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Modeling, Calibration, and Correction of Nonlinear
Illumination-Dependent Fixed Pattern Noise in

Logarithmic CMOS Image Sensors
Dileepan Joseph and Steve Collins

Abstract—At present, most CMOS image sensors use an array
of pixels with a linear response. However, pixels with a logarithmic
response are also possible and are capable of imaging high dynamic
range scenes without saturating. Unfortunately, logarithmic image
sensors suffer from fixed pattern noise (FPN). Work reported in
the literature generally assumes the FPN is independent of illumi-
nation. This paper develops a nonlinear model = + ln( +
)+ of a pixel for the digital response to an illuminance and

shows that the FPN arises from a variation of the offset , gain ,
and bias from pixel to pixel. Equations are derived to estimate
these parameters by calibrating images of uniform stimuli, taken
with varying illuminances. Experiments with a Fuga 15d image
sensor, demonstrating parameter calibration and FPN correction,
show that the nonlinear model outperforms previous models that
assume either only offset or offset and gain variation.

Index Terms—CMOS image sensors, fixed pattern noise, loga-
rithmic pixels.

I. INTRODUCTION

T HE CCD image sensor, a dominant technology for nearly
three decades, faces tough competition from the CMOS

image sensor [1]–[3], a more recent technology. Since their fab-
rication process is incompatible with conventional electronics,
CCD sensors require external circuits to provide bias voltages,
clock signals, control logic, analog-to-digital conversion and
signal processing. CMOS technology, however, permits the in-
tegration of these circuits on the same die as the sensor to re-
duce the cost, power consumption, size and weight of the final
camera. Fundamentally, CMOS pixels scale well with shrinking
process geometries because more electronics can be placed in
each pixel to improve the output without affecting sensitivity
or resolution. For these and other reasons, such as a higher
quantum efficiency, less smear and blooming, better yields and
price pressure from more competition, the electronics industry
expects CMOS gradually to replace CCD image sensors.

This paper concerns a subset of CMOS sensor technology,
namely logarithmic imagers. Unlike a linear pixel (CCD or
CMOS), which integrates the charge produced by photon
absorption over a finite period, a logarithmic pixel, as in Fig. 1,
continuously converts incident photons into a voltage that is
proportional to the logarithm of the light intensity over more
than five decades of illuminance [4]. Such a nonintegrating
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Fig. 1. From an illuminancex to a digital responsey in one pixel of a
logarithmic CMOS image sensor. T2 with T4 and T5 with T7 form an NMOS
and PMOS source follower (SF), respectively, when T3 and T6 are turned on.

sensor can be randomly accessed in space and time, a feature
useful in some industrial applications for which frame size and
speed may be traded against each other. As these pixels are
simple, consisting of three transistors and a diode, sensors have
been made with 2048 x 2048 pixels and acceptable yields [5].

In reality, light reflected by scenes spans many decades of il-
luminance, from 0.001 lux at night to between 1 and 1000 lux
in indoor lighting and up to 10 000 lux in bright sunlight [6].
Direct viewing and specularities of bright sources, such as on-
coming headlights or the sun, may lead to higher intensities. The
advantage of a logarithmic sensor is that, over five decades of
illuminance, ten bits of resolution are sufficient to sense illumi-
nance with one percent accuracy. With a linear sensor, 23 bits are
necessary to accomplish the same task. This would be costly for
still cameras and extremely difficult at video rates. Of course, a
linear sensor with a smaller resolution could adapt over a large
dynamic range by aperture or integration-time control. How-
ever, saturated patches (black or white) would appear in images
of scenes that span a high dynamic range, such as most out-
door scenes in daylight or an indoor scene with a bright window.
Many nonlogarithmic methods have been proposed to extend
the dynamic range of image sensors [6], but most result in de-
creased resolution, sensitivity or frame rate.
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One disadvantage of a logarithmic sensor is a loss of the aver-
aging effect of integration, which improves low-light sensitivity
[4]. However, the biggest problem by far is fixed pattern noise
(FPN), which is a distortion of the image due to variations in
device parameters across the sensor. Dierickx, Scheffer, Loose,
and others have developed digital and analog methods to cor-
rect this error by assuming it is independent of illuminance [4],
[5], [7]. Looseet al.briefly considered FPN as a linear function
of illuminance, but they were unable to compensate for this de-
pendence with their analog circuit architecture and concluded
that it was not significant [7]. However, Yadid-Pecht notes that
FPN varies nonlinearly with illuminance in a logarithmic sensor,
but she neither characterizes nor attempts to correct this distor-
tion [6], which is the subject of this paper. Section II models
the response of a logarithmic pixel to illuminance. Section III
derives equations to calibrate the model, from images of a uni-
form scene, and to correct FPN. Section IV gives experimental
results of calibration and correction.

