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While non-stationary stochastic modeling techniques and the exponential

growth of computational resources have led to substantial improvements in

vocabulary size and speaker independence, most automatic speech recognition

(ASR) systems remain overly sensitive to the acoustic environment, precluding

widespread applications. The human auditory system, speech production

mechanisms, and languages, on the other hand, are extremely well-tuned to

facilitate speech communication in noise. Better modeling of these systems and

mechanisms should illuminate robust strategies for speech processing applications.

In this work, models of temporal adaptation, spectral peak isolation, an explicit

parameterization of the position and motion of local spectral peaks, and the

perception of pitch-rate amplitude modulation cues are shown to reduce the error

rate of a word recognition system in noise by more than a factor of 4 over the typical

current processing.
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Chapter 1

Introduction

For the last half century, the development of speech recognition by mac

has been marked by disappointment and a repeating failure to meet expectatio

few years ago, a colleague of mine in a very different field attempted to stay a

ahead of my description of this research and commented: “So, with a computer

will be able to do better than a human.”

As scientists and teachers, we need to do a better job describing

complexity of the problems we address, the realistic capabilities of the tools we

and the current state of our technologies. Quite plainly, fifty years of spe

recognition research still pales when compared to the experiences, the drive a

necessity, a child has when learning to recognize and understand speech

perhaps more significantly, even given the relative explosion of technology ove

last two centuries, the tools available to researchers today are no match to tho
1
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the child. Countless generations of selective pressures have evolved signa

information processing machinery that we, as scientists, are unlikely to achie

the next century.

A recent review [Lippmann 1997] compares human speech recognitio

machine recognition across a wide range of tasks (10-65,000 words). Acros

tasks, machine error rates are typically found to be between one and two orde

magnitude higher than those for humans. The relative performance of machin

especially poor in noisy situations and in situations where grammatical struc

can not be used to constrain the task.

Understanding the failures of speech recognition as a technology leads

profound respect for natural auditory systems and to the optimistic realization

such a potential wealth of information exists, well, right between our ears.

1.1 From Better Models to Robust Applications

While non-stationary stochastic modeling techniques and the expone

growth of computational resources have led to substantial improvement

vocabulary size and speaker independence, most automatic speech recog

(ASR) systems remain overly sensitive to the acoustic environment, preclu

widespread applications. The human auditory system, speech produ

mechanisms, and languages, on the other hand, are extremely well-tun

facilitate speech communication in noise. Better modeling of these systems

illuminate robust strategies for speech processing applications.
2
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Perceiving speech in an acoustically noisy environment requires intellig

use of redundant multi-dimensional cues spread over wide-ranging time scal

majority of psychoacoustic and speech perception research has focused on sp

cues (from roughly 400-8000 Hz) that are available through an auditory criti

band filtering mechanism [Fletcher 1940, Zwicker et al. 1957, Patterson 1

Zwicker and Terhardt 1980, Glasberg and Moore 1990], and on nearly logarith

loudness growth [Stevens 1956, Delgutte 1996]. This type of processing is refle

in the first stage of most ASR systems [Rabiner and Juang 1993] which ob

sequences of perceptually-warped and logarithmically-compressed short

spectral estimations. Subsequent stages form a hierarchy of non-statio

stochastic models operating at the progressively slower rates of the speech-f

phoneme, word, phrase and even sentence.

Despite these first-order similarities, the current ASR approach dif

significantly from human perception. The ASR front end rigidly locks spec

estimates together across a frame, while human perception allows for n

independent processing, focusing on the position and motion of vocal

resonances in spectral regions with good signal to noise ratios [Allen 1994].

ASR front end is time-invariant, while human perception has a context-depend

that can last for hundreds of milliseconds. The typical ASR front end also remo

perceptually-salient pitch-rate information from 80-300 Hz, and relies solely

stochastic modeling of syllabic- or articulator-rate information from 2-20 Hz. W
3
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‘yes’
should expect synergy from modeling improvements across all these areas.

This dissertation focuses on four aspects of auditory processing: short-

temporal adaptation, an isolation of local spectral peaks, the parameterization

position and motion of spectral peaks, and the sensitivity to pitch-rate ampli

modulation. Front end processing that incorporates adaptation, peak isolation

peak motion parameterization is shown to reduce the error rate of a sp

recognition system in noise by roughly a factor of 4 when compared to the cur

common approach. In addition, a quantified model of pitch-perception is show

predict both amplitude modulation detection thresholds and the percep

detection of voicing for fricatives in noise.

The relative failure of speech recognition applications (and perhaps

hearing aids) in realistically noisy environments may be directly linked to the l

of successful computational models of the perception of dynamic sounds in n

The work here on auditory adaptation, the motion of local spectral peaks, an

perception of amplitude modulation in noise represent initial steps toward impro

models and robust applications.

1.2 Speech Recognition Overview

In essence, typical speech recognition systems are maximum likelih

detection mechanisms. For clarity, imagine a recognition vocabulary that inclu

only the words ‘yes’ and ‘no.’ Further assume that a single (1-dimensio

measurement has been developed which usually provides a larger value for
4
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tokens and a smaller value in response to ‘no.’ One possibility might be a mea

of the amount of high-frequency energy associated with the [s] in ‘yes.’ Totrain the

recognition system, we characterize the distributions of our measurement acr

training set of exemplars. We might construct a 2-parameter Guassianmodelof

‘yes’ by estimating the mean and variance of our measurement given all

examples of ‘yes’ in our training data, and then repeat the process for ‘no.’ To

these models for recognition, we make the same measurement for an unk

word, estimate the probability for each of our models, and then choose

recognize) the word corresponding to the model that provides the hig

probability. Figure 1.1 shows an overview for this approach.

Figure 1.1   Simplified overview of maximum likelihood speech recognition.

At least two issues complicate this process. While any sound can

characterized as a 1-D pressure wave, the information in speech is clearly en

in a high-dimensional space; a single measurement will not provide suffic

no yes

magnitude of the
feature measurement

(e.g. amount of high
frequency energy)

frequency
of

occurrence

p(x|no),

p(x|yes)

N(µno,σno) N(µyes,σyes)

word models
5
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discrimination. For statistical recognition, the measurements become vectors

the estimated distributions are multi-variate.

But the more significant complication is that speech is non-stationary.

statistics that characterize the sound ‘yes’ change considerably across the

Within the word, there may be temporal segments where the statistics are n

stationary (e.g. during [s]), but the durations of these segments will also change

different speaking styles and rates. In the current example, consistent differenc

these segments, compared across the words ‘yes’ and ‘no,’ provide a redunda

robust encoding of the binary speech information in this task. To exploit

redundancy, the recognition system uses measurements of sounds other than

discriminate the words. In other words, the probability of observing each segm

given each word is estimated.

This motivates thealignmentproblem in speech recognition. In order to us

the potentially redundant information encoded in each segment of the

stationary sound, each segment must be aligned with an appropriate stat

parameterization for that segment in that word. As discussed in more detail be

the current approach to this problem is to model each segment as a state in a

order Markov process, to associate the parameters of the multi-variate distrib

for each segment with each state, and to find the best state alignment using a V

search.

Therefore, most modern speech recognition systems include an initial s
6
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processing front end which converts the (1-D) speech waveform into a sequen

time-varying feature vectors, and a statistical pattern-comparison stage w

chooses the most probable phoneme, syllable, word, phrase, or even sentence

that sequence of feature vectors. Figure 1.2 shows a simplified block diagram

this overview.

Figure 1.2   Automatic speech recognition overview.

1.2.1 Front End Signal Processing

In the front end, the speech signal is typically divided in time into near

stationary overlapping (10-30 ms) frames. Short-time spectral estimations of

consecutive frame form the sequences of time-varying feature vectors analyz

the pattern matching stage. One common form of spectral estimation [Davis

Mermelstein 1980] involves integrating an initial power spectrum estimate whic

weighted by bandpass-filter functions whose bandwidths approximate estima

of auditory frequency selectivity. The magnitude of the power estimates from e

Spectral

Extraction

Pattern

Comparison

Speech Recognition

“Ears” “Higher-Level Brain”

Signal Processing

DFT, LPC, Cepstrum

Observation

Sequence

Stochastic Modeling

Hidden Markov Models
7



ctral

sing:

mber,

osine

fter

ents

wer

scale

nd

ion,
filter are then compressed using a logarithmic function. The resulting spe

estimates reflect two of the most studied aspects of auditory signal proces

frequency selectivity, and magnitude compression.

Because the spectral estimates are somewhat smooth across filter nu

or highly correlated, each frame can be roughly decorrelated using a discrete c

transform (DCT) as an approximation of the Karunen-Loeve (KL) transform. A

the DCT, the resulting cepstral vectors, called Mel-frequency cepstral coeffici

(MFCC), are compact representations of the Mel-warped log-magnitude po

spectrum. (The frequency scale is called a Mel-scale after the pitch perception

that has a similar warping.) Figure 1.3 is an overview of the typical front-e

processing.

Figure 1.3 Front end signal processing: windowing, spectral estimat
logarithmic compression, and decorrelation.

0 2 4

1 3 5

~10-20ms

Mel-Scale

Auditory DCT

Decorrelate
Spectra

MFCC

time

pr
es

su
re

Logarithm

Frequency Magnitude
CompressionSelectivity

(‘Excitation Pattern,’ Zwicker 1970)

(frame numbers)

Filtering
8
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In Figure 1.4, sequences of spectral estimates for the digit string “nine

one three” at a signal to noise ratio (SNR) of 10 dB are displayed as a spectrog

The spectrogram is a graphical representation of the sequence of spectral est

(observation features) provided by the front end as the input to the pattern matc

stage. The horizontal axis is frame number (time), the vertical axis is filter num

(warped frequency), and the intensity of the feature vector is mapped to dark

Figure 1.4   Mel-frequency spectrogram at 10-dB SNR.

1.2.2 Pattern Comparison using Stochastic Models

Hidden Markov models (HMM) are used to provide a generalized statist

characterization of the non-stationary stochastic process represented b

sequences of feature vectors. Each element of the vocabulary (word, syllab

phone) is modeled as a Markov process with a small number of states. Du

recognition the current sound is compared to each of these models. The mode

Time (2 sec.)

F
ilt

er
 N

um
be

r

“nine” “six” “one” “three”

1

24
9
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the highest probability of observing the current sequence of feature vec

determines which vocabulary element is recognized.

The model is hidden in the sense that the observed sequence of fe

vectors does not directly correspond to the current model state. Instead, the m

state specifies thestatisticsof the observed feature vectors for a specific tempo

segment of the sound. State transitions are often limited so that the model can

stay in its current state or move forward to the next. In this way, each state is

to characterize statistics for a nearly stationary temporal segment of the vocab

element. In word-based recognition, the first state might characterize the begin

of the word, and the last state might characterize the end. Figure 1.5 sho

schematic representation of a four-state model for the word “six.”
10
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Figure 1.5   A schematic representation of a hidden Markov model for ‘six.’

When training an HMM, a set of exemplars corresponding to a particu

model are used to provide iterative improvements for both the estimates o

multi-variate distributions of the feature vectors, and the state-transi

probabilities. During recognition evaluations, each trained model is compared t

current input, and the most probable model determines the word recogn

Therefore, both training and recognition require solving the temporal alignm

problem of matching particular observation frames with particular model sta

µ0,σ0

0 1 2 3

µ1,σ1 µ2,σ2 µ3,σ3

a0

1-a0

a1

1-a1

a2

1-a2

a3

time (frame number)

frequency
(filter number)
11
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Once frames are aligned with specific states during training, new model param

(observation distributions, and state transition probabilities) are estimated from

statistics of the associated observation frames and state transitions, lead

iterative model improvements.

In general, there are two related approaches used to solve the tem

alignment problem with HMM speech recognition. The first is an application

dynamic programming or Viterbi decoding, and the second is the more gen

forward/backward algorithm. Both methods can be used for iterative model trai

and recognition evaluations.

Consider the 4-state model and the sequence of observation vector

frames) shown in Figure 1.5. At any point in time, if the current state is known,

probability of the model making a transition to the next state at the next frame is

joint probability of making the state transition and observing the next frame in

next state. For example, if at frame 0 we know the model is in state 0, then

probability that the model transitions to state 1 for frame 1 is the product of (1-a0)

times the probability density function (pdf) for state 1 (N(µ1,σ1)) evaluated at the

feature vector measured in frame 1. In this same instance, the probability of sta

in state 0 is the product ofa0 times the pdf for state 0 (N(µ0,σ0)) evaluated at the

feature vector measured in frame 1.

Figure 1.6 shows a grid of points (or trellis) with the observation fram

number on the x-axis and the state number on the y-axis. All possible m
12
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alignments for the current sequence of frames are described by paths alon

trellis. Evaluating the probability of a particular path requires computing the jo

probability of making each state transition while observing each feature vecto

the associated state. Because the number of possible paths grows exponential

the number of observation frames, evaluating each complete path explicitly is

computationally tractable.

However, while the number of possible complete paths grows exponent

with the number of observation frames, all paths must merge into the small num

of model states for each input frame. Furthermore, because of the assumed

order Markov structure, observation probabilities and state transitions are o

function of the current state, and not the path taken to get there.

Figure 1.6   An example of using a Viterbi search to solve the alignment prob

A Viterbi search reduces the computational dependence on the numb

observations from exponential to linear, by exploiting the fact that the m

observation number

state
number

0 0 1 1 1 1 2 2 2 3 3 3
uncovered

state( )
sequence
13
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probable complete path will necessarily include the most probable partial path

other words, if the most probable complete path passes through the {observ

number, state number} point (4, 2), then the partial path to (4, 2) is also the m

probable path to that point.

To identify the most probable path, it is therefore sufficient, with each n

frame, only to keep track of the most probable paths to each state. In the m

described in Figure 1.5-6, there are four such paths for each observation fr

Given the first-order Markov structure of our model, the probabilities for these p

are a function the probabilities of the accumulated partial paths at the prev

frame, the model state transition probabilities, and the probability of observing

current frame for each state. More specifically for the current frame, the m

probable path to each state is the maximum joint probability of the partial path

the previous frame and the state transition probabilities to that state. As desc

above, the probability of the partial path to the current frame is then multiplied

the pdf for that state evaluated at the current observation frame.

By keeping track of the most probable state transitions for each observa

the complete “best path” can be identified by back-tracking, as shown in Figure

In this case, the most probable state sequence was (0,0,1,1,1,1,2,2,2,3,3,3).

were the only exemplar used for training a model of the word “six,” then an upda

pdf for state 0 would be parameterized by the mean and covariance of the firs

observation frames, and the pdf for state 1 would be determined by the statist
14
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the next four frames, etc. Similarly, the state transition probabilities (ai in Figure

1.5-6) can be updated by the frequency of state transitions in the alignment

example,a0 would be 0.5, anda1 would be 0.75, etc. Given the updated model, t

observation frames are re-aligned, and the model parameters are re-estimate

the process is repeated until there is little reduction in the complete path probab

(Models are, of course, trained using many exemplars, so that model paramet

each iteration are a function of the alignment of the current model to several tok

A Viterbi-search solves the temporal alignment problem with an effici

iterative path-building strategy. The probabilities of the partial paths to the cur

frame are computed from the partial paths to the previous frame. For e

transition, the (single) most probable path to each state is added to the gro

partial path probabilities. This maximization (or winner takes all) strategy

essence imposes the constraint of identifying a single optimal state sequence d

alignment. Because the underlying states are hidden (meaningless), this con

is not necessary. Instead of choosing the most probable transition when bui

partial paths, all possible transitions from the previous partial paths that end a

particular {state number, observation number} point can be summed, with e

weighted by the associated state transition probability. Notice that because o

summation, there is no way to back-track and associate particular observations

particular frames to update the model estimates.

