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Abstract We present a general formulation for

modeling bed erosion in free surface flows using the

particle finite element method (PFEM). The key fea-

ture of the PFEM is the use of an updated Lagrangian

description to model the motion of nodes (particles) in

domains containing fluid and solid subdomains. Nodes

are viewed as material points (called particles) which

can freely move and even separate from the fluid and

solid subdomains representing, for instance, the effect

of water drops or soil/rock particles. A mesh connects

the nodes defining the discretized domain in the fluid

and solid regions where the governing equations,

expressed in an integral form, are solved as in the

standard FEM. The necessary stabilization for dealing

with the incompressibility of the fluid is introduced via

the finite calculus (FIC) method. An incremental iter-

ative scheme for the solution of the nonlinear transient

coupled fluid-structure problem is described. The ero-

sion mechanism is modeled by releasing the material

adjacent to the bed surface according to the frictional

work generated by the fluid shear stresses. The

released bed material is subsequently transported by

the fluid flow. Examples of application of the PFEM to

solve a number of bed erosion problems involving

large motions of the free surface and splashing of

waves are presented.

Keywords Bed erosion � Free surface flows �

Particle finite element method

1 Introduction

Modeling bed erosion and sediment transport in open

channel flows is an extremely important task in many

areas of river and environmental engineering and

related areas. For example, bed erosion can lead to

instabilities of the river basin slopes. It can also

undermine the foundation of bridge piles thereby

favouring structural failure. Modeling of bed erosion is

also relevant for predicting the evolution of surface

material dragged in earth dams in overspill situations.

Bed erosion is one of the main causes of environmental

damage in floods.

Prediction of erosion of soil/rock particles in bed

surfaces due to water streams is very difficult due to the

complexity of accurately predicting the tangential

stresses at the fluid-bed interface which are mainly

responsible for the detachment of bed particles.

Definition of the erosion onset conditions for different

bed geomaterials is also an important and difficult task.

Modeling of sediment transport phenomena is also

very complex.

The erosion and transport of sediment particles in

environmental flows can be analyzed by solving the

Navier–Stokes equations for the water flow, either in

the fully 3D version, or via a simpler 2D depth average

model in combination with an assumed vertical veloc-

ity profile (typically of logarithmic type). The flow field

variables computed at each time step, or at every

iteration within a time step in a strongly coupled

scheme, are used as input data for solving the sediment
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transport equations and other relevant information

such as the suspended load concentration, the bed load

transport rate and the bed deformation. Numerical

solutions for these type of problems have been re-

ported using mainly finite difference and finite volume

schemes in Eulerian and arbitrary Lagrangian-Eulerian

(ALE) grids for solving both the fluid flow and the

sediment transport equations [4, 7, 14, 26–34].

In addition to the intrinsic complexities of the mul-

tiphysics flow-erosion-transport problem, the numeri-

cal solution of the equations for the fluid–structure

interaction (FSI) problem in free surface flows is faced

with the treatment of the convective terms and the

incompressibility constraint in the fluid equations, the

modeling of the free surface accounting for wave

splashing, the transfer of information between the fluid

and solid domains via the contact interfaces and the

tracking of solid elements within the fluid domain.

Indeed most of these problems are extremely difficult

to model using the Eulerian and ALE formulations.

An alternative approach which simplifies many of

above difficulties is to use a Lagrangian description to

formulate the governing equations of both the solid

and the fluid domains. In the Lagrangian formulation

the motion of the individual particles are followed and,

consequently, nodes in a finite element mesh can be

viewed as moving material points (hereforth called

‘‘particles’’). Hence, the motion of the mesh discretiz-

ing the total domain (including both the fluid and solid

regions) is followed during the transient solution.

In this paper we present a particular class of

Lagrangian formulation developed by the authors to

solve bed erosion problems in free surface flows. The

method is an extension of the so-called particle finite

element method (PFEM). The PFEM treats the mesh

nodes in the fluid and solid domains as particles which

can freely move and even separate from each domain

representing, for instance, the effect of water drops or

solid particles. A finite element mesh connects the

nodes defining the discretized domain where the gov-

erning equations are solved in the standard FEM

fashion. The particular application of the PFEM to

model bed erosion problems here described is the

natural evolution of recent work of the authors for the

solution of FSI problems using Lagrangian finite ele-

ment and meshless methods [2, 10, 11, 13, 21–23].

An obvious advantage of the Lagrangian formula-

tion is that the convective terms disappear from the

fluid equations. The difficulty is, however, transferred

to the problem of adequately (and efficiently) moving

the mesh nodes. Indeed in the PFEM approach

remeshing is a frequent necessity along the time solu-

tion. We use an innovative mesh regeneration proce-

dure blending elements of different shapes using an

extended Delaunay tesselation with adequate C� con-

tinuous shape functions [10, 12].