II. M ODELING

Fig. 1 shows the process by which the light stimulus, of illu-
minance , falling on a pixel in a typical logarithmic CMOS
sensor is converted to a digital response. Before the light
reaches the photodiode in the pixel, it is attenuated due to ab-
sorption and reflection by the aperture and lens of the camera,
which may be represented by gains and . Photons ab-
sorbed by the photodiode form electron-hole pairs that are swept
out by the electric field across the device to produce a current

, given in (1). This photocurrent is linearly related to the in-
cident light intensity over many orders of magnitude. The re-
lationship depends on the quantum efficiency, which may be
represented by a gain and the light-sensitive area of the
photodiode:

(1)

The photodiode in Fig. 1 is reverse biased to prevent any
current flowing to ground through it except for the photocur-
rent. However, a small leakage current, known as the reverse
bias saturation current, also flows to ground through this diode.
The total current sets the gate voltage , given in
(2) where is the supply voltage, of transistor T2 via the
diode-connected load transistor T1. Designed to operate in the
subthreshold region, T1 has a logarithmic current-to-voltage re-
lationship that is valid over many decades of current amplitude:

(2)

Transistor T3 is a switch that is either an open or a short cir-
cuit between T2 and the common bus for a column of pixels.
This column bus is biased by transistor T4. When T3 is off,
T2 is disconnected from the bus and does not affect its voltage.
When T3 is on, a similar switch is off for all other pixels in
the column and the gate voltage of transistor T5, given in
(3), equals the source voltage of T2. As T2 and T4 have
the same drain-source current, when T3 is on and as both op-

erate in saturation, their gate-source minus threshold voltages
and are linearly related:

(3)

When a pixel is connected to the bus for its column, all pixels
in the same row are connected to their respective column buses.
However, the analog-to-digital converter (ADC) processes only
one voltage at a time. Therefore, the column buses are switched
in sequence onto a common output bus, which is biased by tran-
sistor T7, using a two-transistor circuit similar to the one de-
scribed above. When transistor T6 is switched on, T5 is con-
nected to the output bus and the voltage at the input of
the ADC, given in (4), equals the source voltage of T5:

(4)

Rather than getting into the details of ADC circuits, (5) ab-
stracts the digitization of voltage by a clipping func-
tion, to limit the maximum and minimum output values and by
rounding off, which introduces quantization error. Furthermore,
the ADC adjusts its input by an offset and gain

to fit the domain of voltages to the range of integer codes
(e.g., 0–255 LSB for an 8-bit ADC):

round clip (5)

If the input voltage does not cause clipping, digitization may
be modeled by a quantization error term, with a range of

0.5 LSB, that is added to the output. Furthermore, the whole
process in Fig. 1 will add noise components at various stages.
However, the noise shall be modeled by a single random variable

added to the output. A further term may be added to the
output to account for error in the underlying device equations.
Considering these remarks, (6) gives the digital responseof a
pixel:

(6)

Grouping the equations and physical parameters above,
(7)–(11) give the digital responseof a pixel as a logarithm
of the illuminance , with three abstract parameters, , and
, named theoffset, gain, andbias, and a residual error. A

variation from pixel to pixel of , , , or a combination thereof,
causes FPN. Therefore, these parameters must be estimated
by calibration to correct FPN in an image. Furthermore, the
statistics of the output-referred error(the error may also be
referred to the input ) must be estimated to validate the model
and determine the accuracy of calibration and correction:

(7)

(8)



998 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 51, NO. 5, OCTOBER 2002

(9)

(10)

(11)

III. CALIBRATION AND CORRECTION

Since the complexity of calibration and correction depends
on the number of parameters that vary spatially, no more
variables should be permitted than are absolutely necessary.
Sections III-A, III-B, and III-C consider the scenarios where
(1) offset (or single) variation, (2) offset and gain (or double)
variation, or (3) offset, gain and bias (or triple) variation causes
FPN.

