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Abstract
A model for blackouts in electric power

transmission systems is implemented and studied in
simple networks with a regular structure. The model
describes load demand and network improvements
evolving on a slow timescale as well as the fast
dynamics of cascading overloads and outages. The
model dynamics are demonstrated on the simple
power system networks.  The dynamics depend
weakly on the network topologies tested. The
probability distribution functions of measures of the
cascading events show the existence of power-
dependent tails.

1. Introduction

Electric power transmission systems are complex
engineering systems with many interacting
components.  Their complete dynamical description
involves detailed knowledge of each component and
its coupling to the rest of the system.  To model such
a system, two approaches are possible.  The most
commonly used approach is a deterministic approach
that models components in detail.  Because all of the
components and the physical laws that govern their
interactions are known, it is possible to develop
codes that describe particular blackouts. These codes
may be complicated and time-consuming, but they
are feasible. This approach has proven to be effective
in helping to manage the power system.  However, a
different perspective can be taken.  Blackouts in
power systems happen quite frequently.  These
blackouts have a multiplicity of causes such as
equipment failure, weather conditions, vandalism,
and human error [1].  The dominant causes triggering
blackouts cannot be written in the equations of a
predictive code. Therefore, if we want to understand
the global dynamics of power system blackouts, we

need to emphasize the random character of the
events that trigger them and the overall response of
the system to such events.  This is the approach
taken in this paper.  The two approaches are
necessary and complement each other. They may
converge in the future when the second approach is
further developed.

In following the second approach, it is
sensible to start from a global, top-down
perspective with simple models that capture the
main effects only.  However, there is a question to
be faced: If the random events play a decisive role
in triggering the system blackouts, how can we
develop a simple model that is representative of the
behavior of such a large and complex system?
There is an answer to this question: If the system
operates close to a "critical" point, some aspects of
the response of the system to random perturbation
may have a universal character.  Therefore, we can
hope to learn something from such modeling.

A recent analysis of blackouts in the
North American power grid [2, 3] has shown that
measures of such blackouts (such as megawatt
hours unserved or number of customers affected)
show the existence of long-range dependencies.
Furthermore, the probability distribution function
(PDF) of the size of the blackouts has a power law
scaling. This behavior of the power transmission
system is suggestive of a dynamical system close
to a critical point.  One possible governing
principle for its dynamics is self-organized
criticality [4].

We have considered a sequence of models
that may reflect the dynamical properties of a self-
organized critical system.  The simplest model was
employed in reference [3]. In [3] we used a
sandpile model [5] as a black box to generate a
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self-organized critical time series that could be
compared to the time series of historical data for
North American power grid blackouts.  The
sandpile was not a model for the dynamics of the
power grid, but merely a means of testing the
self-organized critical properties of the data.

 The next step was taken by
constructing a power transmission model [6]
based on a cellular automaton similar to the
sandpile model.  This model allowed studying
properties of network power transmission, but it
did not solve the network power flow equations.
The interesting result is that these two models
produce PDFs of blackout sizes that are quite
similar and are also similar to the PDF
determined from the historical data for North
American power grid blackouts.

Here we describe the implementation
and results of a model [7] that takes it a step
further by solving the network power flow
equations. This model still remains simple, and
in this paper we consider artificial power
networks of homogeneous structure. In this way,
we can vary a minimum number of parameters to
explore the dynamics. However, extensions of
the model are possible and easy to implement.
These extensions will allow us to consider more
realistic power system networks, incorporate the
reliability of each component, and to vary the
methods of responding to increasing power
demand and improving the system.

2. Model Implementation

A model for the dynamics of power
transmission networks was developed in [7]. We
have implemented this model in a code written in
C++.  For each network, we define two types of
classes, the node class and the line class.  The
node class represents the buses. They are either
loads (L) or generators (G).  (The node class can
easily be generalized to combine both types of
buses, but this has not yet been implemented.)
Each node class contains the information on the
type of bus, the instantaneous real power Pi

(positive for generators and negative for loads),
the maximum generator power Pi

max , and to what
other buses it is connected.  The line class
contains the information on the nodes i and j that
the line connects, the instantaneous power flow
Fij, the maximum power flow Fij

max , and the line

impedance zij.  The present implementation
allows only one line to connect two given nodes.
This implementation of the model allows the
consideration of any interconnected network

with NN = NG + N L  nodes and Nl lines, where
NG is the number of generators and NL is the
number of loads. The present implementation
does not allow the network to be disconnected
and islanding cannot be studied.

