
J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 324–339, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling Business Contexture and Behavior Using
Business Artifacts

Rong Liu, Kamal Bhattacharya, and Frederick Y. Wu

IBM T.J. Watson Research Center
19 Skyline Dr. Hawthorne, NY 10532, USA
{rliu, kamalb, fywu}@us.ibm.com

Abstract. Traditional process modeling approaches focus on the activities
needed to achieve a business goal. However, these approaches often pose
obstacles in consolidating processes across an organization because they fail to
capture the informational structure pertinent to the business context or
contexture. In this paper, we discuss business artifact-centered operational
modeling. Artifacts capture the contexture of a business and operational models
describe how a business goal is achieved by acting upon the business artifact.
Business artifacts, such as Purchase Order or Insurance Claim, provide business
analysts an additional dimension to model their business. With operational
models, they can describe how a business operates by processing business
artifacts and adding business value to the artifacts. This approach has been
successfully employed in a variety of customer engagements. We summarize
our best practices by describing nine operational patterns. Furthermore, we
develop a computational model for operational models based on Petri Nets to
enable formal analysis and verification thereof.

Keywords: Business contexture, business behavior, business artifacts,
operational modeling, operational patterns.

1 Introduction

Business process modeling is an essential tool for organizations to formalize and
reason about how to reach business objectives. A business process model describes
actions taken by business (human or system) actors using the resources of an
organization to achieve a strategic or operational goal. Business process models
convey business intent and serve as the basis of communication amongst a variety of
stakeholders in a business, from business management, analysts, process owners,
down to system developers. Enterprises of today have often grown through mergers
and acquisitions which frequently lead to process redundancies and inconsistencies.
Process consolidation efforts when implemented successfully can lead to significant
operational improvements and cost savings. In reality, business process consolidation
across a large organization is arduous. Part of the problem is cultural, i.e.
disagreement over the unified process itself, as the same business process is often
implemented in different ways in different organizations. This typically leads to
complications in measuring efficiency of business processes and also in setting
balanced incentive targets for the process owners.

 Modeling Business Contexture and Behavior Using Business Artifacts 325

One may argue that process consolidation is difficult because different
stakeholders employ different process modeling languages, and that transforming
from one to another is prone to semantic ambiguities and leads to skewed
representations of business intent. We believe, however, that the actual problem of
communicating intent using business process models is much more fundamental and
independent of modeling semantics. In a variety of client engagements across various
industry verticals we have noticed that standardizing the representation of business
process models does not necessarily facilitate stakeholder agreement on processes.
We find that traditional process models often inhibit consolidation of business
operations. Business stakeholders face problems in agreeing on a unified process
simply because a business process can be executed in different ways and still achieve
the same goal. Agreeing on one process versus another is often a matter of taste.

We propose a different approach to understanding and representing business intent
using what we call business artifacts (or simply artifacts) [6,11,15]. The idea behind
business artifacts is the following. Traditional process models like workflows [8]
focus on the actions taken to achieve a certain goal (often referred to as "verb-
centric"). Hence, business stakeholders describe their business by stating "first we do
A, then B, then C, and while doing C we also do D." We propose to focus on what is
acted upon, thus describing business operations by first identifying business artifacts,
the things that matter to their business (e.g. Purchase Order, Insurance Claim), and
second how these artifacts are processed to achieve a certain goal. Business artifacts
are so vital to a business that it stops functioning without processing them. Modeling
business operations using artifacts is thus a “noun-centric” approach. In our
engagements we found it relatively easy for stakeholders to agree on business
artifacts. This agreement on the artifacts leads more naturally to consolidating
business operations across organizational boundaries.

Business processes describe how work is coordinated to achieve operational and
strategic business goals. In Hammer’s framework of the Seven Dimensions of Work
[9] Hammer requires that business process design respect all seven dimensions to
successfully drive operational innovation. Based on our noun-centric modeling
approach we re-examined Hammer's framework and separated the classification into
two parts, dimensions related to information in the work context and dimensions
related to the behavioral aspects of work. We refer to these two different sub-spaces
as the contextural space and behavioral space. The contexture of a business is
manifested in the business artifacts themselves; the behavior of a business is
manifested in all the activities the business performs. In traditional process modeling,
the emphasis is on the behavioral space; the contextural aspects are defined as the
data attribute inputs and outputs of the work activities. In operational modeling,
contextural and behavioral aspects are given equal emphasis; each work task is
defined with respect to the business artifact(s) on which the task operates.

Over the past few years we have conducted over a dozen case studies with internal
and external clients. A recent case study illustrates the operational approach and the
value it demonstrated in consolidating business operations. A major health insurance
company was struggling to keep the database of physicians in its provider networks
up-to-date. The company has to process large volumes of data coming from
physicians, such as requests to become an approved physician, requests to update
physician information (e.g. a new address or phone number), and requests to be

326 R. Liu, K. Bhattacharya, and F.Y. Wu

terminated from networks (e.g. retiring or relocating). Processing these requests
frequently requires contacting physicians to ensure the completeness and accuracy of
data, and in some cases requires verification of physicians' credentials. These requests
are processed at numerous offices across its geographic service areas, and eventually
update a centralized provider database.

