability of staying
in state O is the product a@fy times the pdf for state ON(u,0p)) evaluated at the
feature vector measured in frame 1.

Figure 1.6 shows a grid of points (or trellis) with the observation frame

number on the x-axis and the state number on the y-axis. All possible model

12



alignments for the current sequence of frames are described by paths along the
trellis. Evaluating the probability of a particular path requires computing the joint
probability of making each state transition while observing each feature vector in
the associated state. Because the number of possible paths grows exponentially with
the number of observation frames, evaluating each complete path explicitly is not
computationally tractable.

However, while the number of possible complete paths grows exponentially
with the number of observation frames, all paths must merge into the small number
of model states for each input frame. Furthermore, because of the assumed first-
order Markov structure, observation probabilities and state transitions are only a

function of the current state, and not the path taken to get there.

uncovered

(0o 01211 2 2 2 3 3 3) st
state sequence

number

observation number

Figure 1.6 An example of using a Viterbi search to solve the alignment problem.

A Viterbi search reduces the computational dependence on the number of

observations from exponential to linear, by exploiting the fact that the most
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probable complete path will necessarily include the most probable partial paths. In
other words, if the most probable complete path passes through the {observation
number, state number} point (4, 2), then the partial path to (4, 2) is also the most
probable path to that point.

To identify the most probable path, it is therefore sufficient, with each new
frame, only to keep track of the most probable paths to each state. In the model
described in Figure 1.5-6, there are four such paths for each observation frame.
Given the first-order Markov structure of our model, the probabilities for these paths
are a function the probabilities of the accumulated partial paths at the previous
frame, the model state transition probabilities, and the probability of observing the
current frame for each state. More specifically for the current frame, the most
probable path to each state is the maximum joint probability of the partial paths to
the previous frame and the state transition probabilities to that state. As described
above, the probability of the partial path to the current frame is then multiplied by
the pdf for that state evaluated at the current observation frame.

By keeping track of the most probable state transitions for each observation,
the complete “best path” can be identified by back-tracking, as shown in Figure 1.6.
In this case, the most probable state sequence was (0,0,1,1,1,1,2,2,2,3,3,3). If this
were the only exemplar used for training a model of the word “six,” then an updated
pdf for state O would be parameterized by the mean and covariance of the first two

observation frames, and the pdf for state 1 would be determined by the statistics of
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the next four frames, etc. Similarly, the state transition probabiliaes(Figure

1.5-6) can be updated by the frequency of state transitions in the alignment. For

exampleagy would be 0.5, andy would be 0.75, etc. Given the updated model, the

observation frames are re-aligned, and the model parameters are re-estimated, and
the process is repeated until there is little reduction in the complete path probability.
(Models are, of course, trained using many exemplars, so that model parameters at
each iteration are a function of the alignment of the current model to several tokens.)

A Viterbi-search solves the temporal alignment problem with an efficient
iterative path-building strategy. The probabilities of the partial paths to the current
frame are computed from the partial paths to the previous frame. For each
transition, the (single) most probable path to each state is added to the growing
partial path probabilities. This maximization (or winner takes all) strategy in
essence imposes the constraint of identifying a single optimal state sequence during
alignment. Because the underlying states are hidden (meaningless), this constraint
is not necessary. Instead of choosing the most probable transition when building
partial paths, all possible transitions from the previous partial paths that end at that
particular {state number, observation number} point can be summed, with each
weighted by the associated state transition probability. Notice that because of this
summation, there is no way to back-track and associate particular observations with
particular frames to update the model estimates.

We therefore consider the forward/backward algorithm. By summing all
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possible previous partial paths, the parf@iward probabilitiesof observing the
first N frames of the exemplar and ending at a specific state can be inductively
computed from the N-1 forward probabilities. A similar iterative process is used to
obtain backward probabilitiesof observing the last M frames. Combining the
forward and backward probabilities provides an estimate for the probability of
making each state transition while observing each frame, given the entire exemplar.

New model parameters (state transition probabilities and observation
distributions) are again obtained by averaging across all exemplars in the training
set for each model. However unlike with Viterbi-training, the contribution of each
state transition and each observed feature vector are weighted by the probabilities
of having been at that state during the time of that feature vector. If we set the most
probable transition into each {observation number, state number} point to 1 and the
rest to 0, the forward/backward training reduces to Viterbi training. Given the new
set of re-estimated models, the algorithm iterates, re-aligning the original data to the
updated models. As with training using Viterbi alignment, this iterative process
converges to a local maximum for the likelihood of the model given the training set
of exemplars.

Once models for the vocabulary elements are trained (their parameters have
converged sufficiently after successive forward/backward iterations), new data are
recognized by evaluating the probability of observing that data given each of the

trained models. For alignment, the same iterative propagation of forward
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probabilities used in training can be used. However, a Viterbi search is often used
as a simplification. That is, instead of adding the probabilities of reaching a
particular state at a particular vector in the feature vector sequence, only the
transition that reaches that particular state with maximum probability is considered.
In addition to keeping highly unlikely state sequences from influencing the final
result, this simplification leads to the identification of the single best path which can
be helpful for analyzing errors.

Recognition performance is, obviously, largely dependent on a good
statistical match between the test and training feature-vector sequences. Because
most systems use short-time spectral estimates, distortions introduced by additive
noise, or by a mis-match between the training and testing channels, considerably
degrade recognition performance. One general approach to this problem is to find a
parametric adjustment of the multi-variate distributions given the current acoustic
environment [Gales and Young 1996]. A more pragmatic approach is simply to train
the models in an environment that is a reasonable match to the expected testing
environment.

This dissertation describes several methods to obtain a more perceptually
relevant characterization of speech and to improve recognition robustness. First, the
front-end signal processing is augmented to include short-term adaptation and a
sensitivity to local spectral peaks. Second, the frequency position and motion of the

local spectral peaks are explicitly tracked and then parameterized by the HMM.
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Third, the presence of pitch-rate temporal information that is typically ignored for
ASR is parameterized. Fourth, two sets of models are used in parallel: one
characterizing clean training data and the other characterizing noisy training data.
The first three approaches attempt to focus the recognition task on phonetically
relevant aspects of the sequences of short-time spectral estimates, while the fourth
technique provides some adaptation of the statistical characterization for the
expected acoustic environment.

In many ways, the current speech recognition paradigm is a direct
application of the maximum likelihood models used in psychoacoustics [Green and
Swets 1966]: the signal processing front end generates a sequence of spectral
estimates (or a sequence of auditory excitation patterns [Zwicker 1970]), and an
optimal decision device chooses the recognized words using a maximum likelihood
criterion. For general speech recognition, unlike with many simplified
psychoacoustic models, ‘multiple-looks’ [Viemeister and Wakefield 1991], or

multiple measurements, are used in both time and frequency.

1.3 Auditory Modeling Overview

Recent texts [Pickles 1988, Geisler 1998] review the current understanding
of the (human) auditory periphery. A brief review is included here to motivate some
of the modeling discussed later in this dissertation.

Acoustic pressure waves pass through the nearly (passive and) linear outer

and middle ears and vibrate the basilar membrane within the snail-shaped cochlea
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of the inner ear. Vibrations along the basilar membrane modulate the release of
neurotransmitter by hair cells, which in turn, leads to action potentials (or spikes) in

the auditory nerve. In this transduction process, information about the mechanical
vibrations of sound are transformed into electrical signals processed by more
central neural regions.

Vibrations of the middle ear are coupled to the beginning, or base, of the
basilar membrane. This membrane, which spirals in a helix up through the cochlea,
functions as a non-uniform waveguide. Its stiffness decreases along its length so
that wavespeed drops nearly geometrically from base to apex (ca. 35 mm in
humans). If we consider a sinusoidal input starting at the base, as the traveling wave
moves apically, the wavefront slows, decreasing the wavelength of the membrane
disturbance and concentrating the energy per unit length over an increasingly
smaller region. Finally losses due to the deformation of the membrane dominate,
and the traveling wave dissipates abruptly. The location along the membrane where
this occurs varies with the initial wavelength (or acoustic frequency) of the input.
High frequency sinusoids concentrate and dissipate close to the base, while lower
frequency sinusoids travel further toward the apex. If we consider each point along
the basilar membrane as an output, the nonuniform waveguide is an efficient
mechanical implementation of a filter bank, providing a physiological substrate for
auditory frequency selectivity. Figure 1.7 [after von Bekesy 1953] shows a

schematic overview for this mechanism. (Interestingly, while this idea had been
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previously applied extensively to explain psychoacoustic masking experiments
[Fletcher 1940], direct physiological observations of the traveling wave [von

Bekesy 1953] led to winning the Nobel prize.)

base basilar membrane (cochlea) apex
Stapes. —p- [ non-uniform wave-guide
(middle ear) :
: more less :

it oS

WW\

Figure 1.7 Mechanical frequency selectivity of the basilar membrane.

The deflections of tiny stereocilia (actually microvilli and not true cilia) in
hair cells, located throughout the length of the basilar member, modulate the release
of neurotransmitter by the hair cells. This transduction is directional: increasing
positive deflection leads to increasing neurotransmitter release, while negative
deflections cause little, if any, neurotransmitter release regardless of the deflection
magnitude. Hair cells, therefore, provide half-wave rectification.

In humans, roughly 30,000 auditory neurons connect to these hair cells, and
generate action potentials in response to the hair cells’ neurotransmitter release. The

generation of individual action potentials is stochastic, but when averaged across
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the ensemble of parallel auditory neurons passing information to more central
regions, the action potentials can encode both the AC component of the original
vibration as well as a demodulated DC component (which results from the hair-cell
half-wave rectification) [Palmer and Russel 1986]. Intrinsic capacitances limit the
upper frequency of the AC encoding to roughly 2-5 kHz [Joris et al. 1994]. Above

5 kHz, there is little evidence of an AC component in the temporal patterns. While
the AC component generally provides a remarkably consistent linear representation
of (a filtered version of) the original acoustic vibration, the DC component is
considerably compressed by mechanical non-linearities in the cochlea and by
adaptation and saturation in the hair-cell transduction process.

Throughout modern auditory research, there are at least two interpretations
of the neural representation of sound. Considering the mechanical frequency
selectivity of the basilar membrane, and the DC response encoded in the short-term
average firing rate of auditory nerve action potentiplacetheories assume short-
time spectral information is encoded in the changes of average rate with the position
of neural innervation along the basilar membrane. In an auditory model, the
logarithm of the average intensity of the output of each filter is used to form a
spectral excitation pattern [Zwicker 1970]. Differences in spectral excitation
patterns have been shown to correlate with many psychoacoustic measurements
including pure-tone frequency jnds (just noticeable differences) and intensity

discrimination [Siebert 1968, Zwicker 1970, Delgutte 1996], spectral masking
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[Patterson 1976, Glasberg and Moore 1990], and vowel discrimination [Kewley-
Port and Watson 1994Temporaltheories assume that the filtering of the basilar
membrane provides some rejection of out-of-band noises (a filter processing gain),
and that the AC components are then analyzed by more central neural centers which
are sensitive to redundafine-timestructure available across multiple auditory
nerves. Temporal theories have perhaps been most successful for describing aspects
of pitch perception [Licklider 1951, Goldstein and Srulovicz 1977, Meddis and
O’Mard 1997].

While there are many interesting exceptions [e.g. Lyon 1984, Deng and
Geisler 1987, Seneff 1988, Ghitza 1991, Patterson et al. 1992, Potamianos and
Maragos 1996], the majority of engineering applications that analyze speech use
place models. As described in the ASR overview above, most use short-term log-
magnitude power spectrum estimates. The output of these systems approximate
those of spectral excitation patterns used in place models. Differences include: the
implementation of the initial filtering (Fourier transforms, or linear prediction is
often used instead of explicit filters); the non-linearity (often demodulation is
achieved through squaring instead of half-wave rectification); and the low-pass
filtering (usually temporal integration over a short-time analysis window, instead of
an explicit low-pass filter). Most current discussions of auditory modeling assume
place and temporal processing are used simultaneously [e.g. Moore 1973, Delgutte

1996].
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When discussing temporal processing it is helpful to be specific about the
rates considered and the distinction between modulator and carrier. The spectral
analysis of speech in place models assumes that fluctuations in the range of roughly
400-8000 Hz are either mechanically analyzed in the cochlea, or that, together with
any contribution of more central neural analyses of the temporal fine structure in
auditory nerve firings, the complete system response to fluctuations at these rates is
well modeled by log-magnitude excitation patterns. Here, this range (about 400-
8000 Hz) will be called thepectralrange (see Figure 1.8). The temporal models

cited above include mechanisms which analyze temporal detail in the spectral

range.
Speech Information across Four Decades
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production: motion ; vibration ; articulator position
speech formant motion ! _ ! N
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Figure 1.8 Classifying auditory frequency ranges for speech.

23



A linear model of speech production [Fant 1960] is helpful when
considering Figure 1.8. Briefly, when we speak, air from the lungs is forced through
the vocal folds which open and then slam shut with nearly regular periodicity,
typically in the range of 100-200 Hz. (The vocal fold dynamics have similarities to
those that occur at the lips when either a child makes a ‘raspberry’ sound, or a
trumpet player blows into the mouthpiece.) Because the vocal folds close abruptly,
harmonics of the fundamental are also produced. The geometric configuration of
the vocal tract, as controlled by the position of the articulators (tongue, lips, teeth,
jaw, etc.), determines how the harmonics are resonated in different spectral regions.
For speech, these resonances are called formants. During unvoiced sounds (e.g. [S]),
turbulence is usually generated by forcing air through a sufficiently narrow
constriction somewhere in the vocal tract. Again, vocal tract resonances influence
the spectral shape of these noise-like speech sounds. A simplified linear speech
production model, therefore, includes either a noise source and/or a periodic driving
function (often approximated by an impulse train), and a linear filter to model the
resonances of the vocal tract. Figure 1.9 [after Geisler 1998] shows an overview for

the speech production process.
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Figure 1.9 Speech production overview.