As discussed in [7], the direct current
(dc) power flow equations can be written in the
form

F = AP , (1)

where F is a vector whose NL components are
the line power flows Fij, P is a vector whose
NN–1 components are the power injected at each
node Pi , and A is a matrix that depends on the
network structure and impedances. (The
reference generator power P0 is not included in
the vector P to avoid the singularity of A as a
consequence of the overall power balance.)

The dynamical evolution of the network
involves two timescales. There is a slow
timescale of days to years over which power
demand changes and improvements to the
system are made.  There is also a fast timescale
of minutes to hours over which a cascade of
overloads and outages may take place.  This
cascade may lead to a blackout or back to normal
operation.  A flow diagram representing the
overall operation of the code is shown in Fig. 1.

Random modification
of loads
Random outage
k = 0

are any overload lines?

 yes, test for outage  no outage

 Line (s) outage

 no

If power shed,
it is a blackout

Pi t( ) = λPi t −1( ) for i ∋ L

Pi
max t( ) = λPi

max t −1( ) for i ∋ G

Fij
max t( ) = µFij

max t −1( ) if ij overload

during blackout

zij = κ1zij

Fij
max = Fij

max κ2

k = k +1

LP Solver

     Fig. 1. Flow diagram of the implementation
of the power transmission blackout model.
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For simplicity, the daily peak load is
chosen as representative of the loading during
each day, and the events are computed based on
that peak load.  The timing of events in the
cascade is neglected so that the cascade
modeling moves through a possible sequence of
states of the network rather than simulating the
evolution of the cascade in time.

Slow timescale evolution

The dynamic of the long-term evolution
of the network is carried out by a simple set of
rules. At the beginning of day t, we apply the
following rules:

1. Growth of the power demand.  All loads are
multiplied by a fixed parameter λ , which is the
average daily rate of increase in electricity
demand. On the basis of the past rate of growth
of electricity consumption, we estimated the
parameter to be λ  = 1.00005. This value
corresponds to a yearly growth rate of
approximately 2%.

Pi t( ) = λ Pi t −1( ) for i ∋ L . (2)

The maximum generator power is increased at
the same rate:

Pi
max t( ) = λ Pi

max t − 1( ) for i ∋G . (3)

2. Power transmission grid improvement.  We
assume a gradual improvement in the
transmission capacity of the grid in response to
the outages and blackouts.  This improvement is
implemented through an increase of the
maximum line flow Fij

max  for the lines that have

overloaded during a blackout on the previous
day (we will discuss the definition of a blackout
later on in this section). That is,

Fij
max t( ) = µFij

max t −1( ) (4)

if line ij overloads during a blackout.  We take µ
to be a constant; µ  is the main control parameter
of the model.
3. Daily power fluctuations.  To represent the
daily fluctuations in power demand, all load
powers are multiplied by a random number r,
such that 1 γ ≤ r ≤ γ .  We generally choose γ in
the range 1 to 1.4.  We also assign a probability
p0 for a random outage of a line. We represent
the line outage by multiplying the line

impedance by a large number κ1 and dividing the
line maximum flow Fij

max  by another large

number κ2. In the present calculations, κ1 and κ2

are of the order of 1000.
After applying these three rules to the

network parameters, we solve the power flow
problem using linear programming.

Linear programming solution of the power
flow problem

Using the input power demand and grid
parameters updated as indicated in the previous
section, we solve the power flow equations (1)
subject to constraints while minimizing the cost
function:

Cost = Pi t( )
i∈G
∑ − W Pj t( )

j∈L
∑ . (5)

We assume that all generators run at the same
cost and that all loads have the same priority to
be served. However, we set up a high cost for
load shed by setting W = 100. This minimization
is done with the following constraints.