Table 1. Dimensions of Work and Process Modeling Approaches

Dimensions of Work Scope
What results the work delivers
What information the work employs
How thoroughly the work is performed

Contexture of business

Who performs the work
Where the work is performed (i.e., by which tasks)
When the work is performed (e.g., before or after which tasks)
Whether the work is performed

Behavior of business

The company had grown by acquisition, and each office had a different method
and set of ad hoc tools for handling these requests. The main problem faced by this
company was that some requests were taking many months to complete, delaying the
processing of claims filed by those physicians. Although operations management had
attempted to institute monitoring systems to identify problems, the lack of process
consistency led to unintelligible measurements from the various regional offices.
Management saw an opportunity to consolidate the processes into one standard set,
and thus had asked each regional office to model their provider management
processes. The result was a set of drawings that appeared to be very different,
although all the representatives agreed that they were doing essentially the same
thing. However, none of these models could be accepted as a standard one. For
example, offices may have different credentialing requirements. One office requires
site visits, but another may need other types of credentials. In addition, these models
lacked consistent activity granularity, which complicated matters with respect to
identifying fundamental business activities.

We approached the problem by asking the business stakeholders to describe the
key business documents used to manage their operations. The stakeholders quickly
agreed on four such documents (or artifacts): Enrollment Request, Credentialing
Request, Update Request, and Termination Request. These four business artifacts are
request types that capture all information to manage the on-boarding, updating and
terminating of providers. The second step was to identify how these requests are
processed. The resulting business operational models describe the lifecycles of these
artifacts. These operational models formed an agreeable basis for all stakeholders in
all geographies and were further used to implement a business process management
system to monitor the performance of request handling.

The remainder of the paper is organized as follows. Section 2 reviews the graphical
notation used for operational modeling. Section 3 gives an overview of operational
patterns that have been identified by analyzing a wide range of operational models.
Operational patterns are a means for modelers to quickly identify a suitable modeling
construct for a given business scenario. Section 4 introduces a computational model
for business operational modeling based on Petri Nets. Applying Petri net analysis

 Modeling Business Contexture and Behavior Using Business Artifacts 327

ensures model correctness against several unique correctness criteria. We will
describe the automatic transformation from operational models to their Petri net
representations. Section 5 compares the operational modeling with other process
modeling approaches. Section 6 concludes with a brief description of future work.

2 Business Operational Modeling Using Business Artifacts

The goal of operational modeling is to identify business artifacts and describe the
lifecycle of artifacts from creation to archiving. A business operational modeling
engagement typically consists of two main steps, first, business artifact discovery and
second, modeling the lifecycle of the discovered artifacts.

2.1 Business Artifact Discovery

As in any business consulting engagements, operational modeling starts with
discussions with different business stakeholders to understand the overall business
problem and define the modeling scope. Two types of questions are typically asked:

(1) Scoping: What are you in the business of producing? What is the outcome of
your process?

(2) Evaluation: How do you measure that you are doing what you want to do?

The scoping questions aid in understanding the boundaries of the business
operations in terms of the actual product produced by the business actors and the
input required for successful production. All of this needs to be captured in
information terms.

Once the scope is established the evaluation phase will reveal how business
stakeholders keep track of their business, i.e. information shared amongst different
roles and information recorded within the established scope. Note that the evaluation
phase is not about the activities taken to achieve the business goal but about the
information managed and maintained to produce the end product. Frequently one can
identify physical documents used in the business as candidate business artifacts, such
as Purchase Orders, Insurance Claims, Invoices. Sometimes one encounters business
stakeholders who have developed spreadsheets, templates, or paper forms as their
means of recording relevant information. For example, in a study conducted with
Bayer Pharmaceuticals, each lab head uses a specific type of document, which
contains a protocol that encodes operational specifications to execute experiments, a
placeholder for results and a list that shows the efficacy of a chemical applied against
the biological target. We used this document as the basis for designing a business
artifact called experiment record (or EXP for short). The details of artifact discovery
can be found in [6, 15]. Next, we briefly review some fundamental properties of
business artifacts and define the semantics for operational modeling.

A business artifact is an identifiable, self-describing unit-of-information through
which business stakeholders add value to the business [15]. An artifact has an id
which identifies itself uniquely within a given enterprise. This uniqueness property
has the most important consequence that an artifact cannot be split in two. For
example, the experiment record artifact can be worked on by only one role at a time,
meaning the unique artifact cannot be split in two.

328 R. Liu, K. Bhattacharya, and F.Y. Wu

A business artifact is self-describing in the sense that its attributes are so named
that its use in a given business domain is apparent. Information contained in the
artifact can be listed as name-value pairs. Therefore, artifacts are not business objects,
a technical notion from object oriented techniques [15], as artifacts are, in principle,
self-describing pure instances without predefined classes. However, during
implementation, the information model of an artifact can be modeled using any
suitable information modeling approach such as an ER diagram or an XML Schema.