The right side of Figure 1.8 shows that formants, as determined by the
position of the articulators, occur in the spectral range. Signals in the spectral range
are first processed by the auditory system as carriers. Non-linearities in the auditory
system (and in ASR front ends) demodulate the carrier signal to DC. Slow
fluctuations in the amount of energy in a particular spectral region cause slow
fluctuations in the “DC” response, which tracks the envelope of the carrier. The left
side of Figure 1.8 shows that changes in the configuration of the articulators, alter
the vocal tract resonances, modulating the spectral range in specific regions.
Perceptually, these changes typically cue syllabic and word-level information as the

speech progresses from one sound to the next. Here, we will refer to this range
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(roughly 2-20 Hz) as thsyllabicrange. Quite remarkably, and as one of the best
recent examples of the redundancies in speech, syllabic range modulations, together
with extremely limited frequency resolution (3 or 4 noise carriers), are sufficient for
human speech recognition [Shannon et al. 1995]. After the demodulation of the
noise carriers at specific places along the basilar membrane, the perception of these
sounds must depend entirely on temporal processing.

The fundamental frequency of vocal fold vibrations occurs between the
spectral and syllabic regions in tlwicing range (center column in Figure 1.8).
When the spacing of harmonics are significantly greater than the bandwidths of
auditory filters, low-frequency harmonics can be resolved in different auditory
filters, providing a potential place cue for voicing information (especially for high-
pitch voices). On the other hand, temporal representations of information in the
voicing range exist for all harmonics. High frequency harmonics (above 1-2 kHz)
are not resolved by the auditory system: each auditory filter, or channel, contains
multiple harmonics. The response in each channel is, therefore, modulated at the
fundamental frequency of vocal fold vibration. After half-wave rectification and
low-pass filtering, this modulation is well represented in the temporal firing patterns
of the auditory nerve [Cariani and Delgutte 1996a-b]. Below 1-2 kHz, there are
increasingly fewer harmonics in each auditory channel, reducing the modulation at
the fundamental. However, as the number of harmonics per channel is decreasing,

the ability of the auditory system to represent temporal information is increasing.
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That is, the harmonics below 1-2 kHz can be represented directly and individually
in the temporal firing patterns of the auditory nerve. Temporal pitch perception
models assume more central neural processing pools the timing information across
channels providing a composite response dominated by the common periodicity
(i.e. the fundamental) [Licklider 1951]. Therefore, regardless of whether the
harmonics are grouped mechanically in the initial filter, or subsequently in the
temporal comparison of the neural representations of individual harmonics, the
auditory system provides a strong temporal coding of pitch information.

As shown in Figure 1.8, the typical ASR system characterizes the spectral
region using compact representations of log-magnitude spectral estimates, and
characterizes the syllabic region with non-stationary stochastic modeling. The
voicing region is usually ignored. In this dissertation, the first three areas
considered: adaptation, peak isolation, and the explicit parameterization of the
position and motion of spectral peaks, influence both spectral and syllabic
representations. More precisely, the adaptation mechanism most directly influences
the syllabic range, peak isolation modifies representations in the spectral range, and
the explicit parameterization of the position (spectral) and motion (syllabic)
influences representations in both. Finally, this dissertation includes modeling of

the temporal processing in the voicing range.

1.4 Dissertation Overview

Chapter 2 describes the adaptation and spectral peak isolation mechanisms.
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Chapter 3 describes an algorithm developed to parameterize of the position and
motion of local spectral peaks. Chapter 4 focuses on the temporal aspects of the
voicing distinction between strident fricatives, and compares predictions from three
modeling approaches. Chapter 5 describes a series of recognition evaluations.
Finally, the summary in Chapter 6 includes an outline of other research directions

motivated by this work.
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Chapter 2

Adaptation and Local Peak Isolation

This chapter describes two mechanisms which augment the common ASR
front end and provide temporal adaptation and isolation of local spectral peaks. A
dynamic model consisting of a linear filter bank with a novel additive logarithmic
adaptation stage after each filter output is proposed. An extensive series of
perceptual forward masking experiments, together with previously reported
forward masking data, determine the model's dynamic parameters. Once
parameterized, the simple exponential dynamic mechanism predicts the nature of
forward masking data from several studies across wide ranging frequencies, input

levels, and probe delay times.

2.1 Introduction

Most ASR systems model speech as a non-stationary stochastic process, by
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statistically characterizing a sequence of spectral estimations. The common
technique for spectral estimation includes an approximation of auditory filtering, a
compressive non-linearity (usually the logarithm) and decorrelation of the spectral
estimation through an approximate KL transform (the DCT). These steps represent
only rough approximations of the most fundamental aspects of auditory modeling:
frequency selectivity and magnitude compression. In the last 5-10 years the
frequency selectivity for ASR front-ends has slowly migrated from a linear to a
perceptually-based frequency scale [Davis and Mermelstein 1980]. This progress,
toward a better auditory model for ASR, has improved robustness [Jankowski et al.
1995].

A large discrepancy remains between current auditory models and the
approximations used in ASR front ends. Recent efforts to incorporate more
sophisticated auditory models with ASR systems, however, have shown little to no
improvement over the common front end, typically at a severe increase in
computational costs [Jankowski et al. 1995]. The challenges are to determine what
auditory functionality missing from the current front end would be useful for
improving recognition robustness and to design effective simple mechanisms which
reproduce that functionality.

This chapter focuses on two aspects of audition not included in current
representations: short-term adaptation and sensitivity to the frequency position of

local spectral peaks. For each, a mechanism with low computational complexity is
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described which adds to the common front end and provides a representation that is
more robust to background noise. The dynamic mechanism is parameterized by
psychophysical data described here and in the literature [Kidd and Feth 1982]. The
peak isolation mechanism is a simple modification of a previous cepstral liftering
technique [Juang et al. 1987].

To incorporate a dynamic mechanism within a front end, a method of
guantifying auditory adaptation must first be identified. There is considerable
physiological and psychophysical evidence of dynamic audition. Short-term
adaptation, usually defined as a decreasing response after the onset of a constant
stimulus, has been measured in individual auditory nerve firings [Smith and
Zwislocki 1975]. The neural response to a stimulus is also reduced during the
recovery period following adaptation to a prior stimulus [Harris and Dallos 1979].
Here the general terrmdaptationis used for both dynamic processes (short-term
adaptation and post-adaptation recovery), and its direction is explicitly specified
when significantAttackrefers to the decreasing response following stimulus onset,
while releaseandrecoveryboth refer to the increasing response following stimulus
offset. Motility of outer hair cells, the likely source of an active cochlear response,
also adapts with time constants which may be significant when quantifying short-
term adaptation [Ashmore 1987]. Finally, neural responses to onsets and abrupt
spectral changes are substantial [Delgutte and Kiang 1984], providing a

physiological substrate for the sensitivity of human speech perception to onsets and
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dynamic spectral cues [Furui 1986]. Although recognition systems typically
statistically characterize the evolution of relatively static spectral segments, the
auditory system responds most strongly to dynamic segments. This response
strength can be viewed as a consequence of adaptation. What remains is to quantify
the adaptation, and to design a mechanism which reproduces the functionality.

The task is similar to observing evidence of frequency selectivity and
requiring a specification (critical bandwidths) and a mechanism for its realization
(a filter bank). Following the example of using static masking data to quantify
frequency selectivity [Fletcher 1940], adaptation was quantified from a series of
dynamic, forward-masking experiments. The adaptation mechanism designed is a
modified form of automatic gain control (AGC) which adds an exponentially
adapting linear offset to logarithmic energy. Just as the current triangular filters used
in the common ASR front end are first-order approximations of auditory frequency
selectivity, the simple dynamic mechanism provides only a first-order
approximation of auditory adaptation. The strategy is to parameterize simple
dynamic mechanisms from forward masking thresholds to provide a better
approximation of the auditory response to dynamic stimuli.

Dynamic auditory models [e.g. Cohen 1989, Goldhor 1985, Kates 1991,
Lyon 1982, Lyon 1984, Lyon and Mead 1988, Seneff 1988] are often
physiologically-based computational models which characterize a relatively low

level of the complete auditory system, or resort to some speculation either about
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higher-level processing and/or about appropriate dynamic parameters. Because
these systems often require processing time-domain signals for each auditory filter
(~100 filters) at the full sampling rate, they imply a large computational burden,
making them difficult to use in engineering applications [Jankowski et al. 1995].
Also, successfully separating and quantifying measurable functionality (e.qg.
frequency selectivity, or short-term adaptation), which may be distributed across
several related physiological processes, is not a simple task. Other researchers
[Aikaiwa and Saito 1994, Hermansky and Morgan 1994] have proposed novel
computationally efficient techniques, targeted at automatic speech recognition,
which emphasize spectral dynamics with varying perceptual accuracy and
recognition improvements. The approach here differs from most detailed
physiological models in that it ‘closes the loop’ with observations of top-level
functionality. Because the relatively simple model of frequency selectivity followed

by additive adaptation is consistent with underlying physiological processes, the
resulting quantified non-linear model provides useful approximations of the

perception of non-stationary speech.

2.2 Forward Masking

Forward masking reveals that over short durations the usable dynamic range
of the auditory system is relatively small, and largely dependent on the intensity and
spectral characteristics of previous stimuli. A probe following a masker is less

audible than the probe following silence. As the duration between the masker and
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probe decreases, the probe threshold is increasingly a function of the intensity of the
preceding masker, and decreasingly a function of the absolute probe threshold in
silence. Forward masking can be viewed as a consequence of auditory adaptation.
After adaptation to the masker, recovery time is necessary before the relatively less
intense probe becomes audible. The amount of forward masking is also a function
of the duration of the masker, reflecting the time required for the auditory system to
adapt completely to the masker. Forward-masking, therefore, provides an
opportunity to measure the rate and magnitude of effective auditory adaptation and
recovery.

To build the dynamic model, data describing sinusoidal forward masking,
were desirable. The most complete data of pure-tone forward masking experiments
is from [Jesteadt et al. 1982]. Although this data includes a wide range of
frequencies and masker levels, the longest probe delay measured is only 40 ms,
short of the duration necessary for complete adaptation. To obtain recovery
parameters, a set of pure-tone forward-masking experiments which included probe
delays from 15 to 120 ms across wide ranging frequencies and masker levels was
performed. Short-delay pure-tone forward-masking data from the literature [Kidd
and Feth 1982] as a function of masker duration were used to quantify attack

parameters.

2.2.1 Experiments

The forward-masking experiments used long-tone maskers followed by
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short tone-like probes of the same frequency and phase. The masker was long
enough to ensure complete auditory adaptation before masker offset, while the
probe was short enough to measure the response of the auditory system at a
relatively specific time. A two alternative forced choice (2AFC) experimental

paradigm was used.

2.2.1.1 Stimuli

Figure 2.1 shows an example of the stimuli. A decaying 60 ms probe tone
followed one of two 300 ms maskers, separated by 500 ms (Fig. 1.a). The subjects
chose which masker the probe followed. Masker and probe frequencies ranged from
250-4000 Hz in octave intervals, probe delays were 15, 30, 60, and 120 ms, and
masker levels spanned roughly 50 dB with three points. All signals were ramped on
and off in 5 ms with the appropriate half period of a raised-cosine. Probe-delay
times are specified between the peaks of the envelopes of the masker offset and
probe onset.

In forward masking, it is often difficult to determine what cue subjects are
using, or when the subject detects the probe. The solution here is similar to that in
[Plomp 1964]. Both the probe and the masker in the non-probe interval decay with
the same 20 ms time constant, and both end at the same time relative to the masker
onset. Detecting the probe onset was a sufficient cue to determine the probe interval,
but detecting a decaying sinusoid (the tail of the probe) was not. Subjects were not

given feedback.
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To reduce the spectral splatter of transitions, the entire stimulus was filtered
through a linear-phase, FIR filter, with a bandwidth of one critical band [Zwicker
and Terhardt 1980]. In the Figure 2.1 example, the frequency is 1 kHz (Figure
2.1.B), the delay from masker to probe is 15 ms (Figure 2.1.C), and (measured at
the envelope peak) the probe is 8 dB less intense than the masker. The stimulus is

shown after the critical band filter.
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Figure 2.1 Forward masking stimuli: (A) Large time-scale view of a single 2AFC
trial; (B) Fourier Transform of the probe signal (128 ms rectangular window); (C)
Smaller time-scale view of the probe following the masker by 15 ms.

2.2.1.2 Subjects
Five subjects, including the first author, participated in the experiments. All

are native speakers of American English. One subject is female, and the others are
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male. Their ages ranged from 23 to 28 years. Hearing thresholds for each were at,

or below, 20 dB HL at frequencies used in this study.

2.2.1.3 Methods

For each condition, the level of the probe was adaptively varied to find its
threshold. An adaptive “transformed up-down” procedure [Levitt 1971] determined
the 79% correct point, defined as the threshold for the 2AFC task. The initial
adaptation step size of 4 dB was reduced to 2 dB and 1 dB after the first and third
reversals. The initial probe was clearly audible. The experiment continued for nine
reversals. The probe levels at the last six reversals were averaged to determine a
threshold. Thresholds were averaged across the five subjects to obtain the values

used for parameterizing the model.