1. Generator power:  0 ≤ Pi ≤ Pi
max i ∈G

2. Load power:  Pj ≤ 0 j ∈L

3. Power flows:  Fij ≤ Fij
max

4. Power balance:  Pi
i ∈G ∪L
∑ = 0

This linear programming problem is numerically
solved using the simplex method as implemented
in [8].

In solving the time evolution problem,
the initial conditions are chosen to be a feasible
solution of the linear program (i.e., a solution
satisfying the constraints).  As the time evolution
proceeds, we can reach a solution of the linear
program that requires load shed or leads to
overload of one or more lines. At this point, a
cascade may be triggered, and the evolution
moves to the fast timescale (Fig. 1).

Fast timescale evolution

Cascading overloads may start if one or
more lines are overloaded in the solution of the
linear program. We consider a line to be
overloaded if the power flow through the line is
within 1% of Fij

max .  Each overloaded line is

outaged with probability p1.  Once one or more
lines are outaged, the solution is recalculated.
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This process can lead to multiple iterations and
corresponds to the inner loop of the flow
diagram in Fig. 1.  The process goes on until a
solution is found with no more outages. A
blackout is defined as a cascading event in which
the load shed is larger than a small value,
typically 10-5 times the total power demand.

3. Dynamics of the slow timescale

We have considered several network
structures, such as ring, tree, square, and
hexagon networks. For the ring and tree
networks, we have considered different numbers
of couplings between the nodes. We have
examined the sensitivity of the results to these
different network structures. An example of a
treelike network with three connections per node
is shown in Fig. 2.

Fig. 2. Treelike 46 node network with
3 connections per node.

A reason to consider these networks is
that their simple structure makes it easy to
generate networks of different sizes.  These
networks have allowed us to carry out detailed
scaling studies by varying the size and number of
connections. Varying the size of the network
allows the separation of scales needed to study
finite size systems. The scaling studies are
important in determining algebraic falloff of the
PDFs of cascading events.  For the numerical
results presented in this paper, the network
parameters are given in Table I.

Table I. Network parameters

Network Number of
nodes

Number of
lines

Tree 46 46 69
Tree 94 94 141
Tree 190 190 285
Square 49 49 84
Hexagon 61 61 156

For these networks, we have arbitrarily assigned
a generator at every tenth bus and loads at every
other bus.

For a fixed rate of average increase of
the power demand ( λ  = 1.00005), the effective
power served depends on the rate of
improvements µ in the grid.  If the improvement
rate is lower, there are more blackouts, and on
average the power served is lower. We illustrate
this effect in Fig. 3.
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Fig. 3. Average ratio of the power
served to the power demand as a function
of the rate of improvement for two
different network configurations.

Once the rate of improvement µ is given,
there is a self-regulation process by which the
system produces the number of blackouts that it
needs to stimulate the response needed to meet
demand.  This is a necessary condition for the
dynamical equilibrium of the system. The rate of
increase in power demand for the overall system
is essentially given by

RD ≈ λ − 1( )NL  .

(Note that ln λ ≈ λ -1.)  The system response is

  RR ≈ µ −1( ) fblackout lo NL  ,
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where fblackout is the frequency of blackouts and

  lo  is a weighted average of lines overloaded in

a  blackout:

  

lo =
Fij

max if line overloaded( )
lines
∑

Fij
max

lines
∑

 . (6)

Dynamical equilibrium implies that
RD = RR .  This condition is well verified in all
the numerical calculations, as shown in Fig. 4.
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Fig. 4. Normalized rate of system
response to the demand for three
network configurations plotted as a
function of µ. The response matches
the demand (continuous line) in all
cases.

The dynamical evolution reaches a steady
state through a self-organization process as
described in [7]. This process is well illustrated
by the fractional overload

 Mij =
Fij

Fij
max

 , (7)

which measures how close each line works to
its limit capacity.  It is an observed property of
the dynamical equilibrium that the time average

of the fraction of overloads Mij  is

independent of how the system is evolved to the
dynamical equilibrium.  The particular form of

the distribution of Mij  over the lines depends

on the structure of the network.