2.2 Modeling the Lifecycle of the Discovered Artifacts

Next, we explain the various modeling primitives used in operational models. Their
graphical notations are shown in Fig. 1. These primitives mainly mimic physical
locations storing artifacts during their lifecycles, as operational models are understood
and used by users at the business level.

Artifact name

Task name

Repository

name

Input port
Output port

Artifact Task Repository Port Connector

Fig. 1. Graphical Notations of Modeling Primitives

A business task (or simply task) describes the work acting upon an artifact by
which a business role adds measurable business value to this artifact. We require a
task to generate business value and hence, require an update of an artifact. This
condition is necessary in our modeling approach and helps in defining the granularity
of a task or the task boundaries. Imagine a simple scenario where two tasks, T1 and
T2 work on an artifact consisting of ten name-value pairs. A business stakeholder
could determine that the completion of T1 will require update of, say attributes 2-5 of
the artifact and T2 requires update of attributes 6-10. Therefore, adding business
value in this case can be clearly defined by the business stakeholder who thereby
determines the boundaries of a task.

Notice that the condition of an artifact update is necessary from a modeling
perspective, but not sufficient to truly determine the task boundaries. In the example
above, the fact that attributes 2-5 are updated in task T1 is a business decision made
by the analyst based on his insight into the work, and may be reflected in a condition
that guards completion of T1. The artifact-centered approach does not prescribe this
in any way, nor does it support modeling the execution of the task. The main reason
to enforce artifact updates in tasks is that artifact-centered modeling is designed for
creating accountability of work. Any work conducted should be traceable and hence
be accounted for in a chunk of information in one or more artifacts.

Ports are the entry and exit points of tasks. We distinguish between input and
output ports. A port can be associated with only one artifact type. Ports can have
queues attached to them where artifacts wait to be read in or sent out. A port lives in
the context of a task and an input port can have a trigger condition that instantiates the
task. Usually a task is instantiated by an external (e.g. human) agent or a message.

A repository describes a waiting shelf or a buffer for an artifact. Tasks can push an
artifact into a repository and pull it out of the repository. A connector connects an
output port to an input port (task-task) or connects an output port to a repository

 Modeling Business Contexture and Behavior Using Business Artifacts 329

(task-repository). Task-task connectors carry artifacts or simple messages. We support
the use of messages mostly to allow for triggering of tasks by external agents, but do
not encourage modeling message flows, as messages are not persistent entities and
hence violate the design paradigm for accountability. Task-repository connectors
carry artifacts when a task pushes an artifact into a repository. A task can either pull
an artifact from a repository or read the content of an artifact in the repository.

3 Building Operational Models Using Patterns

3.1 Operational Patterns

During our practice with operational modeling, we designed nine operational patterns,
which describe most common behaviors of business artifacts. These patterns are not
exhaustive, but our customer engagements in the past five years convinced us that
they are expressive enough to serve as the basic modeling constructs.

Pattern 1 (Pipeline Pattern): In a pipeline pattern, tasks are executed in sequence.
An artifact is transported directly from an output port of a task to an input port of
another. In this pattern, information processed by all sequential tasks is encapsulated
by the same artifact. No new artifacts should be created within or from this pattern.
An example of this pattern is shown in Fig. 2. In this example, task T3 "Analyze
Results" is triggered right after the receipt of an artifact following the completion of
task T2 "Perform Experiment". Each task updates the experiment record artifact (or
EXP for short) and thus is considered to be a milestone in this artifact's lifecycle.

Pattern 2 (Repository Pattern): In a repository pattern, tasks are in sequence but
execution is decoupled. After being processed by a task, an artifact is sent to a
repository. The repository can respond to requests for this artifact. An example of this
pattern is shown in Fig. 3. The main difference of this pattern from a pipeline pattern
is that task T1 "Design Experiment" does not directly trigger the subsequent task T2
"Perform Experiments". Rather, task T2 is triggered asynchronously upon accessing
artifacts from the repository for pending experiments.

Fig. 2. Pipeline Pattern

T1: Design
Experiment Pending

Experiments

T2: Perform
Experiment

EXPEXP

Fig. 3. Repository Pattern

Pattern 3 (Branch Pattern): A branch pattern describes more than one option to
process an artifact. Fig. 4 shows an example of this pattern. In this example, the
results of an experiment are analyzed by task T3 "Analyze Results". Depending on the
analysis result, one of the following three tasks can be executed: (1) T4 "Clone
Experiment" (i.e., the experiment is repeated to test the reproducibility of the results),
(2) task T5 "Update Protocol", and (3) task T6 "Modify Experiment". These options
are exclusive and only one can be chosen, as required by the fact that each artifact is a
unique entity and thus cannot be split to more than one location at any time.