We therefore consider the forward/backward algorithm. By summing
15
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possible previous partial paths, the partialforward probabilitiesof observing the

first N frames of the exemplar and ending at a specific state can be induct

computed from the N-1 forward probabilities. A similar iterative process is use

obtain backward probabilitiesof observing the last M frames. Combining th

forward and backward probabilities provides an estimate for the probability

making each state transition while observing each frame, given the entire exem

New model parameters (state transition probabilities and observa

distributions) are again obtained by averaging across all exemplars in the tra

set for each model. However unlike with Viterbi-training, the contribution of ea

state transition and each observed feature vector are weighted by the probab

of having been at that state during the time of that feature vector. If we set the

probable transition into each {observation number, state number} point to 1 an

rest to 0, the forward/backward training reduces to Viterbi training. Given the n

set of re-estimated models, the algorithm iterates, re-aligning the original data t

updated models. As with training using Viterbi alignment, this iterative proc

converges to a local maximum for the likelihood of the model given the training

of exemplars.

Once models for the vocabulary elements are trained (their parameters

converged sufficiently after successive forward/backward iterations), new dat

recognized by evaluating the probability of observing that data given each o

trained models. For alignment, the same iterative propagation of forw
16
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probabilities used in training can be used. However, a Viterbi search is often

as a simplification. That is, instead of adding the probabilities of reachin

particular state at a particular vector in the feature vector sequence, only

transition that reaches that particular state with maximum probability is conside

In addition to keeping highly unlikely state sequences from influencing the fi

result, this simplification leads to the identification of the single best path which

be helpful for analyzing errors.

Recognition performance is, obviously, largely dependent on a g

statistical match between the test and training feature-vector sequences. Be

most systems use short-time spectral estimates, distortions introduced by ad

noise, or by a mis-match between the training and testing channels, conside

degrade recognition performance. One general approach to this problem is to

parametric adjustment of the multi-variate distributions given the current acou

environment [Gales and Young 1996]. A more pragmatic approach is simply to

the models in an environment that is a reasonable match to the expected te

environment.

This dissertation describes several methods to obtain a more percept

relevant characterization of speech and to improve recognition robustness. Firs

front-end signal processing is augmented to include short-term adaptation a

sensitivity to local spectral peaks. Second, the frequency position and motion o

local spectral peaks are explicitly tracked and then parameterized by the H
17
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Third, the presence of pitch-rate temporal information that is typically ignored

ASR is parameterized. Fourth, two sets of models are used in parallel:

characterizing clean training data and the other characterizing noisy training

The first three approaches attempt to focus the recognition task on phonet

relevant aspects of the sequences of short-time spectral estimates, while the

technique provides some adaptation of the statistical characterization for

expected acoustic environment.

In many ways, the current speech recognition paradigm is a di

application of the maximum likelihood models used in psychoacoustics [Green

Swets 1966]: the signal processing front end generates a sequence of sp

estimates (or a sequence of auditory excitation patterns [Zwicker 1970]), an

optimal decision device chooses the recognized words using a maximum likelih

criterion. For general speech recognition, unlike with many simplifi

psychoacoustic models, ‘multiple-looks’ [Viemeister and Wakefield 1991],

multiple measurements, are used in both time and frequency.

1.3 Auditory Modeling Overview

Recent texts [Pickles 1988, Geisler 1998] review the current understan

of the (human) auditory periphery. A brief review is included here to motivate so

of the modeling discussed later in this dissertation.

Acoustic pressure waves pass through the nearly (passive and) linear

and middle ears and vibrate the basilar membrane within the snail-shaped co
18
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of the inner ear. Vibrations along the basilar membrane modulate the relea

neurotransmitter by hair cells, which in turn, leads to action potentials (or spike

the auditory nerve. In this transduction process, information about the mecha

vibrations of sound are transformed into electrical signals processed by m

central neural regions.

Vibrations of the middle ear are coupled to the beginning, or base, of

basilar membrane. This membrane, which spirals in a helix up through the coc

functions as a non-uniform waveguide. Its stiffness decreases along its leng

that wavespeed drops nearly geometrically from base to apex (ca. 35 m

humans). If we consider a sinusoidal input starting at the base, as the traveling

moves apically, the wavefront slows, decreasing the wavelength of the memb

disturbance and concentrating the energy per unit length over an increas

smaller region. Finally losses due to the deformation of the membrane domi

and the traveling wave dissipates abruptly. The location along the membrane w

this occurs varies with the initial wavelength (or acoustic frequency) of the in

High frequency sinusoids concentrate and dissipate close to the base, while

frequency sinusoids travel further toward the apex. If we consider each point a

the basilar membrane as an output, the nonuniform waveguide is an effi

mechanical implementation of a filter bank, providing a physiological substrate

auditory frequency selectivity. Figure 1.7 [after von Bekesy 1953] show

schematic overview for this mechanism. (Interestingly, while this idea had b
19
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previously applied extensively to explain psychoacoustic masking experim

[Fletcher 1940], direct physiological observations of the traveling wave [v

Bekesy 1953] led to winning the Nobel prize.)

Figure 1.7   Mechanical frequency selectivity of the basilar membrane.

The deflections of tiny stereocilia (actually microvilli and not true cilia)

hair cells, located throughout the length of the basilar member, modulate the re

of neurotransmitter by the hair cells. This transduction is directional: increa

positive deflection leads to increasing neurotransmitter release, while neg

deflections cause little, if any, neurotransmitter release regardless of the defle

magnitude. Hair cells, therefore, provide half-wave rectification.

In humans, roughly 30,000 auditory neurons connect to these hair cells

generate action potentials in response to the hair cells’ neurotransmitter releas

generation of individual action potentials is stochastic, but when averaged a

stapes
(middle ear)

basilar membrane (cochlea)base apex

stiff
less

non-uniform wave-guide
more

stiff
20
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the ensemble of parallel auditory neurons passing information to more ce

regions, the action potentials can encode both the AC component of the ori

vibration as well as a demodulated DC component (which results from the hair

half-wave rectification) [Palmer and Russel 1986]. Intrinsic capacitances limit

upper frequency of the AC encoding to roughly 2-5 kHz [Joris et al. 1994]. Ab

5 kHz, there is little evidence of an AC component in the temporal patterns. W

the AC component generally provides a remarkably consistent linear represen

of (a filtered version of) the original acoustic vibration, the DC componen

considerably compressed by mechanical non-linearities in the cochlea an

adaptation and saturation in the hair-cell transduction process.

Throughout modern auditory research, there are at least two interpreta

of the neural representation of sound. Considering the mechanical frequ

selectivity of the basilar membrane, and the DC response encoded in the shor

average firing rate of auditory nerve action potentials,placetheories assume short

time spectral information is encoded in the changes of average rate with the po

of neural innervation along the basilar membrane. In an auditory model,

logarithm of the average intensity of the output of each filter is used to form

spectral excitation pattern [Zwicker 1970]. Differences in spectral excitat

patterns have been shown to correlate with many psychoacoustic measure

including pure-tone frequency jnds (just noticeable differences) and inten

discrimination [Siebert 1968, Zwicker 1970, Delgutte 1996], spectral mask
21
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[Patterson 1976, Glasberg and Moore 1990], and vowel discrimination [Kew

Port and Watson 1994].Temporaltheories assume that the filtering of the basil

membrane provides some rejection of out-of-band noises (a filter processing g

and that the AC components are then analyzed by more central neural centers

are sensitive to redundantfine-timestructure available across multiple auditor

nerves. Temporal theories have perhaps been most successful for describing a

of pitch perception [Licklider 1951, Goldstein and Srulovicz 1977, Meddis a

O’Mard 1997].

While there are many interesting exceptions [e.g. Lyon 1984, Deng

Geisler 1987, Seneff 1988, Ghitza 1991, Patterson et al. 1992, Potamiano

Maragos 1996], the majority of engineering applications that analyze speech

place models. As described in the ASR overview above, most use short-term

magnitude power spectrum estimates. The output of these systems approx

those of spectral excitation patterns used in place models. Differences include

implementation of the initial filtering (Fourier transforms, or linear prediction

often used instead of explicit filters); the non-linearity (often demodulation

achieved through squaring instead of half-wave rectification); and the low-p

filtering (usually temporal integration over a short-time analysis window, instea

an explicit low-pass filter). Most current discussions of auditory modeling ass

place and temporal processing are used simultaneously [e.g. Moore 1973, De

1996].
22
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When discussing temporal processing it is helpful to be specific about

rates considered and the distinction between modulator and carrier. The sp

analysis of speech in place models assumes that fluctuations in the range of ro

400-8000 Hz are either mechanically analyzed in the cochlea, or that, together

any contribution of more central neural analyses of the temporal fine structu

auditory nerve firings, the complete system response to fluctuations at these ra

well modeled by log-magnitude excitation patterns. Here, this range (about

8000 Hz) will be called thespectralrange (see Figure 1.8). The temporal mode

cited above include mechanisms which analyze temporal detail in the spe

range.

Figure 1.8   Classifying auditory frequency ranges for speech.
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A linear model of speech production [Fant 1960] is helpful wh

considering Figure 1.8. Briefly, when we speak, air from the lungs is forced thro

the vocal folds which open and then slam shut with nearly regular periodic

typically in the range of 100-200 Hz. (The vocal fold dynamics have similarities

those that occur at the lips when either a child makes a ‘raspberry’ sound,

trumpet player blows into the mouthpiece.) Because the vocal folds close abru

harmonics of the fundamental are also produced. The geometric configuratio

the vocal tract, as controlled by the position of the articulators (tongue, lips, te

jaw, etc.), determines how the harmonics are resonated in different spectral reg

For speech, these resonances are called formants. During unvoiced sounds (e

turbulence is usually generated by forcing air through a sufficiently nar

constriction somewhere in the vocal tract. Again, vocal tract resonances influ

the spectral shape of these noise-like speech sounds. A simplified linear sp

production model, therefore, includes either a noise source and/or a periodic dr

function (often approximated by an impulse train), and a linear filter to model

resonances of the vocal tract. Figure 1.9 [after Geisler 1998] shows an overvie

the speech production process.
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Figure 1.9   Speech production overview.

The right side of Figure 1.8 shows that formants, as determined by

position of the articulators, occur in the spectral range. Signals in the spectral r

are first processed by the auditory system as carriers. Non-linearities in the aud

system (and in ASR front ends) demodulate the carrier signal to DC. S

fluctuations in the amount of energy in a particular spectral region cause

fluctuations in the “DC” response, which tracks the envelope of the carrier. The

side of Figure 1.8 shows that changes in the configuration of the articulators,

the vocal tract resonances, modulating the spectral range in specific reg

Perceptually, these changes typically cue syllabic and word-level information a

speech progresses from one sound to the next. Here, we will refer to this r
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(roughly 2-20 Hz) as thesyllabic range. Quite remarkably, and as one of the be

recent examples of the redundancies in speech, syllabic range modulations, to

with extremely limited frequency resolution (3 or 4 noise carriers), are sufficient

human speech recognition [Shannon et al. 1995]. After the demodulation o

noise carriers at specific places along the basilar membrane, the perception of

sounds must depend entirely on temporal processing.

The fundamental frequency of vocal fold vibrations occurs between

spectral and syllabic regions in thevoicing range (center column in Figure 1.8)

When the spacing of harmonics are significantly greater than the bandwidth

auditory filters, low-frequency harmonics can be resolved in different audit

filters, providing a potential place cue for voicing information (especially for hig

pitch voices). On the other hand, temporal representations of information in

voicing range exist for all harmonics. High frequency harmonics (above 1-2 k

are not resolved by the auditory system: each auditory filter, or channel, con

multiple harmonics. The response in each channel is, therefore, modulated

fundamental frequency of vocal fold vibration. After half-wave rectification a

low-pass filtering, this modulation is well represented in the temporal firing patte

of the auditory nerve [Cariani and Delgutte 1996a-b]. Below 1-2 kHz, there

increasingly fewer harmonics in each auditory channel, reducing the modulati

the fundamental. However, as the number of harmonics per channel is decre

the ability of the auditory system to represent temporal information is increas
26
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That is, the harmonics below 1-2 kHz can be represented directly and individu

in the temporal firing patterns of the auditory nerve. Temporal pitch percep

models assume more central neural processing pools the timing information a

channels providing a composite response dominated by the common period

(i.e. the fundamental) [Licklider 1951]. Therefore, regardless of whether

harmonics are grouped mechanically in the initial filter, or subsequently in

temporal comparison of the neural representations of individual harmonics

auditory system provides a strong temporal coding of pitch information.

As shown in Figure 1.8, the typical ASR system characterizes the spe

region using compact representations of log-magnitude spectral estimates

characterizes the syllabic region with non-stationary stochastic modeling.

voicing region is usually ignored. In this dissertation, the first three ar

considered: adaptation, peak isolation, and the explicit parameterization o

position and motion of spectral peaks, influence both spectral and syll

representations. More precisely, the adaptation mechanism most directly influe

the syllabic range, peak isolation modifies representations in the spectral rang

the explicit parameterization of the position (spectral) and motion (syllab

influences representations in both. Finally, this dissertation includes modelin

the temporal processing in the voicing range.

1.4 Dissertation Overview

Chapter 2 describes the adaptation and spectral peak isolation mechan
27
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Chapter 3 describes an algorithm developed to parameterize of the position

motion of local spectral peaks. Chapter 4 focuses on the temporal aspects

voicing distinction between strident fricatives, and compares predictions from t

modeling approaches. Chapter 5 describes a series of recognition evalua

Finally, the summary in Chapter 6 includes an outline of other research direc

motivated by this work.
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Chapter 2

Adaptation and Local Peak Isolation

This chapter describes two mechanisms which augment the common

front end and provide temporal adaptation and isolation of local spectral peak

dynamic model consisting of a linear filter bank with a novel additive logarithm

adaptation stage after each filter output is proposed. An extensive serie

perceptual forward masking experiments, together with previously repo

forward masking data, determine the model’s dynamic parameters. O

parameterized, the simple exponential dynamic mechanism predicts the natu

forward masking data from several studies across wide ranging frequencies,

levels, and probe delay times.

2.1  Introduction

Most ASR systems model speech as a non-stationary stochastic proce
29
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statistically characterizing a sequence of spectral estimations. The com

technique for spectral estimation includes an approximation of auditory filterin

compressive non-linearity (usually the logarithm) and decorrelation of the spe

estimation through an approximate KL transform (the DCT). These steps repre

only rough approximations of the most fundamental aspects of auditory mode

frequency selectivity and magnitude compression. In the last 5-10 years

frequency selectivity for ASR front-ends has slowly migrated from a linear t

perceptually-based frequency scale [Davis and Mermelstein 1980]. This prog

toward a better auditory model for ASR, has improved robustness [Jankowski

1995].