The need to properly treat the incompressibility

condition in the fluid still remains in the Lagrangian

formulation. The use of standard finite element inter-

polations may lead to a volumetric locking defect un-

less some precautions are taken [3, 5, 35]. In our work

volumetric locking is avoided via a FIC procedure [17].

The layout of the paper is the following. In the next

section the basic ideas of the PFEM are outlined. Next

the basic equation for an incompressible flow using a

Lagrangian description and the FIC formulation are

presented. Then a fractional step scheme for the

transient solution via standard finite element proce-

dures is described. Details of the treatment of the

coupled FSI problem are given. The procedures for

mesh generation, for identification of the free surface

nodes, for treating frictional contact situations and for

modeling bed erosion are described. Finally, the effi-

ciency of the PFEM is shown in its application to a

number of bed erosion problems involving surface

waves.

2 The basis of the PFEM

Let us consider a continuum domain containing both

fluid and solid subdomains. The fluid particles interact

with the solid boundaries thereby inducing the defor-

mation of the solid which in turn affects the flow mo-

tion and, therefore, the problem is fully coupled.

In the PFEM approach, both the fluid and the solid

domains are modeled using an updated Lagrangian

formulation. That is, all variables in the fluid and solid

domains are assumed to be known in the current

configuration at time t. The new set of variables in

both domains are sought for in the next or updated

configuration at time t + Dt (Fig. 1). The finite ele-

ment method (FEM) is used to solve the continuum

equations in both domains. Hence a mesh discretizing

these domains is generated in order to solve the

governing equations for both the fluid and solid

problems in the standard FEM fashion. We note again

that the nodes discretizing the fluid and solid domains

are viewed as material particles whose motion is

tracked during the transient solution. This is useful to

model the separation of fluid particles from the main

fluid domain, or the separation of solid particles from

the bed surface, and to follow their subsequent mo-

tion as individual particles with a known density, an

initial acceleration and velocity and subject to gravity

forces.
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It is important to recall that each particle is treated

as a material point characterized by the density of the

solid or fluid domain to which it belongs. The mass of a

given domain is obtained by integrating the density at

the different material points over the domain.

The quality of the numerical solution depends on

the discretization chosen as in the standard FEM.

Adaptive mesh refinement techniques can be used to

improve the solution in zones where large gradients of

the fluid or the structure variables occur.

2.1 Basic steps of the PFEM

For clarity purposes we will define the collection or

cloud of nodes (C) pertaining to either the fluid and the

solid subdomains, the volume (V) defining the analysis

domain for the fluid and the solid, and the mesh (M)

discretizing both domains.

A typical solution with the PFEM involves the fol-

lowing steps:

1. The starting point at each time step is the cloud of

points in the fluid and solid subdomains. For in-

stance nC denotes the cloud at time t = tn
(Fig. 2).

2. Identify the boundaries for both the fluid and solid

domains defining the analysis domain nV in the

fluid and the solid. This is an essential step as some

boundaries, such as the free surface in fluids or the

bed surface, may be severely distorted during the

solution process including separation and re-

entering of nodes. The Alpha shape method [6)] is

used for the boundary definition (Sect. 7).

3. Discretize the fluid and solid subdomains with a

finite element mesh nM. In our work we use an

innovative mesh generation scheme based on the

extended Delaunay tesselation (Sect. 6) [10, 11,

13].

4. Solve the coupled Lagrangian equations of motion

for the fluid and the solid domains. Compute the

relevant state variables in both domains at the next

(updated) configuration for t + Dt: velocities,

pressure and viscous stresses in the fluid and dis-

placements, stresses and strains in the solid. An

overview of the coupled FSI algorithm is given in

the next section.

5. Compute the frictional work (Wf) performed by

the tangential stresses at the bed surface. Bed

erosion initiates if Wf exceeds a critical value Wc.

Bed surface points where Wf > Wc are released

from the bed domain and are subsequently trans-

ported by the fluid velocity.

6. Move the mesh nodes to a new position n + 1C

where n + 1 denotes the time tn + Dt, in terms

of the time increment size. This step is typically a

consequence of the solution process of step 4.

Recall that a node identifies a material point in

either the fluid or solid subdomains.

7. Go back to step 1 and repeat the solution process

for the next time step.

Fig. 1 Updated Lagrangian description for a continuum containing a fluid and a solid domain
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2.2 Overview of the coupled FSI algoritm

Figure 3 shows a typical domain V with external

boundaries GV and Gt where the velocity and the sur-

face tractions are prescribed, respectively. The domain

V is formed by fluid (VF) and solid (VS) subdomains.

Both subdomains interact at a common boundary GFS

where the surface tractions and the kinematic variables

(displacements, velocities and acelerations) are the

same for both subdomains. Note that both sets of

variables (the surface tractions and the kinematic

variables) are equivalent in the equilibrium configura-

tion.