Pending
Experiments

T2: Perform
Experiment

T3: Analyze
Results

EXP EXP T6: Modify
Experiment

EXP

330 R. Liu, K. Bhattacharya, and F.Y. Wu

Pattern 4 (Convergence Pattern): In a convergence pattern, a task or a repository
can accept an artifact which may arrive from different sources. In general, a
convergence pattern always happens together with branch patterns. When branch
patterns create multiple possible ways to process an artifact, this artifact can follow
different paths and then arrive at a common task through a convergence pattern. An
example of this pattern is shown in Fig. 5. In this example, the artifact follows either
the sequence: task T3 "Analyze results" task T6 "Modify Experiment", or another
sequence: task T3 "Analyze Results" task T5 "Update Protocol" task T6
"Modify Experiment", two exclusive paths to reach task T6.

T5: Update
Protocol

T3: Analyze
Results

EXP T6: Modify
Experiment

T4: Clone
Experiment

EXP

EXP

EXP

Fig. 4. Branch Pattern

T5: Update
Protocol

T3: Analyze
Results

EXP T6: Modify
Experiment

EXP

EXP

Fig. 5. Convergence Pattern

Pattern 5 (Project Pattern): A project pattern is useful in collaborative scenarios
where an artifact is worked on by many role players in an arbitrary order. An example
is shown in Fig. 6. In this example, task T1 first creates an experiment and stores it in
a repository. Then tasks T2 "Order Raw Material" and T3 "Request Supplies" are
done in any order by pulling the artifact from and replacing it into the repository. T2
and T3 can be executed in an arbitrary order but while, e.g. T2 is working on the
artifact, T3 has to wait for T2 to release the artifact back into the repository. Task T4
"Start Experiment" can be executed only after both T2 and T3 are completed, which
would typically be realized by an appropriate guard condition on the input port of T4.

Pattern 6 (Creation Pattern): A creation pattern, as shown in Fig. 7, considers the
correlation between different types of artifacts. Through a creation pattern, at least
one new artifact is created. In Fig. 7, while an HTS (Candidate High Throughput
Screening Protocol) artifact is processed through task T1 "Design Experiment", new
EXP artifacts are created. In general, these two types of artifacts are correlated in
some way. For example, an EXP artifact can have references to the HTS artifact.

Pending
Experiment

T 1 : Create
Experiment

T2: Order
Raw Material

T 4 : Start
Experiment

T3: Request
Supplies

EXP
EXP

EXP
EXP

EXP

EXP

Fig. 6. Project Pattern Fig. 7. Creation Pattern

Notation:
 : Artifact
 : Task
 : Input port
 : Output port
 : Repository
 : Connector
EXP : Experiment
 record artifact
HTS : Candidate HTS
 protocol artifact

T1: Design
Experiment

start

Pending
Experiments

EXP

Protocol
Records

HTSHTS

 Modeling Business Contexture and Behavior Using Business Artifacts 331

Pattern 7 (Synchronization Pattern): A synchronization pattern considers the
coordination between different types of artifacts. Through this pattern, a task acts on
more than one artifact. The information content of one artifact is updated based on
other artifacts. One example is shown in Fig. 8. In this example, the analysis of
experiment results may indicate that the HTS protocol needs to be modified.
Therefore, completing task T5 "Update protocol" requires two artifacts: an HTS
artifact and an EXP artifact. After task T5, these two artifacts are synchronized and
the updated HTS artifact is sent back to the repository. If multiple experiments are
created, the HTS artifact may synchronize with each of them. Another example is
shown in Fig. 9. When changes are made to a service order, a new artifact RFC
(Request for Change) is created through task T2. Task T3 "Approve RFC" needs both
the service order artifact and the RFC artifact as inputs. After T3, the service order is
updated accordingly. In this example, synchronization happens only once.

T3: Approve
RFC

Ready for
Fulfilment

Service
Order

RFC

T1: Determine
Change

T2: Create
Request for

Change (RFC)

Service
Order

Approved
RFC

RFC

Service
Order

Fig. 8. Synchronization Pattern (Example 1) Fig. 9. Synchronization Pattern (Example 2)

Pattern 8 (Rework Pattern): A rework pattern is, in general, a loop. In this pattern,
an artifact circulates in a set of tasks until an exit condition is satisfied. An example of
such a pattern is shown Fig. 10. In this figure, after an experiment is performed and
analyzed, if the results cannot be confirmed, the experiment needs to be repeated.
Therefore, the experiment is cloned, sent to the repository "Pending Experiments",
and then performed again.

Pattern 9 (Disposal Pattern): In some situations, an artifact may become
unnecessary, for instance because of exceptions, and it drops from its lifecycle. An
example is shown in Fig. 11. In this scenario, multiple experiments are created and
each experiment is performed independently. When desirable results are achieved, all
remaining pending experiments are disposed and sent to a repository, say "Disposed
Artifacts", because there is no need for them.

T1: Design
Experiment Pending

Experiments

T2: Perform
Experiment

T3: Analyze
Results

EXP EXP T6: Modify
Experiment

T4: Clone
Experiment

EXP

EXP

EXP

EXP

Fig. 10. Rework Pattern

T1: Design
Experiment

Pending
Experiments

EXP

Dispose
Experiment

Disposed
Artifacts

EXP

Fig. 11. Disposal Pattern

Protocol
Records

T5: Update
Protocol

T2: Perform
Experiment

T3: Analyze
Results

T6: Modify
Experiment

HTS

EXP

EXP

HTS

EXP

332 R. Liu, K. Bhattacharya, and F.Y. Wu

3.2 Putting Patterns Together – An Example

Having given nine operational patterns, next we continue the case study of Bayer
pharmaceutical research and show how to use these patterns to build an operational
model for industrializing drug discovery processes [6].