2.2.1.4 Equipment and Calibration

Computer software generated digital stimuli on-line. The sampling rate was
16 kHz, and the quantization was 16-bit linear. An Ariel Pro Port 656 converted the
digital samples into an analog waveform, and the pre-amp of a Sony 59ES DAT
recorder drove TDH-49P earphones. Tests were performed in a double-walled
sound-isolated chamber. Stimuli were presented binaurally with identical
waveforms to each ear. The system was calibrated by measuring the response to
digitally synthesized sine-waves using a 6-cc coupler and a Larson-Davis 800B
Sound Level Meter. Pre-amp levels and digital internal level offsets were set to

place an 80 dB SPL 1kHz tone within 0.2 dB. A linear-phase FIR equalization filter
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was adjusted until pure tones from 125-7500 Hz measured within 0.5 dB.

2.2.2 Results

Figure 2.2 summarizes the average threshold increase (circles) across the

five subjects as a function of masker level with probe delay as a parameter. The solid

lines in Figure 2.2 indicate the model’s fit to the forward masking data.

derivation of the model is described in the following sections.
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Figure 2.2 Average forward masking data (circles), and std. dev. (error bars),
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together with the model fit (lines) as a function of masker level across 5 octaves,
with probe delays of 15, 30, 60, and 120 ms as a parameter.
2.2.3 Modeling Implications

The amount of forward masking (in dB) decays as a straight line as a
function of the logarithm of the probe delay (first described in [Plomp 1964]). A
straight line with respect to logarithmic probe delay can be approximated by an
exponential with respect to linear probe delay. This suggests additive exponential
adaptation in dB.

Figure 2.3.A plots the threshold increase as a function of probe delay, and
Figure 2.3.B shows the effective dynamic range below masker, defined as the
difference between the masker and probe threshold levels, as a function of masker
level. Figure 2.3.A shows that the rate of decay of the forward masking (shown on
a log time scale) increases with an increasing amount of masking. These data may
suggest different adaptation rates for different masker intensities, or complexity
beyond a simple exponential adaptation of dB level. Such complexity is not
necessary. The adapting mechanism derived below has a greater initial distance to
target after a more intense masker offset. Exponential processes decay more quickly
over the same amount of time when the output is further from the final static target.
Therefore, a simple exponential dynamic mechanism can predict a faster rate of
decay of forward masking with more intense maskers.

Figure 3.B shows that even at short delays the dynamic range below masker

39



depends on the level of the masker. At short delays there is little to no time for
adaptation. Without time for adaptation, the static characteristics of the dynamic

mechanism determine the forward masking threshold.
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Figure 2.3 Average forward masking data at 1kHz: (a) as a function of the log delay
with masker level as a parameter; and (b) as the dynamic range below masker as a

function of the masker level with probe delay as a parameter. The dotted line reflects
the probe threshold in quiet.

2.3 From Experimental Results to Model

Parameters

In the perceptual model, a dynamic adaptation stage follows each output of
a linear filter bank. At each point in time, each adaptation stage slowly adjusts an
internal offset to move its output incrementally closer to an 1/O target.

The dynamic adaptation stages are referred to as automatic gain control
(AGC). However, it is significant that the AGC is implemented as an adapting

additive offset to the log energy of the signal, and not as an adapting multiplicative
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gain. There are at least two points that appear to require additive, and not
multiplicative, adaptation. First, the measured incremental neural response to a
second onset after partial adaptation to a first is not proportional to an adapted
amount of multiplicative gain [Smith and Zwislocki 1975]. Second, AGC that
adjusts a multiplicative gain proportional to the linear distance to the 1/O target does
not predict a higher rate of decay of forward masking for greater amounts of

masking.

2.3.1 AGC: I/O Curves, Attack and Release Times
Time constants describing the rate of adaptation for the dynamic

mechanisms are defined as the time required for the logarithmic distance to target
to reduce by a factor df/e Different time constants are used for attack (decreasing
offset), and release (increasing offset). Over short durations, the AGC stage has
little time to adapt, and is therefore nearly linear. On an 1/O curve, when the input
changes abruptly, the output initially tracks the input, moving in nearly a 45 degree
line. Over long durations with static inputs, the output approaches the 1/O target.

Figure 2.4.A shows a prototypical 1/0 curve for a single channel in the
dynamic model. At low levels, the I/O function is nearly linear, over normal levels
it is compressive, and at extremely high levels it is again linear. The general shape
of the prototypical I/0O curve was motivated by the saturating response of the basilar
membrane [Johnstone et al. 1986]. For each adaptation stage, a fixed internal

threshold, corresponding to the static audibility threshold, is imposed at the
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compression threshold. Similarly, the compression region ends, and the model
again becomes linear, at a high level of equal loudness (near 90 dB SPL) as a
function of the center frequencies of each adaptation stage. By carefully choosing
the threshold and I/O curve for each adaptation stage, the AGC sections map a
specified static input range as a function of center-frequency into a normalized

internal level consistent with constant loudness contours.
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Figure 2.4 (A) A prototypical I/0O curve for a single channel in the dynamic model;
and, schematic output trajectories corresponding to a level change at three different
rates for (B) decreasing inputs from 80 to 30 dB SPL, and (C) increasing inputs
from 30 to 80 dB SPL.

Figure 2.4.B-C schematically show the response of the model to decreasing
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and increasing inputs, respectively. When the input changes abruptly, the trajectory
on the I/O curve moves nearly in a 45 degree angle, and then eventually settles to
the target on the I/O curve. When the input changes slowly, the output trajectory

follows the 1/0O curve more closely. The model predicts forward masking when

output trajectories momentarily fall below the internal threshold, as in Figure 2.4.B.

2.3.2 Derivation of Model Parameters

The model’s forward-masking prediction is derived from the response of the
dynamic mechanism to forward-masking stimuli. When the output of the adapting
(dynamic) mechanism is just at threshold during the onset of the probe, the model
predicts a forward-masking threshold.

To simplify the model and this derivation, a constant 1/O slope is imposed
across the compressive region. Figure 2.5 describes the geometries necessary to
measure the model’s prediction of the forward masking threshold with long maskers
as a function of masker level and probe delay. Before the masker offset, the output
trajectory reaches the target on the 1/O curve (point A in Figure 2.5). As the masker
shuts off abruptly, the output trajectory instantly falls along the diagonal (from A to
B). Once the trajectory is below the compressive region, the distance to target is
constant, and the model adapts by slowly increasing toward maximum additive
offset (from B toward C). At some point during this adaptation (point C), the onset
of the probe causes an abrupt transition from below threshold back up along a new

diagonal (from C to D). If the probe level is intense enough to place the trajectory
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above threshold (at the instant of the probe onset) the probe is audible. If the internal
level just reaches threshold, the model predicts a forward masking threshold (at

point D).
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Figure 2.5 Geometry to derive recovery (upward adaptation) parameters from
forward masking thresholds.

Incremental adaptation of the model is implemented using a (non-constant
coefficient) first-order difference equation leading to an exponential decay of the
logarithmic distance to target. From the geometry in Figure 2.5, the probe level at

thresholdP as a function of masker lev#l, discrete-time probe delay 1/0 slope
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m, and incremental adaptatianis:

P=M({1-m)a" ,

whereP andM are both referenced to the static threshold. Instantaneously, or with
no delay ( ~0), the model predicts a short-term dynamic range below masker (

- Pp) equal to the vertical distance between the static 1/0 curve and threshold:

M—-P, = M—M(1—-m) = Mm

Therefore, the data points at the shortest delay (Figure 2.3.B) provide an
approximation for the 1/O slope parametar An iterative procedure was used to
minimize the total MSE between the model predictions of the probe thresholds and
the average forward masking data for all data points at each center frequency, as a
function of the two model parametera and a. The total MSE is relatively
insensitive to the 1/0O slopen, compared to the adaptation parameaei,herefore,
the initial estimate omfrom the short-delay conditions was averaged with the value
that minimizes total MSE, to determine a final estimate. A second MSE
minimization as a function of only, determined the final estimate.

Geometries necessary to derive attack (downward adaptation) parameters
are described in Figure 2.6. Before the onset of the masker, the model reaches the
static threshold (at point A in Figure 2.6). At the abrupt masker onset, the output
trajectory translates diagonally upward (from A to B) and then slowly drops toward

the 1/O target as the model adapts (from B to C to D). If the duration of the masker
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is short relative to the downward time constant, the trajectory will not reach the 1/0
target by the time of the abrupt masker offset (point C). In response to the masker
offset, the output trajectory corresponding to the short masker moves diagonally
(from point C), crossing the internal threshold at a lower point than the trajectory
corresponding to the longer masker (from point D). After brief recovery during a

short probe delay, the model predicts less forward masking from the short-duration

masker.
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Figure 2.6 Geometry to derive attack (downward adaptation) parameters from
forward masking thresholds as a function of masker duration.

Following incomplete downward adaptation (or attack), and as a function of
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the attack parametds, discrete-time masker duratiovd and probe delayu, the

model predicts a probe threshold of:

P = M(1-m)(1-bnd)anu

The probe threshold differena®?, between short and long masker durations is:

AP = M(1-m)bndanu

The probe threshold difference equation was solved for the model parameter
b, and then its value was estimated from the differences reported in [Kidd and Feth
1982], using then anda parameters derived above.

Two versions of the dynamic model were implemented: a full-rate system
and a down-sampled version. The full-rate system uses rounded exponential filter
shapes [Glasberg and Moore 1990], and then adapts the envelope of each filter
output at the full sampling rate. The down-sampled system obtains Mel-scale power
spectrum estimations every 10 ms by weighting and adding power spectrum points
from an FFT, and then adapts these outputs at the down-sampled rate. On an HP715
workstation, the down-sampled system runs at 0.43 times real time, while the full-
rate implementation requires 9.4 times real time. All evaluations included here use
the down-sampled implementation.

Table 2.1 summarizes the model parameters and adaptation time constants
across frequencies. Thaandb terms are with respect to a 100 Hz spectral sampling

rate (or frame rate). Adaptation stages with center frequencies between measured
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points use a weighted average of neighboring parameters. Attack time constants are
approximately 3-4 times shorter than release time constants. These times, and more

accurately their ratio, approximate those derived from physiological data [Goldhor

1985].
Table 2.1 Adaptation Parameters
release attack
Freq. Hz Slopen a b (ms) (ms)

250 0.19 0.864 0.474 68 13
500 0.20 0.854 0.510 63 15
1000 0.26 0.816 0.543 49 16
2000 0.29 0.851 0.525 62 16
4000 0.34 0.858 0.507 65 15

Figure 2.7 shows the model’s prediction of the decay of masking at 1 kHz.

Note that the decay rate of forward masking is greater with more intense maskers,
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and that the decay is nearly linear with logarithmic time.
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Figure 2.7 The model’s prediction of the decay of forward masking as a function
of masker level at 1 kHz: A) with a linear time reference and B) with a logarithmic
time reference.

Figure 2.8 shows two examples of the model’'s behavior at 1 kHz. Figure
2.8.A shows the response to two consecutive pulses. The model adapts in response
to the onset of the first pulse, and the response to the onset of the second pulse rides
on top of the partial recovery from adaptation. Figure 2.8.B shows forward-masking
examples. The model starts adapting at the onset of the long pulse, and then
recovers after its offset. Lower-intensity impulses following the long pulse,
corresponding to potential probe onset points, again ride on top of the model's
recovery from adaptation to the pulse. The responses to the impulses are initially

below threshold (masked) and with time, rise above threshold.
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Figure 2.8 Adaptation to, and recovery after, a pulse: (A) The response to the
second pulse is diminished; and (B) Impulses, corresponding to onsets, are initially
masked (similar to figures in [Goldhor 1985]).

Figure 2.2 includes the model’s fit to the average forward-masking data. The
computational model approximates forward masking data for a wide range of
masker levels and probe delays across several frequencies. The standard deviation
of the error is: 2.7, 2.9, 3.2, 3.1, and 2.4 dB, at 250, 500, 1k, 2k, and 4k Hz,
respectively. Most notably, however, the model consistently underestimates forward
masking at the shortest probe delays. At least two factors contribute to this error.

The exponential derivation assumes the 15 ms delay between the masker

and probe is silence. This assumption provides the maximum possible distance to
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target during the 15 ms, the maximum amount of recovery, and the lowest
prediction of forward masking. In fact, the stimuli had 5 ms of offset, 5 ms of
silence, and 5 ms of onset during this interval. Any non-silence during the 15 ms
delay decreases the distance to target, reduces the amount of recovery, and increases
the estimation of forward masking. Ignoring the finite onsets and offsets reduces the
model’s predictions of the amount of forward masking at short delays.

In this derivation, forward masking is assumed to occur when insufficient
auditory recovery keeps the response to the probe below threshold. However, at
shorter (near zero) delays, with extremely similar maskers and probes, the probe
may only be audible as a change in level at the end of the masker [Moore and
Glasberg 1983], and not as a separate event. Even though the response to the probe
is above threshold, the subject may not distinguish the probe from the masker, and
therefore not detect the probe. Because the derivation requires the model’s response
to the probe to be below threshold to be masked, it underestimates the amount of

forward masking especially at short delays with intense maskers.

2.3.3 Predicting Other Data

Figure 2.9 shows the model’s predictions of previous forward masking data.
Figure 2.9.A shows the model’s prediction of average data with wide-band stimuli
[Plomp 1964]. These data provide relatively complete measurements of forward
masking across level and delay. In the results shown in Figure 2.2, there is only

slight variation of forward masking with frequency. Because the adapting response
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of the model to wide-band stimuli approximates the response at middle frequencies,

the wide-band data were predicted using the model parameters derived from the

1kHz data. Although the model underestimates these data, the trends are consistent.
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Figure 2.9 Using the model to predict other forward masking data: (A) wide-band

masker and probe [Plomp 1964]; (B) wide-band masker, sinusoidal probe at 1kHz
[Moore and Glasberg 1983]; (C) sinusoidal masker and probe at 1kHz [Jesteadt et
al. 1982]. (D) The equation provided in [Jesteadt et al. 1982] predicting the present

data.