Note that the flow in an open channel is a particular

case of above situations where the solid domain con-

stitutes the bed region whose surface is eroded by the

interaction with the fluid particles in motion.

Let us define tS and tF as the set of variables defining

the kinematics and the stress–strain fields in the solid

and fluid domains at time t, respectively, i.e.

tS :¼ ½txs;
tus;

tvs;
tas;

t
es;

t
rs; . . .�

T ð1Þ

tF :¼ ½txF;
tuF;

tvF;
taF;

t _eF;
t
rF; . . .�

T ð2Þ

where x is the nodal coordinate vector, u, v and a are

the vector of displacements, velocities and accelera-

tions, respectively, e; _e; r are the strain vector, the

Cloud C

Solid node

Fixed boundary node

Fluid node

Initial  cloud of nodes C

→

Domain V

Flying Sub-domains

Fixed
boundary

nΓ

→
Mesh M

n ,
n , n , n ,
nε, nε, nσ
.

→

n

x

u v a

n

n

n+1

nC nV

nV nM

nM n+1C

Fig. 2 Sequence of steps to update a ‘‘cloud’’ of nodes from time n (t = tn) to time n + 1 (t = tn + Dt)

Fig. 3 Split of the analysis domain V into fluid and solid
subdomains. Equivalence of surface tractions and kinematic
variables at the common interface
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strain-rate (or rate of deformation) vectors and the

Cauchy stress vector, respectively and F and S denote

the variables in the fluid and solid domains, respec-

tively. In the discretized problem, a bar over these

variables will denote nodal values.

The coupled FSI problem of Fig. 3 is solved using

the following conceptual scheme:

0. We assume that the variables in the solid and fluid

domains at time t (tS and tF) are known.

1. Solve for the variables at the solid domain at time

t + Dt (t + DtS) under prescribed surface tractions at

the fluid–solid boundary GFS.

2. Solve for the variables at the fluid domain at time

t + Dt (t + DtF) under prescribed surface tractions at

the external boundary Gt and prescribed velocities

at the external and internal boundaries GV and GFS,

respectively.

Iterate between 1 and 2 until convergence.

The variables at the solid domain t+DtS are found via

the integration of the dynamic equations of motion in

the solid region written as

Msas þ gs � fs ¼ 0 ð3Þ

whereMs, gs and fs denote the mass matrix, the internal

node force vector and the external nodal force vector

in the solid domain. The time integration of Eq. 3 is

performed using a standard Newmark method. An

incremental iterative scheme is implemented within

each time step to account for nonlinear geometrical

and material effects [36].

The FEM solution of the variables in the (incom-

pressible) fluid domain implies solving the momentum

and incompressibility equations. In our work we use a

stabilized FEM based on the FIC approach which al-

lows to use a linear approximation for the velocity and

pressure variables [15, 17]. Details of the FEM/FIC

formulation used are given in the next section.

Figure 4 shows a typical example of a PFEM

solution in 2D. The pictures correspond to the analy-

sis of the problem of breakage of a water column

[13, 23]. Figure 4a shows the initial grid of four

node rectangles discretizing the fluid domain and

the solid walls. Boundary nodes identified with the

Alpha-shape method have been marked with a circle.

Figure 4b and c show the mesh for the solution at two

later times.

3 FIC/FEM formulation for a Lagrangian

incompressible fluid

The standard infinitesimal equations for a viscous

incompressible fluid can be written in a Lagrangian

frame as [15, 35].

Momentum rmi
¼ 0 in VF ð4Þ

Mass balance rd ¼ 0 in VF ð5Þ

Fig. 4 Breakage of a water column. a Discretization of the fluid domain and the solid walls. Boundary nodes are marked with circles.
b and c Mesh in the fluid and solid domains at two different times
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where

rmi
¼ q

@vi
@t

�
@rij
@xj

� bi; rji ¼ rij ð6Þ

rd ¼
@vi
@xi

i; j ¼ 1; nd ð7Þ

In the above, variable nd is the number of space

dimensions, vi is the velocity along the ith global axis

(vi = ¶ui/¶t, where ui is the ith displacement), q is the

(constant) density of the fluid, bi are the body forces, rij
are the total stresses given by rij = sij–dijp, p is the

absolute pressure (defined positive in compression)

and sij are the viscous deviatoric stresses related to the

viscosity l by the standard expression

sij ¼ 2l _eij � dij
1

3

@vk
@xk

� �

ð8Þ

where dij is the Kronecker delta and the strain rates _eij
are

_eij ¼
1

2

@vi
@xj

þ
@vj
@xi

� �

ð9Þ

In the above all variables are defined at the current

time t (current configuration). The standard summa-

tion convention for repeated indexes is assumed unless

otherwise specified.

In our work we will solve a modified set of governing

equations derived using a FIC formulation. The FIC

governing equations are [15–17, 19].