A drug discovery process starts with identifying and isolating the biological target–
the biological structure associated with a specific disease. A very large number of
chemical compounds that have the potential of inhibiting or neutralizing the
malignant biological behavior of this target are selected during a procedure called
high throughput screening (HTS). Experiments are conducted to further test chemical
characteristics (ease of synthesis, solubility, reactivity, etc.) and biological
characteristics (selectivity, toxicity, etc.) of these compounds. A HTS protocol gives
precise and detailed instructions of performing these experiments. The protocol is
evaluated and perhaps updated through a series of experiments. The target of this
process is to generate an optimal HTS protocol which has maximum signal strength in
the HTS apparatus in order to obtain unambiguous results. Two business artifacts,
candidate HTS protocol (HTS) and experiment records (EXP), are identified.

Next, we describe business operation scenarios which create, process and archive
the artifacts. Each scenario can be mapped to one or more operational patterns. Some
matching patterns have been shown as examples in the previous section. We give the
names of matching patterns at the end of each scenario.

(1) Design experiment: A lab head creates a candidate HTS protocol along with
experiments. The protocol is stored in a repository and experiments are sent to the
pending experiment repository (Creation Pattern (see Fig. 7)).

(2) Perform experiment: A lab technician performs an experiment from the pending
experiment repository. Consecutively, the results are analyzed (Repository
Pattern (see Fig. 3), Pipeline Pattern (see Fig. 2)).

(3) Analyze results: The lab technician and the lab head analyze the experiment results
to determine one of the following options as the next step: (1) the experiment
needs to be cloned and rerun; (2) the experiment needs to be modified and rerun;
and (3) the protocol needs to be updated (Branch Pattern (see Fig. 4)).

(4) Update protocol: If a protocol needs to be updated, the protocol is retrieved from
the protocol record repository, synchronized with experiment results, and sent
back to this repository. After the update, either the experiment is determined to be
complete and stored in a repository or to be modified and rerun (i.e. option (2) of
Scenario (3)). Therefore, after the result analysis, the experiment can be modified
directly or modified after the protocol update (Synchronization Pattern (see
Fig. 8), Branch Pattern, Convergence Pattern (see Fig. 5)).

(5) Rerun experiment: a rerun experiment is first stored in repository "Pending
experiments" and then processed as a new one (Rework Pattern (see Fig. 10)).

(6) Prepare candidate protocol: With experiment results, the lab head evaluates the
protocol and archives completed experiments. Later, the lab head prepares to
finalize the candidate protocol, requests pre-run, and stores it in a repository
called "Candidate protocols". (Synchronization Pattern, Pipeline Pattern).

(7) HTS lab: The HTS lab retrieves the candidate HTS protocol for review. It may
return the protocol and suggest further validation. Otherwise, the protocol is
finalized and stored in an HTS Protocol repository (Branch Pattern).

 Modeling Business Contexture and Behavior Using Business Artifacts 333

(8) Initiate additional experiments: If further validation is needed, the lab head
updates the candidate HTS protocol and creates additional experiments to the
pending experiment repository (Creation Pattern, Rework Pattern).

It is very straightforward to formulate these scenarios after identifying their
matching patterns. We can get a complete operational model shown in Fig. 12.
Although an operational model is targeted at users at business levels, it also lends
itself to formal analysis, verification, and simulation to ensure successful process
execution. Next, we describe how to verify an operational model through Petri nets.
We start with a brief introduction to Petri nets.

T1: Design
Experiment

start

Pending
Experiments

EXP

Protocol
Records

T5: Update
Protocol

T2: Perform
Experiment

T3: Analyze
Results

EXP EXP T6: Modify
Experiment

HTS

T4: Clone
Experiment

EXP

HTS

EXP

EXP

HTS

EXP

Notation:
 : Artifact
 : Task
 : Input port
 : Output port
 : Repository
 : Connector
EXP : Experiment
 record artifact
HTS : Candidate HTS
 protocol artifact

HTS
Completed

Experiments

EXP

EXP

Dispose
Experiment

Disposed
Artifacts

EXP

T7: Evaluate
Protocol

T8: Prepare
HTS Protocol

T9: Request
Pre-run

T10: Initiate
Additional

Experiments

HTS
Protocol

T11: HTS
Lab

HTS HTS

HTS

HTS EXP
Archived

Experiments

Candidate
Protocol

HTSHTS

EXP

EXP

EXP

HTS

HTS

HTS

Fig. 12. Operational Model of Drug Discovery Process

4 Verifying Operational Models Using Petri Nets

4.1 Petri Net Preliminaries

Petri nets are a powerful tool for modeling the state transitions of systems in a variety
of domains. A Petri net is a directed graph consisting of two kinds of nodes called
places and transitions. In general, places are drawn as circles and transitions as boxes.
Directed arcs connect transitions and places either from a transition to a place or from
a place to a transition. Arcs are labeled with positive integers as their weight (the
default weight is 1). Places may contain tokens. In Fig. 13(b), place P1 has a token,
shown as a small disc. The firing rules of Petri nets are as follows [13]: (1)A
transition t is enabled if each input place of t contains at least w(p,t) tokens, where
w(p,t) is the weight of the arc from p to t; and (2) The firing of an enabled transition t
removes w(p,t) tokens from each input place p of t, and adds w(t,p) tokens to each
output place p of t, where w(t,p) is the weight on the arc from t to p.