Figure 2.9.B and C show the predictions for wide-band and pure-tone

maskers of 1 kHz pure tones,

respectively [Moore and Glasberg 1983, Jesteadt et al.

1982]. These measurements were made only at relatively short delays. Authors have

historically disagreed on how to specify delay in a forward masking experiment
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[Plomp 1964]. Here delay is measured between the envelope peaks, while [Jesteadt
et al. 1982] used zero-voltage points, and [Glasberg and Moore 1983] chose half-
voltage points between the masker and probe offset. The present study used 5 ms
ramps, [Glasberg and Moore 1983] used 10 ms, and [Jesteadt et al. 1982] used 5 ms
for the masker and 10 ms for the probe. To compensate for these differences 2.5 ms
is subtracted from the delay reported in [Jesteadt et al. 1982], and 10 ms is added to
the numbers in [Glasberg and Moore 1983]. The masker level in the 1kHz band for
the wide-band masker is determined by the energy in the critical band [Zwicker and
Terhardt 1980] centered at 1 kHz. Although comparisons are only possible at
relatively short delays, the model overestimates the amount of masking by wide-
band noises, and underestimates masking by pure tones. Once parameterized,
however, the simple dynamic mechanism approximates dynamic psychophysical
responses.

Figure 2.9.D shows the prediction of data from this study by an equation

proposed in [Jesteadt et al. 1982]

P = a(b-logAt)(M —c)

P andM are the levels of the probe and masker above threshold, and the constants
a, b, andc are chosen to fit the average forward-masking data at 1kHz in [Jesteadt
et al. 1982]. Even though the parameters in this equation were chosen from a data

set that did not include measurements at the longer delays used in this study, it
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provides an excellent prediction of the present data.

2.3.4 Other Models Predicting Forward Masking

Other auditory models have been derived which, in general, provide a better
fit to forward-masking data. Most, however, do not readily extend to a general
processing scheme suitable for an ASR front end. For the dynamic mechanism
derived in this paper, a signal is masked when the response is below threshold. To
fit forward-masking data, other models typically parametrize a decision device, and
thereby impose explicit interpretations of the front end’'s response. If the
parameterized decision device is removed to use the auditory model for an ASR
front end, it is less clear how the recognition system would correctly interpret a
masked signal.

Forward, backward, and forward/backward masking combinations have
been predicted with great precision assuming a relatively standard model of
filtering, rectification, power-law compression, temporal integration and a decision
device [Oxenham and Moore 1994]. In its original derivation, however, there was
no mechanism to account for the level-dependence of forward masking. Either the
temporal window shape [Oxenham and Moore 1994], or the power-law
compression [Oxenham and Plack 1996] may vary with level. The decision device
required an unusually high minimum detectable temporal amplitude variation of 6

dB, which may not extend well to a general processing scheme. Finally, if forward
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masking is entirely a consequence of temporal integration, physiological
measurements of adaptation are ignored, and there is no mechanism which explains
physiological and perceptual sensitivity to onsets and transitions.

Other researchers have proposed models using adaptation mechanisms to
explain forward masking [Shannon 1990, Dau and Pueschel 1996a-b]. The first of
these [Shannon 1990] uses a modified version of a previous model [Zwislocki 1969]
which includes filtering, envelope detection, power-law compression, rapid and
short-term adaptation, and long-term integration. The long-term integrator is
bypassed in forward-masking tasks. Immediately following a stimulus, the model
assumes that there is no rapid onset component in response to a probe, that this
component recovers exponentially with time, and that the relative level of this
component is used to determine forward masking. The model is somewhere
between a complete processing mechanism and an equation summarizing
psychophysical responses, and therefore, is also difficult to incorporate into ASR
systems. The exponential recovery of the rapid onset component has similarities to
the exponential adaptation used in the dynamic mechanism described in this paper.

Dau and Pueschel [1996a-b] have also developed a general auditory model
which together with an ‘optimal decision device’ predicts well a wide variety of
psychophysical data. In each channel, the model uses linear filtering, half-wave
rectification, and low-pass filtering, followed by five adaptation stages and a low-

pass filter. The output is correlated with templates that store the model’'s response
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to other (masker-only) conditions to predict masking thresholds, imposing a
relatively complex post-processing mechanism to fit the data. The model provides
a dynamic spectral representation of speech which is likely to improve recognition
robustness; potential application improvements may warrant the significant

computational complexity.

2.4 Peak Isolation

Both speech perception and the response of individual auditory nerves are
extremely sensitive to the frequency position of local spectral peaks. There are
several mechanisms, and corresponding modeling approaches, which may explain
this sensitivity. Physiologically motivated by the local fan-out of the neural
connections to outer hair cells, [Lyon 1982] suggests cross-coupling AGC stages to
improve static spectral contrast, providing functionality similar to the higher-level
lateral inhibitory network in [Wang and Shamma 1994]. Significant effort [Lyon
1984, Seneff 1988, Ghitza 1991] also focuses on modeling how the auditory system
derives, and makes use of, redundant temporal micro-structure. Auditory nerves
with center frequencies as far as an octave away from a local spectral peak can
synchronize their response to the frequency of the peak, providing a composite
neural representation dominated by that frequency [Delgutte and Kiang 1984].
Similarly, perceptual discrimination of vowels is more sensitive to the frequency
location of spectral peaks than to other aspects of the spectral shape [Klatt 1982].

These data suggest that the auditory system may derive a noise-robust
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representation by attending to the frequency locations of local spectral peaks.
The dynamic model was also evaluated with a novel processing technique,
based on raised-sin cepstral liftering [Juang et al. 1987] together with explicit peak
normalization, which isolates local spectral peaks. Raised-sine cepstral liftering is
weighting the cepstral vector by the first half-period of a raised-sine function.
The cepstral vector is an expansion of the even log spectrum in terms of

cosine basis functions. Tlog term specifies the log-spectrum average,dhterm

approximates the log-spectrum tilt, etc., and high cepstral terms represent quickly-
varying ripples across the log spectrum. Weighting the cepstral vector specifies the
relative emphasis of different types of log-spectrum variations. A raised-sine lifter
de-emphasizes slow changes with frequency associated with overall level and vocal
driving-function variations, as well as fast changes which may reflect numerical
artifacts [Juang et al. 1987].

It is helpful to view the effects of cepstral liftering in the log spectral
domain. Figure 2.10.a starts with the log spectrum, from a vowel [i], implied by a
truncated cepstral vector. Figure 2.10.b shows the log spectrum implied after raised-
sine cepstral liftering. The average level as well as slow (and fast) variations with
frequency are de-emphasized, leaving components that change with frequency. This

process emphasizes both spectral peaks and valleys.
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Figure 2.10 Peak isolation processing: log spectrum of the vowel [i] after (a)
cepstral truncation; (b) raised-sine cepstral liftering; and (c) half-wave rectification

and peak normalization.

The valleys are removed by half-wave rectifying the log spectral estimate
implied after raised-sine liftering, and a final vector is obtained by transforming
back to the cepstral domain. Because the half-wave rectifier is non-linear, explicit

transformation from cepstrum to log spectrum (processing through the rectifier) and
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then transformation back to cepstrum are required. The raised-sin lifter also affects
the magnitude of the peaks. Therefore, before transforming back to the cepstrum,
peaks are scaled to the level measured in the original log spectrum. The final peak-

isolated estimation is shown in Figure 2.10.c.

2.5 Conclusion

Two mechanisms are described to modify the sequences of spectral
representation used for speech recognition. The first is a (post-logarithm)
exponential adaptation mechanism which is parameterized to approximate forward
masking data. Adaptation leads to relatively stronger responses to onsets and
spectral transitions, improving spectrotemporal contrast across time. The second,
based on cepstral liftering, isolates local spectral peaks and improves
spectrotemporal contrast across frequency.

Figure 2.11 shows spectrogram representations for the digits “nine six one
three” at two signal to noise ratios and for three different processing strategies. The
first representation uses Mel-frequency cepstral coefficients (MFCC, described in
Chapter 1), the second adds adaptation, and the third includes peak isolation.
Recognition evaluations described in Chapter 5 show increased recognition

performance in noise using these representations.
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Figure 2.11  Spectrogram representations for three processing strategies: left
column is at 30 dB SNR, rightis 5 dB SNR; top spectrograms use MFCC, middle
includes adaptation, and bottom also includes peak isolation.
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Chapter 3

Parameterizing the Position and

Motion of Local Spectral Peaks

3.1 Background and Motivation

The eigenfunctions of a resonating vocal tract are manifested acoustically
as formants in speech. The analysis of formants has provided significant insights
into speech production mechanisms, and motivation for speech coding algorithms.

Referring to ASR in 1981, D. Klatt wrote [Klatt 1981]:

“These schemes will succeed only to the extent that metrics
can be found that are (1) sensitive to phonetically relevant spectral
differences such as those caused by formant frequency changes, and
(2) relatively insensitive to phonetically irrelevant spectral

differences associated with a change of speaker identity or recording
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conditions.”

Although various compensation schemes for changing acoustic
environments are often used, the predominant characterization of speech for
statistical speech recognition is based on sequences of short-time (10-20 ms)
spectral estimations, which characterize the coarse spectral envelope of each
successive frame [Rabiner and Juang 1993]. This representation is aniylasit
characterization of the formant structure of speech, and as such, does not provide
direct access to the phonetically relevant formant motion described above. Explicit
characterizations of speech dynamics typically focus on the motion of the cepstral
representation of the short-time spectral estimates [e.g. Deng 1994, Deng et al.
1994], and thereby parameterize changes in the ‘complete’ spectral shape and not
the specific (potentially robust) formant motion.

More direct formant tracking usually involves first identifying local spectral
peaks in a sequence of spectral estimations [Schafer and Rabiner 1970, McCandless
1974]. Alternatively, Teager energy operators [Maragos et al. 1993, Foote et al.
1993, Hanson et al. 1994, Potamianos and Maragos 1996], Hilbert Transforms and
Wigner Distributions [Rao 1996], as well as changes in the cross-correlation of the
temporal fine-structure between neighboring auditory frequency channels [Deng
and Kheirallah 1993] have been used to identify formant frequencies in speech.
Formant tracks are then pieced together using heuristics [Schafer and Rabiner 1970,

McCandless 1974], hidden Markov models [Kopec 1986], or the minimization of a
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cost function [Larpie and Berger 1994]. The two-stage process has also been
collapsed to one using extended Kalman filters [Rigoll 1986, Niranjan et al. 1994].
Unfortunately, formant tracking systems are often non-robust; they are only
occasionally evaluated in noise, and are almost never tested in the context of an
ASR task.

The processing schemes described in Chapter 2 enhance the representation
of spectral dynamics and more specifically changing spectral peaks. While such
sensitivity may be phonetically relevant, the characterization of the formant motion
is still implicit. Formant motion is only weakly characterized by the temporal
derivative of the overall spectral estimate, and by the sequence of underlying states
in the statistical model. Neither of these is a direct characterization, and neither
provides an obvious means to exploit the dominant frame-to-frame correlations of
local spectral peaks. Finally, context dependent spectral representations may, in
general, be poor matches to ASR algorithms which rely on the characterization of
segmentally stationary statistics. A more direct parameterization of the motion of
spectral peaks, on the other hand, may prove to be a better match.

In essence, the algorithm described here introduces a simple and robust
form of formant tracking, and augments the frame-based feature vector used for

ASR with an explicit parameterization of the formant position and motion.

3.2 The Algorithm

The algorithm described in this chapter builds on that of Chapter 2. A block
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diagram of the processing stages in the algorithm is shown in Figure 3.1. While the
initial filtering and subsequent liftering are processed at the sampling rate (11025
samples/sec), the remaining processing occurs at the down-sampled frame rate (100

frames/sec) and has a lower order of computational complexity.
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Figure 3.1 Overview of processing stages.
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3.2.1 Filtering and Adaptation

The filtering stage, after [Davis and Mermelstein 1980], is implemented by
integrating power spectrum estimates weighted by triangular filters that have
bandwidths of 100 Hz for center frequencies below 1 kHz, and bandwidths of 0.1
times the center frequency above 1 kHz. The resulting frequency resolution is
therefore linear below 1 kHz, and logarithmic above 1 kHz.

The adaptation stage for each frequency channel acts as an automatic gain
control which incrementally adjusts an additive logarithmic offset to reduce the
distance to a target input/output point. Adaptation emphasizes onsets and represents
changing spectral peaks more strongly than static ones. Together, these two stages
significantly affect how spectral peaks are identified and processed in subsequent
stages. Figure 3.2.A includes a spectrogram of four digits, “nine six one three,” at

10 dB SNR, after filtering and adaptation.

3.2.2 Peak Isolation

Local spectral peaks are first identified independently in each frame by
finding the local maxima in the log-spectral estimate, after raised-sin cepstral
liftering [Juang et al. 1987]. For each peak, the frequency position and log
magnitude are stored. Because the raised-sin cepstral lifter alters the level of the
local spectral peak, the log-magnitude value is taken from the corresponding
frequency position in the spectral estimate before raised-sin liftering.

In Figure 3.2.A, note the relatively strong temporal correlation between the

65



frequency positions of the local spectral peaks through formants and formant

transitions.
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Figure 3.2 Peak positions and motion: A) Initial peaks identified after cepstral
liftering; B) Neighboring peaks grouped to threads; C) Tracking three frequency
positions; and D) Three frequency derivatives.
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3.2.3 Threading Peaks

This is the first of two stages which group peaks based on their spectro-
temporal proximity. The task is to connect the spectral peaks together in time into
threads and the approach used here is a form of dynamic programming. Each peak
(in each frame) is connected to the closest thread that extends into at least one of the
last two frames. If the frequency distance to the closest thread is greater than
approximately 10% of the total (warped) frequency range, then a new thread is
started. If no peak connects to the end of a given thread for two successive frames,
then that thread is ended. Figure 3.2.B shows a moving seven-point (70 ms) second-
order polynomial fit to each resulting thread. For each thread that includes at least
four peaks, the temporal derivative as implied by the moving second-order

polynomial is also stored.