Momentum rmi
�
1

2
hj
@rmi

@xj
¼ 0 in VF ð10Þ

Mass balance rd �
1

2
hj
@rd
@xj

¼ 0 in VF ð11Þ

The problem definition is completed with the fol-

lowing boundary conditions:

njrij � ti þ
1

2
hjnjrmi

¼ 0 on Ct ð12Þ

vj � v
p
j ¼ 0 on Cv ð13Þ

and the initial condition is vj = vj
0 for t = t0.

In Eqs. 12 and 13, ti and vj
p are surface tractions and

prescribed velocities on the boundaries Gt and Gv,

respectively, nj are the components of the unit normal

vector to the boundary.

The hi¢s in above equations are characteristic lengths

of the domain where balance of momentum and mass

is enforced. In Eq. 12 these lengths define the domain

where equilibrium of boundary tractions is established.

In our work we have taken hi to be constant at each

element and equal to a typical element dimension he

computed as he = [Ve]m where Ve is the element vol-

ume and m = 1/2 for 2D problems and m = 1/3 for 3D

problems. Details of the derivation of Eqs. 10–13 can

be found in Oñate [15, 16, 18].

Equations 10–13 are the starting points for deriving

stabilized finite element methods to solve the incom-

pressible Navier–Stokes equations in a Lagrangian

frame of reference using equal order interpolation for

the velocity and pressure variables [2, 9– 11, 13, 21].

Application of the FIC formulation to finite element

and meshless analysis of fluid flow problems can be

found in [8, 16–19, 20, 22].

3.1 Transformation of the mass balance equation.

Integral governing equations

The underlined term in Eq. 11 can be expressed in

terms of the momentum equations. The new expres-

sion for the mass balance equation is [16, 23]

rd �
X

nd

i¼1

si
@rmi

@xi
¼ 0 with si ¼

3h2i
8l

ð14Þ

At this stage it is no longer necessary to retain the

stabilization terms in the momentum equations. These

terms are critical in Eulerian formulations to stabilize

the numerical solution for high values of the convective

terms. In the Lagrangian formulation the convective

terms dissappear from the momentum equations and

the FIC terms in these equations are just useful to

derive the form of the mass balance equation given by

Eq. 14 and can be disregarded there onwards. Consis-

tently, the stabilization terms are also neglected in the

Neumann boundary conditions (Eq.12).

The weighted residual expression of the final form of

the momentum and mass balance equations can be

written as

Z

VF

dvirmi
dV þ

Z

Ct

dviðnjrij � tiÞdC ¼ 0 ð15Þ

Z

VF

q rd �
X

nd

i¼1

si
@rmi

@xi

" #

dV ¼ 0 ð16Þ

where dvi and q are arbitrary weighting functions

equivalent to virtual velocity and virtual pressure

fields.
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The computation of the residual terms in Eq. 16 is

simplified if we introduce the pressure gradient pro-

jections pi, defined as

pi ¼ rmi
�

@p

@xi
ð17Þ

We express now rmi
in Eq. 16 in terms of the pi

which then become additional variables. The system of

integral equations is therefore augmented in the nec-

essary number of equations by imposing that the

residual rmi
vanishes within the analysis domain (in an

average sense). We proceed next to integrate by parts

the rmi
term in Eq. 16 and the deviatoric stresses and

the pressure terms within rmi
in Eq.15. The final system

of governing equation is

Z

VF

dviq
@vi
@t

þ d _eijðsij � dijpÞ

� �

dV

�

Z

VF

dvibi dV �

Z

Ct

dviti dC ¼ 0 ð18Þ

Z

VF

q
@vi
@xi

dV þ

Z

VF

X

nd

i¼1

si
@q

@xi

@p

@xi
þ pi

� �

dV ¼ 0 ð19Þ

Z

VF

dpisi
@p

@xi
þ pi

� �

dV ¼ 0 no sum in i ð20Þ

with i,j,k = 1,nd. In Eq. 18 d _eij are virtual strain rates.

In Eq. 20 dpi are appropriate weighting functions and

the si weights are introduced for symmetry reasons.

Note that the boundary term resulting from the inte-

gration by parts of rmi
in Eq. 16 has been neglected as

the influence of this term in the numerical solution has

been found to be negligible.

3.2 Finite element discretization

We choose equal order C� continuous interpolations of

the velocities, the pressure and the pressure gradient

projections pi over each element with n nodes. The

interpolations are written as

vi ¼
X

n

j¼1

Nj�v
j
i; p ¼

X

n

j¼1

Nj�p
j; pi ¼

X

n

j¼1

Nj�p
j
i ð21Þ

where �ð�Þj denotes nodal variables and Nj are the shape

functions [35].