In classical Petri nets, tokens are indistinguishable. A colored Petri net (CPN) is
extended from the classical kind by tagging tokens with data values (i.e. colors) [10].
Moreover, in a colored Petri net, each place is associated with a type of data values

334 R. Liu, K. Bhattacharya, and F.Y. Wu

(i.e., color set). For example, in Fig. 13(b), EXP is a color set and each color in this set
stands for an experiment record artifact. In addition, each arc is attached with an arc
expression specifying the tokens removed or added to a place. In Fig. 13(b), variable
"exp" means that a token from color set EXP is required to fire transition T1 and after
firing, the same token is put into place P3. The details of CPN can be found
in [10,16].

4.2 Representing Operational Models as Petri Nets

We can transform operational models into colored Petri nets easily following several
rules. First, each artifact type can be represented as a color set. For example, EXP in
Fig. 13(b) is a color set for EXP artifacts. Accordingly, each artifact is represented as
a token with a unique color in a color set. Second, a repository is transformed into a
place tagged with a color set since it stores a particular type of artifacts. Third, each
task is transformed into a transition and each of its output ports is represented as a
place. Finally, each connector is converted to an arc and its associated artifact
becomes a variable as an arc expression. Fig. 13 shows a transformation example.
However, there are three exceptions to these general rules as follows.

 T1: Design
Experiment

start

Pending
Experiments

EXP

Protocol
Records

T2: Perform
Experiment

EXP

HTS

EXP

HTS

(a)

P3: Pending
Experiments

EXP

P1: Start

HTS

T1: Design
Experiment

hts exp

P2: Protocol
Records

hts

HTS

∈

Note:
 EXP: color set for experiment artifacts
 HTS: color set for candidate HTS
 protocol artifacts
 exp: variable, exp EXP

 hts : variable, hts HTS∈

(b)

Fig. 13. An Operational Model and its Petri Net Representation

(1) An output port is connected to a repository. For example, task T1 is connected to
the protocol record repository in Fig. 13(a). No Petri net representation for this
port is needed. In Fig. 13(b), an arc directly connects transition T1 to place P2,
which represents the repository.

(2) Branch pattern. The output ports of the branch task should be transformed into
only one place, as shown in Fig. 14(b). After transition T5, a token is put into
place P9 and it can fire either transition T6 or T12. If an output port is connected
to a repository, a dummy transition, for example T12 in Fig. 14(b), is added in
between two places.

T5: Update
Protocol

T6: Modify
Experiment

EXP

Completed
Experiments

EXP

(a)

T5: Update
Protocol

P9: Updated
Protocol

T6: Modify
Experiment

exp exp

P7: Completed
Experiments

T12

exp
exp

(b)

Fig. 14. Petri Net Representation of Branch Pattern

 Modeling Business Contexture and Behavior Using Business Artifacts 335

(3) Convergence pattern. The convergence task, for example T6 in Fig. 15(a), is
duplicated so that each of its input ports belongs to one copy. Its Petri net
representation is shown in Fig. 15(b).

Pending
Experiments

T5: Update
Protocol

T3: Analyze
Results

EXP T6: Modify
Experiment

EXP

EXP

(a)

T5: Update
Protocol

P9: Updated
Protocol

T6: Modify
Experiment

T3: Analyze
Results

P5: Analyzed
Experiments

T6': Modify
Experiment

(Copy)

P3: Pending
Experiments

exp exp

exp exp

exp

exp

(b)

Fig. 15. Petri Net Representation of Convergence Pattern

Following these rules, the operational model of Fig. 12 can be transformed to a
Petri net shown in Fig. 16. Next, we describe how to analyze and verify operational
models using Petri nets.

4.3 Operational Model Verification

Operational models emphasize the uniqueness of business artifacts. Therefore, the
objective of verification is to ensure the following important properties of artifacts:
(1) Persistence: once created, an artifact cannot disappear; (2) No split: a business
artifact can be at only one place at a time; and (3) Reachability: an artifact can reach
any of its states (i.e. tasks or repositories in the operational model of this artifact).

These properties can be verified using a Petri net reachability graph [13]. A
reachability graph shows the development of markings of a Petri net from an initial
marking. A marking is denoted by a vector M, where M(p) denotes the tokens in place
p. For example, the initial marking of Fig. 13(b) is: M0(P1)=1`"hts1" and M0(P2) =
M0(P3) = M0(P4) = 0 as only P1 has a token (denoted as "1`") with a color "hts1".