4. Dynamics of the fast timescale

In the present studies, we have
assumed daily random fluctuations of the
network loads with 1.2 ≤ γ ≤1.4 . The
probability of a line outage when a line is
overloaded is set to p1 = 0.3.  We have not yet
explored the effect of varying p1.  The other
controlling parameter is p0, the probability of
daily random line outages.  We have kept p0 at a
value such that random line outages happen
seldom (at average intervals of more than 30
days).  Essentially, the results presented here
are for the limit of very small values of p0 for
reasons that we will mention later.

The fast timescale dynamics are
strongly coupled to the slow evolution. As
discussed in the previous section, the
improvements at rate µ are in response to the
blackouts and outages. By fixing the
improvement rate µ and the rate of growth of
the demand λ , the system must have the
number of blackouts needed to balance these
two rates. Therefore, for a fixed rate of increase
of the demand, it is not surprising that the
frequency of blackouts is a strong function of µ.
What is really interesting is that this blackout
frequency does not depend much on the
topology of the network.  This is shown in
Fig. 5.
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Fig. 5. Frequency of blackouts as a
function of µ for three different networks.
The straight line is a power fit.

The results in Fig. 5 can be summarized by a
simple power dependence on µ–1.  The best fit
to the results for all the networks in Table I
gives an exponent −0.77± 0.01.  There is very
little variation from one network to another.
The coefficient of the power fit is somewhat
more sensitive to the network characteristics.
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Fig. 6. Cascading events for the treelike network with 46 nodes that leads
to a partial blackout of the network in 6 iterations.



7

The dynamics of the cascading events
may involve several iterations during which
lines are outaged and load is shed.  As an
example of such a process, we have plotted in
Fig. 6 the status of the treelike 46-node network
during a cascade.  This particular cascade
involves six iterations. Each of the six diagrams
in the figure shows the status of the network
after one of these iterations.  The load nodes are
represented by open squares, and the generator
nodes are represented by open circles with the
letter G inside the circle.  The blackout nodes
are depicted by black squares. At each iteration,
the lines overloaded are plotted as broken lines,
and the outaged lines are removed from the
drawing.  We have chosen this particular
example because six iterations fit well into a
page, but there are cascading events of all sizes
as we will discuss later.

The cascade begins with a couple of
line overloads in the upper region of the network.
One of them causes an outage and triggers the
process. The cascading process leads to a
blackout of five buses in the upper region of the
network graph.  Simultaneously, a cascade is
also triggered in the region of the network
represented on the right hand part of the graph
leading to five more loads blacking out.

The occurrences of cascading events are
not correlated. Their triggers are random events.
Therefore, the distribution of the waiting times
between cascading events falls off with an
exponential tail (Fig. 7).

10-5

10-4

10-3

10-2

10-1

0 100 7.5 101 1.5 102 2.25 102 3 102

P = 0.021 * e-0.0198T   

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

fu
nc

tio
n

Times between blackouts

Fig. 7. Probability distribution
function of waiting times
between blackouts for the tree
96-node network with µ = 1.02.

This decorrelation between triggering
events is expected in a self-organized critical

model [9]. It has also been observed in an
analysis of North American grid blackouts [3].

Although the PDF of the waiting times
has an exponential falloff, the PDFs of the
cascade sizes produced by the model have
algebraic scaling regions.  One measure of the
cascade size is the total number of overloaded
lines during the cascade.  This measure has some
parallelism with a measure of avalanche size in
the sandpile model [5].  In Fig. 8, we have
plotted the PDF of the overloads for three
different networks and for µ = 1.002.

There are several interesting points to
note about Fig. 8.  First of all, the three cases
show very similar functional forms for the PDF.
A second point is the existence of an algebraic
region covering overloads between
approximately 10 to 100. A fit in this region
gives an exponent of -1.57.  A third point is the
faster falloff at larger number of overloads. This
is probably due to the finite extent of the
networks.  Further calculations are needed with
larger network sizes to test how the algebraic
region scales with the size of the network.
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Fig. 8. PDF of the overloads for
three different networks and for
µ = 1.002.