Substituting the approximations (21) into Eqs. 19–

20 and choosing a Galerkin form with dvi = q = dpi

= Ni leads to the following system of discretized

equations:

M _�vþK�v�G�p� f ¼ 0 ð22aÞ

GT�vþ L�pþQ�p ¼ 0 ð22bÞ

QT�pþ M̂�p ¼ 0 ð22cÞ

The matrices and vectors in Eqs. 22a, 22b, 22c are

assembled from the element contributions given by

(for 2D problems)

Mij ¼

Z

Ve
F

qNiNjdV; Kij ¼

Z

Ve
F

BT
i DBj dV

D ¼ l

2 0 0

0 2 0

0 0 1

2

4

3

5; Bi ¼

@Ni=@x1 0

0 @Ni=@x2

@Ni=@x2 @Ni=@x1

2

4

3

5

Lij ¼

Z

Ve
F

sk
@Ni

@xk

@Nj

@xk
dV; Q ¼ ½Q1;Q2�;

Qk
ij ¼

Z

Ve
F

sk
@Ni

@xk
NjdV

M̂ ¼
M̂1 0

0 M̂2

" #

; M̂k
ij ¼

Z

Ve
F

skNiNj dV;

Gij ¼

Z

Ve
F

BT
i mNj dV

f i ¼

Z

Ve
F

NibdV þ

Z

C
e
t

Nit dC; b ¼ ½b1; b2�
T; t ¼ ½t1; t2�

T

ð23Þ

with i,j = 1,n and k,l = 1,2.

In above B is the strain rate matrix [35], VF
e and Gt

e

are the volume and the Neumann boundary of the

element and m = [1,1,0]T for 2D problems.

3.3 Fractional step algorithm for the fluid variables

The starting point of the iterative algorithm are the

variables at time n in the fluid domain (nF). The sought

variables are the variables at time n + 1 (n+1F). For the

sake of clarity we will skip the upper left index n + 1

for all variables, i.e.

nþ1�x� �x; nþ1�p� �p; nþ1�p� �p; nþ1�x� �x; . . . : ð24Þ

A simple iterative algorithm is obtained by splitting

the pressure from the momentum equations as follows:
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�v� ¼ n�v� DtM�1½K�vj �Gnp� f� ð25Þ

�vjþ1 ¼ �v� þ DtM�1Gd�p ð26Þ

where d�p denotes a pressure increment. In above

equations and in the following the left upper index n

refers to values in the current configuration nVF

whereas the right index j denotes the iteration

number within each time step. The value of �vjþ1 from

Eqs. 26 is substituted now into Eq. 22b to give

GT�v� þ DtSd�pþ L�pjþ1 þQ�pj ¼ 0 ð27aÞ

where

S ¼ GTM�1G ð27bÞ

Typically matrix S is computed using a diagonal

matrix M = Md, where the subscript d denotes a diag-

onal matrix. Diagonalization can be performed by a

lumping technique.

An alternative is to approximate matrix S by a

Laplacian matrix. This reduces considerably the

bandwidth of S. The disadvantage is that the pressure

increment must be prescribed on the free surface and

this reduces the accuracy in the satisfaction of the

incompressibility condition in these regions.

A semi-implicit algorithm can be derived as follows.

For each iteration:

Step 1 Compute v* from Eq. 25 with M = Md. For the

first iteration ð�v1; �p1; �p1; �x1Þ � ðn�v; n�p; n�p; n�xÞ

Step 2 Compute d�p and �pjþ1 from Eq. 27a as

d�p ¼ �ðLþ DtSÞ�1½GT�v� þQ�pj þ L�pj� ð28aÞ

The pressure �pjþ1 is computed as follows

�pjþ1 ¼ �pj þ d�pj ð28bÞ

Step 3 Compute �vjþ1 from Eq. 26 with M = Md

Step 4 Compute �pjþ1 from Eq. 22c as

�pjþ1 ¼ �M̂�1
d QT�pjþ1 ð29Þ

Step 5Update the coordinates of the mesh nodes. From

the definition of the velocity vi = ¶ui/¶t it is deduced.

x
jþ1
i ¼ nxi þ �v

jþ1
i Dt ð30Þ

Step 6 Check the convergence of the velocity and

pressure fields. If convergence is achieved move to the

next time step, otherwise return to step 1 for the next

iteration with j ‹ j + 1.

Note that solution of steps 1, 3 and 4 does not re-

quire the solution of a system of equations as a diag-

onal form is chosen for M and M̂:

In the examples presented in the paper the time

increment size has been chosen as

Dt ¼ minðDtiÞ with Dti ¼
hmin
i

jvj
ð31Þ

where hi
min is the distance between node i and the

closest node in the mesh. Although not explicitely

mentioned all matrices and vectors in Eqs. 27–31 are

computed at the updated configuration n+1VF. This

means that the integration domain changes for each

iteration and, hence, all the terms involving space

derivatives must be updated at each iteration. An

alternative is to refer the integrations domain at each

time step to the current configuration nVF. The jaco-

bian matrix is needed in this case to transform the

space derivatives and the differencial of volume from
n+1VF to nVF at each iteration.