Fig. 16. Petri Net Representation of Operational Model in Fig. 12

336 R. Liu, K. Bhattacharya, and F.Y. Wu

After transition T1 fires, a new marking, say M1, is generated: M1(P2) = 1`"hts1",
M1(P3) =1`"exp1" (i.e., "exp1" is the new experiment created), M1(P1) = M1(P4) = 0.

Since an operational model describes an artifact’s lifecycle and all artifacts of a
type have exactly the same lifecycle, to verify the above artifact properties, imagine
that we put one token of each color set (i.e., one artifact of each type) into its Petri net
representation to play the token game. If the operational model is correct, for every
marking M in the reachability graph of this Petri net, there is no more than one token
in any place p, i.e., this Petri net is safe [13]. Moreover, since an artifact can be at

only one state at a time, the maximum number of markings is ∏ in , where ni is the

number of states of artifact type i. Therefore, the verification is very efficient. The
artifact properties can be verified using reachability graphs as shown in Table 2.

Therefore, using the algorithm in [13], we can get a reachability graph, shown in
Fig. 17, for the Petri net of Fig. 16. Note, the transition from node "P10, P12" to "P2,
P3" shows a new experiment is initiated by task T10. The existing experiment has
reached its final state and is removed. Minor modifications have been made to this
algorithm to accommodate such a situation. Obviously, we can verify that these four
artifact properties are guaranteed in this operational model.

Table 2. Verifying Artifact Properties Using Reachability Graphs

Artifact
Properties Properties of Reachability Graph

Persistence Any token in a marking must exist in all of its subsequent markings
No split Places of a marking cannot have tokens with the same color

Reachability
Each transition is fireable, and for each place p, there exists at least a marking
M such that |M(p)|=1.

In addition, Petri nets allow simulation and other formal analyses. Simulation can
be done using CPN Tools [16]. Moreover, we can perform theoretical analysis to
study the performance of an operational model, such as artifact lifecycle length and
throughput. The detailed analysis techniques are outside the scope of this paper.

P1

P2, P3

P2, P4

T1

T2

P2, P6

T3

T6 T4

P2, P9

T5

T6'

P2, P7
T12

P5, P12

T7

P8, P12

T8

P10, P12

T9

P11, P12

T11 T14

P13, P12
T13

Note: A simple marking notation is
used here. For example,
denotes the marking where only
places P1 and P2 each have a
token with the right color. If a place,
say P1, contains more than one
token, we use P1(2) to denote it.

P2, P3

T10

Fig. 17. Reachability Graph of Petri Net Representation of Fig. 16

5 Discussion and Related Work

Business operational modeling incorporates the contexture of a business as a first-
class modeling primitive as manifested in business artifacts. The behavior of a

 Modeling Business Contexture and Behavior Using Business Artifacts 337

business, described in the context of artifacts, models how business roles process
artifacts to produce measurable business results. We found that the operational
modeling approach can reduce the complexity of business problems significantly for
two reasons. First, the artifact dimension tends to be manageable because there are
typically just a few artifacts in any given business process. For example, we analyzed
how IBM manages financial contracts, from the signing of a deal through creating and
managing the contract. In spite of the complexity of IBM’s business, we identified
only 7 distinct artifacts. Second, the complexity of business processes is often
exacerbated by a lack of guidelines for the granularity of activities. Standard process
modeling approaches provide no criteria that prevent business analysts from including
execution details. This lack of guidelines also leads to inconsistent granularity of
activities, with some very detailed activities and some large chunks of the process
represented by a single activity. Business artifacts, on the other hand, provide a
context for the scope of a business task, which should be a distinct functional entity
that updates one or more artifacts and produces a measurable business result.

We have shown the fundamental difference between operational modeling and
traditional activity-centric process modeling, mainly workflow approaches with a
focus on control flows [1,5,8], throughout this paper. Besides control-flow based
workflows, recently, data-flow driven workflows have attracted increasing attention
[12, 17]. The data-flow driven approach concerns the dependencies between data used
by activities and derives control flows based on such dependencies. However, often
the dependency information is insufficient for the generation of process models [12].
Moreover, it could be difficult to determine the dependencies of a large number of
data objects. Operational modeling provides a framework to group data logically into
a few unique entities and the modeling complexity is then greatly reduced.

Accordingly, operational patterns are also different from workflow patterns [2],
which describe styles of control flows in workflow tools. Operational patterns should
be understood as the styles of artifact behavior. We introduced several operational
patterns, such as the creation and project patterns, which are unique in the context of
operational modeling. Also, it is easy to understand that some workflow patterns such
as "parallel split" cannot happen in operational models since an artifact is undividable.