3.2.4 Choosing Three Peaks

The second stage imposes a structure on the threads enabling a more
systematic characterization, and also attempts to reduce their variance. Threads
from the first stage start and end somewhat randomly, which makes storing them for
analysis or comparison not obvious. Also, there is significant variance in the
reliability of the thread measurements. That is, dominant formant transitions are
tracked more reliably than small peaks in background noise.

The second stage limits the representation of the threads to three peaks in

frequency for each frame. Three newacks centered at relatively low, medium, and

67



high frequencies, are used to represent the information from the threads. The log
magnitude of the original spectral peak is used when integrating frequency
positions and derivatives from the corresponding thread. This introduces an inertial
response that updates more quickly to information from more dominant peaks.

In the implementation, each track is assigned a center frequency, or DC
offset. The three center frequencies are equally spaced on the warped frequency
scale. At each frame the frequency position of the track incrementally adjusts
toward the closest thread in that frame. The increment of adjustment is a sigmoidal
function of the magnitude of the thread. The equation that describes this adjustment
is:

fin] = a p[n] + (1-a)(0.9f[n-1] + 0.1f),
wheren is the frame index[n] is the frequency of the track[n] is the frequency
of the nearest peak, is the center frequency or DC offset, and the variab&hich
controls the rate of the increment, is a sigmoidal function of the log magnitude of
the peak. Ignoring the DC offset, the equation describes a non-constant coefficient
first-order low-pass filter. The sigmoid maps log magnitude to the appropriate (0,1)
interval, so that the filter changes from low-pass to all-pass. Because the log
magnitude of the peak is measured after the adaptation stages, transitions and
onsets, in general, incur the most abrupt track changes.

An identical structure is used to track the frequency derivatives of the

threads. For each of the three tracks, the current frequency derivative estimate is

68



incrementally updated to the derivative measured at the closest peak. The size of the
increment is a sigmoidal function of the log magnitude of the peak. A final (fixed)
low-pass filter with a -3dB point of just over 15 Hz is applied both to the three
frequency tracks, and to the three derivatives. Figure 3.2.C shows the final
frequency positions for the three tracks, and Figure 3.2.D shows the frequency

derivatives.

3.3 Discussion

This parameterization of the motion of local spectral peaks differs from
more traditional formant tracking [e.g. Schafer and Rabiner 1970, McCandless
1974] in several ways. The initial filtering and adaptation greatly influence the
resulting spectrotemporal representation. The frequency resolution is warped to a
perceptual scale, and signal dynamics play a significant role in determining which
peaks are identified. The two-stage process to identify the final tracks is aimed at
identifying the robust, slowly-varying information which is likely to be highly
correlated with underlying articulator motion. The tracking process also includes an
inertial component dependent on the magnitude of the (adapting) response of the
peak. Initial frequency derivative estimates are calculated before the imposition of
explicit frequency ranges, reducing the influence of artifacts from these heuristics
on the derivative estimates. Finally, by limiting the representation to three peaks
with centers equally-spaced on the warped frequency scale, some of the

complications introduced by the merging and splitting of higher formants are
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avoided. A simplified task may lead to a more robust system.

3.4 Conclusions

This chapter describes a processing scheme which attempts to parameterize
the phonetically relevant information represented in formant position and motion.
In essence, the threading described represents a grouping of spectrotemporal
patterns as an early stage of auditory scene analysis. Instead of extracting
information directly from individual spectral estimates, the current approach
imposes a structure which extracts information from the spectrotemporal
relationships between dominant spectral peaks. Chapter 6 includes further
discussion of how this type of early scene analysis may help explain other current
challenges for psychoacoustic modeling of non-stationary sounds.

Detailed descriptions of recognition evaluations using the final frequency
positions and derivatives are presented in Chapter 5. When augmenting the
processing in Chapter 2, the current representation eliminates roughly 30% of the

previous recognition errors.
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Chapter 4

Modeling the Perception of Amplitude

Modulation

Currently, most ASR systems integrate spectral estimates over multiple
pitch periods and remove explicit pitch and voicing information. However,
amplitude modulation cues in voiced speech provide a robust and salient pitch
perception which may be instrumental for recognizing speech in noise. In this
chapter, three psychoacoustic models are used to predict the temporal modulation
transfer function (TMTF) [Viemeister 1979] and the detection of voicing for high-
pass filtered natural fricatives in noise. Models using an envelope statistic and
modulation filtering predict the TMTF data, while predictions from a model using

a summary autocorrelogram approximate both data sets.
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4.1 Motivation

During voiced speech, vibrating vocal folds excite time-varying resonances
of the vocal tract. Given a sequence of feature vectors representing log-magnitude
spectral estimates of vocal-tract transfer functions, most ASR systems use a
hierarchy of non-stationary stochastic models operating at the progressively slower
rates of the speech analysis frame (10-30 ms), phoneme, word, phrase, and even
sentence, to determine what was most likely said [Rabiner and Juang 1993]. More
relevant to the current study, these systems do not use pitch or voicing information.

Instead, the signal processing for feature vector extraction, usually reflects
some form of deconvolution, attempting to isolate vocal-tract transfer-function
estimates from the influences of the driving function. Linear prediction, for
example, is used with a predictor polynomial that is significantly shorter than the
expected glottal periodicity. Similarly, when homomorphic analysis is used for
ASR, the high-quefrency cepstral terms, which can represent the periodic ripple
across the spectral estimate resulting from a harmonic driving function, are ignored.
Finally with the currently popular Mel-frequency cepstral coefficients (MFCC), the
initial spectral estimate is first averaged (in time) over multiple pitch periods and
then integrated across frequency to obtain a first-order approximation of auditory
frequency selectivity. The output is then compressed by a logarithm, and finally the
discrete cosine transform provides some decorrelation of the log-magnitude

spectral estimate across frequency. Higher-order terms in the resulting cepstral
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vector are again ignored. Integrating across time and frequency reduces the variance
of the spectral estimate, and together with the truncated cepstral vector, nearly
eliminates any periodic source information.

Deconvolution is an important step for isolating the phonetic information
about ‘what was said from aspects of the prosodical information more concerned
with “how it was said But as the first processing stage of current systems, it is most
likely eliminating large parts of the perceptually salient information that humans
use to identify and recognize speech in naturally noisy environments.

Speech communication has evolved to be robust in noise. Redundancies are,
therefore, ubiquitous. Perceiving speech in noise requires an intelligent use of the
potentially unreliable, but redundant, multi-dimensional cues spread over wide-
ranging time scales. While deconvolution must occur somewhere in the recognition
process, blindly eliminating a potential wealth of redundant cues may not be
appropriate for the first stage. More plainly, rigid blind deconvolution in the first

stage is unlikely to be optimal.

4.1.1 Pitch Perception

Processing voicing information in speech requires analyzing the harmonic
structure associated with a quasi-periodic vocal driving function, and might
therefore be considered as an aspect of pitch perception.

In 1951, Licklider proposed a duplex theory to explain many aspects of

pitch perception, including the perception of the missing fundamental (or residue
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pitch), and the pitch of modulated noise [Licklider 1951]. Briefly, Licklider
envisioned neural machinery which measured the running temporal autocorrelation
in each auditory frequency channel. Pitch perception correlated to the common
periodicities measured across channels.

In 1984 Lyon was able to simulate an implementation of the duplex theory,
labeling the graphic output eorrelogram[Lyon 1984]. Since then, Meddis and
colleagues [Meddis and Hewitt 1991a-b, Meddis and O’'Mard 1997] have
formalized the simulations and included a final stage that adds the running
autocorrelations across each channel generatsganary correlogramCariani
and Delgutte have also shown that similar processing of measured auditory nerve
impulses is sufficient to predict many classical pitch perception phenomena
[Cariani and Delgutte 1996a-b]. Finally, other researchers have replaced the
autocorrelation function with different mechanisms that measure temporal intervals
in each auditory channel [e.g. Patterson 1992, Ghitza 1991, de Cheveigne 1998].

In general (and as shown in Licklider’s original sketches achieved without
the aid of computer simulation), simulations using these models provide a graphical
output that correlates well to pitch perception. The time lag for the peak in the
summary correlogram is usually found to be the reciprocal of the frequency of the
perceived pitch, and the height of the peak may correlate to qualitative pitch-
salience, or pitch strength. With few exceptions however, the models are not used

to predict psychoacoustic just-noticeable-differences (jnds) with general stimuli.
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Together with the lack of a clearly identified physiological substrate for the
implementation of the required timing measurements, this line of research remains

somewhat ‘open-loop.’

4.1.2 Perception of Amplitude Modulation

Processing voicing information in speech might also be considered an
aspect of amplitude modulation perception.

In 1979, Viemeister applied a linear systems approach to the detection of
acoustic envelope fluctuations [Viemeister 1979]. His model was first fit to data
describing the detection of sinusoidal amplitude modulation of wideband noise, and
then used to predict the detection of other harmonic envelopes. Motivated by the
close relationship between standard deviation and autocorrelation, Viemeister’s
model used the standard deviation of a demodulated envelope as the statistic to
predict human performance. Although this measure does not characterize the
perceived pitch of the amplitude modulation (the standard deviation measures the
magnitude and not the rate of envelope fluctuations), a more complicated simulation
involving autocorrelation was not necessary to predict the detection data. More
recently, this model has been extended to predict other amplitude modulation
detection data [Strickland and Viemeister 1996, Strickland and Viemeister 1997].

In 1989, Houtgast measured modulation masking that suggested explicit
neural modulation filtering [Houtgast 1989]. Narrow bandwidth noise modulators

were found to mask the perception of sinusoidal modulators, in a manner similar to
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the spectral masking of tones by narrow-band noises. Modulation tuning has also
been measured physiologically [e.g. Langner 1992]. However, other modulation

masking experiments using sinusoids have been less conclusive [Strickland and
Viemeister 1996, Bacon and Grantham 1989]. Nonetheless, a model of modulation
filtering has been implemented and shown to correlate to many aspects of amplitude
modulation perception [Dau et al. 1997a-b].

In essence, modulation filtering replaces the single low-pass filter in the
envelope statistic model with a second bank of filters. The modulation filtering
simulations here also include a better approximation of auditory filtering than the
single band-pass filter used in the envelope statistic model.

Therefore, there are at least three modeling approaches which may be
helpful for analyzing the periodic envelope fluctuations in voiced speech:
autocorrelation or interval-based temporal processing, the measurement of an
envelope statistic, and explicit modulation filtering. To choose between them,
implementations of each were first fit to predict TMTF data, and then each was used
in a case study to predict the discrimination of voicing for strident fricatives in

noise.

4.2 Strident Fricative Case Study: [s] and [z]

Fricatives are generated by forcing air through a sufficiently narrow
constriction in the vocal tract to generate a turbulent noise-like source. With voiced

fricatives, the vocal folds also vibrate adding low-frequency energy at the first few

76



harmonics of the fundamental frequency. The relative level of the first harmonic,

compared to that of the adjacent vowel, has been shown to be a good indicator for

voicing distinctions with fricatives [Stevens et al. 1992, Pirello et al. 1997].

Here, the strident fricatives [s z] with the vowels [a i u] were recorded as CV

syllables from four talkers. Figure 4.1 compares average log-magnitude spectral

estimates for [s] and [z]. The voiced [z] has low-frequency energy not presentin [s].
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Current ASR systems would use the presence of low-frequency spectral
energy to discriminate these sounds. However, there are situations where this
particular difference can be obscured: e.g. a high-pass channel or a competing low-
pass noise.

Figure 4.2 shows examples of the temporal waveform for [s] and [z], after
each has been high-pass filtered above 3 kHz. Without low-frequency spectral
components, the low-frequency pitch-rate information is represented in the
envelope of the high-frequency noise-like carrier. These figures provide evidence
that the vibrating vocal folds can modulate the pressure source that drives the
turbulence for a voiced fricative. The modulated noise source leads to a potential
redundant cue of voicing in a spectral region with significant speech energy. ASR
systems that integrate spectral estimates over multiple glottal periods do not
distinguish these sounds, while listeners, on the other hand, distinguish them at low

signal to noise ratios (see Section 4.4).
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Figure 4.2 Examples of temporal waveforms after high-pass filtering.

4.2.1 Perceptual Measurements

To measure the perceptual sensitivity to this potential voicing cue, the

discrimination of these sounds was measured in wide-band noise. The syllable

initial fricatives were both temporally isolated from the adjacent vowel, and high-

pass filtered above 3 kHz. During the perceptual tests, tokens were then centered in
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1 second of spectrally flat noise.

Adaptive tests [Levitt 1971] were used to track the perceptual
discrimination of the isolated fricative as a function of SNR at tivdevels. For
each trial, the subject was required to identify a randomly chosen token as either [s]
or [z]. Feedback was provided. The initial SNR was high enough that the fricatives
were clearly distinguishable for all subjects. The SNR was increased after an
incorrect response, and decreased after either 2, or 3, correct responses. A reversal
is defined as a change in the direction of the SNR step. The SNR step size started at
4 dB, and was reduced to 2 dB after the first reversal, and to 1 dB after the third. The
average of the SNR at the next 6 reversals provided an initial threshold estimate. If
the variance in this estimate was less than 2 dB, the measurements stopped,
otherwise the experiment continued for up to 6 more reversals. The average of three
such measurements provided a final threshold estimate for each subject. When 2 (or
3) correct responses are required, the threshold estimate converges to a 70.7% (or
79.4%) correct response rate. For this experiment, these correspdnaloes of
1.09, and 1.64, respectively. Four audiometrically normal subjects participated in
the experiment. Average thresholds across these four subjects are shown together

with model predictions in Figure 4.10 below.