A large discrepancy remains between current auditory models and

approximations used in ASR front ends. Recent efforts to incorporate m

sophisticated auditory models with ASR systems, however, have shown little t

improvement over the common front end, typically at a severe increase

computational costs [Jankowski et al. 1995]. The challenges are to determine

auditory functionality missing from the current front end would be useful

improving recognition robustness and to design effective simple mechanisms w

reproduce that functionality.

This chapter focuses on two aspects of audition not included in cur

representations: short-term adaptation and sensitivity to the frequency positi

local spectral peaks. For each, a mechanism with low computational complex
30
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described which adds to the common front end and provides a representation

more robust to background noise. The dynamic mechanism is parameterize

psychophysical data described here and in the literature [Kidd and Feth 1982]

peak isolation mechanism is a simple modification of a previous cepstral lifte

technique [Juang et al. 1987].

To incorporate a dynamic mechanism within a front end, a method

quantifying auditory adaptation must first be identified. There is considera

physiological and psychophysical evidence of dynamic audition. Short-t

adaptation, usually defined as a decreasing response after the onset of a co

stimulus, has been measured in individual auditory nerve firings [Smith

Zwislocki 1975]. The neural response to a stimulus is also reduced during

recovery period following adaptation to a prior stimulus [Harris and Dallos 197

Here the general termadaptationis used for both dynamic processes (short-te

adaptation and post-adaptation recovery), and its direction is explicitly spec

when significant.Attackrefers to the decreasing response following stimulus on

while releaseandrecoveryboth refer to the increasing response following stimul

offset. Motility of outer hair cells, the likely source of an active cochlear respon

also adapts with time constants which may be significant when quantifying sh

term adaptation [Ashmore 1987]. Finally, neural responses to onsets and a

spectral changes are substantial [Delgutte and Kiang 1984], providin

physiological substrate for the sensitivity of human speech perception to onset
31
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dynamic spectral cues [Furui 1986]. Although recognition systems typic

statistically characterize the evolution of relatively static spectral segments

auditory system responds most strongly to dynamic segments. This resp

strength can be viewed as a consequence of adaptation. What remains is to qu

the adaptation, and to design a mechanism which reproduces the functionalit

The task is similar to observing evidence of frequency selectivity a

requiring a specification (critical bandwidths) and a mechanism for its realiza

(a filter bank). Following the example of using static masking data to quan

frequency selectivity [Fletcher 1940], adaptation was quantified from a serie

dynamic, forward-masking experiments. The adaptation mechanism designe

modified form of automatic gain control (AGC) which adds an exponentia

adapting linear offset to logarithmic energy. Just as the current triangular filters

in the common ASR front end are first-order approximations of auditory freque

selectivity, the simple dynamic mechanism provides only a first-or

approximation of auditory adaptation. The strategy is to parameterize sim

dynamic mechanisms from forward masking thresholds to provide a be

approximation of the auditory response to dynamic stimuli.

Dynamic auditory models [e.g. Cohen 1989, Goldhor 1985, Kates 19

Lyon 1982, Lyon 1984, Lyon and Mead 1988, Seneff 1988] are of

physiologically-based computational models which characterize a relatively

level of the complete auditory system, or resort to some speculation either a
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higher-level processing and/or about appropriate dynamic parameters. Be

these systems often require processing time-domain signals for each auditory

(~100 filters) at the full sampling rate, they imply a large computational burd

making them difficult to use in engineering applications [Jankowski et al. 199

Also, successfully separating and quantifying measurable functionality (

frequency selectivity, or short-term adaptation), which may be distributed ac

several related physiological processes, is not a simple task. Other resea

[Aikaiwa and Saito 1994, Hermansky and Morgan 1994] have proposed n

computationally efficient techniques, targeted at automatic speech recogn

which emphasize spectral dynamics with varying perceptual accuracy

recognition improvements. The approach here differs from most deta

physiological models in that it ‘closes the loop’ with observations of top-le

functionality. Because the relatively simple model of frequency selectivity follow

by additive adaptation is consistent with underlying physiological processes

resulting quantified non-linear model provides useful approximations of

perception of non-stationary speech.

2.2 Forward Masking

Forward masking reveals that over short durations the usable dynamic r

of the auditory system is relatively small, and largely dependent on the intensity

spectral characteristics of previous stimuli. A probe following a masker is

audible than the probe following silence. As the duration between the maske
33
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probe decreases, the probe threshold is increasingly a function of the intensity

preceding masker, and decreasingly a function of the absolute probe thresh

silence. Forward masking can be viewed as a consequence of auditory adap

After adaptation to the masker, recovery time is necessary before the relatively

intense probe becomes audible. The amount of forward masking is also a fun

of the duration of the masker, reflecting the time required for the auditory syste

adapt completely to the masker. Forward-masking, therefore, provides

opportunity to measure the rate and magnitude of effective auditory adaptation

recovery.

To build the dynamic model, data describing sinusoidal forward mask

were desirable. The most complete data of pure-tone forward masking experim

is from [Jesteadt et al. 1982]. Although this data includes a wide range

frequencies and masker levels, the longest probe delay measured is only 4

short of the duration necessary for complete adaptation. To obtain reco

parameters, a set of pure-tone forward-masking experiments which included p

delays from 15 to 120 ms across wide ranging frequencies and masker level

performed. Short-delay pure-tone forward-masking data from the literature [K

and Feth 1982] as a function of masker duration were used to quantify at

parameters.

2.2.1 Experiments

The forward-masking experiments used long-tone maskers followed
34
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short tone-like probes of the same frequency and phase. The masker was

enough to ensure complete auditory adaptation before masker offset, whil

probe was short enough to measure the response of the auditory system

relatively specific time. A two alternative forced choice (2AFC) experimen

paradigm was used.

2.2.1.1 Stimuli

Figure 2.1 shows an example of the stimuli. A decaying 60 ms probe t

followed one of two 300 ms maskers, separated by 500 ms (Fig. 1.a). The sub

chose which masker the probe followed. Masker and probe frequencies ranged

250-4000 Hz in octave intervals, probe delays were 15, 30, 60, and 120 ms

masker levels spanned roughly 50 dB with three points. All signals were rampe

and off in 5 ms with the appropriate half period of a raised-cosine. Probe-d

times are specified between the peaks of the envelopes of the masker offse

probe onset.

In forward masking, it is often difficult to determine what cue subjects

using, or when the subject detects the probe. The solution here is similar to th

[Plomp 1964]. Both the probe and the masker in the non-probe interval decay

the same 20 ms time constant, and both end at the same time relative to the m

onset. Detecting the probe onset was a sufficient cue to determine the probe int

but detecting a decaying sinusoid (the tail of the probe) was not. Subjects wer

given feedback.
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To reduce the spectral splatter of transitions, the entire stimulus was filt

through a linear-phase, FIR filter, with a bandwidth of one critical band [Zwic

and Terhardt 1980]. In the Figure 2.1 example, the frequency is 1 kHz (Fig

2.1.B), the delay from masker to probe is 15 ms (Figure 2.1.C), and (measur

the envelope peak) the probe is 8 dB less intense than the masker. The stimu

shown after the critical band filter.

Figure 2.1 Forward masking stimuli: (A) Large time-scale view of a single 2A
trial; (B) Fourier Transform of the probe signal (128 ms rectangular window);
Smaller time-scale view of the probe following the masker by 15 ms.

2.2.1.2 Subjects

Five subjects, including the first author, participated in the experiments.

are native speakers of American English. One subject is female, and the othe
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male. Their ages ranged from 23 to 28 years. Hearing thresholds for each we

or below, 20 dB HL at frequencies used in this study.

2.2.1.3 Methods

For each condition, the level of the probe was adaptively varied to find

threshold. An adaptive “transformed up-down” procedure [Levitt 1971] determi

the 79% correct point, defined as the threshold for the 2AFC task. The in

adaptation step size of 4 dB was reduced to 2 dB and 1 dB after the first and

reversals. The initial probe was clearly audible. The experiment continued for

reversals. The probe levels at the last six reversals were averaged to determ

threshold. Thresholds were averaged across the five subjects to obtain the v

used for parameterizing the model.

2.2.1.4 Equipment and Calibration

Computer software generated digital stimuli on-line. The sampling rate

16 kHz, and the quantization was 16-bit linear. An Ariel Pro Port 656 converted

digital samples into an analog waveform, and the pre-amp of a Sony 59ES

recorder drove TDH-49P earphones. Tests were performed in a double-w

sound-isolated chamber. Stimuli were presented binaurally with ident

waveforms to each ear. The system was calibrated by measuring the respo

digitally synthesized sine-waves using a 6-cc coupler and a Larson-Davis 8

Sound Level Meter. Pre-amp levels and digital internal level offsets were se

place an 80 dB SPL 1kHz tone within 0.2 dB. A linear-phase FIR equalization fi
37
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was adjusted until pure tones from 125-7500 Hz measured within 0.5 dB.

2.2.2 Results

Figure 2.2 summarizes the average threshold increase (circles) acros

five subjects as a function of masker level with probe delay as a parameter. The

lines in Figure 2.2 indicate the model’s fit to the forward masking data. T

derivation of the model is described in the following sections.

Figure 2.2 Average forward masking data (circles), and std. dev. (error b
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together with the model fit (lines) as a function of masker level across 5 octa
with probe delays of 15, 30, 60, and 120 ms as a parameter.

2.2.3 Modeling Implications

The amount of forward masking (in dB) decays as a straight line a

function of the logarithm of the probe delay (first described in [Plomp 1964])

straight line with respect to logarithmic probe delay can be approximated b

exponential with respect to linear probe delay. This suggests additive expone

adaptation in dB.

Figure 2.3.A plots the threshold increase as a function of probe delay,

Figure 2.3.B shows the effective dynamic range below masker, defined as

difference between the masker and probe threshold levels, as a function of m

level. Figure 2.3.A shows that the rate of decay of the forward masking (show

a log time scale) increases with an increasing amount of masking. These data

suggest different adaptation rates for different masker intensities, or comple

beyond a simple exponential adaptation of dB level. Such complexity is

necessary. The adapting mechanism derived below has a greater initial dista

target after a more intense masker offset. Exponential processes decay more q

over the same amount of time when the output is further from the final static ta

Therefore, a simple exponential dynamic mechanism can predict a faster ra

decay of forward masking with more intense maskers.

Figure 3.B shows that even at short delays the dynamic range below ma
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depends on the level of the masker. At short delays there is little to no time

adaptation. Without time for adaptation, the static characteristics of the dyna

mechanism determine the forward masking threshold.

Figure 2.3 Average forward masking data at 1kHz: (a) as a function of the log d
with masker level as a parameter; and (b) as the dynamic range below maske
function of the masker level with probe delay as a parameter. The dotted line re
the probe threshold in quiet.

2.3 From Experimental Results to Model

Parameters

In the perceptual model, a dynamic adaptation stage follows each outp

a linear filter bank. At each point in time, each adaptation stage slowly adjust

internal offset to move its output incrementally closer to an I/O target.

The dynamic adaptation stages are referred to as automatic gain co

(AGC). However, it is significant that the AGC is implemented as an adap

additive offset to the log energy of the signal, and not as an adapting multiplica
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gain. There are at least two points that appear to require additive, and

multiplicative, adaptation. First, the measured incremental neural response

second onset after partial adaptation to a first is not proportional to an ada

amount of multiplicative gain [Smith and Zwislocki 1975]. Second, AGC th

adjusts a multiplicative gain proportional to the linear distance to the I/O target d

not predict a higher rate of decay of forward masking for greater amount

masking.

2.3.1  AGC: I/O Curves, Attack and Release Times

Time constants describing the rate of adaptation for the dyna

mechanisms are defined as the time required for the logarithmic distance to t

to reduce by a factor of1/e. Different time constants are used for attack (decreas

offset), and release (increasing offset). Over short durations, the AGC stage

little time to adapt, and is therefore nearly linear. On an I/O curve, when the in

changes abruptly, the output initially tracks the input, moving in nearly a 45 deg

line. Over long durations with static inputs, the output approaches the I/O targ

Figure 2.4.A shows a prototypical I/O curve for a single channel in

dynamic model. At low levels, the I/O function is nearly linear, over normal lev

it is compressive, and at extremely high levels it is again linear. The general s

of the prototypical I/O curve was motivated by the saturating response of the ba

membrane [Johnstone et al. 1986]. For each adaptation stage, a fixed in

threshold, corresponding to the static audibility threshold, is imposed at
41
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compression threshold. Similarly, the compression region ends, and the m

again becomes linear, at a high level of equal loudness (near 90 dB SPL)

function of the center frequencies of each adaptation stage. By carefully choo

the threshold and I/O curve for each adaptation stage, the AGC sections m

specified static input range as a function of center-frequency into a norma

internal level consistent with constant loudness contours.

Figure 2.4 (A) A prototypical I/O curve for a single channel in the dynamic mod
and, schematic output trajectories corresponding to a level change at three dif
rates for (B) decreasing inputs from 80 to 30 dB SPL, and (C) increasing in
from 30 to 80 dB SPL.

Figure 2.4.B-C schematically show the response of the model to decrea

Input

“Internal”
Level

dB SPL-10 10 30 50 70

-60

-40

-20

90

20

40

0

Linear

Threshold
Compression

Input
dB SPL-10 10 30 50 70

-60

-40

-20

90

20

40

0

Linear

Instantaneous Transition

Slow Transition

-10 10 30 50 70

-60

-40

-20

90

20

40

0

Linear

Instantaneous Transition

Slow Transition

Int.

dB

dB
Int.
dB

Input
dB SPL

Linear

(A)

(C)(B)
42



ctory

les to

tory

en

4.B.

the

ting

odel

sed

sary to

kers

utput

sker

to

et is

itive

set

new

tory
and increasing inputs, respectively. When the input changes abruptly, the traje

on the I/O curve moves nearly in a 45 degree angle, and then eventually sett

the target on the I/O curve. When the input changes slowly, the output trajec

follows the I/O curve more closely. The model predicts forward masking wh

output trajectories momentarily fall below the internal threshold, as in Figure 2.

2.3.2 Derivation of Model Parameters

The model’s forward-masking prediction is derived from the response of

dynamic mechanism to forward-masking stimuli. When the output of the adap

(dynamic) mechanism is just at threshold during the onset of the probe, the m

predicts a forward-masking threshold.

To simplify the model and this derivation, a constant I/O slope is impo

across the compressive region. Figure 2.5 describes the geometries neces

measure the model’s prediction of the forward masking threshold with long mas

as a function of masker level and probe delay. Before the masker offset, the o

trajectory reaches the target on the I/O curve (point A in Figure 2.5). As the ma

shuts off abruptly, the output trajectory instantly falls along the diagonal (from A

B). Once the trajectory is below the compressive region, the distance to targ

constant, and the model adapts by slowly increasing toward maximum add

offset (from B toward C). At some point during this adaptation (point C), the on

of the probe causes an abrupt transition from below threshold back up along a

diagonal (from C to D). If the probe level is intense enough to place the trajec
43



ernal

d (at

from

tant

the

el at
above threshold (at the instant of the probe onset) the probe is audible. If the int

level just reaches threshold, the model predicts a forward masking threshol

point D).