 Another related thread of work is the product-driven case handling approach [3],
which addresses many concerns of workflows similar to ours especially with respect
to the treatment of process context or data. A business artifact and a case are similar
in many respects. Case-handling, however, details the structure of the case using data
objects that can be managed and updated independently in various activities in the
context of the case. Our approach treats business artifacts as unique entities that are
updated within each task. To maintain proper granularity of business operations, we
do not detail the data objects comprising artifacts and the activities that update these
data objects. With significantly reduced complexity, operational models clearly omit
execution details which are in the scope of case handling. Another interesting state-
flow approach [4] uses process states as a means of driving a process towards its
predefined objectives. Although it also emphasizes control over a process with respect
to its business intent, this approach lacks an effective formalism for process goals and
states. Rather, our approach clearly specify business intents as manifested in business
artifacts and process objectives are achieved through business operations, which each
make artifacts reach milestones in their lifecycles.

338 R. Liu, K. Bhattacharya, and F.Y. Wu

6 Conclusion and Future Work

In this paper, we presented the business artifact-centered operational modeling.
Artifacts capture the contexture of a business, and operational models describe how a
business goal is achieved by acting upon the business artifacts. We also showed how
this approach fundamentally differs from traditional activity-centric process
modeling.

This approach has been tested by a number of successful customer engagements.
We summarized our best practices as nine operational patterns. These patterns can
serve as basic constructs for developing operational models. Further, we transform
operational models into colored Petri nets and verify the correctness of operational
models through Petri net reachability analysis. Using operational models, a company
is able to develop business process management IT solutions that are well aligned
with its business intent. The MDBT Toolkit [14], which automatically generates IT
solutions from operational models has been developed and tested in practice. In
addition, a verification and analysis tool based on Petri nets is also under
development.

As a future exercise, we plan to explore how operational models enable
organizations to develop solutions based on Services-Oriented Architecture (SOA)
[7]. Today's enterprises recognize the importance of SOA but struggle with the
methodologies to implement SOA solutions. Operational models can provide insights
into defining business relevant services at the appropriate level of granularity.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. The
journal of Circuits, Systems and Computes 7(1), 21–66 (1997)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barro, A.P.: Workflow
patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

3. Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business
process support. Data and Knowledge Engineering 53, 129–162 (2005)

4. Andersson, T., Andersson-Ceder, A., Bider, I.: State Flow as a Way of Analyzing Business
Processes-Case Studies. Logistics Information Management 15(1), 34–45 (2002)

5. Basu, A., Kumar, A.: Workflow Management Issues in e-Business. Information Systems
Research 13(1), 1–14 (2002)

6. Bhattacharya, K., Guttman, R., Lyman, K., Heath III, F.F., Kumaran, S., Nandi, P., Wu,
F., Athma, P., Freiberg, C., Johannsen, L., Staudt, A.: A model-driven approach to
industrializing discovery processes in pharmaceutical research. IBM Systems Journal,
44(1): 145–162

7. Ferguson, D.F., Stockton, M.L.: Service-oriented architecture: programming model and
product architecture. IBM Systems Journal archive 44(4), 753–780 (2005)

8. Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow Management
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Database 3, 119–153 (1995)

9. Hammer, M.: Deep Change: How Operational Innovation can transform your Company,
Havard Business Review, pp. 84-93 (2004)

 Modeling Business Contexture and Behavior Using Business Artifacts 339

10. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
vol. 1. Springer, Heidelberg (1996)

11. Kumaran, S.: Model Driven Enterprise, Proceedings of Global Integration Summit 2004,
Banff, Canada (2004)

12. Müller, D., Reichert, M.U., Herbst, J.: Flexibility of Data-driven Process Structures. In:
Eder, J., Dustdar, S. (eds.) Business Process Management Workshops. LNCS, vol. 4103,
pp. 179–190. Springer, Heidelberg (2006)

13. Murata, T.: Petri Nets: Properties, Analysis and Application. In: Proceedings of the
Institute of Electrical and Electronics Engineers 77(4), 541–580 (1989)

14. Nandi, P., Kumaran, S.: Adaptive Business Objects - A new Component Model for
Business Integration. In: Proceedings of the Seventh International Conference on
Enterprise Information Systems (ICEIS 2005), Miami, USA (2005)

15. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification.
IBM Systems Journal 42(3), 428–445 (2003)

16. Ratzer, V.A., Wells, L., Lassen, M.H., Laursen, M., Qvortrup, F.J., Stissing, S.M.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating, and
Analysing Coloured Petri Nets. In: ICATPN 2003. LNCS, vol. 2679, pp. 450–462.
Springer, Heidelberg (2003)

17. Sun, S., Zhao, J.L., Nunamaker, J.: On the Theoretical Foundation for Data Flow Analysis
in Workflow Management, Americas Conference on InformationSystems 2005, Omaha,
Nebraska, USA (2005)

	Introduction
	Business Operational Modeling Using Business Artifacts
	Business Artifact Discovery
	Modeling the Lifecycle of the Discovered Artifacts

	Building Operational Models Using Patterns
	Operational Patterns
	Putting Patterns Together – An Example

	Verifying Operational Models Using Petri Nets
	Petri Net Preliminaries
	Representing Operational Models as Petri Nets
	Operational Model Verification

	Discussion and Related Work
	Conclusion and Future Work
	References