4.3 3 AM-Detection Mechanisms

The task in this experiment may require detecting periodic envelope

fluctuations which become increasingly weak with more additive noise. Perhaps the
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most direct approach is to model this perception using an envelope statistic.

4.3.1 Envelope Statistic

Figure 4.3 shows a block diagram of the signal processing in an envelope
statistic model. This classical approach reduces auditory processing to: auditory
filtering (approximately measured along the basilar membrane), half-wave
rectification (approximated in inner hair cell transduction) and low-pass filtering
(measured throughout higher-levels of auditory processing). From an engineering
perspective, the band-pass filter selects a channel, the half-wave rectifier is the non-

linearity that modulates the carrier down to DC, and the low-pass filter tracks the

envelope.
H(f) @) \/ H(f)
-1 LA SN
f | f
Band Pass HWR Low Pass

Figure 4.3 Envelope detection.

The model’s sensitivity to amplitude-modulated wideband noise increases with
increasing bandwidth in the initial filter, while the reduction of sensitivity with

increasing envelope frequency is mostly determined by the final low-pass filter.
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4.3.2 Modulation Filtering

A schematic overview of an implementation of modulation filtering is
shown in Figure 4.4. Building from the envelope detection processing above, the
model includes multiple 4th-order gamma-tone filters [Patterson et al. 1992] which
provide a better approximation of auditory filtering, and replaces the single low-

pass filter with a second filterbank that analyzes the envelope spectrum.
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Figure 4.4 A modulation filtering scheme.

The frequency response for the modulation filters useghg@f 2, and -12

dB DC gain) were from [Dau et al. 1997a]. For each filter, our implementation used

a second-order pole and a first-order (real) zero at DC. The distance of the zero to
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the unit circle was set to meet the DC specification. The resulting frequency

responses are shown in Figure 4.5.
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Figure 4.5 Responses of the modulation filterbank.

Both the modulation filtering and the envelope detection model analyze the
magnitude of the fluctuations of the envelope of the acoustic waveform. As stated
previously, the primary difference is that modulation filtering assumes a second
filtering stage tuned to different envelope modulation rates. Figure 4.6 compares the
processing output of these two models to a noise carrier with no modulation and
with 56% (20log(m) = -5) modulation. Although the standard deviation of the input
is the same for the modulated and unmodulated cases, the outputs of both models

have relatively more fluctuation in the modulated case.
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Figure 4.6 Comparisons of the amplitude modulation detection models. Dashed
lines indicate standard deviations. The modulation filtering plots show the outputs
of six auditory channels, each filtered by a modulation filter centered at 100 Hz.
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4.3.3 Correlational Analysis

An overview of the correlational analysis is shown in Figure 4.7. This is an
implementation of Licklider's model [Licklider 1951] together with a final stage
that adds correlation estimates across channels [Meddis and Hewitt 1991a). The
first stage is the same gamma-tone approximation of cochlear filtering, used above.
The transduction stage includes half-wave rectification, low-pass filtering, and a
2nd-order Butterworth high-pass filter with a cut-off of 4 Hz. Running
autocorrelations are computed in each filter channel, and the results are added
across channels.

Our implementation of running autocorrelation for each channel involves
two stages. First, the instantaneous product of the current input and a version of the
input delayed by some amounis computed for all time and all valuestof

X1(t,T) = X(t) x(t-1). (4.1)

Second, to form a running autocorrelation estimate, these sequences are
low-pass filtered (in time and for each value®fto below one half of the final
correlation sampling rate:

Xo(t,T) = Xq(8,T) * hype(t). (4.2)

In the evaluations below, the correlation sampling rate was 25 Hzy gy)
was implemented as a 6th-order Butterworth filter with a -3dB point at 10 Hz. That
is, after the low-pass filter, the running autocorrelations were sampled every 40 ms,

and then summed across frequency channels to generate a sequence of summary
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correlogram estimates.
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Figure 4.7 Overview of the correlational processing. Inset shows autocorrelation
delay-line detail.

As described above, the position of the peak in the summary correlogram has often
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been shown to correlate with the reciprocal of the perceived pitch-frequency,
although some authors have considered the entire waveform of the summary
correlogram [Meddis and Hewitt 1991, Meddis and O’'Mard 1997]. Here, a
compromise between these is used. For each sample of the summary correlogram,
our statistic is the maximum difference, across all delay valydsetween the
summary correlogram values at delays ahdt/2:
statistic = max [ sA() - sc{/2) ], (0 <1 < 20 ms). (4.3)

With a sinusoidal envelope, this difference peaks at a valaeegtial to the
period of the sinusoid. Figure 4.8 includes examples of this decision statistic using
the same noise carrier with no modulation, and with 56% modulation (20log(m) =
-5) at 100 Hz. In the modulated case, the first peak (after zero delay) in the summary
correlogram occurs at the period of the modulation or 10 ms. When there is no
modulation, the summary correlogram approximates an impulse. Adding the
individual correlation estimates across channels reduces some variance; consistent
modulation shapes across channels add together, while inconsistent shapes often
cancel each other. However, considerable variation remains across summary
correlogram samples, shown in the lower half of Figure 4.6, due to the stochastic

carrier.
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Figure 4.8 Samples of the correlogram output and super-imposed examples of the
summary correlogram decision statistic. Input signals are the same as in Figure 4.6.
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4.4 Comparing Predictions

The temporal modulation transfer function (TMTF) is a measure of auditory
sensitivity to amplitude modulation as a function of modulation frequency. More
specifically, the minimum detectable sinusoidal amplitude modulation depth is
typically measured as a function of modulation frequency using wide-band noise
carriers.

Each of the three models were first adjusted to predict TMTF measurements
averaged from previous studies [Strickland and Viemeister 1997, Dau et al. 1997b].
The resulting models were then used to predict the discrimination thresholds for the
high-pass filtered [s] and [z] tokens in noise. Because the natural fricatives were
non-stationary, all three models were evaluated using multiple measurements in
time, or multiple ‘looks’ [Viemeister and Wakefield 1991].

For the envelope statistic model we found the best match using an initial
filter bandwidth of 3 kHz, centered at a frequency of 5.5 kHz. With these
parameters, the filter was also roughly a matched-filter for the high-pass filtered [s]
[z] tokens. The low-pass filter was a 1st-order Butterworth with a cut-off of 90 Hz.
The normalized fourth-moment statistic [Strickland and Viemeister 1996 and 1997]
was used.

To obtain multiple measurements in time, the output of the envelope
detection mechanism was segmented using partially overlapping 50-ms windows

that had 10-ms raised-cosine onset and offsets and a 30-ms constant center. The
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window increment was 40 ms so that onset and offset slopes intersected at the 0.5
level. The window length was chosen to ensure multiple periods in each window for
the pitch-frequency range of interest. By modulating the DC offset in the envelope,
the shape of the window can dominate measurements using the standard deviation
or the fourth-moment. Therefore, the DC offset for each 50-ms segment was
removed before weighting by the raised-cosine, and then added back before
measuring the decision statistic.

Threshold predictions were obtained by using the difference in the decision
statistic in signal and non-signal intervals over 100 simulations to estidhdte
each ‘look.” Assuming independence of the individual measurements, a total
detectiond’ was estimated as the length oflavector containing all looks [Green
and Swets 1966]. With a stimulus duration of 500 ms used for the TMTF data, the
vector included 12 elements, or 12 looks. A line was fit to the log of tdtal
estimates as a function of the log of the modulation depth. From this line, the
modulation threshold was estimated from the point where the line crosseti the
threshold of 1.26 tracked in the perceptual TMTF measurements [Strickland and
Viemeister 1997, Dau et al. 1997b].

With the modulation filtering and correlation models, the initial filtering
stage was six 4th-order gamma-tone filters with center frequencies ranging from
4280 Hz to 6970 Hz. Filters overlapped at their half-power points, and the

bandwidths were set using the equation provided in [Glasberg and Moore 1990]. To
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predict the TMTF data using modulation filtering, only the modulation filter tuned
to the probe envelope frequency was considered. When predicting the fricative data,
two modulation filters centered at 120 Hz and 200 Hz were used. The same
windowing used with the envelope statistic simulations were used with the
modulation filtering, and the standard deviation was the measured statistic.

As seen previously [Dau et al. 1997a-b], the modulation filtering was too
sensitive to predict human performance without adding a large amount of internal
noise. To obtain the best match to the TMTF data, a balance of internal noise was
added both before and after modulation filtering.

Using the correlation model, the peak distance statistic described above was
measured every 40-ms for the summary correlogram. To approximate the shape of
the TMTF data, the first-order low-pass filter was used with a cut-off frequency at
280 Hz.

TMTF threshold predictions for all three models are shown in Figure 4.9.

Each model provides a reasonable prediction across this frequency range.
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Figure 4.9 Three predictions of TMTF datais the modulation depth; perceptual
data are an average of [Strickland and Viemeister 1997, Dau et al. 1997b].
Predicting the voicing detection thresholds for the natural, non-stationary,
fricatives in noise required finding the fricatives (or more specifically finding the
voicing in the fricative) within the 1 second of noise. For all model predictions
below, only the three consecutive temporal segments that maximized the difference
from the background noise were analyzed, providing three temporal looks per

token. Totald’ values were then estimated as a function of SNR.
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Figure 4.10 Discriminating the high-pass filtered [s] and [z]: perceptual data is an
average across four subjects.

Figure 4.10 shows thed’ estimates for each model’s prediction of the
discrimination of the high-pass filtered [s] and [z] tokens in noise. The model based

on correlations provided the best prediction.

4.5 Modeling Implications

It appears that the envelope statistic was not sufficient to discriminate the [s]
and [z] tokens (even at relatively high SNR values), because the measurement does

not distinguish between the periodic voicing cues in [z] from the aperiodic
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fluctuations in [s]. Both the modulation filtering and the autocorrelation processing
include specific modulation tuning and provide closer predictions.

Reasons for the difference in performance between these two are less clear,
and could be specific to these simulations. By reducing the amount of internal noise,
the modulation filtering model provides a better estimate of the [s] [z] data, but then
over-estimates the TMTF sensitivity. One primary difference is that the
autocorrelation mechanism integrates correlation estimates across frequency, while
the modulation filtering simulations use the more general assumption that each
output corresponds to an independent measurement. Integrating correlation
estimates across frequency channels de-emphasizes envelope components
uncorrelated across frequency in favor of correlated components. Another
difference is that the correlation simulations used the low-pass filter to limit
sensitivity, while the modulation simulation included internal noise.

It may be interesting to note that if the auditory system does include a cross-
channel interval based representation, redundancies in this representation are likely
to make it inefficient to maintain across many areas. Efficient decorrelation of the
(potentially smooth and periodic) summary correlogram might approximate a
cosine transform. Such periodic transformations exist in other perceptual systems
[e.g. Wang and Shamma 1994]. In this case, the decorrelated representation would
have many of the properties of the (demodulated) output of a modulation filterbank.

The difference is that the envelope analyzed was first processed to identify common
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correlations across a wider frequency range.

4.6 Conclusions

This chapter identifies a secondary temporal cue which can reliably indicate
voicing distinctions between [s] and [z]. This amplitude modulation cue had not
been identified in previous studies of voiced fricatives [e.g. Stevens et al. 1992,
Pirello et al. 1997]. Furthermore, once the cue was identified it was not clear what
processing should be used to detect it. Three possibilities were investigated.

While cross-channel interval-based processing has been quite successful in
predicting many aspects of pitch perception, here we show that these mechanisms
can also predict TMTF thresholds and the detection of voicing for high-pass filtered
strident fricatives in noise. Simulations using envelope-statistic and modulation-
filtering models, fit to predict the TMTF data, did not predict the isolated speech

data.
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Chapter 5

Recognition Evaluations

The signal processing described in the previous three chapters was used in
a series of speech recognition evaluations in noise. This processing shows
improvements over other common signal processing techniques used to increase the
noise-robustness of speech recognition systems. When compared to typical ASR
speech representations, our processing reduces the error rate in noise by roughly a

factor of 4.

5.1 Recognition Task

The evaluations here are speaker-independent word recognition tasks using
the digits from the male talkers in the TI-46 database. As a collection of isolated
words (digits, alphabet, and commands) recorded by Texas Instruments in 1981,

this database represents perhaps the most trivial industry-standard recognition task.
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Two modifications are made to the database to increase the challenge of the task:
first the recognition evaluations are performed in considerable amounts of noise
(SNR from 0 to 30 dB); second, the digits are placed randomly within two seconds
of (noisy) silence.

Adding noise is a significant challenge for ASR, but one aspect of that
challenge is that with higher levels of background ndiselingthe word within the
background noise becomes increasingly difficult. Many ASR systems, and certainly
the ones evaluated here, make maximum likelihood decisions without any explicit
confidence measures. The most probable word is chosen, even if that probability is
extremely low. As the background noise increases, the likelihoods of all models
drop to the point where the maximum likelihood response can occur in the
background noise itself. At this point, the representation of the speech signal is
corrupted so much that the model ‘finds’ the best match to the background noise.
The TI-46 digits are hand-aligned and centered in the files in the database. Without
adding surrounding silence, finding the speech is not an issue.

The additive noise used in these evaluations was shaped to match an
estimate of the long-term average speech spectrum [Byrne and Dillon 1986], as

shown in Figure 5.1.
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Figure 5.1 Spectrum of the additive noise used in the recognition evaluations was
set to match the long-term average speech spectrum [Byrne and Dilllon 1986]

5.2 Stochastic Modeling Structure

These evaluations use the general hidden Markov model (HMM) structure
outlined in Chapter 1 [Rabiner and Juang 1993]. Models were trained for each
word, and the model that provided the maximum likelihood for an unknown token
determined the word recognized. However, instead of using a single model for each
word, two models for each word were used in parallel: one trained from clean data,
and the other from data corrupted by noise. The model that provided maximum
likelihood from either set determined the word recognized.