Analytic solutions are possible for single and double varia-
tion since correction, resulting in a logarithmic representation
of the scene, is performed by a linear transform. For triple vari-
ation, parameters are estimated by iteration since correction, re-
sulting in a linear representation of the scene, is performed by a
nonlinear transform. In all cases, the residual error is assumed
to be statistically independent from observation to observation
and pixel to pixel and to follow a zero-mean Gaussian distribu-
tion. Such assumptions reduce maximum likelihood estimation
of the model parameters to least squares estimation [8].

A. Offset Variation

Equation (12) estimates the responseof the th pixel, in
an array of N pixels, to a stimulus , when the offset varies
spatially. The gain and bias are constant for all pixels. Due to
(7), the estimated response differs from the actual response

by lacking an unpredictable error component:

(12)

The model parameters may be estimated by minimizing the
sum square error (SSE), defined in (13) below, between the ac-
tual response of the image sensor and the estimated response

to different but uniform stimuli :

(13)

The SSE does not have a unique global minimum because
(12) is invariant under transformations (14)–(16), which means
that all parameters cannot be estimated from the data:

(14)

(15)

(16)

Intuitively, the offset of a pixel is proportional to the differ-
ence between the pixel’s average response and the average re-
sponse of all pixels, a method by which Looseet al. (among
others) correct FPN [7]. Equation (17) gives the average re-
sponse of all pixels to illuminance , which relates to the

parameters by (18), with in (19), since and differ by
random variables that are assumed to have zero mean:

(17)

(18)

(19)

Comparing (12) and (18), the estimated responsemay be
written as a linear function, in (20), of the average response,
with one variable , in (21), per pixel:

(20)

(21)

The minimum of the SSE occurs when the partial derivatives,
in (22), of the SSE with respect to the variablesequal zero.
Solving for at the minimum of the SSE gives estimatesin
(23), where and in (24) and (25) are the average response
of the pixel and of all pixels respectively:

(22)

(23)

(24)

(25)

Three variables , and remain unknown, consistent with
(14)–(16). Nonetheless, single variation may be corrected for an
image by subtraction, as in (26), leaving an FPN-free estimate

related to the logarithm of the scene and limited by the
unpredictable residual error:

(26)

The variance of the residual error is estimated in (27) from
the calibration data . The variance equals the SSE in (13)
divided by the degrees of freedom (DOF), which provides an
unbiased estimate [9]. The DOF, given in (28), is the number of
constraints (i.e., ) minus the number of variables
(i.e., and ) fitted to the same constraints:

(27)

(28)

Equation (29) estimates the variance of the residual error
from pixel responses at theth illuminance. Section IV uses this
statistic to identify and characterize a dependence of error on
illuminance, which violates the assumptions, if it exists:

(29)
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B. Offset and Gain Variation

Equation (30) estimates the responseof the th pixel, in
an array of N pixels, to an illuminance , when the offset
and gain vary spatially. The bias is constant for all pixels:

(30)

As before, the model parameters may be found by minimizing
the SSE in (13). The SSE does not have a unique global min-
imum because (30) is invariant under transformations (14)–(16)
(with replaced by ). Intuitively, correcting the offset and gain
variation should move the response of a pixel close to the av-
erage response of all pixels. This averagein (17) relates to
the parameters by (31), withand in (19) and (32):

(31)

(32)

Comparing (30) and (31), is a linear function, in (33), of
, with two variables and , in (34) and (35), per pixel:

