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Abstract

A computational framework is presented for the simulation of eukaryotic cell migration
and chemotaxis. An empirical pattern formation model, based on a system of non-linear
reaction-diffusion equations, is approximated on an evolving cell boundary using an Ar-
bitrary Lagrangian Eulerian surface finite element method (ALE-SFEM). The solution
state is used to drive a mechanical model of the protrusive and retractive forces exerted
on the cell boundary. Movement of the cell is achieved using a level set method. Results
are presented for cell migration with and without chemotaxis. The simulated behaviour
is compared with experimental results of migrating Dictyostelium discoideum cells.
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1 Introduction

Many problems in the applied and natural sciences require the numerical solution of partial
differential equations (PDEs) on evolving surfaces. Applications areas include the transport of
an insoluble surfactant on the interface between two fluids [16], diffusion-induced grain motion
[9] and pattern formation on the surfaces of growing organisms [18]. The traditional approach
to approximating the solution of these problems is to use triangulated surfaces. The main
advantage of this approach is efficiency. A potential disadvantage is the need for surface grid
generation which may be non-trivial especially for problems with moving surfaces. Alterna-
tively, the PDE may be embedded within a higher dimension. A well-known technique falling
into this category is the level set method (LSM) [25]. Other embedded methods include the
closest point method [29] and the Eulerian evolving surface finite element method [11].

In [12] Dziuk and Elliott proposed an evolving surface finite element method (ESFEM) using
a triangulated surface representation. The method is based on approximating the surface by an
interpolated polyhedron consisting of a union of simplices whose vertices lie on the surface. The
application of their method was shown to be very similar to that of the finite element method
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applied to planar problems. Dziuk and Elliott assumed the existence of a velocity field (which
is not necessarily normal to the surface) so that material points evolve with this velocity. In
particular, the vertices of the triangulated surface also are assumed to move with this surface
velocity. This, of course, may lead to a loss of mesh quality for long time simulations and the
issue of remeshing may arise.

In this paper we propose an Arbitrary Lagrangian-Eulerian finite element method for the
solution of PDEs on evolving surfaces (ALE-SFEM). Traditionally, ALE methods have been
used to solve problems on moving domains using a reformulation of the original problem with
respect to an alternative reference frame rather than the standard fixed Eulerian frame. For
fluid dynamics problems one could decide to use a Lagrangian transformation to follow the fluid
flow. More generally however, there may be no obvious or preferred reference frame, and if the
domain moves in time one may simply be satisfied with a transformation from a fixed stationary
domain Γc onto the physically evolving domain Γ(t). The ALE formulation was introduced for
this purpose and it has been used successfully to tackle a number of physical applications
such as fluid-structure interaction systems (see [15, 10]). Originally ALE numerical schemes
were mainly based on finite difference (ALE-FD) or finite volume methods (ALE-FV) as the
application areas were compressible flow problems such as aeroelastics [17]. More recently,
ALE methods have been developed within a finite element framework [13, 14, 3] and applied
to fluid-structure interaction problems in haemodynamics [24]. The potential advantage of the
ALE-SFEM method is the ability to accommodate arbitrary mesh movements which are not
necessarily Lagrangian. This may help the robustness, accuracy and efficiency of the method
with fewer instances of remeshing being required.

As well as solving PDEs on surfaces, the computational modelling of an evolving surface is
a highly non-trivial issue in its own right. Traditional marker particle techniques based on a
Lagrangian formulation of the equation of motion can suffer stability problems and changes in
topology of the interface can be problematic. Level set methods (LSMs) have recently become
popular for simulating interface propagation problems [25]. These methods are based on an
Eulerian description of the evolution of a level set function φ, where the location of the zero
level set of φ identifies the evolving interface. The Eulerian framework of LSMs confers many
well-known computational advantages such as the use of fixed Cartesian meshes and the ease
of implementation of high resolution upwind finite volume methods. However, unless some
form of narrow banding or adaptive grid strategy is used then it is also appreciated that the
computational cost can be high especially for problems in three dimensions. We therefore
propose a hybrid approach where an ALE-SFEM is used to solve systems of reaction-diffusion
equations on the boundary of an evolving two-dimensional domain and a LSM is used to drive
the movement of the domain boundary.

Our motivation for the development of a hybrid LSM/ALE-SFEM method comes from
the study of eukaryotic cell migration and chemotaxis, processes which are fundamental to
cell growth, survival and death. Chemotaxis, in particular, is essential during embryonic de-
velopment, immune cell function and cancer metastasis. Eukaryotic cells typically crawl by
protruding pseudopods, which are dynamic structures based on actin fibres, at the front of the
cell [7]. Actin is a globular protein which spontaneously polymerizes into linear filaments that
make up a large fraction of the cytoskeleton. The key step limiting actin polymerization is the
slow initiation of new filaments. Actin assembly can therefore be stimulated by “nucleating
factors” which generate new actin filaments. In most cells, actin filaments are concentrated just
beneath the cellular membrane, crosslinked into a relatively rigid cortex. Motor proteins such
as myosin II bind to actin filaments in the cortex, crosslinking and contracting them, causing
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cortical tension and mechanical resistance, which together are key determinants of cells’ overall
behaviour. New actin polymerization occurs between the cortex and the membrane, giving rise
to a pressure pushing the cell membrane outwards at the pseudopod; in other regions, corti-
cal tension pulls along the remainder of the cell body. Together these processes lead to cell
movement.