Figure 2.5 Geometry to derive recovery (upward adaptation) parameters
forward masking thresholds.

Incremental adaptation of the model is implemented using a (non-cons

coefficient) first-order difference equation leading to an exponential decay of

logarithmic distance to target. From the geometry in Figure 2.5, the probe lev

thresholdP as a function of masker levelM, discrete-time probe delayn, I/O slope
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m, and incremental adaptationa, is:

whereP andM are both referenced to the static threshold. Instantaneously, or

no delay (n ~ 0), the model predicts a short-term dynamic range below maskerM

- P0) equal to the vertical distance between the static I/O curve and threshold

Therefore, the data points at the shortest delay (Figure 2.3.B) provid

approximation for the I/O slope parameterm. An iterative procedure was used t

minimize the total MSE between the model predictions of the probe thresholds

the average forward masking data for all data points at each center frequency

function of the two model parametersm and a. The total MSE is relatively

insensitive to the I/O slope,m,compared to the adaptation parameter,a. Therefore,

the initial estimate ofmfrom the short-delay conditions was averaged with the va

that minimizes total MSE, to determine a finalm estimate. A second MSE

minimization as a function of onlya, determined the finala estimate.

Geometries necessary to derive attack (downward adaptation) param

are described in Figure 2.6. Before the onset of the masker, the model reach

static threshold (at point A in Figure 2.6). At the abrupt masker onset, the ou

trajectory translates diagonally upward (from A to B) and then slowly drops tow

the I/O target as the model adapts (from B to C to D). If the duration of the ma

P M 1 m–( )aṅ
= ,

M P0– M M 1 m–( )– Mm= = .
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is short relative to the downward time constant, the trajectory will not reach the

target by the time of the abrupt masker offset (point C). In response to the ma

offset, the output trajectory corresponding to the short masker moves diago

(from point C), crossing the internal threshold at a lower point than the trajec

corresponding to the longer masker (from point D). After brief recovery durin

short probe delay, the model predicts less forward masking from the short-dur

masker.

Figure 2.6 Geometry to derive attack (downward adaptation) parameters
forward masking thresholds as a function of masker duration.

Following incomplete downward adaptation (or attack), and as a functio
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the attack parameterb, discrete-time masker durationnd and probe delaynu, the

model predicts a probe threshold of:

The probe threshold difference,∆P, between short and long masker durations is

The probe threshold difference equation was solved for the model param

b, and then its value was estimated from the differences reported in [Kidd and

1982], using them anda parameters derived above.

Two versions of the dynamic model were implemented: a full-rate sys

and a down-sampled version. The full-rate system uses rounded exponentia

shapes [Glasberg and Moore 1990], and then adapts the envelope of each

output at the full sampling rate. The down-sampled system obtains Mel-scale p

spectrum estimations every 10 ms by weighting and adding power spectrum p

from an FFT, and then adapts these outputs at the down-sampled rate. On an H

workstation, the down-sampled system runs at 0.43 times real time, while the

rate implementation requires 9.4 times real time. All evaluations included here

the down-sampled implementation.

Table 2.1 summarizes the model parameters and adaptation time con

across frequencies. Theaandb terms are with respect to a 100 Hz spectral sampli

rate (or frame rate). Adaptation stages with center frequencies between mea

P M 1 m–( ) 1 bnd–( )anu= .

∆P M 1 m–( )bndanu= .
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points use a weighted average of neighboring parameters. Attack time constan

approximately 3-4 times shorter than release time constants. These times, and

accurately their ratio, approximate those derived from physiological data [Gold

1985].

Table 2.1  Adaptation Parameters

Figure 2.7 shows the model’s prediction of the decay of masking at 1 k

Note that the decay rate of forward masking is greater with more intense mas

Freq. Hz Slopem a b
release
(ms)

attack
(ms)

250 0.19 0.864 0.474 68 13

500 0.20 0.854 0.510 63 15

1000 0.26 0.816 0.543 49 16

2000 0.29 0.851 0.525 62 16

4000 0.34 0.858 0.507 65 15
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and that the decay is nearly linear with logarithmic time.

Figure 2.7 The model’s prediction of the decay of forward masking as a func
of masker level at 1 kHz: A) with a linear time reference and B) with a logarithm
time reference.

Figure 2.8 shows two examples of the model’s behavior at 1 kHz. Fig

2.8.A shows the response to two consecutive pulses. The model adapts in res

to the onset of the first pulse, and the response to the onset of the second puls

on top of the partial recovery from adaptation. Figure 2.8.B shows forward-mas

examples. The model starts adapting at the onset of the long pulse, and

recovers after its offset. Lower-intensity impulses following the long pul

corresponding to potential probe onset points, again ride on top of the mo

recovery from adaptation to the pulse. The responses to the impulses are in

below threshold (masked) and with time, rise above threshold.
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Figure 2.8 Adaptation to, and recovery after, a pulse: (A) The response to
second pulse is diminished; and (B) Impulses, corresponding to onsets, are in
masked (similar to figures in [Goldhor 1985]).

Figure 2.2 includes the model’s fit to the average forward-masking data.

computational model approximates forward masking data for a wide rang

masker levels and probe delays across several frequencies. The standard de

of the error is: 2.7, 2.9, 3.2, 3.1, and 2.4 dB, at 250, 500, 1k, 2k, and 4k

respectively. Most notably, however, the model consistently underestimates for

masking at the shortest probe delays. At least two factors contribute to this e

The exponential derivation assumes the 15 ms delay between the m

and probe is silence. This assumption provides the maximum possible distan
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target during the 15 ms, the maximum amount of recovery, and the low

prediction of forward masking. In fact, the stimuli had 5 ms of offset, 5 ms

silence, and 5 ms of onset during this interval. Any non-silence during the 15

delay decreases the distance to target, reduces the amount of recovery, and inc

the estimation of forward masking. Ignoring the finite onsets and offsets reduce

model’s predictions of the amount of forward masking at short delays.

In this derivation, forward masking is assumed to occur when insuffici

auditory recovery keeps the response to the probe below threshold. Howev

shorter (near zero) delays, with extremely similar maskers and probes, the p

may only be audible as a change in level at the end of the masker [Moore

Glasberg 1983], and not as a separate event. Even though the response to the

is above threshold, the subject may not distinguish the probe from the masker

therefore not detect the probe. Because the derivation requires the model’s res

to the probe to be below threshold to be masked, it underestimates the amou

forward masking especially at short delays with intense maskers.

2.3.3 Predicting Other Data

Figure 2.9 shows the model’s predictions of previous forward masking d

Figure 2.9.A shows the model’s prediction of average data with wide-band stim

[Plomp 1964]. These data provide relatively complete measurements of forw

masking across level and delay. In the results shown in Figure 2.2, there is

slight variation of forward masking with frequency. Because the adapting resp
51
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of the model to wide-band stimuli approximates the response at middle frequen

the wide-band data were predicted using the model parameters derived from

1kHz data. Although the model underestimates these data, the trends are cons

Figure 2.9 Using the model to predict other forward masking data: (A) wide-b
masker and probe [Plomp 1964]; (B) wide-band masker, sinusoidal probe at 1
[Moore and Glasberg 1983]; (C) sinusoidal masker and probe at 1kHz [Jestea
al. 1982]. (D) The equation provided in [Jesteadt et al. 1982] predicting the pre
data.

Figure 2.9.B and C show the predictions for wide-band and pure-t

maskers of 1 kHz pure tones, respectively [Moore and Glasberg 1983, Jestead

1982]. These measurements were made only at relatively short delays. Authors

historically disagreed on how to specify delay in a forward masking experim
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[Plomp 1964]. Here delay is measured between the envelope peaks, while [Je

et al. 1982] used zero-voltage points, and [Glasberg and Moore 1983] chose

voltage points between the masker and probe offset. The present study used

ramps, [Glasberg and Moore 1983] used 10 ms, and [Jesteadt et al. 1982] use

for the masker and 10 ms for the probe. To compensate for these differences 2

is subtracted from the delay reported in [Jesteadt et al. 1982], and 10 ms is add

the numbers in [Glasberg and Moore 1983]. The masker level in the 1kHz ban

the wide-band masker is determined by the energy in the critical band [Zwicker

Terhardt 1980] centered at 1 kHz. Although comparisons are only possib

relatively short delays, the model overestimates the amount of masking by w

band noises, and underestimates masking by pure tones. Once paramet

however, the simple dynamic mechanism approximates dynamic psychophy

responses.

Figure 2.9.D shows the prediction of data from this study by an equa

proposed in [Jesteadt et al. 1982]:

P andM are the levels of the probe and masker above threshold, and the cons

a, b, andc are chosen to fit the average forward-masking data at 1kHz in [Jest

et al. 1982]. Even though the parameters in this equation were chosen from a

set that did not include measurements at the longer delays used in this stu

P a b ∆tlog–( ) M c–( )= .
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provides an excellent prediction of the present data.

2.3.4 Other Models Predicting Forward Masking

Other auditory models have been derived which, in general, provide a b

fit to forward-masking data. Most, however, do not readily extend to a gen

processing scheme suitable for an ASR front end. For the dynamic mecha

derived in this paper, a signal is masked when the response is below thresho

fit forward-masking data, other models typically parametrize a decision device

thereby impose explicit interpretations of the front end’s response. If

parameterized decision device is removed to use the auditory model for an

front end, it is less clear how the recognition system would correctly interpr

masked signal.

Forward, backward, and forward/backward masking combinations h

been predicted with great precision assuming a relatively standard mode

filtering, rectification, power-law compression, temporal integration and a deci

device [Oxenham and Moore 1994]. In its original derivation, however, there

no mechanism to account for the level-dependence of forward masking. Eithe

temporal window shape [Oxenham and Moore 1994], or the power-

compression [Oxenham and Plack 1996] may vary with level. The decision de

required an unusually high minimum detectable temporal amplitude variation

dB, which may not extend well to a general processing scheme. Finally, if forw
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masking is entirely a consequence of temporal integration, physiolog

measurements of adaptation are ignored, and there is no mechanism which ex

physiological and perceptual sensitivity to onsets and transitions.

Other researchers have proposed models using adaptation mechanis

explain forward masking [Shannon 1990, Dau and Pueschel 1996a-b]. The fi

these [Shannon 1990] uses a modified version of a previous model [Zwislocki 1

which includes filtering, envelope detection, power-law compression, rapid

short-term adaptation, and long-term integration. The long-term integrato

bypassed in forward-masking tasks. Immediately following a stimulus, the mo

assumes that there is no rapid onset component in response to a probe, th

component recovers exponentially with time, and that the relative level of

component is used to determine forward masking. The model is somew

between a complete processing mechanism and an equation summa

psychophysical responses, and therefore, is also difficult to incorporate into

systems. The exponential recovery of the rapid onset component has similarit

the exponential adaptation used in the dynamic mechanism described in this p

Dau and Pueschel [1996a-b] have also developed a general auditory m

which together with an ‘optimal decision device’ predicts well a wide variety

psychophysical data. In each channel, the model uses linear filtering, half-w

rectification, and low-pass filtering, followed by five adaptation stages and a

pass filter. The output is correlated with templates that store the model’s resp
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to other (masker-only) conditions to predict masking thresholds, imposin

relatively complex post-processing mechanism to fit the data. The model prov

a dynamic spectral representation of speech which is likely to improve recogn

robustness; potential application improvements may warrant the signifi

computational complexity.

2.4 Peak Isolation

Both speech perception and the response of individual auditory nerve

extremely sensitive to the frequency position of local spectral peaks. There

several mechanisms, and corresponding modeling approaches, which may e

this sensitivity. Physiologically motivated by the local fan-out of the neu

connections to outer hair cells, [Lyon 1982] suggests cross-coupling AGC stag

improve static spectral contrast, providing functionality similar to the higher-le

lateral inhibitory network in [Wang and Shamma 1994]. Significant effort [Ly

1984, Seneff 1988, Ghitza 1991] also focuses on modeling how the auditory sy

derives, and makes use of, redundant temporal micro-structure. Auditory ne

with center frequencies as far as an octave away from a local spectral pea

synchronize their response to the frequency of the peak, providing a comp

neural representation dominated by that frequency [Delgutte and Kiang 19

Similarly, perceptual discrimination of vowels is more sensitive to the freque

location of spectral peaks than to other aspects of the spectral shape [Klatt 1

These data suggest that the auditory system may derive a noise-r
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representation by attending to the frequency locations of local spectral peaks

The dynamic model was also evaluated with a novel processing techn

based on raised-sin cepstral liftering [Juang et al. 1987] together with explicit p

normalization, which isolates local spectral peaks. Raised-sine cepstral lifteri

weighting the cepstral vector by the first half-period of a raised-sine function.

The cepstral vector is an expansion of the even log spectrum in term

cosine basis functions. Thec0 term specifies the log-spectrum average, thec1 term

approximates the log-spectrum tilt, etc., and high cepstral terms represent qu

varying ripples across the log spectrum. Weighting the cepstral vector specifie

relative emphasis of different types of log-spectrum variations. A raised-sine l

de-emphasizes slow changes with frequency associated with overall level and

driving-function variations, as well as fast changes which may reflect nume

artifacts [Juang et al. 1987].

It is helpful to view the effects of cepstral liftering in the log spectr

domain. Figure 2.10.a starts with the log spectrum, from a vowel [i], implied b

truncated cepstral vector. Figure 2.10.b shows the log spectrum implied after ra

sine cepstral liftering. The average level as well as slow (and fast) variations

frequency are de-emphasized, leaving components that change with frequency

process emphasizes both spectral peaks and valleys.
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Figure 2.10 Peak isolation processing: log spectrum of the vowel [i] after
cepstral truncation; (b) raised-sine cepstral liftering; and (c) half-wave rectifica
and peak normalization.

The valleys are removed by half-wave rectifying the log spectral estim

implied after raised-sine liftering, and a final vector is obtained by transform

back to the cepstral domain. Because the half-wave rectifier is non-linear, ex

transformation from cepstrum to log spectrum (processing through the rectifier
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then transformation back to cepstrum are required. The raised-sin lifter also af

the magnitude of the peaks. Therefore, before transforming back to the ceps

peaks are scaled to the level measured in the original log spectrum. The final

isolated estimation is shown in Figure 2.10.c.

2.5 Conclusion

Two mechanisms are described to modify the sequences of spe

representation used for speech recognition. The first is a (post-logari

exponential adaptation mechanism which is parameterized to approximate for

masking data. Adaptation leads to relatively stronger responses to onsets

spectral transitions, improving spectrotemporal contrast across time. The se

based on cepstral liftering, isolates local spectral peaks and impro

spectrotemporal contrast across frequency.