The boundary conditions are applied as follows. No

condition is applied for the computation of the fractional

velocities �v� in Eq. 25. The prescribed velocities at the

boundary are applied when solving for �vjþ1 in step 3.

4 Staggered scheme for the FSI problem

The solution for the variables in the solid and fluid

domains at the updated configuration n+1F,n+1S is

found using the staggered scheme shown in Box 1.

Box 1 Staggered scheme for the FSI problem
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Indeed a ‘‘weak’’ version of the staggered scheme

can be implemented simply by eliminating the loop

over the staggered solution in Box 1. The strong stag-

gered scheme shown in Box 1 is recommended for

problems with a large number of solid bodies inter-

acting with the fluid particles. For the bed erosion

problems presented in this paper we have used the

weak staggered scheme.

5 Treatment of contact between the fluid

and a fixed boundary

The motion of the solid is governed by the action of the

fluid flow forces induced by the pressure and the vis-

cous stresses acting at the fixed boundary, as men-

tioned above.

The condition of prescribed velocities at the fixed

boundaries in the PFEM are applied in strong form to

the boundary nodes. These nodes might belong to fixed

external boundaries or to moving boundaries linked to

the interacting solids. Contact between the fluid par-

ticles and the fixed boundaries is accounted for by the

incompressibility condition which naturally prevents

the penetration of the fluid nodes into the solid

boundaries (Fig. 5). This simple way to treat the fluid–

wall contact is another distinct and attractive feature of

the PFEM formulation.

6 Generation of a new mesh

One of the key points for the success of the PFEM

formulation is the fast regeneration of a mesh at

every time step on the basis of the position of the nodes

in the space domain. In our work themesh is regenerated

at each time step using the so-called extended Delaunay

tesselation (EDT) [10, 11, 13]. The EDT generates non-

standard meshes combining elements of arbitrary

polyhedrical shapes (triangles, quadrilaterals and other

polygons in 2D and tetrahedra, hexahedra and arbitrary

polyhedra in 3D) in a computing time of order n, where

n is the total number of nodes in the mesh (Fig. 6). The

C� continuous shape functions of each element are

obtained using the so-called meshless finite element

interpolation (MFEM). Details of the mesh generation

procedure and the derivation of the MFEM shape

functions can be found in [10, 12, 13].

7 Identification of boundary surfaces

One of the main tasks in the PFEM is the correct

definition of the boundary domain. Sometimes,

boundary nodes are explicitly identified differently
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Fig. 5 Automatic treatment of contact condition at the fluid–
wall interface

Fig. 6 Generation of nonstandard meshes combining different
polygons (in 2D) and polyhedra (in 3D) using the extended
Delaunay technique
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from internal nodes. In other cases, the total set of

nodes is the only information available and the algo-

rithm must recognize the boundary nodes. The ex-

tended Delaunay partition makes it easier to recognize

boundary nodes. Considering that the nodes follow a

variable h(x) distribution, where h(x) is typically the

minimum distance between two nodes, the following

criterion has been used. All nodes on an empty sphere

with a radius greater than ah, are considered as

boundary nodes. In practice a is a parameter close to,

but greater than one. This criterion is coincident with

the Alpha Shape concept [6]. Figure 7 shows an

example of the boundary recognition using the Alpha

Shape technique. Once a decision has been made

concerning which nodes are on the boundaries, the

boundary surface and its normal are defined by all the

polyhedral surfaces (or polygons in 2D) having all their

nodes on the boundary and belonging to just one

polyhedron. The boundary definition allows us to

compute the volume of each of the fluid and solid

subdomains which is also an important task. In the

criterion proposed above, the error in the boundary

surface definition is proportional to h which is an

acceptable error. The method described also allows

one to identify isolated fluid particles outside the main

fluid domain. These particles are treated as part of the

external boundary where the pressure is fixed to the

atmospheric value (Fig. 7). We recall that each particle

is a material point characterized by the density of the

solid or fluid domain to which it belongs. Mass is lost in

the analysis domain when a boundary element is

eliminated due to departure of a node (a particle) from

the domain. This mass is, however, regained when the

‘‘flying’’ node falls down and a new boundary element

is created by the Alpha Shape algorithm when the

falling node is at a distance less than ah from the

boundary. This concept is essential for modeling the

splashing of surface waves and bed erosion as de-

scribed in Sect. 8. An example of wave splashing is

presented in Fig. 8 where the motion of a fluid within

an oscillating container is shown.

7.1 Contact between solid–solid interfaces

The contact between two solid interfaces can be

modeled by introducing a layer of contact elements

between the two interacting solid interfaces. This layer

is automatically created during the mesh generation by

prescribing a minimum distance between two solid

boundaries. If the distance exceeds the minimum va-

lue, then the generated elements are treated as fluid (or

air) elements. Otherwise the elements are treated as

contact elements where a relationship between the

tangential and normal forces and the corresponding

displacement is introduced so as to model elastic and

frictional contact in the normal and tangential direc-

tions, respectively (Fig. 9).