(33)

(34)

(35)

Minimizing the SSE between and is similar to solving
independent linear regression problems where the abscissae

are and the ordinates are . Thus, and may be esti-
mated by and in (36) and (37) using the equations of linear
regression [9], where and are given in (24) and (25):

(36)

(37)

Three variables , and remain unknown, as in
Section III-A. Nonetheless, double variation may be cor-
rected for an image by subtraction and division, as in (38),
giving a result that is proportional to the logarithm of the
scene :

(38)

Equations (27) and (29) estimate the variance of the residual
error using the DOF in (39) instead of (28), which accounts for
the two fitted parameters per pixel:

(39)

C. Offset, Gain, and Bias Variation

Although it begins the same way, calibration of triple varia-
tion differs from that of single and double variation. Equation
(40) estimates the response of the th pixel, in an array of N
pixels, to an illuminance , where , , and vary spatially:

(40)

The model parameters may be found by minimizing the SSE
in (13). The SSE does not have a unique global minimum be-
cause (40) is invariant under transformations (14) and (16) (with

and replaced by and ), but (15) does not apply because
of bias variation. Unlike before, the intuitive approach, i.e., fit-
ting the response of each pixel to the average response, fails. Al-
though the average in (17) relates to the parameters by (41),
with in (19), cannot be written as a linear function of
because of the nonlinear effect of bias variation:

(41)

However, is a linear function, given in (42), of , defined
in (43), but depends on the unknown bias and illuminance:

(42)

(43)

Assuming is known, minimizing the SSE between and
is equivalent to solving independent linear regression

problems with abscissae and ordinates . Thus, and
may be estimated by and in (44) and (45) using linear re-
gression [9], with and in (24) and (46):

(44)

(45)

(46)

Equations (43)–(46) show that, at the minimum of the SSE,
and are known functions of and . Therefore, the min-

imum SSE is a known function of only and , which reduces
the number of variables by almost two-thirds. No analytic ex-
pression for and that minimizes the SSE has been found
because the partial derivatives of the SSE with respect toand

are highly nonlinear. However, the conjugate gradient algo-
rithm [8] finds the minimum successfully by iteration.

Minimization yields estimates and within a linear trans-
form of the actual biases and illuminances because of (14)
and (16). Nonetheless, triple variation may be corrected for an
image by the nonlinear transform in (47), where and
are found using (44) and (45). Unlike in sections Sections III-A
and III-B, the FPN-free estimate approximates a linear func-
tion of the scene , with an unknown offset and gain (that
depend on the normalization of conjugate gradient estimates
and ):

(47)

Equations (27) and (29) estimate the variance of the residual
error using the DOF in (48) instead of (28), which accounts for
the three fitted parameters per pixel:

(48)
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Fig. 2. Standard deviation̂� of residual error versus average response�y of
all pixels for calibration of the single, double, and triple variation models.

IV. EXPERIMENTAL RESULTS

Experiments were done using a 512 by 512 pixel ( )
Fuga 15d logarithmic image sensor [4]. The camera, interfaced
to a PC, had an 8-bit ADC with a programmable offset voltage

. By capturing several frames with different offset set-
tings, the resolution was increased to 10 bits in software. Images
of a white sheet of paper under uniform illumination provided
calibration data . The iris ring was rotated, thereby changing
the aperture, to vary the illumination reaching the focal plane.
Parameters of the single, double and triple variation models
were estimated according to Section III.

A. Calibration

The first experiment used an 800 W tungsten lamp, with a
filter to simulate daylight and involved 24 images ( )
to permit a detailed comparison of results. After calibration,
the standard deviation of the residual error was 3.9, 1.9,
and 0.9 LSB for the single, double and triple variation models,
which may not appear to be a significant difference. However,
when the error is shown versus illuminance, as in Fig. 2, the
models differ markedly. The single variation model has a min-
imum error of two LSB in the middle of the domain, with error
rising on each side to eight and four LSB. The double variation
model has a maximum error of two LSB in the middle, flanked
by two minima of one LSB and rising to four and three LSB at
the sides. In contrast, the triple variation model has a flat error of
less than one LSB. The small but sharp rises at the sides may be
due to parameter overfitting, which would favor the midrange
of data. These results suggest that the nonlinear triple variation
model fits the data very well, at least in the estimated dynamic
range of three decades.