Figure 2.11 shows spectrogram representations for the digits “nine six

three” at two signal to noise ratios and for three different processing strategies

first representation uses Mel-frequency cepstral coefficients (MFCC, describ

Chapter 1), the second adds adaptation, and the third includes peak isol

Recognition evaluations described in Chapter 5 show increased recogn

performance in noise using these representations.
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Figure 2.11 Spectrogram representations for three processing strategies
column is at 30 dB SNR, right is 5 dB SNR; top spectrograms use MFCC, mid
includes adaptation, and bottom also includes peak isolation.
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Chapter 3

Parameterizing the Position and

Motion of Local Spectral Peaks

3.1 Background and Motivation

The eigenfunctions of a resonating vocal tract are manifested acousti

as formants in speech. The analysis of formants has provided significant ins

into speech production mechanisms, and motivation for speech coding algorit

Referring to ASR in 1981, D. Klatt wrote [Klatt 1981]:

“These schemes will succeed only to the extent that metrics

can be found that are (1) sensitive to phonetically relevant spectral

differences such as those caused by formant frequency changes, and

(2) relatively insensitive to phonetically irrelevant spectral

differences associated with a change of speaker identity or recording
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conditions.”

Although various compensation schemes for changing acou

environments are often used, the predominant characterization of speec

statistical speech recognition is based on sequences of short-time (10-20

spectral estimations, which characterize the coarse spectral envelope of

successive frame [Rabiner and Juang 1993]. This representation is only animplicit

characterization of the formant structure of speech, and as such, does not pr

direct access to the phonetically relevant formant motion described above. Ex

characterizations of speech dynamics typically focus on the motion of the cep

representation of the short-time spectral estimates [e.g. Deng 1994, Deng

1994], and thereby parameterize changes in the ‘complete’ spectral shape an

the specific (potentially robust) formant motion.

More direct formant tracking usually involves first identifying local spectr

peaks in a sequence of spectral estimations [Schafer and Rabiner 1970, McCa

1974]. Alternatively, Teager energy operators [Maragos et al. 1993, Foote e

1993, Hanson et al. 1994, Potamianos and Maragos 1996], Hilbert Transform

Wigner Distributions [Rao 1996], as well as changes in the cross-correlation o

temporal fine-structure between neighboring auditory frequency channels [D

and Kheirallah 1993] have been used to identify formant frequencies in spe

Formant tracks are then pieced together using heuristics [Schafer and Rabiner

McCandless 1974], hidden Markov models [Kopec 1986], or the minimization
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cost function [Larpie and Berger 1994]. The two-stage process has also

collapsed to one using extended Kalman filters [Rigoll 1986, Niranjan et al. 19

Unfortunately, formant tracking systems are often non-robust; they are

occasionally evaluated in noise, and are almost never tested in the context

ASR task.

The processing schemes described in Chapter 2 enhance the represen

of spectral dynamics and more specifically changing spectral peaks. While

sensitivity may be phonetically relevant, the characterization of the formant mo

is still implicit. Formant motion is only weakly characterized by the tempo

derivative of the overall spectral estimate, and by the sequence of underlying s

in the statistical model. Neither of these is a direct characterization, and ne

provides an obvious means to exploit the dominant frame-to-frame correlation

local spectral peaks. Finally, context dependent spectral representations m

general, be poor matches to ASR algorithms which rely on the characterizatio

segmentally stationary statistics. A more direct parameterization of the motio

spectral peaks, on the other hand, may prove to be a better match.

In essence, the algorithm described here introduces a simple and ro

form of formant tracking, and augments the frame-based feature vector use

ASR with an explicit parameterization of the formant position and motion.

3.2 The Algorithm

The algorithm described in this chapter builds on that of Chapter 2. A bl
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diagram of the processing stages in the algorithm is shown in Figure 3.1. While

initial filtering and subsequent liftering are processed at the sampling rate (11

samples/sec), the remaining processing occurs at the down-sampled frame rat

frames/sec) and has a lower order of computational complexity.

Figure 3.1   Overview of processing stages.
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3.2.1 Filtering and Adaptation

The filtering stage, after [Davis and Mermelstein 1980], is implemented

integrating power spectrum estimates weighted by triangular filters that h

bandwidths of 100 Hz for center frequencies below 1 kHz, and bandwidths of

times the center frequency above 1 kHz. The resulting frequency resolutio

therefore linear below 1 kHz, and logarithmic above 1 kHz.

The adaptation stage for each frequency channel acts as an automatic

control which incrementally adjusts an additive logarithmic offset to reduce

distance to a target input/output point. Adaptation emphasizes onsets and repr

changing spectral peaks more strongly than static ones. Together, these two

significantly affect how spectral peaks are identified and processed in subse

stages. Figure 3.2.A includes a spectrogram of four digits, “nine six one three

10 dB SNR, after filtering and adaptation.

3.2.2 Peak Isolation

Local spectral peaks are first identified independently in each frame

finding the local maxima in the log-spectral estimate, after raised-sin cep

liftering [Juang et al. 1987]. For each peak, the frequency position and

magnitude are stored. Because the raised-sin cepstral lifter alters the level o

local spectral peak, the log-magnitude value is taken from the correspon

frequency position in the spectral estimate before raised-sin liftering.

In Figure 3.2.A, note the relatively strong temporal correlation between
65
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frequency positions of the local spectral peaks through formants and form

transitions.

Figure 3.2 Peak positions and motion: A) Initial peaks identified after ceps
liftering; B) Neighboring peaks grouped to threads; C) Tracking three freque
positions; and D) Three frequency derivatives.
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3.2.3 Threading Peaks

This is the first of two stages which group peaks based on their spec

temporal proximity. The task is to connect the spectral peaks together in time

threads, and the approach used here is a form of dynamic programming. Each

(in each frame) is connected to the closest thread that extends into at least one

last two frames. If the frequency distance to the closest thread is greater

approximately 10% of the total (warped) frequency range, then a new threa

started. If no peak connects to the end of a given thread for two successive fra

then that thread is ended. Figure 3.2.B shows a moving seven-point (70 ms) se

order polynomial fit to each resulting thread. For each thread that includes at

four peaks, the temporal derivative as implied by the moving second-o

polynomial is also stored.

3.2.4 Choosing Three Peaks

The second stage imposes a structure on the threads enabling a

systematic characterization, and also attempts to reduce their variance. Th

from the first stage start and end somewhat randomly, which makes storing the

analysis or comparison not obvious. Also, there is significant variance in

reliability of the thread measurements. That is, dominant formant transitions

tracked more reliably than small peaks in background noise.

The second stage limits the representation of the threads to three pea

frequency for each frame. Three newtracks, centered at relatively low, medium, an
67
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high frequencies, are used to represent the information from the threads. Th

magnitude of the original spectral peak is used when integrating freque

positions and derivatives from the corresponding thread. This introduces an in

response that updates more quickly to information from more dominant peak

In the implementation, each track is assigned a center frequency, or

offset. The three center frequencies are equally spaced on the warped freq

scale. At each frame the frequency position of the track incrementally adj

toward the closest thread in that frame. The increment of adjustment is a sigm

function of the magnitude of the thread. The equation that describes this adjust

is:

f[n] = α p[n] + (1-α)(0.9f[n-1] + 0.1f0),

wheren is the frame index,f[n] is the frequency of the track,p[n] is the frequency

of the nearest peak,f0 is the center frequency or DC offset, and the variableα, which

controls the rate of the increment, is a sigmoidal function of the log magnitud

the peak. Ignoring the DC offset, the equation describes a non-constant coeffi

first-order low-pass filter. The sigmoid maps log magnitude to the appropriate (

interval, so that the filter changes from low-pass to all-pass. Because the

magnitude of the peak is measured after the adaptation stages, transition

onsets, in general, incur the most abrupt track changes.

An identical structure is used to track the frequency derivatives of

threads. For each of the three tracks, the current frequency derivative estim
68
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incrementally updated to the derivative measured at the closest peak. The size

increment is a sigmoidal function of the log magnitude of the peak. A final (fix

low-pass filter with a -3dB point of just over 15 Hz is applied both to the thr

frequency tracks, and to the three derivatives. Figure 3.2.C shows the

frequency positions for the three tracks, and Figure 3.2.D shows the frequ

derivatives.

3.3 Discussion

This parameterization of the motion of local spectral peaks differs fr

more traditional formant tracking [e.g. Schafer and Rabiner 1970, McCand

1974] in several ways. The initial filtering and adaptation greatly influence

resulting spectrotemporal representation. The frequency resolution is warped

perceptual scale, and signal dynamics play a significant role in determining w

peaks are identified. The two-stage process to identify the final tracks is aim

identifying the robust, slowly-varying information which is likely to be highl

correlated with underlying articulator motion. The tracking process also include

inertial component dependent on the magnitude of the (adapting) response

peak. Initial frequency derivative estimates are calculated before the impositio

explicit frequency ranges, reducing the influence of artifacts from these heuri

on the derivative estimates. Finally, by limiting the representation to three pe

with centers equally-spaced on the warped frequency scale, some of

complications introduced by the merging and splitting of higher formants
69
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avoided. A simplified task may lead to a more robust system.

3.4 Conclusions

This chapter describes a processing scheme which attempts to parame

the phonetically relevant information represented in formant position and mo

In essence, the threading described represents a grouping of spectrotem

patterns as an early stage of auditory scene analysis. Instead of extra

information directly from individual spectral estimates, the current appro

imposes a structure which extracts information from the spectrotemp

relationships between dominant spectral peaks. Chapter 6 includes fu

discussion of how this type of early scene analysis may help explain other cu

challenges for psychoacoustic modeling of non-stationary sounds.

Detailed descriptions of recognition evaluations using the final freque

positions and derivatives are presented in Chapter 5. When augmenting

processing in Chapter 2, the current representation eliminates roughly 30% o

previous recognition errors.
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Chapter 4

Modeling the Perception of Amplitude

Modulation

Currently, most ASR systems integrate spectral estimates over mul

pitch periods and remove explicit pitch and voicing information. Howev

amplitude modulation cues in voiced speech provide a robust and salient

perception which may be instrumental for recognizing speech in noise. In

chapter, three psychoacoustic models are used to predict the temporal modu

transfer function (TMTF) [Viemeister 1979] and the detection of voicing for hig

pass filtered natural fricatives in noise. Models using an envelope statistic

modulation filtering predict the TMTF data, while predictions from a model us

a summary autocorrelogram approximate both data sets.
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4.1 Motivation

During voiced speech, vibrating vocal folds excite time-varying resonan

of the vocal tract. Given a sequence of feature vectors representing log-magn

spectral estimates of vocal-tract transfer functions, most ASR systems u

hierarchy of non-stationary stochastic models operating at the progressively s

rates of the speech analysis frame (10-30 ms), phoneme, word, phrase, and

sentence, to determine what was most likely said [Rabiner and Juang 1993].

relevant to the current study, these systems do not use pitch or voicing informa

Instead, the signal processing for feature vector extraction, usually refl

some form of deconvolution, attempting to isolate vocal-tract transfer-func

estimates from the influences of the driving function. Linear prediction,

example, is used with a predictor polynomial that is significantly shorter than

expected glottal periodicity. Similarly, when homomorphic analysis is used

ASR, the high-quefrency cepstral terms, which can represent the periodic r

across the spectral estimate resulting from a harmonic driving function, are igno

Finally with the currently popular Mel-frequency cepstral coefficients (MFCC),

initial spectral estimate is first averaged (in time) over multiple pitch periods

then integrated across frequency to obtain a first-order approximation of aud

frequency selectivity. The output is then compressed by a logarithm, and finally

discrete cosine transform provides some decorrelation of the log-magni

spectral estimate across frequency. Higher-order terms in the resulting ce
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vector are again ignored. Integrating across time and frequency reduces the va

of the spectral estimate, and together with the truncated cepstral vector, n

eliminates any periodic source information.

Deconvolution is an important step for isolating the phonetic informat

about “what was said,” from aspects of the prosodical information more concern

with “how it was said.” But as the first processing stage of current systems, it is m

likely eliminating large parts of the perceptually salient information that hum

use to identify and recognize speech in naturally noisy environments.

Speech communication has evolved to be robust in noise. Redundancie

therefore, ubiquitous. Perceiving speech in noise requires an intelligent use o

potentially unreliable, but redundant, multi-dimensional cues spread over w

ranging time scales. While deconvolution must occur somewhere in the recogn

process, blindly eliminating a potential wealth of redundant cues may no

appropriate for the first stage. More plainly, rigid blind deconvolution in the fi

stage is unlikely to be optimal.

4.1.1 Pitch Perception

Processing voicing information in speech requires analyzing the harm

structure associated with a quasi-periodic vocal driving function, and m

therefore be considered as an aspect of pitch perception.

In 1951, Licklider proposed a duplex theory to explain many aspects

pitch perception, including the perception of the missing fundamental (or res
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pitch), and the pitch of modulated noise [Licklider 1951]. Briefly, Licklide

envisioned neural machinery which measured the running temporal autocorrel

in each auditory frequency channel. Pitch perception correlated to the com

periodicities measured across channels.

In 1984 Lyon was able to simulate an implementation of the duplex the

labeling the graphic output acorrelogram[Lyon 1984]. Since then, Meddis and

colleagues [Meddis and Hewitt 1991a-b, Meddis and O’Mard 1997] h

formalized the simulations and included a final stage that adds the run

autocorrelations across each channel generating asummary correlogram. Cariani

and Delgutte have also shown that similar processing of measured auditory

impulses is sufficient to predict many classical pitch perception phenom

[Cariani and Delgutte 1996a-b]. Finally, other researchers have replaced

autocorrelation function with different mechanisms that measure temporal inte

in each auditory channel [e.g. Patterson 1992, Ghitza 1991, de Cheveigne 19

In general (and as shown in Licklider’s original sketches achieved with

the aid of computer simulation), simulations using these models provide a grap

output that correlates well to pitch perception. The time lag for the peak in

summary correlogram is usually found to be the reciprocal of the frequency o

perceived pitch, and the height of the peak may correlate to qualitative p

salience, or pitch strength. With few exceptions however, the models are not

to predict psychoacoustic just-noticeable-differences (jnds) with general stim
74
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Together with the lack of a clearly identified physiological substrate for

implementation of the required timing measurements, this line of research rem

somewhat ‘open-loop.’

4.1.2 Perception of Amplitude Modulation

Processing voicing information in speech might also be considered

aspect of amplitude modulation perception.

In 1979, Viemeister applied a linear systems approach to the detectio

acoustic envelope fluctuations [Viemeister 1979]. His model was first fit to d

describing the detection of sinusoidal amplitude modulation of wideband noise

then used to predict the detection of other harmonic envelopes. Motivated b

close relationship between standard deviation and autocorrelation, Viemeis

model used the standard deviation of a demodulated envelope as the statis

predict human performance. Although this measure does not characteriz

perceived pitch of the amplitude modulation (the standard deviation measure

magnitude and not the rate of envelope fluctuations), a more complicated simul

involving autocorrelation was not necessary to predict the detection data. M

recently, this model has been extended to predict other amplitude modul

detection data [Strickland and Viemeister 1996, Strickland and Viemeister 19

In 1989, Houtgast measured modulation masking that suggested ex

neural modulation filtering [Houtgast 1989]. Narrow bandwidth noise modula

were found to mask the perception of sinusoidal modulators, in a manner simil
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the spectral masking of tones by narrow-band noises. Modulation tuning has

been measured physiologically [e.g. Langner 1992]. However, other modula

masking experiments using sinusoids have been less conclusive [Strickland

Viemeister 1996, Bacon and Grantham 1989]. Nonetheless, a model of modul

filtering has been implemented and shown to correlate to many aspects of amp

modulation perception [Dau et al. 1997a-b].