For all models, 6-states per word, simple left-to-right state transitions,

continuous Gaussian densities, diagonal covariances, and fixed global variances
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were used. Mean feature vectors and transition probabilities for each state were
trained as described below, but variances were set to the global variance estimated
over all tokens in the training set. This technique is useful with limited training data
and when the testing environment is significantly different from the training
environment [Jankowski et al. 1995].

The clean models were trained in two stages. Training words were first
isolated from the surrounding silence based on the total signal energy. The models
were initialized assuming a uniform distribution of the words across the 6 states in
the model. Iterative Viterbi (max-path) alignment and training was then applied
until the average log probability decreased by less than a threshold. The forward-
backward algorithm improved the estimate for each model using a similar
convergence criterion.

When the test environment differs from the training environment,
recognition performance deteriorates. A common approach to address this issue is
to train models using noisy data [Rabiner and Juang 1993]. One set of clean models
was built, as described above, and then a second set of ‘noisy models’ was built
using training data at an SNR of 9 dB. Both sets of models were used for
recognition; the model with the highest probability (from either set) determined the
word recognized. To train the noisy models, stationary background noise was added
to the training data, and then forced-Viterbi alignment with the corresponding clean

model was used to isolate the noisy speech from the background. The same Viterbi
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and forward-backward training algorithms used for training clean models, were
then used to train noisy models from the isolated noisy words. Recognition of the
testing data was performed using Viterbi alignment with both sets of models and

choosing the model with the highest probability.

5.3 Baseline Signal Processing

Two baseline front-ends are considered: linear prediction cepstral
coefficients (LPCC), and Mel-frequency cepstral coefficients (MFCC). Each front
end computes a spectral estimation every 10 ms using overlapping 30-ms Hamming
windows. LPCC are computed in two stages [Rabiner and Juang 1993]: 12th order,
autocorrelation-based linear prediction provides an all-pole vocal-tract transfer
function. Real cepstral coefficients are then recursively computed for this
minimum-phase estimation. MFCC are computed in three stages [Davis and
Mermelstein 1980]. The power spectrum is computed using a zero-padded fast
Fourier transform (FFT). To estimate the energy at the output of each approximate
auditory filter, power spectrum outputs are weighted by a triangular filter shape and
then summed. The filters have a half-power bandwidth of 100 Hz up to center
frequencies of 1 kHz, and a bandwidth of 0.1 times the center frequency above 1
kHz. A discrete cosine transform (DCT) converts the spectral estimation obtained
from the logarithmic energy across filters into a final cepstral vector. A 13 element
cepstral vector, and its temporal derivative (approximated by the slope of a line fit

to 7 cepstral points) are obtained for each front end, but the undifferentiated spectral

100



level term (@) is ignored during recognition. Therefore, the baseline feature vectors

have 25 elements.

5.4 Implementation of the Model Signal Processing

Figure 3.1, in Chapter 3, shows a block diagram for the adaptation, peak

isolation, and threading processing.

5.4.1 Adaptation

The adaptation mechanisms described in Chapter 2 are implemented as a
modification of the process used to obtain MFCC. Before the DCT, the logarithmic
filter energies of MFCC are processed through the dynamic stages derived in
Chapter 2 to obtain the adapting spectral estimation vector MFCCA. Therefore, the
adaptation mechanisms alter the sequences of logarithmic energy estimates

obtained for each approximate auditory channel.

5.4.2 Peak Isolation

The peak isolation mechanism was described in Chapter 2. A truncated
cepstral vector is obtained for each frame. This cepstral vector is weighted by a
modified raised-sin lifter [Juang et al. 1987], and the inverse DCT (IDCT) is used
to transform back to a (modified) spectral estimate. This estimate is half-wave
rectified, and the individual peaks were scaled to match the peak magnitudes of the

original spectral estimate. The DCT is then used to obtain a final cepstral
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representation of the peak isolated spectral estimate.

5.4.3 Peak Position and Motion

The threading algorithm used to parameterize the position and motion of
dominant spectral peaks was described in Chapter 3. During the peak isolation
processing, the frequency position of local spectral peaks are stored for each 10-ms
frame. A two-stage process is used to convert these peaks into the final
representation used by the recognition system. In the first stage the peaks are
threaded using dynamic programing, the threads are fit to moving 7-point second
order polynomials, and the frequency derivatives are estimated. The second stage
tracks the dominant peak frequency and associated frequency derivative for each of
three equally-spaced spectral regions. Unlike the adaptation and peak isolation
mechanisms whiclalter the 25-element feature vector used for recognition, the
current processingddssix more elements. However, during training it was found
that the frequency derivative in the highest frequency region had little variance
across the training set. It was therefore ignored for these recognition evaluations.
When the parameterization of peak position and motion is included in the

recognition evaluations, there are five additional elements in the feature vector.

5.4.4 Temporal Processing of Voicing Information
Chapter 4 showed that a correlation-based representation of pitch-rate

amplitude modulation was consistent with perceptual data describing the detection
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of amplitude modulation and the detection of voicing for high-pass filtered [s] and
[z] tokens in noise. Therefore, of the three mechanisms considered in Chapter 4,
only the correlation-based processing was evaluated in recognition tasks. The
correlation model [after Licklider 1951], maintains running autocorrelations in each
auditory channel, and then adds these together to identify the common periodicities
across channels.

The model was extended to generate suitable voicing features for ASR.
Instead of analyzing a single high-frequency region, three regions are used,
corresponding to the three regions in the peak position and motion processing
above. The voicing statistic used is the maximum peak-to-valley difference between

any time-lagr; and any smaller time-lag, (1o < T14). Finally because the presence

of voicing (and not the amount of voicing) is assumed to be relevant for ASR, the
logarithmic magnitude of the voicing statistic is further compressed by a sigmoidal
function. Figure 5.2 shows the voicing features in the three frequency regions
together with their temporal derivatives, for a total of six voicing features. In

general, the voicing features mark voiced speech within the uncorrelated noise

background. The voicing features are low during the [s] sounds in “six.”
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Figure 5.2 A) Voicing features in three spectral regions, and B) their temporal
derivatives.

5.5 Other Techniques Targeting Noise

In addition to comparisons with the baseline LPCC and MFCC features,
recognition evaluations were also performed using RelAtive-SpecTrAl (RASTA)
processing [Hermansky and Morgan 1994] and a variety of common signal
processing techniques that are targeted specifically at improving recognition
performance in noise: spectral subtraction, spectral scaling, non-linear spectral
scaling, and cepstral normalization.

RASTA involves filtering the logarithmic temporal trajectories (log energy

temporal excitation patterns) with a bandpass filter that has a sharp zero at DC. By
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de-emphasizing slow and fast changes with time, RASTA also provides an
adapting response. In the comparisons below, the RASTA technique was applied
directly to the logarithmic filter energies, without the additional PLP processing
used in its original optimization [Hermansky and Morgan 1994]. The ‘standard’
RASTA filter:

z1-73-279%)
1-0.941

H(z) = 0117

was used and performance was not compared with other RASTA variations which
optimize the compressive and expansive non-linearities for the specific acoustic
environment. Unlike the RASTA technique which can be described as a (smoothed)
first-order differentiation, the adaptation mechanism proposed in Chapter 2 does not
provide zero output for constant input. Instead, the adaptation stages converge to
static targets on the I/O curves. Also unlike the RASTA technique, (offset) recovery
is roughly three times slower than (onset) adaptation.

The power spectrum of the sum of two uncorrelated signals is the sum of the
two power spectra for the individual signals. That is, uncorrelated signals are
additive in power. The power spectrum for speech in noi, is the sum of the

power spectrum for the clean spee8(f) and the noise power spectrudtf).

X(f) = S(f) +N(f)

Spectral subtraction assumes that given a reliable power spectrum estimate

for a stationary background noisl(f), an approximation of the original clean
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speech signalS(f), can be obtained by subtracting the noise estimate from the

power spectral estimate for the signal and noise.

S(f) = X(f)=N(f) = S(f)+N(f) - N(f)

Unfortunately, short-time power spectral estimates of (even) stationary
noise signals have considerable variance. That is, the values of the measured
background noise\(f), will change considerably from frame to frame. For some
frames the speech sign&(f), will be near zero, and the measured background
noise,N(f), will fluctuate to be less than the stationary background noise estimate,
N(f). Therefore, after spectral subtraction, the final result can be negative. Because
the next step for ASR is to take a logarithm, these negative values must be clipped.

And that is the beginning of the end. Choosing the clipping level sets an
arbitrary floor on the log-magnitude spectral estimates (e.g. 0 dB if power estimates
below 1 are clipped). Consider a background noise which averages 30 dB above the
clipping point. Figure 5.3 shows the log-magnitude input/output function for

spectral subtraction.
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Figure 5.3 Spectral subtraction input/output function. Points A, (30, 0) and B, (33,
30) show the expansion of spectral subtraction.

When the measured noise is exactly 30 dB, the subtraction of the expected
power spectrum lowers the current power estimate to 0, which is then clipped to 1
before the logarithm, leading to a final log-magnitude value of 0 dB, or point A in
Figure 5.3. However, if the current log-magnitude power spectrum fluctuates up to
33 dB, or 3 dB higher, then its power spectrum is twice the expected value. After
spectral subtraction and the logarithm, the final estimate is 30 dB, or point B in
Figure 5.3. Spectral subtraction expands the original 3-dB noise fluctuation into a
30-dB fluctuation. Needless to say, recognition systems are extremely sensitive to
random 30-dB fluctuations. One solution to this problem is to raise the clipping
point to the level of the noise estimate. Then spectral subtraction approximates

spectral scaling.
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In spectral scaling, the reference level for the logarithm is the current noise
power-spectrum estimate. Equivalently, the log-magnitude of the average
background noise is subtracted from each current log-magnitude estimate. The final
result is then clipped below 0 dB. The dashed line in Figure 5.3 shows the input/
output function for spectral scaling. (To compare spectral scaling with spectral
subtraction a fixed 30 dB offset is added to the spectral scaling function in Figure
5.3.) As the noise level rises, the dynamic range of the speech above the noise
reduces. The recognition system is, of course, dependent on the diminishing
fluctuations of the speech above the noise.

Non-linear spectral scaling tries to correct for this loss of dynamic range. As
implemented here, two log-magnitude spectrograms are obtained: one from linear
spectral scaling, and a second copy which is then scaled (after the logarithm) so that
the peak dynamic range, above the noise floor, is fixed to a specific value. A
weighted average of these two is used as the final sequence of log-magnitude
spectral estimates. For the evaluations below, the relative weights used in the
averaging were iteratively optimized to improve recognition performance for this
task.

A second technique to compensate for this loss of dynamic range is cepstral
normalization. As the dynamic range across a single log-magnitude spectral
estimate reduces, the length of the cepstral vector also reduces. In cepstral

normalization, the total length of each cepstral vector is normalized to unity. For the
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task evaluated here, only non-linear spectral scaling and cepstral normalization

provided clear improvements.

5.6 Evaluations

Figure 5.4 shows the degradation of recognition performance for the two
baseline front ends, MFCC and LPCC. Using a frequency scale that is warped to
approximate auditory frequency selectivity increases recognition robustness. A
similar improvement was found previously [Jankowski et al. 1995]. This trend is

consistent with the ASR shift from LPCC to MFCC in the last 5-10 years.
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Figure 5.4 Baseline recognition performance.

Figure 5.4 also includes the performance with adaptation, adaptation and
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peak isolation, and then with adaptation, peak isolation and the threading
processing. Each of these provides additional improvements in recognition
performance in noise.

Figure 5.5 compares the baseline MFCC representation and the processing
proposed here with other common techniques aimed at improving recognition
robustness. Of the other techniques considered, only those which alter the dynamic
range of the spectral representation (cepstral normalization and non-linear spectral

scaling) showed considerable improvements in recognition robustness.

Digit Recognition Performance in Noise
T T T T T T

N
o

w
a1
T

spectral scaling §

‘/mel-warped frequency scale 7

w
o
T

N
a1
T

RASTA, Hermansky and Morgan 1994

Error Rate %
N
o
T

cepstral normalization

=
(&)
T

non-linear spectral scaling
101

adaptation, peak isolation,
and threading

Figure 5.5 Recognition comparisons with other signal processing techniques.

Finally, Figure 5.6 shows the recognition performance when only the 5

threading features are used, and when voicing features described above are used
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with different pieces of the previous representations. When used alone, the 3
frequency positions and 2 frequency derivatives are insufficient to discriminate the
current data. However, adding 6 voicing features to the 5 threading features reduces
the error rate considerably. The error rate also decreases when the 6 voicing features
are added to the 30-element feature vector that includes the cepstral and delta-
cepstral representations after adaptation and peak isolation and the 5 threading
features. This final system, incorporating the four processing mechanisms of this
dissertation, provides a 1.5% error rate at 3 dB SNR, or more than an order of

magnitude fewer errors than the typical representation used in ASR systems.
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Figure 5.6 Evaluations with threading and voicing information. AP is adaptation
and peak isolation, arstep refers to cepstral derivatives.
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5.7 Interpreting the Results

The recognition task used here attempts to assess the potential noise-
robustness improvements of the algorithms of the previous chapters in the current
recognition paradigm. The task requires the recognition system to find and identify
a word in background noise. This may be a reasonable approximation for many
current limited-domain voice-control applications. Solutions for this task in clean
environments have been available for years [Rabiner and Juang 1993], and as
expected, most speech representations evaluated here lead to very little error at high
SNRs. However, the results above show that mechanisms which incorporate aspects
of auditory perception can dramatically reduce the performance degradation in
noise.