A mathematical description of chemotaxis therefore requires a model to describe the cell’s
ability to sense a gradient of ambient chemoattractant and its interaction with a physical
model of cell migration. It is also now appreciated that it is important to model the feedback
from the evolving cell shape and the intra- and extra-cell signaling pathways which lead to
directed cell motion. The computational challenge therefore involves the solution of PDEs on
evolving surfaces where the computed solution state is used to drive movement and changes
in cell shape. A number of authors have used various techniques to address this complicated
issue. In Stéphanou et al [31, 32] the boundary of the cell body is parameterised using a two-
dimensional polar coordinate system and a two-phase model is used to describe spontaneous
cell dynamics. A polar coordinate system is also used in the method of Satulovsky et al [30] who
use a local-activator-global inhibitor model to describe the cell dynamics. A major drawback of
a polar coordinate system however is the lack of uniqueness of the radial coordinate when cell
deformations are such that the radial line from the cell centroid intersects the boundary more
than once. Recently, Nishimura et al [23] approximate the solution of a two equation model on a
hexagonal lattice. To enhance efficiency their method uses coarse-grained rules for the dynamics
of actin filaments, cortical factor and the feedback effect from the geometry of the evolving
cell. Amoeboid and keratocyte-like cell motion can be obtained by the modification of the
parameters in their model. The coarse-grained nature of their method however prevents detailed
identification of fine grain structures such as pseudopodia which are known to be important
features driving cell motion [1, 5]. Yang et al [35] use a LSM to simulate a viscoelastic model of
the aspiration of a cell within a micro-pipette. They also apply a LSM to simulate the migration
of amoeboid Dictyostelium cells towards a point source of chemoattractant by assuming that a
protrusive force is generated whenever the local level of chemoattractant is above its mean value.
Although they are able to predict the migration in response to a chemoattractant gradient, the
simulated cell shape does not resemble that of experimentally chemotaxing cells. One reason
the authors give for this discrepancy is the incorrect way that force generation is distributed
along the cell membrane and this could be due to the very simple model used for the protrusive
and retractive forces based on the local chemoattractant level and the lack of feedback from
the evolving cell shape on the distribution of signalling molecules.

In this paper we use an ALE-SFEM to solve a set of reaction-diffusion equations on an
evolving cell boundary in two dimensions. An important property of the model used is the
ability to spontaneously form localised activated areas that can be used as a signal to form
pseudopods and that these pseudopods do not rely on additional external signals to drive their
formation. A LSM is then used with a mechanical model to move the cell boundary. We show
that such a pseudopod-centred model can be used to simulate both random cell movement
and chemotaxis. The layout of this paper is as follows. In the next section we introduce
the necessary notation for the description of conservation laws on evolving surfaces. We also
present a weak ALE formulation which is discretised using a finite element method in Section 3.
Movement of the cell boundary is achieved using a LSM in Section 4 and the coupling between
the LSM and the ALE-SFEM method is given in Section 5. The coupled algorithm is applied
to a model of cell migration in Section 6. Finally, we draw some conclusions and directions for
further research in Section 7.
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2 Reaction-diffusion equations on an evolving surface

For each t ∈ [0, T ], T > 0, let Γ(t) be a smooth closed curve in R
2 and Γ0 = Γ(0). We consider

time dependent material surfaces Γ(t) for which a material particle P located at Xp(t) on Γ(t)
has a velocity Ẋp(t), which is not necessarily normal to the surface. Therefore, we assume that
there exists a velocity field u so that points P on Γ(t) evolve with velocity Ẋp(t) = u(Xp(t), t).

It is possible to represent Γ(t) by a smooth level set function φ = φ(x, t), so that

Γ(t) = {x ∈ R
2|φ(x, t) = 0}.

A popular choice of level set function is the signed distance function

φ(x, t) =







−d(x,Γ) if x ∈ S,
d(x,Γ) if x /∈ S,

0 if x ∈ Γ(t),

where S identifies the area occupied within the curve Γ(t) and d(x, t) is the distance from x

to Γ(t). The orientation of Γ(t) is set by taking the normal n to Γ to be in the direction of
increasing φ. Hence, we define a normal vector field by

n(x, t) =
∇φ(x, t)

|∇φ(x, t)|
.

For any function η defined on an open subset of R
2 containing Γ(t), we can define its tangential

gradient on Γ(t) as

∇Γ η = ∇η − (∇η · n) n, (1)

where x ·y denotes the usual scalar product and ∇η denotes the gradient on R
2. The Laplace-

Beltrami operator on Γ(t) is defined in terms of the tangential divergence of the tangential
gradient:

∆Γ η = ∇Γ · ∇Γ η.

Sobolev spaces on Γ are defined as standard. For a given Lipshitz surface Γ, we define

H1(Γ) =
{
η ∈ L2(Γ) |∇Γη ∈ L2(Γ)2

}
.