In essence, modulation filtering replaces the single low-pass filter in

envelope statistic model with a second bank of filters. The modulation filte

simulations here also include a better approximation of auditory filtering than

single band-pass filter used in the envelope statistic model.

Therefore, there are at least three modeling approaches which ma

helpful for analyzing the periodic envelope fluctuations in voiced spee

autocorrelation or interval-based temporal processing, the measurement

envelope statistic, and explicit modulation filtering. To choose between th

implementations of each were first fit to predict TMTF data, and then each was

in a case study to predict the discrimination of voicing for strident fricatives

noise.

4.2 Strident Fricative Case Study: [s] and [z]

Fricatives are generated by forcing air through a sufficiently narr

constriction in the vocal tract to generate a turbulent noise-like source. With vo

fricatives, the vocal folds also vibrate adding low-frequency energy at the first
76
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harmonics of the fundamental frequency. The relative level of the first harmo

compared to that of the adjacent vowel, has been shown to be a good indicat

voicing distinctions with fricatives [Stevens et al. 1992, Pirello et al. 1997].

Here, the strident fricatives [s z] with the vowels [a i u] were recorded as

syllables from four talkers. Figure 4.1 compares average log-magnitude spe

estimates for [s] and [z]. The voiced [z] has low-frequency energy not present in

Figure 4.1   Comparing average spectral estimates for [s] and [z].
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Current ASR systems would use the presence of low-frequency spe

energy to discriminate these sounds. However, there are situations where

particular difference can be obscured: e.g. a high-pass channel or a competing

pass noise.

Figure 4.2 shows examples of the temporal waveform for [s] and [z], a

each has been high-pass filtered above 3 kHz. Without low-frequency spe

components, the low-frequency pitch-rate information is represented in

envelope of the high-frequency noise-like carrier. These figures provide evid

that the vibrating vocal folds can modulate the pressure source that drive

turbulence for a voiced fricative. The modulated noise source leads to a pote

redundant cue of voicing in a spectral region with significant speech energy.

systems that integrate spectral estimates over multiple glottal periods do

distinguish these sounds, while listeners, on the other hand, distinguish them a

signal to noise ratios (see Section 4.4).
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Figure 4.2   Examples of temporal waveforms after high-pass filtering.

4.2.1 Perceptual Measurements

To measure the perceptual sensitivity to this potential voicing cue,

discrimination of these sounds was measured in wide-band noise. The sy

initial fricatives were both temporally isolated from the adjacent vowel, and hi

pass filtered above 3 kHz. During the perceptual tests, tokens were then cente
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1 second of spectrally flat noise.

Adaptive tests [Levitt 1971] were used to track the percept

discrimination of the isolated fricative as a function of SNR at twod’ levels. For

each trial, the subject was required to identify a randomly chosen token as eith

or [z]. Feedback was provided. The initial SNR was high enough that the fricat

were clearly distinguishable for all subjects. The SNR was increased afte

incorrect response, and decreased after either 2, or 3, correct responses. A re

is defined as a change in the direction of the SNR step. The SNR step size sta

4 dB, and was reduced to 2 dB after the first reversal, and to 1 dB after the third

average of the SNR at the next 6 reversals provided an initial threshold estima

the variance in this estimate was less than 2 dB, the measurements sto

otherwise the experiment continued for up to 6 more reversals. The average of

such measurements provided a final threshold estimate for each subject. When

3) correct responses are required, the threshold estimate converges to a 70.7

79.4%) correct response rate. For this experiment, these correspond tod’ values of

1.09, and 1.64, respectively. Four audiometrically normal subjects participate

the experiment. Average thresholds across these four subjects are shown to

with model predictions in Figure 4.10 below.

4.3 3 AM-Detection Mechanisms

The task in this experiment may require detecting periodic envel

fluctuations which become increasingly weak with more additive noise. Perhap
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most direct approach is to model this perception using an envelope statistic.

4.3.1 Envelope Statistic

Figure 4.3 shows a block diagram of the signal processing in an enve

statistic model. This classical approach reduces auditory processing to: aud

filtering (approximately measured along the basilar membrane), half-w

rectification (approximated in inner hair cell transduction) and low-pass filter

(measured throughout higher-levels of auditory processing). From an engine

perspective, the band-pass filter selects a channel, the half-wave rectifier is the

linearity that modulates the carrier down to DC, and the low-pass filter tracks

envelope.

Figure 4.3   Envelope detection.

The model’s sensitivity to amplitude-modulated wideband noise increases

increasing bandwidth in the initial filter, while the reduction of sensitivity wi

increasing envelope frequency is mostly determined by the final low-pass filte
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81



is

, the

hich

ow-

sed

ro to
4.3.2 Modulation Filtering

A schematic overview of an implementation of modulation filtering

shown in Figure 4.4. Building from the envelope detection processing above

model includes multiple 4th-order gamma-tone filters [Patterson et al. 1992] w

provide a better approximation of auditory filtering, and replaces the single l

pass filter with a second filterbank that analyzes the envelope spectrum.

Figure 4.4   A modulation filtering scheme.

The frequency response for the modulation filters used (Q3dB of 2, and -12

dB DC gain) were from [Dau et al. 1997a]. For each filter, our implementation u

a second-order pole and a first-order (real) zero at DC. The distance of the ze
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the unit circle was set to meet the DC specification. The resulting freque

responses are shown in Figure 4.5.

Figure 4.5   Responses of the modulation filterbank.

Both the modulation filtering and the envelope detection model analyze

magnitude of the fluctuations of the envelope of the acoustic waveform. As st

previously, the primary difference is that modulation filtering assumes a sec

filtering stage tuned to different envelope modulation rates. Figure 4.6 compare

processing output of these two models to a noise carrier with no modulation

with 56% (20log(m) = -5) modulation. Although the standard deviation of the in

is the same for the modulated and unmodulated cases, the outputs of both m

have relatively more fluctuation in the modulated case.
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Figure 4.6 Comparisons of the amplitude modulation detection models. Da
lines indicate standard deviations. The modulation filtering plots show the out
of six auditory channels, each filtered by a modulation filter centered at 100 H
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4.3.3 Correlational Analysis

An overview of the correlational analysis is shown in Figure 4.7. This is

implementation of Licklider’s model [Licklider 1951] together with a final stag

that adds correlation estimates across channels [Meddis and Hewitt 1991a]

first stage is the same gamma-tone approximation of cochlear filtering, used a

The transduction stage includes half-wave rectification, low-pass filtering, a

2nd-order Butterworth high-pass filter with a cut-off of 4 Hz. Runnin

autocorrelations are computed in each filter channel, and the results are a

across channels.

Our implementation of running autocorrelation for each channel invol

two stages. First, the instantaneous product of the current input and a version

input delayed by some amountτ is computed for all time and all values ofτ:

x1(t,τ) = x(t) x(t-τ). (4.1)

Second, to form a running autocorrelation estimate, these sequence

low-pass filtered (in time and for each value ofτ) to below one half of the final

correlation sampling rate:

x2(t,τ) = x1(t,τ) * hlpf(t). (4.2)

In the evaluations below, the correlation sampling rate was 25 Hz, andhlpf(t)

was implemented as a 6th-order Butterworth filter with a -3dB point at 10 Hz. T

is, after the low-pass filter, the running autocorrelations were sampled every 40

and then summed across frequency channels to generate a sequence of su
85
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Figure 4.7 Overview of the correlational processing. Inset shows autocorrela
delay-line detail.

As described above, the position of the peak in the summary correlogram has
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been shown to correlate with the reciprocal of the perceived pitch-freque

although some authors have considered the entire waveform of the sum

correlogram [Meddis and Hewitt 1991, Meddis and O’Mard 1997]. Here

compromise between these is used. For each sample of the summary correlo

our statistic is the maximum difference, across all delay valuesτ, between the

summary correlogram values at delays ofτ andτ/2:

statistic = max [ sc(τ) - sc(τ/2) ], (0 < τ < 20 ms). (4.3)

With a sinusoidal envelope, this difference peaks at a value ofτ equal to the

period of the sinusoid. Figure 4.8 includes examples of this decision statistic u

the same noise carrier with no modulation, and with 56% modulation (20log(m

-5) at 100 Hz. In the modulated case, the first peak (after zero delay) in the sum

correlogram occurs at the period of the modulation or 10 ms. When there i

modulation, the summary correlogram approximates an impulse. Adding

individual correlation estimates across channels reduces some variance; con

modulation shapes across channels add together, while inconsistent shapes

cancel each other. However, considerable variation remains across sum

correlogram samples, shown in the lower half of Figure 4.6, due to the stoch

carrier.
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Figure 4.8 Samples of the correlogram output and super-imposed examples
summary correlogram decision statistic. Input signals are the same as in Figur
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4.4 Comparing Predictions

The temporal modulation transfer function (TMTF) is a measure of audit

sensitivity to amplitude modulation as a function of modulation frequency. M

specifically, the minimum detectable sinusoidal amplitude modulation dept

typically measured as a function of modulation frequency using wide-band n

carriers.

Each of the three models were first adjusted to predict TMTF measurem

averaged from previous studies [Strickland and Viemeister 1997, Dau et al. 19

The resulting models were then used to predict the discrimination thresholds fo

high-pass filtered [s] and [z] tokens in noise. Because the natural fricatives

non-stationary, all three models were evaluated using multiple measuremen

time, or multiple ‘looks’ [Viemeister and Wakefield 1991].

For the envelope statistic model we found the best match using an in

filter bandwidth of 3 kHz, centered at a frequency of 5.5 kHz. With the

parameters, the filter was also roughly a matched-filter for the high-pass filtere

[z] tokens. The low-pass filter was a 1st-order Butterworth with a cut-off of 90 H

The normalized fourth-moment statistic [Strickland and Viemeister 1996 and 19

was used.

To obtain multiple measurements in time, the output of the envel

detection mechanism was segmented using partially overlapping 50-ms win

that had 10-ms raised-cosine onset and offsets and a 30-ms constant cente
89



e 0.5

for

ope,

iation

was

efore

sion

total

, the

the

e

and

g

from

the

]. To
window increment was 40 ms so that onset and offset slopes intersected at th

level. The window length was chosen to ensure multiple periods in each window

the pitch-frequency range of interest. By modulating the DC offset in the envel

the shape of the window can dominate measurements using the standard dev

or the fourth-moment. Therefore, the DC offset for each 50-ms segment

removed before weighting by the raised-cosine, and then added back b

measuring the decision statistic.

Threshold predictions were obtained by using the difference in the deci

statistic in signal and non-signal intervals over 100 simulations to estimated’ for

each ‘look.’ Assuming independence of the individual measurements, a

detectiond’ was estimated as the length of ad’ vector containing all looks [Green

and Swets 1966]. With a stimulus duration of 500 ms used for the TMTF data

vector included 12 elements, or 12 looks. A line was fit to the log of totald’

estimates as a function of the log of the modulation depth. From this line,

modulation threshold was estimated from the point where the line crossed thd’

threshold of 1.26 tracked in the perceptual TMTF measurements [Strickland

Viemeister 1997, Dau et al. 1997b].

With the modulation filtering and correlation models, the initial filterin

stage was six 4th-order gamma-tone filters with center frequencies ranging

4280 Hz to 6970 Hz. Filters overlapped at their half-power points, and

bandwidths were set using the equation provided in [Glasberg and Moore 1990
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predict the TMTF data using modulation filtering, only the modulation filter tun

to the probe envelope frequency was considered. When predicting the fricative

two modulation filters centered at 120 Hz and 200 Hz were used. The s

windowing used with the envelope statistic simulations were used with

modulation filtering, and the standard deviation was the measured statistic.

As seen previously [Dau et al. 1997a-b], the modulation filtering was

sensitive to predict human performance without adding a large amount of inte

noise. To obtain the best match to the TMTF data, a balance of internal noise

added both before and after modulation filtering.

Using the correlation model, the peak distance statistic described above

measured every 40-ms for the summary correlogram. To approximate the sha

the TMTF data, the first-order low-pass filter was used with a cut-off frequenc

280 Hz.

TMTF threshold predictions for all three models are shown in Figure 4

Each model provides a reasonable prediction across this frequency range.
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Figure 4.9 Three predictions of TMTF data:m is the modulation depth; perceptua
data are an average of [Strickland and Viemeister 1997, Dau et al. 1997b].

Predicting the voicing detection thresholds for the natural, non-station

fricatives in noise required finding the fricatives (or more specifically finding

voicing in the fricative) within the 1 second of noise. For all model predictio

below, only the three consecutive temporal segments that maximized the differ

from the background noise were analyzed, providing three temporal looks

token. Totald’ values were then estimated as a function of SNR.
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Figure 4.10 Discriminating the high-pass filtered [s] and [z]: perceptual data i
average across four subjects.

Figure 4.10 shows thed’ estimates for each model’s prediction of th

discrimination of the high-pass filtered [s] and [z] tokens in noise. The model ba

on correlations provided the best prediction.

4.5 Modeling Implications

It appears that the envelope statistic was not sufficient to discriminate th

and [z] tokens (even at relatively high SNR values), because the measuremen

not distinguish between the periodic voicing cues in [z] from the aperio
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fluctuations in [s]. Both the modulation filtering and the autocorrelation proces

include specific modulation tuning and provide closer predictions.

Reasons for the difference in performance between these two are less

and could be specific to these simulations. By reducing the amount of internal n

the modulation filtering model provides a better estimate of the [s] [z] data, but

over-estimates the TMTF sensitivity. One primary difference is that

autocorrelation mechanism integrates correlation estimates across frequency,

the modulation filtering simulations use the more general assumption that

output corresponds to an independent measurement. Integrating corre

estimates across frequency channels de-emphasizes envelope comp

uncorrelated across frequency in favor of correlated components. Ano

difference is that the correlation simulations used the low-pass filter to li

sensitivity, while the modulation simulation included internal noise.

It may be interesting to note that if the auditory system does include a cr

channel interval based representation, redundancies in this representation are

to make it inefficient to maintain across many areas. Efficient decorrelation o

(potentially smooth and periodic) summary correlogram might approximat

cosine transform. Such periodic transformations exist in other perceptual sys

[e.g. Wang and Shamma 1994]. In this case, the decorrelated representation

have many of the properties of the (demodulated) output of a modulation filterb

The difference is that the envelope analyzed was first processed to identify com
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correlations across a wider frequency range.