Fig. 7 Identification of individual particles (or a group of particles) starting from a given collection of nodes

Fig. 8 Motion of a liquid within an oscillating container. Position of the liquid particles at two different times. Arrows represent the
velocity vector
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This algorithm has proven to be very effective and it

allows to identify and model complex frictional contact

conditions between two or more interacting solids in

an extremely simple manner. The accuracy of this

contact model depends on the critical distance above

mentioned.

Figure 10 shows an example of the contact algo-

rithm in the analysis of the dragging of a cubic object

by a water stream. The contact algorithm described

above models accurately the frictional contact effects

between the moving cube and the fixed bottom. Other

examples of this kind can be found in Oñate et al. [25].

Fluid domain

Fixed boundary

Solid

M

Fti = - β K1(hc -h ) Sign(Vti)

Fvi = K1(hc -h ) –K 2 Vni Sign(Vni)

Fti

Fni

e

i

Vni

Vti

h < hc

Contact between solid boundaries

Contact elements are introduced

between the solid-solid interfaces

during mesh generation

Contact forces

Contact elements at the fixed boundary

∆ M

h < hc

Solid

Solid

Contact interface

t

t t+

Fig. 9 Contact conditions at a solid–solid interface

Fig. 10 Dragging of a cubic object by a water stream. Note the contact elements at the cubic bottom interface
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8 Modeling of bed erosion

Bed erosion models are traditionally based on a rela-

tionship between the rate of erosion and the shear

stress level [14, 33]. The effect of water velocity on soil

erosion was studied in Parker et al. [26]. In our work

we propose a simple erosion model based on the

frictional work at the bed surface originated by the

shear stresses in the fluid. The resulting erosion model

ressembles Archard law typically used for modeling

abrasive wear in surfaces under frictional contact

conditions [1]. An application of Archard law for

modeling surface wear in rock cutting tools can be

found in Oñate and Rojek [24]. The algorithm

proposed to model the erosion of soil/rock particles at

the fluid bed is the following:

1. Compute at every point of the bed surface the

resultant tangential stress s induced by the fluid

motion. In 3D problems s ¼ ðs2sn þ stnÞ
2 where s and

t are the tangential stresses in the plane defined by

the normal direction n at the bed node. The value of

s for 2D problems can be estimated as follows:

st ¼ lct ð32aÞ

with

ct ¼
1

2

@vt
@n

¼
vkt
2hk

ð32bÞ

where vt
k is the modulus of the tangential velocity at

the node k point (i.e. vkt ¼ ðv2sn þ v2tnÞ
1=2) and hk is a

prescribed distance along the normal of the bed node

k. Typically hk is of the order of magnitude of the

smallest fluid element adjacent to node k (Fig. 11).

2. Compute the frictional work originated by the

tangential stresses at the bed surface as

Wf ¼

Z

t

0

stct dt ¼

Z

t

0

l

4

vkt
hk

� �2

dt ð33Þ

Eq. 33 is integrated in time using a simple scheme as

nWf ¼
n�1Wf þ sctDt ð34Þ

3. The onset of erosion at a bed point occurs when
nWf exceeds a critical threshold value Wc defined

empirically according to the specific properties of

the bed material.

4. If nWf > Wc at a bed node, then the node is

detached from the bed region and is allowed to

move with the fluid flow, i.e. it becomes a fluid

node. As a consequence, the mass of the patch of

bed elements surrounding the bed node vanishes

in the bed domain and is transferred to the new

fluid node. This mass is subsequently transported

with the fluid. Conservation of mass of the bed

particles within the fluid is guaranteed by changing

Fluid

Bed domain

Bed
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Bed erosion due to fluid forces

0
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τ γ

Fluid

Bed domain

“Eroded” domain W

∫∫
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4

τ µγ
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∂
∂ 2

m

m

k

Fig. 11 Modeling of bed erosion by dragging of bed material
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the density of the new fluid node so that the mass

of the suspended sediment traveling with the fluid

equals the mass originally assigned to the bed

node. Note that the mass assigned to a node is

computed by multiplying the node density by the

tributary domain of the node.

5. Sediment deposition is modeled by an inverse

process to that described in the previous step.

Hence, a suspended node adjacent to the bed

surface with a velocity below a threshold value is

assigned to the bed surface. This automatically

leads to the generation of new bed elements

adjacent to the boundary of the bed region. The

original mass of the bed region is recovered by

adjusting the density of the newly generated bed

elements.

Figure 11 shows an schematic view of the bed ero-

sion algorithm proposed.

The examples chosen show the applicability of the

PFEM to solve bed erosion problems in free surface

flows.