Higher order Sobolev spaces are defined analogously if Γ is smooth enough.
Reaction-diffusion systems of the type studied in pattern formation generally exclude cross-

diffusion, and are only coupled by the reaction kinetics terms. Therefore, we can consider
the behaviour of a single chemical species with a straightforward generalisation to a system
of interacting chemicals. Before deriving the conservation law we will require the following
formula for the differentiation of a time dependent contour integral. The proof of this lemma
can be found in [12].

Lemma 2.1 Let Γ(t) be a closed contour and h a scalar function, then

d

dt

∫

Γ(t)

h dx =

∫

Γ(t)

(ḣ+ h∇Γ · u) dx, (2)
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where ( ˙ ) denotes the material derivative.
The conservation law we wish to consider can be formulated over an arbitrary portion M(t)

of Γ(t). We will assume diffusion occurs according to Fick’s law and hence for every M(t)

d

dt

∫

M(t)

c dx =

∫

M(t)

[µ∆Γc+ γf(c)] dx,

where c(x, t) is the concentration at position x at time t, µ is the constant diffusivity, and γ is
a constant reaction rate. Using (2), we have

∫

M(t)

(ċ+ c∇Γ · u) dx =

∫

M(t)

[µ∆Γc+ γf(c)] dx,

and since M(t) was arbitrary we get the pointwise conservation law

ċ+ c∇Γ · u = µ∆Γc+ γf(c). (3)

Equation (3) is supplemented by appropriate initial conditions c(x, 0) = c0(x) and since the
boundary of Γ is empty, boundary conditions are not required.

2.1 Arbitrary Lagrangian Eulerian (ALE) formulation

When the domain is moving a common frame of reference adopted for numerical purposes is
the Arbitrary Lagrangian Eulerian (ALE) frame. Let At be a family of bijective mappings,
which at each t ∈ I, map points ξ of a reference or computational configuration Γc, to points
x of the current physical domain Γ(t) so that

At : Γc ⊂ R
2 → Γ(t) ⊂ R

2, x(ξ, t) = At(ξ). (4)

The computational configuration could simply be the initial physical domain Γ(0). If g :
Γ(t) × I → R is defined on the fixed Eulerian frame, then the temporal derivative in the ALE
frame is defined as

∂g

∂t

∣
∣
∣
∣
ξ

: Γ(t) × I → R,
∂g

∂t

∣
∣
∣
∣
ξ

(x, t) =
∂ĝ

∂t
(ξ, t), ξ = A−1

t (x), (5)

where ĝ : Γc × I → R is the corresponding function in the ALE frame, that is ĝ(ξ, t) =
g((x, t), t) = g(At(ξ, t)). Taking the time derivative of the ALE mapping defines the ALE
velocity ẋ as

ẋ(x, t) =
∂x

∂t

∣
∣
∣
∣
ξ

(A−1
t (x), t). (6)

It is important to note that the ALE velocity, ẋ will, in general, be different from the domain
velocity u. When ẋ = u the ALE transformation will be purely Lagrangian in nature. To
relate the time derivatives with respect to the ALE transformation to the material derivative
we note that

∂c

∂t

∣
∣
∣
∣
ξ

= ċ+ (ẋ − u) · ∇Γc. (7)
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Rewriting the governing conservation law with respect to the ALE transformation we find that

∂c

∂t

∣
∣
∣
∣
ξ

+ c∇Γ · u + (u − ẋ) · ∇Γc = µ∆Γc+ γf(c). (8)

Note that the main difference between (3) and (8) is the appearance of an additional convection-
like term in the ALE formulation when ẋ 6= u.

2.2 Weak ALE formulation

To construct a weak formulation of (8) we consider a space of test functions v̂ ∈ H1(Γc). The
ALE mapping then defines the test space

H(Γ(t)) =
{
v : Γ(t) → R : v = v̂ ◦ A−1

t , v̂ ∈ H1(Γc)
}
, t ∈ I.

A weak formulation of (8) can be obtained using the Reynolds transport formula which states
that if ψ(x, t) is a function defined on Γ(t), and Vt ⊆ Γ(t) such that Vt = At(Vc) with Vc ⊆ Γc,
then

d

dt

∫

Vt

ψ(x, t) dx =

∫

Vt

(

∂ψ

∂t

∣
∣
∣
∣
ξ

+ ψ∇Γ · ẋ

)

dx. (9)

If functions v̂ ∈ H1(Γc) do not depend on time, then for any v ∈ H(Γ(t)) we can establish from
(9) that

d

dt

∫

Γ(t)

v dx =

∫

Γ(t)

v∇Γ · ẋ dx (10)

and

d

dt

∫

Γ(t)

vψ dx =

∫

Γ(t)

v

(

∂ψ

∂t

∣
∣
∣
∣
ξ

+ ψ∇Γ · ẋ

)

dx. (11)

A conservative weak formulation can then be obtained by multiplying (8) by a test function
v ∈ H(Γ(t)), integrating over Γ(t) and then the use of (10) and (11) gives the weak form: find
c ∈ H(Γ(t)) such that

d

dt

∫

Γ(t)

cv dx+

∫

Γ(t)

v∇Γ·[(u−ẋ)c] dx+

∫

Γ(t)

µ∇Γc·∇Γv dx =

∫

Γ(t)

γf(c)v dx, ∀ v ∈ H(Γ(t)).