4.6 Conclusions

This chapter identifies a secondary temporal cue which can reliably indi

voicing distinctions between [s] and [z]. This amplitude modulation cue had

been identified in previous studies of voiced fricatives [e.g. Stevens et al. 1

Pirello et al. 1997]. Furthermore, once the cue was identified it was not clear w

processing should be used to detect it. Three possibilities were investigated.

While cross-channel interval-based processing has been quite success

predicting many aspects of pitch perception, here we show that these mecha

can also predict TMTF thresholds and the detection of voicing for high-pass filte

strident fricatives in noise. Simulations using envelope-statistic and modula

filtering models, fit to predict the TMTF data, did not predict the isolated spe

data.
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Chapter 5

Recognition Evaluations

The signal processing described in the previous three chapters was us

a series of speech recognition evaluations in noise. This processing s

improvements over other common signal processing techniques used to increa

noise-robustness of speech recognition systems. When compared to typical

speech representations, our processing reduces the error rate in noise by rou

factor of 4.

5.1 Recognition Task

The evaluations here are speaker-independent word recognition tasks

the digits from the male talkers in the TI-46 database. As a collection of isola

words (digits, alphabet, and commands) recorded by Texas Instruments in 1

this database represents perhaps the most trivial industry-standard recognition
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Two modifications are made to the database to increase the challenge of the

first the recognition evaluations are performed in considerable amounts of n

(SNR from 0 to 30 dB); second, the digits are placed randomly within two seco

of (noisy) silence.

Adding noise is a significant challenge for ASR, but one aspect of t

challenge is that with higher levels of background noise,findingthe word within the

background noise becomes increasingly difficult. Many ASR systems, and cert

the ones evaluated here, make maximum likelihood decisions without any ex

confidence measures. The most probable word is chosen, even if that probab

extremely low. As the background noise increases, the likelihoods of all mo

drop to the point where the maximum likelihood response can occur in

background noise itself. At this point, the representation of the speech sign

corrupted so much that the model ‘finds’ the best match to the background n

The TI-46 digits are hand-aligned and centered in the files in the database. Wi

adding surrounding silence, finding the speech is not an issue.

The additive noise used in these evaluations was shaped to matc

estimate of the long-term average speech spectrum [Byrne and Dillon 1986

shown in Figure 5.1.
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Figure 5.1 Spectrum of the additive noise used in the recognition evaluations
set to match the long-term average speech spectrum [Byrne and Dilllon 1986

5.2 Stochastic Modeling Structure

These evaluations use the general hidden Markov model (HMM) struc

outlined in Chapter 1 [Rabiner and Juang 1993]. Models were trained for e

word, and the model that provided the maximum likelihood for an unknown to

determined the word recognized. However, instead of using a single model for

word, two models for each word were used in parallel: one trained from clean d

and the other from data corrupted by noise. The model that provided maxim

likelihood from either set determined the word recognized.

For all models, 6-states per word, simple left-to-right state transitio

continuous Gaussian densities, diagonal covariances, and fixed global vari

0 1000 2000 3000 4000 5000
−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency (Hz)

R
el

at
iv

e 
M

ag
ni

tu
de

 d
B

98



were

mated

ata

ing

first

odels

s in

lied

ard-

ilar

nt,

sue is

odels

built

for

the

dded

lean

iterbi
were used. Mean feature vectors and transition probabilities for each state

trained as described below, but variances were set to the global variance esti

over all tokens in the training set. This technique is useful with limited training d

and when the testing environment is significantly different from the train

environment [Jankowski et al. 1995].

The clean models were trained in two stages. Training words were

isolated from the surrounding silence based on the total signal energy. The m

were initialized assuming a uniform distribution of the words across the 6 state

the model. Iterative Viterbi (max-path) alignment and training was then app

until the average log probability decreased by less than a threshold. The forw

backward algorithm improved the estimate for each model using a sim

convergence criterion.

When the test environment differs from the training environme

recognition performance deteriorates. A common approach to address this is

to train models using noisy data [Rabiner and Juang 1993]. One set of clean m

was built, as described above, and then a second set of ‘noisy models’ was

using training data at an SNR of 9 dB. Both sets of models were used

recognition; the model with the highest probability (from either set) determined

word recognized. To train the noisy models, stationary background noise was a

to the training data, and then forced-Viterbi alignment with the corresponding c

model was used to isolate the noisy speech from the background. The same V
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and forward-backward training algorithms used for training clean models, w

then used to train noisy models from the isolated noisy words. Recognition o

testing data was performed using Viterbi alignment with both sets of models

choosing the model with the highest probability.

5.3 Baseline Signal Processing

Two baseline front-ends are considered: linear prediction ceps

coefficients (LPCC), and Mel-frequency cepstral coefficients (MFCC). Each fr

end computes a spectral estimation every 10 ms using overlapping 30-ms Ham

windows. LPCC are computed in two stages [Rabiner and Juang 1993]: 12th o

autocorrelation-based linear prediction provides an all-pole vocal-tract tran

function. Real cepstral coefficients are then recursively computed for

minimum-phase estimation. MFCC are computed in three stages [Davis

Mermelstein 1980]. The power spectrum is computed using a zero-padded

Fourier transform (FFT). To estimate the energy at the output of each approxi

auditory filter, power spectrum outputs are weighted by a triangular filter shape

then summed. The filters have a half-power bandwidth of 100 Hz up to ce

frequencies of 1 kHz, and a bandwidth of 0.1 times the center frequency abo

kHz. A discrete cosine transform (DCT) converts the spectral estimation obta

from the logarithmic energy across filters into a final cepstral vector. A 13 elem

cepstral vector, and its temporal derivative (approximated by the slope of a lin

to 7 cepstral points) are obtained for each front end, but the undifferentiated spe
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level term (c0) is ignored during recognition. Therefore, the baseline feature vec

have 25 elements.

5.4 Implementation of the Model Signal Processing

Figure 3.1, in Chapter 3, shows a block diagram for the adaptation, p

isolation, and threading processing.

5.4.1 Adaptation

The adaptation mechanisms described in Chapter 2 are implemented

modification of the process used to obtain MFCC. Before the DCT, the logarith

filter energies of MFCC are processed through the dynamic stages derive

Chapter 2 to obtain the adapting spectral estimation vector MFCCA. Therefore

adaptation mechanisms alter the sequences of logarithmic energy estim

obtained for each approximate auditory channel.

5.4.2 Peak Isolation

The peak isolation mechanism was described in Chapter 2. A trunc

cepstral vector is obtained for each frame. This cepstral vector is weighted

modified raised-sin lifter [Juang et al. 1987], and the inverse DCT (IDCT) is u

to transform back to a (modified) spectral estimate. This estimate is half-w

rectified, and the individual peaks were scaled to match the peak magnitudes

original spectral estimate. The DCT is then used to obtain a final cep
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representation of the peak isolated spectral estimate.

5.4.3 Peak Position and Motion

The threading algorithm used to parameterize the position and motio

dominant spectral peaks was described in Chapter 3. During the peak isol

processing, the frequency position of local spectral peaks are stored for each 1

frame. A two-stage process is used to convert these peaks into the

representation used by the recognition system. In the first stage the peak

threaded using dynamic programing, the threads are fit to moving 7-point se

order polynomials, and the frequency derivatives are estimated. The second

tracks the dominant peak frequency and associated frequency derivative for ea

three equally-spaced spectral regions. Unlike the adaptation and peak iso

mechanisms whichalter the 25-element feature vector used for recognition, t

current processingaddssix more elements. However, during training it was foun

that the frequency derivative in the highest frequency region had little varia

across the training set. It was therefore ignored for these recognition evaluat

When the parameterization of peak position and motion is included in

recognition evaluations, there are five additional elements in the feature vecto

5.4.4 Temporal Processing of Voicing Information

Chapter 4 showed that a correlation-based representation of pitch

amplitude modulation was consistent with perceptual data describing the dete
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of amplitude modulation and the detection of voicing for high-pass filtered [s]

[z] tokens in noise. Therefore, of the three mechanisms considered in Chap

only the correlation-based processing was evaluated in recognition tasks.

correlation model [after Licklider 1951], maintains running autocorrelations in e

auditory channel, and then adds these together to identify the common periodi

across channels.

The model was extended to generate suitable voicing features for A

Instead of analyzing a single high-frequency region, three regions are u

corresponding to the three regions in the peak position and motion proces

above. The voicing statistic used is the maximum peak-to-valley difference betw

any time-lagτ1 and any smaller time-lagτ2 (τ2 < τ1). Finally because the presenc

of voicing (and not the amount of voicing) is assumed to be relevant for ASR,

logarithmic magnitude of the voicing statistic is further compressed by a sigmo

function. Figure 5.2 shows the voicing features in the three frequency reg

together with their temporal derivatives, for a total of six voicing features.

general, the voicing features mark voiced speech within the uncorrelated n

background. The voicing features are low during the [s] sounds in “six.”
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Figure 5.2 A) Voicing features in three spectral regions, and B) their temp
derivatives.

5.5 Other Techniques Targeting Noise

In addition to comparisons with the baseline LPCC and MFCC featu

recognition evaluations were also performed using RelAtive-SpecTrAl (RAS

processing [Hermansky and Morgan 1994] and a variety of common sig

processing techniques that are targeted specifically at improving recogn

performance in noise: spectral subtraction, spectral scaling, non-linear spe

scaling, and cepstral normalization.

RASTA involves filtering the logarithmic temporal trajectories (log ener

temporal excitation patterns) with a bandpass filter that has a sharp zero at DC

Fr
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y 
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k

A) Three voicing features

B) Three voicing derivatives

Time (2 sec.)
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de-emphasizing slow and fast changes with time, RASTA also provides

adapting response. In the comparisons below, the RASTA technique was ap

directly to the logarithmic filter energies, without the additional PLP process

used in its original optimization [Hermansky and Morgan 1994]. The ‘standa

RASTA filter:

was used and performance was not compared with other RASTA variations w

optimize the compressive and expansive non-linearities for the specific aco

environment. Unlike the RASTA technique which can be described as a (smoo

first-order differentiation, the adaptation mechanism proposed in Chapter 2 doe

provide zero output for constant input. Instead, the adaptation stages conve

static targets on the I/O curves. Also unlike the RASTA technique, (offset) reco

is roughly three times slower than (onset) adaptation.

The power spectrum of the sum of two uncorrelated signals is the sum o

two power spectra for the individual signals. That is, uncorrelated signals

additive in power. The power spectrum for speech in noise,X(f), is the sum of the

power spectrum for the clean speech,S(f), and the noise power spectrum,N(f).

Spectral subtraction assumes that given a reliable power spectrum est

for a stationary background noise,N(f), an approximation of the original clean

H z( ) 0.11
2 z 1– z 3–– 2z 4––+( )

1 0.94z 1––
---------------------------------------------------=

X f( ) S f( ) N f( )+=
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speech signal,S(f), can be obtained by subtracting the noise estimate from

power spectral estimate for the signal and noise.

Unfortunately, short-time power spectral estimates of (even) station

noise signals have considerable variance. That is, the values of the mea

background noise,N(f), will change considerably from frame to frame. For som

frames the speech signal,S(f), will be near zero, and the measured backgrou

noise,N(f), will fluctuate to be less than the stationary background noise estim

N(f). Therefore, after spectral subtraction, the final result can be negative. Bec

the next step for ASR is to take a logarithm, these negative values must be clip

And that is the beginning of the end. Choosing the clipping level sets

arbitrary floor on the log-magnitude spectral estimates (e.g. 0 dB if power estim

below 1 are clipped). Consider a background noise which averages 30 dB abov

clipping point. Figure 5.3 shows the log-magnitude input/output function

spectral subtraction.

S f( ) X f( ) N f( )– S f( ) N f( ) N f( )–+= =
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Figure 5.3 Spectral subtraction input/output function. Points A, (30, 0) and B,
30) show the expansion of spectral subtraction.

When the measured noise is exactly 30 dB, the subtraction of the expe

power spectrum lowers the current power estimate to 0, which is then clipped

before the logarithm, leading to a final log-magnitude value of 0 dB, or point A

Figure 5.3. However, if the current log-magnitude power spectrum fluctuates u

33 dB, or 3 dB higher, then its power spectrum is twice the expected value. A

spectral subtraction and the logarithm, the final estimate is 30 dB, or point

Figure 5.3. Spectral subtraction expands the original 3-dB noise fluctuation in

30-dB fluctuation. Needless to say, recognition systems are extremely sensit

random 30-dB fluctuations. One solution to this problem is to raise the clipp

point to the level of the noise estimate. Then spectral subtraction approxim

spectral scaling.
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In spectral scaling, the reference level for the logarithm is the current n

power-spectrum estimate. Equivalently, the log-magnitude of the ave

background noise is subtracted from each current log-magnitude estimate. The

result is then clipped below 0 dB. The dashed line in Figure 5.3 shows the in

output function for spectral scaling. (To compare spectral scaling with spe

subtraction a fixed 30 dB offset is added to the spectral scaling function in Fig

5.3.) As the noise level rises, the dynamic range of the speech above the

reduces. The recognition system is, of course, dependent on the diminis

fluctuations of the speech above the noise.

Non-linear spectral scaling tries to correct for this loss of dynamic range

implemented here, two log-magnitude spectrograms are obtained: one from l

spectral scaling, and a second copy which is then scaled (after the logarithm) s

the peak dynamic range, above the noise floor, is fixed to a specific valu

weighted average of these two is used as the final sequence of log-magn

spectral estimates. For the evaluations below, the relative weights used in

averaging were iteratively optimized to improve recognition performance for

task.

A second technique to compensate for this loss of dynamic range is cep

normalization. As the dynamic range across a single log-magnitude spe

estimate reduces, the length of the cepstral vector also reduces. In ce

normalization, the total length of each cepstral vector is normalized to unity. Fo
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task evaluated here, only non-linear spectral scaling and cepstral normaliz

provided clear improvements.

5.6 Evaluations

Figure 5.4 shows the degradation of recognition performance for the

baseline front ends, MFCC and LPCC. Using a frequency scale that is warp

approximate auditory frequency selectivity increases recognition robustnes

similar improvement was found previously [Jankowski et al. 1995]. This trend

consistent with the ASR shift from LPCC to MFCC in the last 5-10 years.

Figure 5.4   Baseline recognition performance.

Figure 5.4 also includes the performance with adaptation, adaptation
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peak isolation, and then with adaptation, peak isolation and the threa

processing. Each of these provides additional improvements in recogn

performance in noise.

Figure 5.5 compares the baseline MFCC representation and the proce

proposed here with other common techniques aimed at improving recogn

robustness. Of the other techniques considered, only those which alter the dyn

range of the spectral representation (cepstral normalization and non-linear sp

scaling) showed considerable improvements in recognition robustness.

Figure 5.5   Recognition comparisons with other signal processing technique

Finally, Figure 5.6 shows the recognition performance when only th

threading features are used, and when voicing features described above ar
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with different pieces of the previous representations. When used alone, t

frequency positions and 2 frequency derivatives are insufficient to discriminate

current data. However, adding 6 voicing features to the 5 threading features re

the error rate considerably. The error rate also decreases when the 6 voicing fe

are added to the 30-element feature vector that includes the cepstral and

cepstral representations after adaptation and peak isolation and the 5 thre

features. This final system, incorporating the four processing mechanisms o

dissertation, provides a 1.5% error rate at 3 dB SNR, or more than an ord

magnitude fewer errors than the typical representation used in ASR systems.