9 Examples

We next present a collection of simple, schematic, but

very illustrative two and three dimensional examples

showing the potential of the PFEM formulation pre-

sented here to model bed erosion in complex free

surface flows. Sediment deposition is not considered in

any of the examples.

9.1 Example 1. Erosion of a sand hill under a water

stream

Figure 12 shows the progressive erosion of a com-

pacted sand domain under the action of an impacting

water stream originated by a water jet. The situation is

typical in sand shapes built by children in the beach

and subsequently destroyed by dropping water on

them. The frames in Fig. 12 show the progressive

erosion of the surface of the sand domain. A kind of

hydraulic jump is generated by the water jet and the

sand obstacle as clearly seen in the figures. The erosion

process continues until the sand domain is fully drag-

ged by the fluid flow.

9.2 Example 2. Erosion of a 3D earth dam due

to an overspill stream

The second example illustrates the erosion of an earth

dam under a water stream running over the dam top. A

schematic geometry of the dam has been chosen to

simplify the computations. The images of Fig. 13 show

the progressive erosion of the dam surface until the

whole dam is wiped out by the fluid flow.

9.3 Example 3. 3D erosion of a river bed adjacent

to a bridge pile

The next example models the progressive erosion of a

river bed domain in the vicinity of a bridge pile under a

Fig. 12 Erosion of a sand hill due to a water stream
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water stream. Figure 14 shows a view of the eroded

bed surface at different times. The flowing water par-

ticles are not shown in the pictures, for clarity. The

erosion process continues until the bridge pile foun-

dation is unveiled by the erosion of the adjacent bed

particles. We note that the deposition of the eroded

particles was not modeled in this case.

9.4 Example 4. Erosion of a solid domain

with an object on the top

This final example was chosen so as to demonstrate the

effectiveness of the PFEM algorithm to combine the

erosion process with the dragging of solid objects. The

pictures in Fig. 15 represent schematically a temple on

Fig. 13 Erosion of a 3D earth dam due to an overspill stream

Fig. 14 Evolution of the erosion of the soil in the vicinity of a bridge pile. Water particles are not shown
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the top of a mountain. The mountain is progressively

eroded by a strong water stream until the temple is

dragged by the fluid.

10 Conclusions

The PFEM is a powerful technique to model bed

erosion problems involving fluids with free surfaces

and submerged or floating structures. Problems such as

surface erosion, sediment transport and deposition,

fluid–structure interaction, large motion of fluid or

solid particles, surface waves, water splashing, separa-

tion of water drops, etc. can be solved with the PFEM.

The success of the method lies in the accurate and

efficient solution of the coupled equations for an

incompressible fluid and solid dynamics using an up-

dated Lagrangian formulation and a stabilized finite

element method. Low order elements with equal order

interpolation for all the variables can be effectively

used. Other essential solution ingredients are the fast

regeneration of the finite element mesh using an ex-

tended Delaunay tesselation, the meshless finite ele-

ment interpolation (MFEM), the identification of the

boundary nodes using an Alpha Shape type technique

and the simple algorithms to model onset of erosion,

sediment transport and material deposition and contact

conditions at the fluid–solid and solid–solid interfaces

via mesh generation. The examples presented have

shown the great potential of the PFEM for modeling

bed erosion in complex free surface flows accounting

for the dragging of solid objects. Applications of the

sediment transport and the material deposition algo-

rithm sketched in this paper will be reported in a

forthcoming publication.
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2. Aubry R, Idelsohn SR, Oñate E (2005) Particle finite ele-
ment method in fluid mechanics including thermal convec-
tion-diffusion. Comput Struct 83(17–18):1459–1475

3. Codina R, Zienkiewicz OC (2002) CBS versus GLS stabil-
ization of the incompressible Navier–Stokes equations and
the role of the time step as stabilization parameter. Commun
Num Meth Eng 18(2):99–112

4. Darby S, Thorne C (1996) Numerical simulation of widening
and bed deformation of straight sand-bed rivers. J Hydr Eng
ASCE 122(4):184–193

5. Donea J, Huerta A (2003) Finite element method for flow
problems. Wiley, New York

6. Edelsbrunner H, Mucke EP (1999) Three dimensional alpha
shapes. ACM Trans Graph 13:43–72

7. Fell R, Wan CF, Cyganiewics J, Foster M (2003) Time for
development of internal erosion and piping in embankment
dams. J Geotech Geoenviron Eng 129:307–314
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12. Idelsohn SR, Calvo N, Oñate E (2003) Polyhedrization of an
arbitrary point set. Comput Meth Appl Mech Eng 192(22–
24):2649–2668
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20. Oñate E, Sacco C, Idelsohn SR (2000) A finite point method
for incompressible flow problems. Comput Visual Sci 2:67–75
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22. Oñate E, Garcı́a J, Idelsohn SR (2004) Ship hydrodynamics.
In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of
computational mechanics. Wiley, New York
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