(12)

If the ALE transformation is chosen such that ẋ = u, then we get the simplified form

d

dt

∫

Γ(t)

cv dx +

∫

Γ(t)

µ∇Γc · ∇Γv dx =

∫

Γ(t)

γf(c)v dx, ∀ v ∈ H(Γ(t)). (13)

Note that in this case there is no need to explicitly calculate u since the effect of domain
movement is taken care of implicitly in the first term on the left hand side of (13).
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3 Finite element discretisation

We will assume that Γ(t) is approximated by the continuous piecewise linear curve Γh(t),
consisting of straight line segments joining the mesh points {xi}

N+1
i=1 . We will assume that the

reference domain Γc is covered by a mesh Th,c of straight edge elements so that

Γh,c =
N⋃

i=1

Ic
i ,

where each element Ic
i is a straight edge joining the computational mesh points ξi to ξi+1. We

will use the finite element space

L(Γc) = {v̂h ∈ H1(Γc) : v̂h|Ic

i
∈ P(Ic

i ), i = 1, . . . , N}, (14)

where P(Ic
i ) is the space of linear polynomials on Ic

i .
The ALE mapping will be discretised spatially using piecewise linear elements giving rise

to a discrete mapping of the form

xh(ξ, t) = Ah,t(ξ) =
N+1∑

i=1

xi(t)ϕ̂i(ξ), (15)

where xi(t) = Ah,t(ξi) denotes the position of node i at time t and ϕ̂i is the associated nodal
basis function in L(Γc). The finite element mesh T FEM

h,t is then the image of the reference
mesh Th,c under the discrete ALE mapping Ah,t. Since the mapping is linear, then each It,
which is the image of an element I ∈ Th,c, is also a straight line segment. The finite element
approximation space on Γh(t) is defined as

L(Γh(t)) = {vh : Γh(t) → R : vh = v̂h ◦ A
−1
h,t , v̂ ∈ L(Γh,c)}. (16)

The finite element semi-discretisation of the conservative ALE formulation (12) then takes
the form: find ch(t) ∈ L(Γh(t)) such that

d

dt

∫

Γh(t)

chvh dx +

∫

Γh(t)

vh∇Γ · [(u − ẋ)ch] dx + µ

∫

Γh(t)

∇Γch · ∇Γvh dx =

∫

Γh(t)

γf(ch)vh dx,

∀ vh ∈ L(Γh(t)). (17)

To simplify the evaluation of the entries of the load vector we replace f(ch) by its linear
interpolant so that

f(ch) ≈
N+1∑

i=1

f(ci)ϕi, where ϕi = ϕ̂i ◦ A
−1
h,t .

If C(t) = {ci}
N
i=1 denotes the vector of nodal unknowns, we may express (17) as the system of

ordinary differential equations

d

dt
(M(t)C(t)) + µH(t)C(t) + A(t)C(t) = γM(t)F (C(t)), (18)

where

[M(t)]ij =

∫

Γh(t)

ϕi(t)ϕj(t) dx
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is the (time-dependent) mass matrix, while

[H(t)]ij =

∫

Γh(t)

(∇Γϕj · ∇Γϕi) dx,

is the stiffness matrix, and

[A(t)]ij =

∫

Γh(t)

[∇Γ · (u − ẋ)]ϕj(t)ϕi(t)dx +

∫

Γh(t)

[(u − ẋ) · ∇Γϕj(t)]ϕi(t)dx

accounts for the relative motion induced by differences between the ALE and domain velocities.
The load vector

[F (C(t))]i = f(ci).

Since the mass matrix M(t) is uniformly positive definite on [0, T ] and the other matrices are
bounded, we get existence and uniqueness of the semi-discrete finite element solution.

To obtain a temporal discretisation of (18) we subdivide [0, T ] into nT equal time intervals
of size ∆t = T/nT and let tn = n∆t, n = 0, 1, . . . , nT . Assuming the existence of Ah,tn(ξ) and
Ah,tn+1(ξ) we use linear interpolation between time levels to define

Ah,∆t(ξ, t) =
t− tn

∆t
Ah,tn+1(ξ) +

tn+1 − t

∆t
Ah,tn(ξ), t ∈ [tn, tn+1). (19)

The ALE velocity is therefore piecewise constant in time and is given by

ẋn+1
h,∆t(x, t) = ẋn+1

h,∆t(ξ) ◦ A−1
h,∆t(x), where (20)

ẋn+1
h,∆t(ξ, t) =

Ah,tn+1(ξ, t) −Ah,tn(ξ, t)

∆t
, t ∈ [tn, tn+1).

The temporal discretisation of (18) is obtained using a semi-implicit approach where the linear
diffusion and mesh movement terms are treated implicitly and the non-linear reaction terms
are treated explicitly. Therefore, the vector of unknowns is found by solving the linear system

(Mn+1 + ∆tµHn+1 + ∆tAn+1)Cn+1 = Mn(Cn + ∆tγF (Cn)). (21)

For the cell migration problems considered later the non-linear reaction terms are non-stiff and
their explicit treatment does not require excessively small time steps to maintain stability.