Although the size of the network clearly
affects the sizes of the cascading events, it
appears to have little impact on the frequency of
the events.  We have considered the three tree
networks in Table I.  They are characterized by
tree connections at each node and they have 46,
94, and 190 nodes, respectively. For a fixed
value of all input parameters, they seem to have
the same frequency of blackouts (Fig. 9).
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Fig. 9. Frequency of blackouts for
the three tree networks listed in
Table I.

The observed weak dependencies on the
network structure are verified in the limit of p0

very small and for a range of values of µ.  As p0

is increased, a different dynamical regime may
set in. Strategies on how to respond to outages in
this regime need to be developed and
incorporated in the model.  Because they have
not been considered yet, we will not dwell on the
characteristics of this operational regime. For
large values of µ – 1, such as an average daily
rate of improvement of the grid higher than 3%,
there is negligible dynamical activity, and very
lengthy calculations are needed to have proper
statistics.  In contrast, if µ – 1 is very small,
below 0.01%, there are daily blackouts, and the
model is no longer reasonable. In comparing the
frequency of blackouts to the data for the North
American grid [1], we find that a value of
µ = 1.007 is reasonable.

For a statistical analysis of the
cascading events, we need to introduce some
other measures of the size of the cascade.  One
possible measure is the amount of load shed
during the cascading.  However, since the overall
power demand increases exponentially during
the whole calculation, we normalize the load
shed to the power delivered. In this way, we have
a stationary sequence that can be analyzed with
the usual statistical tools. The PDF of the load
shed has an algebraic falloff and we can compare
this PDF to the PDF of the avalanches of a
sandpile as shown in Fig. 10.  In Fig. 10, we
have normalized the PDF of the avalanches to its
maximum size.  The results from the model are
for a treelike 94-node network with µ = 1.002.
The sandpile has a length L = 200, which is of
the same order as the number of lines in the
network.
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Fig. 10. PDF of the load shed
divided by the power delivered
compared to the PDF of the
avalanches from a sandpile
normalized to the maximum size.

As the parameter µ decreases, the
frequency and the average size of the events
increase.  For small values of µ – 1, we reach a
situation in which the finite size of the system
affects the size of the cascading event. We can
see that through a sharp falloff of the PDF for
large events. This finite size effect can distort the
power dependence of the PDF (Fig. 11).

10-2

10-1

100

101

102

10-3 10-2 10-1 100 101

1.02
1.0002
1.002

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

fu
nc

tio
n

Load shed/Power delivered

Fig. 11. PDF of the load shed
divided by the power delivered for a
square 49-node network.

5. Conclusions

We have presented the numerical
implementation and some initial results of a
dynamical model for blackouts in power
transmission systems.  The present
implementation is minimal; that is, it uses
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assumptions of uniformity of the components of
the system, and all the control is by very few
parameters.  However, the model has the
potential of incorporating inhomogeneities of the
system and making the model more realistic.

In spite of the simplicity of the present
model realization, the model shows very rich
dynamics over both long and short timescales.
The self-organization aspects of this model have
been discussed elsewhere [7].  Here we have
focused on the main properties of the cascading
events.

The cascading events involve lines
limiting, line outages, and possible load shed.
When load shedding happens, we define the
cascade as a blackout.  Blackout frequency and
size depend on the rate of improvement of the
network µ.  Thus, µ is the main control
parameter in the present implementation of the
model.  The frequency and size of the blackouts
depend weakly on the topology of the network,
at least for the three topologies considered here.
In addition, the distribution of the blackout sizes
is a weak function of the topology. The
distribution of blackout sizes has regions of
power dependence falloff.  The interpretation of
these regions depends on the size of the network,
and the present calculations have been limited to
network sizes ranging from 69 to 159 lines.
Larger network sizes are needed to better resolve
these dependencies.  However, the present
calculations are consistent with possible self-
organized critical behavior of the model.
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