Speech information is encoded in highly-redundant, multi-dimensional
representations which range across many time scales. In addition to identifying
aspects of auditory perception which are typically ignored in the representations of
speech used for ASR, there are perhaps two consistent motivating ideas which
helped ensure that the mechanisms described here were successful and
complimentary. In general, each processing mechanism addressed a different
dimension or time-scale (see Figure 1.8), and the processing for most mechanisms
was de-coupled across frequency.

Consider the relevant dimensions for each mechanism. The adaptation

mechanism emphasizes onsets and transitions in frequency which occur in the
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syllabic range, while the peak isolation mechanism enhances changes across the
spectral range. The threading parameters in turn characterize the motion of the
isolated spectral peaks in the syllabic range, while the voicing features characterize
the voicing range. More specific to the task used above, the voicing features help
distinguish speech from noise while the threading information helps discriminate
words. Obviously, if these four mechanisms had addressed the same dimension, it
is less likely that their combination would improve recognition results.

Motivations for de-coupling the representations of speech across frequency
are described in [Allen 1994]. Because the feature vectors for ASR systems are
almost always a function of the entire spectral range (recall that cepstral coefficients
are the DCT of the entire log-magnitude spectral estimate), distortions in one
spectral region influence the entire feature vector, reducing performance. Humans,
on the other hand are much more immune to static disturbances in a particular
spectral region. For an ASR system to use this approach, at least some feature
vectors must be a function of specific spectral ranges. In the processing described
in previous chapters, clearly the voicing features, the threading features, and the
processing for the temporal adaptation are largely de-coupled across frequency.

However, the peak isolation mechanism is not similarly de-coupled. The
spectral estimate after peak isolation starts with the spectral estimate after the
cepstral vector has been weighted by a raised-sin function. Near zero, the raised sin

function increases almost linearly, approaching the frequency response of a
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(spectral) derivative. As shown in Figure 2.10, the response after liftering is
therefore more dominated by spectral changes. While this processing provides
some de-coupling across frequency (spectral slope for instance is de-emphasized),
the processing is still a function of the entire spectral estimate. Regional spectral
estimates, regional cepstral representations, and regional cepstral liftering might
lead to additional improvements. This will be one area of future work.

While this task may be a reasonable approximation for many current
limited-domain voice-control applications, considerable work today addresses the
transcription of large-vocabulary continuous and even spontaneous speech. To limit
the “local domain” for these tasks, a hierarchy of HMMs are used. Phrases are
modeled as groups of words which are modeled as sequences of phonemes.
Alignment requires identifying the most probable sequence of phonemes,
constrained by the probabilities of the word pronunciations, which are in turn
constrained by the probabilities of the word sequences in the expected phrases.
Final recognition performance for these systems becomes extremely dependent on
the reliability of the statistical estimates for the higher-level sequences.
Pronunciation and word-sequence (or grammar) models often limit performance.
One significant question that remains is: Do the current processing improvements
generalize to these more complicated tasks?

Recall that the recognition task used here included word-level models, and

that two of the processing stages (temporal adaptation, and the frequency
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derivatives in the threading processing) provided a context-dependent response
which can last for several frames. If word models were instead built from phoneme
models, the processing here would therefore most likely provide different responses
depending on the context of the phoneme. Tri-phone (and even quint-phone)
models, or different models for each phoneme in every possible preceding and
following context, are already commonly used [Woodland et al. 1998], and would
appear to be necessary with the current processing. This will be a second area of
future work.

In conclusion, the mechanisms described in the previous chapters each
address a somewhat complimentary aspect of the speech signal, and together

significantly decrease the error rate of a word recognition system in noise.
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Chapter 6

Summary and Extensions

This dissertation provides evidence that advances in robust speech
recognition can be made by incorporating mechanisms which approximate aspects
of human auditory signal processing. Mechanisms including adaptation, peak
isolation, an explicit parameterization of the position and motion of local spectral
peaks, and a correlation-based analysis of perceptual voicing information are shown
to improve recognition performance in noise.

This work suggests areas of future research in psychoacoustics, auditory

physiology, and speech recognition.

6.1 Threads

As described in Chapter 3, the threading operation described here can be

viewed as an early step in auditory scene analysis.
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Traditional psychoacoustic modeling efforts usually focus on the perception
of static sounds. Or sightly more generally, either variations across frequency (e.g.
spectral masking), or variations across time (e.g. temporal masking) are considered.
With spectral measurements, changes in the logarithmic output available across
assumed auditory filters, or the spectral excitation pattern [e.g. Zwicker 1970], are
found to correlate with perceptual performance. For temporal measurements,
changes in the output of auditory filters with time, or temporal excitation patterns,
are considered [e.g. Oxenham and Moore 1994]. For each of these, the subject’s
responses are assumed to be made as an ideal observer. That is, using the excitation
pattern (usually corrupted by internal noise) as input, the subject chooses the option
that has maximum likelihood.

Speech is non-stationary. Speech recognition systems therefore consider
variations in excitation patterns in both time and frequency. But the concept is
similar. The recognition process makes the maximum likelihood choice, now given
2-dimensional excitation patterns. The adaptation and peak isolation mechanisms
described here change the characteristics of the excitation patterns, and the voicing
detection adds (yet) another dimension.

But threading can be viewed differently. In addition to monitoring excitation
patterns, threading assumes the subject isadwelypiecing together higher-level
structure that is alsobserved Obviously, information is not manufactured by a

receiver. That is, at first glance it might appear that an ideal observer would not do
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any better observing redundant representations derived from earlier representations.
But if we assume the excitation patterns are analyzed for low-level structure (e.g.
threaded) before some of the internal noise corrupts the observation of excitation
patterns, and further that (independent) uncorrelated internal noise also corrupts the
observation of the intermediate structure, then the ideal observer would use
information from both stages to improve performance. Figure 6.1 shows an

overview for this arrangement.
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Figure 6.1 Threading in a two-stage model of auditory perception.

Unfortunately, other than the recognition improvements shown in this
dissertation, only qualitative points can be made in support of this structure.
However the evidence is considerable and growing. Many auditory scene illusions

have similar visual analogies: when an edge is partially obscured, the observer fills
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in the missing piece; or when flickering lights are correlated in either time or space
they can be grouped accordingly [Bregman 1990]. In fact, hearing (and seeing)
might be best understood as piecing together partially obscured measurements to
obtain information about objects in the environment. With this requirement, a full
multi-dimensional excitation pattern representation of sound would be inefficient,
and the neural representation is more likely to focus on threads, or aspects of the
sound corresponding to the auditory analogy for visual edges. To understand the
inefficiency of a 2-D excitation pattern, consider the size of the space required for
0.300 seconds of sound. Assuming 30 auditory channels, and temporal samples
every 10 ms, this implies 900 nearly independent dimensions. Clearly we do not
have the cognitive ability to maintain and recall arbitrary patterns within this space.
More directly, recent attempts to predict the perception of what appear to be
very basic non-stationary experiments are not predicted assuming standard
excitation patterns, and may instead be consistent with threading. When describing
their ‘multi-look’ hypothesis [Viemeister and Wakefield 1991] (an ideal observer
using multiple independent observations of a temporal excitation pattern),
Viemeister and Wakefield also showed that when the temporal excitation pattern
stayed the same, subjects were able to do better than an ideal observer with
independent observations. When listening for a tone in noise, as the duration of the
tone increases, the observer has more observations. If the observations are

independent, thresholds should drop with the square root of the number of
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observations [Green and Swets 1966]. Instead, for tones in noise, thresholds drop
with the total energy of the tone, or about twice as fast. If the ideal observer is using
the excitation patterns together with some type of threading, then we would expect
increased performance from observations that form strong threads (i.e. static tones).

When detecting short duration bursts of noise in a noise background, as the
bandwidth of the noise increases, we might also expect thresholds to drop with the
square root of the number of observations across frequency. Again, the auditory
system does better, behaving more as if total intensity were integrated across
frequency [Hant et al. 1997]. We should also consider the possibility that perceptual
grouping of the discontinuity across frequency (a vertical thread) is increasing
performance.

Finally other experiments show that intensity discrimination [Zeng 1994,
Zeng 1998] and frequency selectivity [Hant et al. in press] are considerably
degraded in the context of forward and/or backward temporal maskers. The
temporal maskers would interfere with a threading mechanism, which could be

causing the measured performance degradation.

6.2 Correlation Inconsistencies

In this dissertation we extended the application of Licklider’s duplex theory
to show that, in addition to predicting many aspects of pitch perception, this
approach is also sufficient to predict TMTF data as well as the detection of voicing

for high-pass filtered strident fricatives in noise. Such processing was further shown
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to be of some use for robust speech recognition. But there are at least two significant
challenges which must be considered. First, the physiological mechanisms for
implementing these measurements have not been identified. Second, measurements
with electrical hearing have not supported the use of mid-frequency (300-1500 Hz)
temporal information.

The first issue may still be a technology issue. The building blocks for
autocorrelation type measurement: neural delays, multiplication (or coincidence
detection) and low pass filtering, are widely available in the neural substrate. But
finding evidence for the entire structure would require extensive (simultaneous, or
at least well-synchronized) neural population measurements. Unfortunately,
temporal measurements are often made from a single cell, and extensive population
measurements are still not practical. As a starting point, population measurements
have shown that the temporal information for this type of processing is available in
the auditory nerve [Cariani and Delgutte 1996a-b]. As shown in Chapter 4, after
low-pass filtering, the neural representation of the running autocorrelation could
easily be down-sampled (to 25 Hz in the modeling in Chapter 4). It is also likely
that neural processing would reduce redundancies in the representation across the
time-delay variabla, perhaps using an approximate cosine transform. These two
stages would lead to single units which respond selectively to different modulation
rates and have relatively low average firing rates. Such responses are measured in

many areas of the auditory system [e.g. Langner 1992], but this provides only
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minimal support for the current theory.

Current non-evasive neural population measurement techniques are limited
to monitoring average blood-flow rates and other very slow responses. While these
measurements are helpful for mapping response areas, they show little promise for
the types of measurements necessary to understand low-level temporal auditory
processing. Unfortunately, these discoveries may have to wait until 3D electrical
field measurements are available with cellular resolution in space psed
resolution in time. Or at least, then we’d know for sure.

Perhaps the greater immediate challenge to Licklider’s theory are pitch jnd
measurements with cochlear implants. Briefly, cochlear implants use a series of
electrodes near different places on the basilar membrane to provide (nearly) direct
electrical stimulation of the auditory nerve. Subjects with cochlear implants are not
able to use temporal information to discriminate fine pitch distinctions at ‘normal’
pitch ranges (80-500 Hz) [e.g. Townsend et al. 1987, Shannon 1992]. Maintaining
a version of the duplex theory therefore requires that some of the differences in
electrical hearing must confound the available temporal processing. The first and
most likely culprit is that the neural fine structure associated with electrical
stimulation is profoundly different from that available from acoustic hearing
[Wilson et al. 1994]. (Perhaps Cariani and Delgutte’s measurements should be
reproduced using animals with cochlear implants.) A second possibility is that the

neural processing which analyzespulationinterval information may rely on the
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precise phase relationships made available by the mechanical wave-guide in the
cochlea, but absent in electrical hearing. In any case, the ability of some subjects
with cochlear implants to use pitch rate temporal information might be best
approximated by the ability of subjects with normal hearing to use pitch-rate
temporal information with stochastic carriers (i.e. amplitude modulated wide-band
noise). That is, if we assume electrical stimulation is at best providing no
information at the carrier rate, then only envelope cues with stochastic (or at least
useless) fine structure are available for neural processing. This is identical to the
assumption used in recent models of the perception of low modulation rate (2-20
Hz) cues in electrical hearing [Shannon et al. 1995]. Therefore, without the reliable
fine structure from deterministic carriers, we should expect the fact that pitch-
related performance with electrical hearing only approaches that of normal hearing

with stochastic carriers [Burns and Viemeister 1981].

6.3 Looking Forward

The extreme auditory periphery is well understood. Current and future work
will focus on characterizing the functional significance of increasingly more central
neural centers. Figure 6.2 shows an overview of the anatomy of the auditory neural

pathway.
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Figure 6.2 Overview of the auditory neural pathway.

After the initial anatomy is mapped, the challenges will be understanding
the functionality and interactions of the various processing stages. At least four
trends are already apparent: 1) Some form of the tonotopic map, consistent with the
initial cochlear filtering, is maintained throughout most of the auditory system; 2)
Average firing rates decrease considerably in increasingly higher levels (more
central neural regions); 3) Many stages are connected for binaural comparisons; and

4) Feedback from higher levels to the periphery (efferents, not shown in Figure 6.2)
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may be as pervasive as signaling from the periphery to the higher levels (afferents).

Unfortunately, the challenge for the neurophysiologist is very analogous to
asking a freshman engineer to figure out how a computer works using an
oscilloscope, an Ohm meter, his best guesses for a block diagram, but with no
schematics, no monitor, and no direct contact with the designer. To improve the
analogy, the performance of the computer would change as the measurements were
made, the computer would typically stop working after a few hours of
measurements, and each new replacement computer would be slightly different.
Both the engineer and the neurophysiologist are left to measure countless signals in
hopes of finding the elusive insights to understanding. Progress will be slow.

From a psychoacoustic perspective, modeling efforts will address the
perception of non-stationary sounds. Early work in this direction reveals that the
effects of perceptual grouping and auditory scene analysis may have key roles with
even the most basic non-stationary stimuli. As consistencies emerge between the
measured physiology and the predictions of psychoacoustic models, engineers will

translate these systems into increasingly robust speech processing applications.
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