4 Moving the domain boundary

Movement of the domain boundary is achieved by solving a level set equation of the form

∂φ

∂t
+ [v(x) − λ(t)κ(x)]|∇φ| = 0, (22)

where v(x) represents a normal velocity of the level set of φ(x, t), λ(t) is a time dependent but
spatially constant parameter and κ(x) denotes the curvature of the local level set of φ(x, t).
The solution of (22) is approximated using the package TOOLBOXLS [21] which is a collection
of MATLAB routines implementing level set algorithms using fixed Cartesian grids for rect-
angular domains. First-order spatial derivatives are approximated using second-order accurate
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yImin
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Imaxy

Imin Imaxx x x Bmaxx

Ω

Ω

Γh (t)

∆
∆

x

y

BmaxyLS

Cell

Figure 1: Moving bounding box ΩCell and level set domain ΩLS.

essentially non-oscillatory (ENO) finite differences. Second-order derivatives are approximated
using a standard second-order accurate central difference operator. Temporal integration is
obtained using a second-order accurate explicit strong stability preserving (SSP) Runge-Kutta
integrator.

It is well known that an accurate numerical solution of (22) can only be obtained when a
sufficiently dense mesh is used to resolve the radius of curvature of localised features of evolving
curves. As we aim to simulate the migration of chemotaxing cells moving a distance of several
cell diameters, the use of a fixed Cartesian mesh would be computationally expensive. To
enhance the efficiency of the LS procedure we therefore have implemented a simple moving
mesh strategy. Rather than cover the whole simulation domain with a fixed mesh, we instead
only solve the level set equation (22) on a much smaller rectangular region, ΩLS, enclosing the
cell, and we allow this box to move and change shape to follow the evolving cell. To do this, we
proceed as follows: given the location of the curve Γh(t) we first enclose it within the bounding
box (see Figure 1)

ΩCell = [Iminx, Imaxx] × [Iminy, Imaxy].

The LS mesh T LS
h covers the rectangular domain

ΩLS = [Bminx, Bmaxx] × [Bminy, Bmaxy],

using uniform mesh widths ∆x = ∆y. We next describe how we move the right-hand boundary
Bmaxx as the other three boundaries are moved similarly. Given a user-specified tolerance
εbox we compare Imaxx and Bmaxx. If the cell has moved sufficiently close to the right-hand
boundary so that Imaxx > Bmaxx − εbox then we move the boundary such that Bmaxx =
Bmaxx + ∆x. On the other hand, if the cell has moved to the left then it is possible that
Imaxx < Bmaxx − 2εbox, in which case we move the boundary to the left such that Bmaxx =
Bmaxx −∆x. Otherwise, the right-hand boundary Bmaxx remains unaltered. After repeating
this process for the other three sides we arrive at a new LS box and accompanying mesh. To
complete the moving mesh process we re-initialise the level set function φ as a signed distance
function over the new mesh.
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5 Coupling the ALE-SFEM with the LSM

We next outline how we couple the ALE-SFEM to the LSM to solve problems on evolving
curves that are dependent on the solution state on the surface. At the start of the time step
t = tn we have a finite element mesh T FEM

h,tn and the level set mesh T LS
h,tn . The following steps

are then carried to approximate the solution at time t = tn+1.

1. UPDATE LS FUNCTION

(a) Use the finite element solution ch to determine v(x) for x ∈ Γh(t
n).

(b) For each grid-point (xi,j, yi,j) ∈ T LS
h,tn , find the closest node-point on the finite element

mesh T FEM
h,tn .

(c) For all LS grid points use zeroth-order extrapolation using the nearest-neighbour
point to calculate v(x) and TOOLBOXLS to determine κ(x).

(d) Use TOOLBOXLS to obtain an approximation of φ(x, tn+1).

2. UPDATE FE SOLUTION

(a) Extract the contour ΓLS
h (tn+1) of the zero level set φ(x, tn+1).

(b) Determine the finite element mesh at t = tn+1.

– For each node xi of T FEM
h,tn find the intersection of the straight line through xi

in the direction u(xi, t
n) with ΓLS

h,tn+1 .

(c) Using the new mesh T FEM
h,tn+1 calculate Mn+1,Hn+1, An+1 and update Cn+1 by solving

(21).

3. REGRID FEM MESH (if necessary)

(a) Replace T FEM
h,tn+1 by an equidistributed grid if either:

– The distance between any two adjacent points on T FEM
h,tn+1 is less than some user-

defined tolerance.

– The distance between any two adjacent points on T FEM
h,tn+1 is greater than some

user-defined tolerance.

(b) Use linear interpolation to define Cn+1 at the equistributed mesh points.

4. MOVE LS BOX ΩLS (if necessary)

(a) Decide whether or not we need to move ΩLS.