Figure 5.6 Evaluations with threading and voicing information. AP is adapta
and peak isolation, and∆cep refers to cepstral derivatives.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40
Digit Recognition Performance in Noise

SNR dB

E
rr

or
 R

at
e 

%

mel-warped frequency scale (25 cep/∆cep)

5 threading features (alone)

5 threading, 6 voicing (11)

AP, 25 cep/∆cep, 5 threading (30)

AP, 25 cep/∆cep, 5 threading, 6 voicing (36)
111



oise-

rrent

ntify

any

an

nd as

t high

pects

n in

nal

fying

ns of

hich

l and

ferent

nisms

ation

n the
5.7 Interpreting the Results

The recognition task used here attempts to assess the potential n

robustness improvements of the algorithms of the previous chapters in the cu

recognition paradigm. The task requires the recognition system to find and ide

a word in background noise. This may be a reasonable approximation for m

current limited-domain voice-control applications. Solutions for this task in cle

environments have been available for years [Rabiner and Juang 1993], a

expected, most speech representations evaluated here lead to very little error a

SNRs. However, the results above show that mechanisms which incorporate as

of auditory perception can dramatically reduce the performance degradatio

noise.

Speech information is encoded in highly-redundant, multi-dimensio

representations which range across many time scales. In addition to identi

aspects of auditory perception which are typically ignored in the representatio

speech used for ASR, there are perhaps two consistent motivating ideas w

helped ensure that the mechanisms described here were successfu

complimentary. In general, each processing mechanism addressed a dif

dimension or time-scale (see Figure 1.8), and the processing for most mecha

was de-coupled across frequency.

Consider the relevant dimensions for each mechanism. The adapt

mechanism emphasizes onsets and transitions in frequency which occur i
112
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syllabic range, while the peak isolation mechanism enhances changes acro

spectral range. The threading parameters in turn characterize the motion o

isolated spectral peaks in the syllabic range, while the voicing features charac

the voicing range. More specific to the task used above, the voicing features

distinguish speech from noise while the threading information helps discrimin

words. Obviously, if these four mechanisms had addressed the same dimens

is less likely that their combination would improve recognition results.

Motivations for de-coupling the representations of speech across frequ

are described in [Allen 1994]. Because the feature vectors for ASR system

almost always a function of the entire spectral range (recall that cepstral coeffic

are the DCT of the entire log-magnitude spectral estimate), distortions in

spectral region influence the entire feature vector, reducing performance. Hum

on the other hand are much more immune to static disturbances in a parti

spectral region. For an ASR system to use this approach, at least some fe

vectors must be a function of specific spectral ranges. In the processing desc

in previous chapters, clearly the voicing features, the threading features, an

processing for the temporal adaptation are largely de-coupled across frequen

However, the peak isolation mechanism is not similarly de-coupled. T

spectral estimate after peak isolation starts with the spectral estimate afte

cepstral vector has been weighted by a raised-sin function. Near zero, the rais

function increases almost linearly, approaching the frequency response
113
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(spectral) derivative. As shown in Figure 2.10, the response after liftering

therefore more dominated by spectral changes. While this processing pro

some de-coupling across frequency (spectral slope for instance is de-emphas

the processing is still a function of the entire spectral estimate. Regional spe

estimates, regional cepstral representations, and regional cepstral liftering m

lead to additional improvements. This will be one area of future work.

While this task may be a reasonable approximation for many curr

limited-domain voice-control applications, considerable work today addresse

transcription of large-vocabulary continuous and even spontaneous speech. To

the “local domain” for these tasks, a hierarchy of HMMs are used. Phrases

modeled as groups of words which are modeled as sequences of phon

Alignment requires identifying the most probable sequence of phonem

constrained by the probabilities of the word pronunciations, which are in t

constrained by the probabilities of the word sequences in the expected phr

Final recognition performance for these systems becomes extremely depend

the reliability of the statistical estimates for the higher-level sequenc

Pronunciation and word-sequence (or grammar) models often limit performa

One significant question that remains is: Do the current processing improvem

generalize to these more complicated tasks?

Recall that the recognition task used here included word-level models,

that two of the processing stages (temporal adaptation, and the frequ
114
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derivatives in the threading processing) provided a context-dependent resp

which can last for several frames. If word models were instead built from phon

models, the processing here would therefore most likely provide different respo

depending on the context of the phoneme. Tri-phone (and even quint-ph

models, or different models for each phoneme in every possible preceding

following context, are already commonly used [Woodland et al. 1998], and wo

appear to be necessary with the current processing. This will be a second a

future work.

In conclusion, the mechanisms described in the previous chapters

address a somewhat complimentary aspect of the speech signal, and to

significantly decrease the error rate of a word recognition system in noise.
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Chapter 6

Summary and Extensions

This dissertation provides evidence that advances in robust sp

recognition can be made by incorporating mechanisms which approximate as

of human auditory signal processing. Mechanisms including adaptation, p

isolation, an explicit parameterization of the position and motion of local spec

peaks, and a correlation-based analysis of perceptual voicing information are s

to improve recognition performance in noise.

This work suggests areas of future research in psychoacoustics, aud

physiology, and speech recognition.

6.1 Threads

As described in Chapter 3, the threading operation described here ca

viewed as an early step in auditory scene analysis.
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Traditional psychoacoustic modeling efforts usually focus on the percep

of static sounds. Or sightly more generally, either variations across frequency

spectral masking), or variations across time (e.g. temporal masking) are consid

With spectral measurements, changes in the logarithmic output available a

assumed auditory filters, or the spectral excitation pattern [e.g. Zwicker 1970]

found to correlate with perceptual performance. For temporal measurem

changes in the output of auditory filters with time, or temporal excitation patte

are considered [e.g. Oxenham and Moore 1994]. For each of these, the sub

responses are assumed to be made as an ideal observer. That is, using the ex

pattern (usually corrupted by internal noise) as input, the subject chooses the o

that has maximum likelihood.

Speech is non-stationary. Speech recognition systems therefore con

variations in excitation patterns in both time and frequency. But the concep

similar. The recognition process makes the maximum likelihood choice, now g

2-dimensional excitation patterns. The adaptation and peak isolation mechan

described here change the characteristics of the excitation patterns, and the v

detection adds (yet) another dimension.

But threading can be viewed differently. In addition to monitoring excitati

patterns, threading assumes the subject is alsoactivelypiecing together higher-level

structure that is alsoobserved. Obviously, information is not manufactured by

receiver. That is, at first glance it might appear that an ideal observer would no
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any better observing redundant representations derived from earlier representa

But if we assume the excitation patterns are analyzed for low-level structure

threaded) before some of the internal noise corrupts the observation of excit

patterns, and further that (independent) uncorrelated internal noise also corrup

observation of the intermediate structure, then the ideal observer would

information from both stages to improve performance. Figure 6.1 shows

overview for this arrangement.

Figure 6.1   Threading in a two-stage model of auditory perception.

Unfortunately, other than the recognition improvements shown in t

dissertation, only qualitative points can be made in support of this struct

However the evidence is considerable and growing. Many auditory scene illus

have similar visual analogies: when an edge is partially obscured, the observe

noise

noise

time/frequency analysis

threading

2D excitation

threads
de

ci
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in the missing piece; or when flickering lights are correlated in either time or sp

they can be grouped accordingly [Bregman 1990]. In fact, hearing (and see

might be best understood as piecing together partially obscured measureme

obtain information about objects in the environment. With this requirement, a

multi-dimensional excitation pattern representation of sound would be ineffici

and the neural representation is more likely to focus on threads, or aspects o

sound corresponding to the auditory analogy for visual edges. To understan

inefficiency of a 2-D excitation pattern, consider the size of the space require

0.300 seconds of sound. Assuming 30 auditory channels, and temporal sa

every 10 ms, this implies 900 nearly independent dimensions. Clearly we do

have the cognitive ability to maintain and recall arbitrary patterns within this sp

More directly, recent attempts to predict the perception of what appear t

very basic non-stationary experiments are not predicted assuming stan

excitation patterns, and may instead be consistent with threading. When desc

their ‘multi-look’ hypothesis [Viemeister and Wakefield 1991] (an ideal obser

using multiple independent observations of a temporal excitation patte

Viemeister and Wakefield also showed that when the temporal excitation pa

stayed the same, subjects were able to do better than an ideal observer

independent observations. When listening for a tone in noise, as the duration o

tone increases, the observer has more observations. If the observation

independent, thresholds should drop with the square root of the numbe
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observations [Green and Swets 1966]. Instead, for tones in noise, thresholds

with the total energy of the tone, or about twice as fast. If the ideal observer is u

the excitation patterns together with some type of threading, then we would ex

increased performance from observations that form strong threads (i.e. static to

When detecting short duration bursts of noise in a noise background, a

bandwidth of the noise increases, we might also expect thresholds to drop wit

square root of the number of observations across frequency. Again, the aud

system does better, behaving more as if total intensity were integrated a

frequency [Hant et al. 1997]. We should also consider the possibility that percep

grouping of the discontinuity across frequency (a vertical thread) is increa

performance.

Finally other experiments show that intensity discrimination [Zeng 19

Zeng 1998] and frequency selectivity [Hant et al. in press] are consider

degraded in the context of forward and/or backward temporal maskers.

temporal maskers would interfere with a threading mechanism, which could

causing the measured performance degradation.

6.2 Correlation Inconsistencies

In this dissertation we extended the application of Licklider’s duplex the

to show that, in addition to predicting many aspects of pitch perception,

approach is also sufficient to predict TMTF data as well as the detection of voi

for high-pass filtered strident fricatives in noise. Such processing was further sh
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to be of some use for robust speech recognition. But there are at least two signi

challenges which must be considered. First, the physiological mechanism

implementing these measurements have not been identified. Second, measure

with electrical hearing have not supported the use of mid-frequency (300-1500

temporal information.

The first issue may still be a technology issue. The building blocks

autocorrelation type measurement: neural delays, multiplication (or coincide

detection) and low pass filtering, are widely available in the neural substrate.

finding evidence for the entire structure would require extensive (simultaneou

at least well-synchronized) neural population measurements. Unfortuna

temporal measurements are often made from a single cell, and extensive popu

measurements are still not practical. As a starting point, population measurem

have shown that the temporal information for this type of processing is availab

the auditory nerve [Cariani and Delgutte 1996a-b]. As shown in Chapter 4, a

low-pass filtering, the neural representation of the running autocorrelation c

easily be down-sampled (to 25 Hz in the modeling in Chapter 4). It is also lik

that neural processing would reduce redundancies in the representation acro

time-delay variableτ, perhaps using an approximate cosine transform. These

stages would lead to single units which respond selectively to different modula

rates and have relatively low average firing rates. Such responses are measu

many areas of the auditory system [e.g. Langner 1992], but this provides
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minimal support for the current theory.

Current non-evasive neural population measurement techniques are lim

to monitoring average blood-flow rates and other very slow responses. While t

measurements are helpful for mapping response areas, they show little promi

the types of measurements necessary to understand low-level temporal au

processing. Unfortunately, these discoveries may have to wait until 3D elect

field measurements are available with cellular resolution in space andµsec

resolution in time. Or at least, then we’d know for sure.

Perhaps the greater immediate challenge to Licklider’s theory are pitch

measurements with cochlear implants. Briefly, cochlear implants use a seri

electrodes near different places on the basilar membrane to provide (nearly) d

electrical stimulation of the auditory nerve. Subjects with cochlear implants are

able to use temporal information to discriminate fine pitch distinctions at ‘norm

pitch ranges (80-500 Hz) [e.g. Townsend et al. 1987, Shannon 1992]. Mainta

a version of the duplex theory therefore requires that some of the difference

electrical hearing must confound the available temporal processing. The firs

most likely culprit is that the neural fine structure associated with electr

stimulation is profoundly different from that available from acoustic heari

[Wilson et al. 1994]. (Perhaps Cariani and Delgutte’s measurements shou

reproduced using animals with cochlear implants.) A second possibility is tha

neural processing which analyzespopulationinterval information may rely on the
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precise phase relationships made available by the mechanical wave-guide

cochlea, but absent in electrical hearing. In any case, the ability of some sub

with cochlear implants to use pitch rate temporal information might be b

approximated by the ability of subjects with normal hearing to use pitch-r

temporal information with stochastic carriers (i.e. amplitude modulated wide-b

noise). That is, if we assume electrical stimulation is at best providing

information at the carrier rate, then only envelope cues with stochastic (or at

useless) fine structure are available for neural processing. This is identical t

assumption used in recent models of the perception of low modulation rate (

Hz) cues in electrical hearing [Shannon et al. 1995]. Therefore, without the reli

fine structure from deterministic carriers, we should expect the fact that pi

related performance with electrical hearing only approaches that of normal he

with stochastic carriers [Burns and Viemeister 1981].

6.3 Looking Forward

The extreme auditory periphery is well understood. Current and future w

will focus on characterizing the functional significance of increasingly more cen

neural centers. Figure 6.2 shows an overview of the anatomy of the auditory n

pathway.
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Figure 6.2   Overview of the auditory neural pathway.

After the initial anatomy is mapped, the challenges will be understand

the functionality and interactions of the various processing stages. At least

trends are already apparent: 1) Some form of the tonotopic map, consistent wi

initial cochlear filtering, is maintained throughout most of the auditory system

Average firing rates decrease considerably in increasingly higher levels (m

central neural regions); 3) Many stages are connected for binaural comparison

4) Feedback from higher levels to the periphery (efferents, not shown in Figure

cochlear
nucleus

superior
olive

inferior
colliculus

hair-cells

lateral
lemniscus

medial
geniculate

body

auditory
cortex

superior
olive

lateral
lemniscus

cochlear
nucleus

inferior
colliculus

hair-cells

medial
geniculate

body

auditory
cortex

cochleacochlea

cochlear nerve cochlear nerve

thalamus

midbrain

cortex

periphery

brainstem brainstem
124



nts).

s to

an

h no

the

s were

of

rent.

als in

the

the

with

n the

s will

ns.
may be as pervasive as signaling from the periphery to the higher levels (affere

Unfortunately, the challenge for the neurophysiologist is very analogou

asking a freshman engineer to figure out how a computer works using

oscilloscope, an Ohm meter, his best guesses for a block diagram, but wit

schematics, no monitor, and no direct contact with the designer. To improve

analogy, the performance of the computer would change as the measurement

made, the computer would typically stop working after a few hours

measurements, and each new replacement computer would be slightly diffe

Both the engineer and the neurophysiologist are left to measure countless sign

hopes of finding the elusive insights to understanding. Progress will be slow.

From a psychoacoustic perspective, modeling efforts will address

perception of non-stationary sounds. Early work in this direction reveals that

effects of perceptual grouping and auditory scene analysis may have key roles

even the most basic non-stationary stimuli. As consistencies emerge betwee

measured physiology and the predictions of psychoacoustic models, engineer

translate these systems into increasingly robust speech processing applicatio
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