Fig. 3 shows the actual and estimated response of two pixels.
While the single variation model fits the top pixel’s response
well, it does not fit the bottom pixel’s response because of a
different response slope from one pixel to the other. Instead,
it intersects the response in the middle, minimizing the SSE,

Fig. 3. Actualy and estimated̂y response of two pixels versus average
response�y of all pixels for the single, double, and triple variation models.

which explains the v-shaped curve in Fig. 2. The double vari-
ation model matches the response slopes of both pixels but in-
tersects each response twice as the actual response follows a
curved path (especially the bottom one). This accounts for the
w-shaped curve in Fig. 2. For the bottom pixel’s response, note
that single variation near its intersection is better than double
variation, which explains the small region of Fig. 2 where the
former outperforms the latter. The triple variation model has no
problem following the curved responses of both pixels and the
residual error varies randomly with illuminance in Fig. 2.

B. Correction

Fig. 4 shows four scenes after FPN correction, using the
single, double, and triple variation models (calibrated in fluo-
rescent light with only five images of white paper, i.e., ).
The triple variation result was displayed on a logarithmic scale
for consistency. The four scenes are really one scene made
darker by changing the aperture from 1.8 (wide open) to 4, 8,
and 16 f-stops. The inter-scene dynamic range is 38 dB and the
intra-scene dynamic range is 29 dB, for a total of 67 dB.

Because the scenes are the same going from top to bottom in
Fig. 4 except getting darker, an ideal logarithmic image sensor
would give the same response with a progressively more neg-
ative offset. Since each image has been stretched linearly to
fit the 8-bit range of the display, images in a column should
look identical. Triple variation correction gives good results and
is better than single or double variation correction. Similarly,
double variation gives better results than single variation.

V. CONCLUSION

This paper has modeled the responseof a logarithmic
CMOS pixel to illuminance . The model has numerous
physical parameters but can be abstracted by a logarithmic
function with only three parameters—an
offset , gain and bias —and a residual error. A spatial
variation of the parameters leads to fixed pattern noise (FPN).
Although it is well known that threshold voltage variation,
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Fig. 4. A scene, using single, double, and triple variation correction (left to
right), imaged with apertures of 1.8, 4, 8, and 16 f-stops (top to bottom).

in the pixel and column source follower transistors, leads to
FPN, the model shows other contributions to offset variation
and highlights possible sources of gain and bias variation. Bias
variation makes the FPN a nonlinear function of illuminance.

Using least squares estimation, equations to extract the model
parameters from images of uniform illuminance were derived.
Exact solutions were given for the case where gain and bias
variations are ignored and the case where bias variation is ig-
nored. No exact solution was possible for the case where all
three parameters vary spatially, but the number of unknowns
was reduced analytically by two-thirds. The remaining parame-
ters were successfully obtained by numerical optimization.

Experimental results with a Fuga 15d image sensor validate
the nonlinear model and demonstrate calibration and correction.
Although the overall residual error for calibration of single,
double, and triple variation does not differ by much, the error
versus illuminance differs substantially. The single and double
variation models have v-shaped and w-shaped error curves,
proving they are inaccurate. In contrast, the triple variation
model has an error less than one LSB and is independent of
illumination over approximately three decades of intensity.

Whether nonlinear correction proves to be a practical ap-
proach to correct FPN in logarithmic CMOS image sensors re-
mains to be seen. Nonetheless, while analog techniques to cor-
rect pixel and column offsets, such as double sampling and delta
difference sampling, are useful to reduce FPN (andnoise),
they are inadequate for a logarithmic sensor operating over a
high dynamic range. The same may be said for digital correc-
tion of offset variation or even offset and gain variation. The
nonlinear effect of offset, gain and bias variation on FPN re-
quires more robust circuits or nonlinear correction.
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