6 Numerical results

6.1 Application to model problems

To investigate the convergence of the ALE-SFEM we consider the solution of the heat equation
ċ = ∆Γc on the stationary unit circle. With c(θ, 0) = cos(θ) + cos(3θ) as the initial condition,
the analytical solution c(θ, t) = e−t sin(θ) + e−9t sin(3θ). Figure 2 (a) shows the computed
solution using N = 200 uniformly sized elements, where the approximate solution has been
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Figure 2: (a) Comparison of exact (−) and ALE-SFEM (×) solution of heat equation on a
stationary unit circle. (b) Second-order convergence of ||e||L2

as the number of spatial elements
N → ∞.

plotted at every tenth grid node. We can see that the ALE-SFEM performs well for this value
of N . To test the spatial rate of convergence of the ALE-SFEM, a suitably small time step is
chosen such that the global error is dominated by its spatial component. Figure 2 (b) shows the
error in the L2 norm at the final time T = 1. As expected, we observe second-order convergence
with respect to the number of finite element mesh cells.

6.2 Application to cell migration problems

As mentioned earlier, we base our pseudopod-centred model on a system of reaction-diffusion
equations that gives rise to a suitable spatio-temporal activator profile that can be used for the
generation of pseudopods without the need for a driving external signal. The following set of
equations are derived from a well established discrete model developed by Meinhardt [20]. The
model describes the dynamic interaction between a local autocatalytic activator a, a rapidly
distributed global inhibitor b and a local inhibitor c. Assuming that the cell boundary Γ(t)
moves with velocity u, the equations take the form

ȧ+ a∇Γ · u = Da∆Γa+
s(a2/b+ ba)

(sc + c)(1 + saa2)
− raa, (23)

ḃ+ b∇Γ · u = Db∆Γb− rbb+
rb

|Γ(t)|

∮

Γ(t)

a dx, (24)

ċ+ c∇Γ · u = Dc∆Γc+ bca− rcc. (25)

Here, ra, rb and rc denote decay rates of the local activator, global inhibitor and local inhibitor,
respectively. The corresponding diffusion coefficients are Da, Db and Dc. In the non-linear
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reaction term in the activator equation, sa is a saturation coefficient, sc is the Michaelis-Menten
constant and ba is a basal production rate of the activator. The constant bc determines the
growth of the local inhibitor c in the presence of the activator a. The effect of the external
signal and random fluctuations are incorporated in the term s detailed below.

It is well known that concentration differences of a few percent across a cell can be sufficient
to allow chemotactic orientation [36]. An external signal and any external fluctuations are
assumed to feed into the autocatalytic reaction term in the activator equation thus ensuring
amplification of the external signal. In the original model of Meinhardt

s(x, t) = ra

[

1 + dy cos

(
2π|x − xc|Γ

|Γ(t)|

)]

(1 + drRND), (26)

where xc is the location on the cell membrane experiencing the highest concentration of
chemoattractant and hence has the highest receptor occupancy. Here, dy and dr are posi-
tive parameters and 0 < RND < 1 is a uniformly distributed random number. A biological
objection to using (26) is the need for a spatial cell-wide comparison of individual receptors to
define xc and hence the direction towards the source of the chemoattractant. In addition, there
is no justification for the use of a cosine function to describe the behaviour of the chemotactic
signal term. Instead, we assume simple local ligand-receptor kinetics described by the reversible
reaction

C +R
k1

GGGGGBF GGGGG

k−1

CR,

where C denotes the local concentration of ligand (chemoattractant), R the concentration of
membrane bound receptors and CR the concentration of the ligand-receptor bound complex.
Assuming equilibrium conditions, the local receptor occupancy

Ro =
CR

R + CR
=

C

C +Kd

,

where Kd = k−1/k1 is the disassociation constant. We therefore model the response to the
external signal and the addition of random noise by the term

s(x, t) = ra[

noisy autocatalytic activation

︷ ︸︸ ︷

(1 + drRND) +

noisy chemotactic signal

︷ ︸︸ ︷

Ro(1 + drRND)]. (27)

We have deliberately separated the two sources of noise to highlight the fact that they effect
two different physical aspects of our model. The original Meinhardt model was proposed to
generate the driving internal signal by amplification of external asymmetries. To our knowledge
this signal has never been coupled with a mechanical model for the rearrangement of the cell
cytoskeleton and this is what we propose next.

We will assume that actin polymerization creates a protrusive force that pushes the cell
membrane outwards in the normal direction. Recent detailed investigation of pseudopod for-
mation suggests that this assumption is valid for cells migrating in the absence of external cues
and in the presence of chemotactic gradients [5, 4]. We will assume that the rate of polymeriza-
tion is proportional to the concentration of the local activator a. At rest, the cell experiences
pressure from cortical tension, which maintains the spherical shape of the cell. Using a cortical
shell-liquid drop model [8], the force generated by the cortical tension is assumed to act normal
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to the cell membrane and depends on the local surface curvature κ. The protrusive velocity
and the temporal cortical tension coefficient in (22) is given by

v(x) = Kprota(x), and
dλ

dt
=
λ0λ(A− A0 + dA/dt)

A0(λ+ λ0)
− βλ. (28)

Here Kprot, λ0 and β are positive parameters and A0 is the initial prescribed area of the cell.
The use of a time dependent cortical tension factor λ(t) controls the area of the evolving cell
by allowing the area to possibly increase or decrease slightly from its initial value. Larger
values of λ will increase the cortical tension which will eventually result in a decrease in the
cell area. Conversely, by decreasing λ the cortical tension is weakened leading to an increase in
cell area. There are many possible forms that a dynamic equation for λ could take but we have
found through numerical experimentation that (28) works well and is robust to changes in the
parameters involved. The equation describing the evolution of λ is approximated numerically
using an explicit Euler method. From a biological viewpoint there are good reasons why the cell
area is not exactly conserved. Experimental investigation of migrating cells in three dimensions
suggest that, while the cell surface area can increase by up to 15%, the cell volume change is
much more modest in the range of 1-2% [33]. Possible explanations for this behaviour are the
exocytosis of internal membrane or the use of a reserve of folded surface membrane.

6.2.1 Migration in the absence of chemoattractant

Of fundamental importance to the current study of chemotaxis is the ability of the compu-
tational model to simulate cell motion in the absence of any chemoattractant. The following
simulations were performed using the parameters found in Table 1 and a uniform time step
∆t = 0.1. The parameters in the Meinhardt model are identical to those used in his original
paper [20]. The diffusion coefficients were chosen by experimentation with the restriction that
Db ≫ Da and Db ≫ Dc to ensure that b acts as a global inhibitor. We have performed parame-
ter studies which indicate that the simulations are robust with respect to changes in the values
of the individual parameters, in the sense that these need to change by orders of magnitude
to effect qualitatively different results. The mesh used with the ALE-SFEM has N = 200
elements and for the LSM we use a rectangular Cartesian mesh with ∆x = ∆y = 0.02. Simu-
lations with finer grid densities indicate that the grid resolution used was sufficient to produce
results to plotting accuracy. The initial conditions are assumed to be the homogeneous steady
state corresponding to a circular cell of radius r = 0.1 located at the origin.

Figure 3 shows the evolution of a simulated cell and plots of the corresponding local activator
a, global inhibitor b and local inhibitor c. At time t = 1400 we can see the localisation
of two activator peaks and their associated pseudopods. The arrows indicate growth of one
of the pseudopods pulling the cell towards the right. At this time the second pseudopod is
being retracted back into the cell body by cortical tension. We see the formation of two new
“child” pseudopods around t = 1420 by splitting or bifurcation of their “parent” pseudopod.
The two peaks in the activator profile at t = 1500 then move around the cell boundary in a
traveling wave-like motion. Similar wave-like behaviour of shape regulating proteins has also
been observed experimentally for migrating cells [34]. At t = 1650 we see that one of the
peaks in the activator level eventually dominates and results in the formation of a “winning”
pseudopod leading to a change in the cell’s direction. By t = 1700 we can see the retraction of
a “losing” pseudopod and the splitting of the newly forming leading pseudopod. The simulated
cycle of pseudopod splitting is remarkably similar to that observed across a wide range of cells
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[1]. A global view of a typical migrating cell is shown in Figure 4 where we can see that the
repeated cycle of the steps outlined above leads to persistent cell motion as the cell explores
its local environment.

Table 1: Default parameter values for cell migration simulations.

Quantity Symbol Value

Decay rate of activator ra 2 × 10−2

Basic production rate of activator ba 1 × 10−1

Saturation of activator autocatalysis sa 5 × 10−4

Diffusion coefficient of activator Da 4 × 10−7

Production & decay rate of global inhibitor rb 3 × 10−2

Diffusion coefficient of global inhibitor Db 4

Production rate of local inhibitor bc 5 × 10−3

Decay rate of local inhibitor rc 1.3 × 10−2

Diffusion coefficient of local inhibitor Dc 2.8 × 10−6

Michaelis-Menten constant sc 2 × 10−1

Random fluctuation dr 5 × 10−2

Scaling of protrusive velocity Kprot 1 × 10−5

Cortical tension factor λ0 2 × 10−6

Cortical tension factor β 1 × 10−6

In the absence of any chemoattractant one would imagine that cells would move in random
directions and exhibit a Brownian random walk. However, it has been observed that amoeboid
cells move in random directions but with a high degree of persistence that keeps them moving
in approximately the same direction [27, 5, 19]. It has been suggested that this search strategy
greatly improves the cells chances of finding a target relative to performing a random walk
[19]. Figure 5 shows the calculated trajectories of the centroids of 20 simulated cells. Each run
was performed with a different initial seed in the random number generator used to introduce
noise. The trajectories are compared with those of 10 wild type Dictyostelium cells [5]. We can
see that the computational results qualitatively agree with the experimental data and that the
cells exhibit a degree of persistency. To investigate the nature of the simulated random walks
we also considered the evolution of the mean squared displacement (MSD) of a population of
cells. We first calculate the squared displacement for each cell

D2(t) = |r(t) − r(0)|2,

where r(t) denotes the location of the cell centroid at time t. The mean squared displacement
〈D2(t)〉 is then defined as the average of D2(t) over the cell population. In Figure 6 we plot the
MSD against time for a population of 1000 simulated cells. For an uncorrelated (Brownian)
random walk the MSD should be a linear function of time which we can see does not fit the
computed results close to t = 0. In fact, the simulated cells exhibit a persistent random walk
which is well fitted by the distribution

〈D2(t)〉 = 2v2[Pt− P 2(1 − e−t/P )], (29)

where v is the speed of cell movement and P is the persistence time [5, 19]. For short time
intervals the MSD varies quadratically in time indicating a straight line motion with constant
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Figure 3: Simulated cell migration by pseudopod bifurcation in the absence of chemoattractant:
(—) local activator, (− · −) global inhibitor and (−−−) local inhibitor.
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Figure 4: Amoeboid-like migration in the absence of chemoattractant.

(a) Simulated (b) Experimental

Figure 5: Trajectories of cell centroids in the absence of chemoattractant.
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Figure 6: Mean squared displacement of simulated and real cells in the absence of chemoat-
tractant.

velocity. For larger times the MSD varies linearly in time corresponding to a random walk.
Figure 6 also compares the computational results with a plot of the MSD for Dictyostelium
cells [5] where we can see that qualitative agreement with the experimental results is excellent.

6.2.2 Migration in the presence of chemoattractant

We next consider the migration of cells in the presence of a chemoattractant. In the first
experiment we simulate cells moving upwards in a linear gradient of the concentration field.
The simulations were performed by setting the concentration, C, at the bottom or back of the
cell at y = −0.1 such that with Kd = 30, the receptor occupancy Rb

o = 0.15. The effect of
different gradients was then tested by varying the signal strength

σ ≡
Rf

o −Rb
o

∆y
=
Rf

o −Rb
o

0.2
, (30)

where Rf
o denotes the receptor occupancy at the front or top of the cell. Figure 7 shows the

simulation of migrating cells for various values of σ. In the absence of any signal, σ = 0, we
observe persistent random migration as before. As the signal strength increases we find that
cells are able to chemotax successfully and with increasing signal strength we observe better
chemotactic efficiency with less dispersion of the cell trajectories.

As a second experiment we simulate the chemotaxis of a single cell towards a point source
of chemoattractant. Figure 8 (a) shows a cell migrating randomly before the introduction of
the chemoattractant. Once the point source is introduced (b), we see that the cell quickly
reorients itself and progresses accurately towards it. The movement towards the point source
is observed to be driven by the biased generation of pseudopods at the front of the cell. At
a later time the point source is moved (c), and we can see that the simulated cell successfully
steers itself again by the biased generation of pseudopods at the front of the cell rather than
by a sudden depolarisation of the cell. Similar behaviour is observed for real cells navigating
in shallow chemotactic gradients [1]. Further detailed comparison between the predictions
obatained using our computational model and experimental data can be found in [22].
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Figure 7: Trajectories of the centroids of cells migrating upwards in linear chemotactic gradients
of varying strength.

(a) (b) (c)

Figure 8: (a) Random migration. (b) A point source of chemoattractant is introduced. (c) The
point source is then relocated and the cell turns by the biased generation of pseudopods.
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7 Conclusions

An ALE-SFEM has been introduced to solve reaction-diffusion equations on evolving curves.
An advantage of the ALE formulation is its ability to accommodate the tangential movement
of grid points and hence it could be used with methods that induce such motions to ensure
good mesh quality [2]. Although we have concentrated in this paper on simulations in two
dimensions, the ALE-SFEM method naturally extends to the solution of PDEs on evolving
surfaces in three dimensions.

To move the domain boundary a LSM was used. Although not presented here, this approach
could be used to model cell deformation problems involving a change of topology such as
cytokinesis where a single cell divides itself into two daughter cells [28]. The hybrid LS/ALE-
SFEM requires the coupling of field variables defined on the finite element mesh to those on
the Cartesian mesh used by the LSM. This coupling has been relatively easy to achieve and has
worked well for the problems considered here but the extension of this procedure would certainly
be more involved in higher dimensions. As an alternative we plan to investigate the use of a
parameterised finite element approach for evolving the domain boundary for cell deformation
problems that do not encounter a change of topology [2].

In this paper the model of Meinhardt has been used as the primary mechanism for the
internal generation of signals for pseudopod formation. The model requires the introduction
of a local inhibitor in addition to the standard two equation formulation involving a local acti-
vator and a global inhibitor. We have found through numerical experimentation that domain
movement and shape changes play an important role in determining the spatio-temporal pat-
terns obtained. It is well known that domain movement and shape changes can in fact regulate
pattern formation [26] and hence further changes in the cell shape. We hypothesise that these
geometrical feedback effects may obviate the necessity of a three component regulatory sys-
tem [6]. From a biological viewpoint this would clearly be desirable by reducing the number
of hypothetical biological entities. We are currently analysing the stability properties of the
Meinhardt model under spatio-temporal domain perturbations to explore the necessity of the
three equation formulation.

Finally, the numerical simulations for cell migration problems provide compelling evidence of
a pseudopod-centred view of eukaryotic chemotaxis. In the future we plan to use the developed
computational framework to investigate other important cellular processes such as cell-cell
signalling and the effect of substrate adhesions on cell movement and chemotaxis.
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