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Abstract

Recently, the Subcellular Element Model (SEM) has been introduced, primarily to compute

the dynamics of large numbers of three-dimensional deformable cells in multicellular systems.

Within this model framework, each cell is represented by a collection of elastically coupled

elements, interacting with one another via short-range potentials, and dynamically updated

using over-damped Langevin dynamics. The SEM can also be used to represent a single cell in

more detail, by using a larger number of subcellular elements exclusively identified with that

cell. We have tested whether, in this context, the SEM yields viscoelastic properties consistent

with those measured on single living cells. Employing virtual methods of bulk rheology and

microrheology we find that the SEM successfully captures many cellular rheological

properties at intermediate time scales and moderate strains, including weak power law

rheology. In its simplest guise, the SEM cannot describe long-time/large-strain cell responses.

Capturing these cellular properties requires extensions of the SEM which incorporate active

cytoskeletal rearrangement. Such extensions will be the subject of a future publication.

M This article features online multimedia enhancements

1. Introduction

1.1. The Subcellular Element Model

Understanding the biomechanical properties of cells and

tissues presents a severe challenge to the modeling community.

These systems display a wide range of rheological behaviors

over multiple time scales. These properties ultimately derive

from protein–protein interactions either pertaining to the

cytoskeleton of individual cells or bridging membranes of

neighboring cells. We do not have yet either the detailed

knowledge nor computational power to simulate cell or tissue-

level mechanics in terms of these microscopic interactions.

It is assumed that a coarse-grained or phenomenological

approach can be used for these larger length scales. Models

at these scales will be described by coarse-grained degrees

of freedom and effective parameters, some of which may be

estimated from experimental measurements.

In modeling multicellular structures (such as tissues,

tumors and embryos), one needs to account for the interactions

between tens of thousands of cells, typically in a complex

three-dimensional environment. A number of simulational

frameworks for multicellular systems have been proposed

over the years [1]. It has proven particularly challenging

to describe the three-dimensional morphologies of individual

cells, and yet cell shape is a crucial aspect of both cell

mechanics and cell behavior. The Subcellular Element Model

(SEM) was introduced recently as an efficient off-lattice

simulation algorithm for simulating thousands of cells in three

dimensions, with the shape of each cell being an emergent

output of the algorithm itself (rather than parameterized as an

input) [3]. To allow adaptive cell shape in the SEM, individual

cells are composed of hundreds of ‘elements’ which have

short-range viscoelastic interactions. As illustrated in figure 1,

the SEM has been shown to produce multicellular structures

with an uncanny resemblance to real structures [2].

The main motivation for the work described in this paper

is to understand whether the structures produced by the SEM

(figure 1) are just ‘reminiscent’ of real biological structures

or whether the SEM is capturing enough of the underlying

biomechanics such that the properties of the SEM structures

are relevant to the properties of the real biological systems. Our

initial strategy is to analyze in detail the biomechanics which

emerge from application of the SEM to a system of one single
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Figure 1. Visualization of multicellular structures formed by the SEM. Isosurfaces are shown here to identify each cell. Elements are
located at the nodes between filaments while the filaments represent the interactions between the elements. Thick filaments roughly denote
nearest neighbor interactions and increasingly thinner filaments roughly denote next-nearest interactions. (a) Two cells each with about
500 elements. Cells, inter-cellular and intra-cellular interactions are labeled corresponding to equation (1). (b) A spherical cluster of about
110 cells with about 370 elements per cell.

cell. The dynamics of single cell deformation is an important

feature to consider in modeling. Single cell deformations

can trigger differentiation, remodeling, migration, growth and

gene expression [4, 5], and influence morphogenic dynamics

at larger scales. If the SEM is able to capture, at a semi-

quantitative level, the main features of single-cell rheology

at intermediate time scales, it is plausible that the emergent

cell shapes observed in multicellular simulations are faithful

to the real cell morphologies observed in nature, which

are themselves emergent from the multi-scale biomehanical

interactions within and between cells. We do not address

in this study the assumptions in the SEM concerning inter-

cellular interactions.

The SEM can be motivated as follows. Consider the

cytoskeleton of the cell, which is a fantastically complex

network of dynamically cross-linked filaments. To describe

this network at a coarse-grained level we imagine partitioning

the cell into mesoscopic volumes (each with an approximate

linear size of 1 µm—thus a cell of linear size 10 µm would

be composed of approximately 103 such volumes). Each

volume contains thousands of filaments. The common surface

of two neighboring volumes will be penetrated by filaments

close to that surface within each of the two volumes. We

now consider a phenomenological description in which each

volume is replaced by a node located at the volume’s center

of mass, and the common filaments between the volumes

are replaced by an effective elastic potential between the

neighboring nodes. This potential should be Hookean for

small deviations from equilibrium, strongly repulsive at short

distances to model volume exclusion, and short-ranged in

order to allow dynamical separation of neighboring nodes

under larger-scale cell deformations—an explicit form for

this potential will be given shortly. We term these nodes

‘subcellular elements’. In the simplest model, as discussed

here, we impart over-damped dynamics to the elements; this

represents the viscous drag experienced by the cytoskeletal

subvolume in the intra-cellular cytoplasm. In principle there

could also be dissipative interactions between elements within

the cell, proportional to the relative velocity of elements. Such

interactions are not considered here. We assume the effect of

such interactions to be small compared to the effect obtained

solely from the absolute damping of each element with the

cell cytoplasm. This is consistent with results obtained from

simplified one-dimensional models [6]. In a multicellular

system, especially a tissue (such as an epithelial sheet),

cells will have strong biomechanical interactions with their

neighbors. We describe these cell–cell interactions through

element–element interactions between surface elements of

neighboring cells. Again, a short-ranged elastic potential is

used to represent these interactions. Here the inter-cellular

potential is a phenomenological description of the membrane-

bound junctions between the cells. This phenomenological

coarse-grained model can also be used to describe non-cellular

viscoelastic structures, such as extra-cellular matrix or non-

biological amorphous materials.

Denoting individual cells by Roman indices, and elements

by Greek indices, we may write the equation of motion for

the position vector of a single element αi in the form of the

following Langevin equation:

ηẏαi
= ξαi

− ∇αi

∑

βi �=αi

Vintra

(∣

∣yαi
− yβi

∣

∣

)

−∇αi

∑

j �=i

∑

βj

Vinter

(∣

∣yαi
− yβj

∣

∣

)

. (1)

On the left-hand side, η is the damping constant originating

from the viscous drag on an element from the surrounding

cytoplasm. On the right-hand side, the noise term ξαi
is

a Gaussian-distributed random variate with zero mean and

correlation:
〈

ξm
αi

(t)ξn
βj

(t ′)
〉

= 2Dη2δi,jδαi ,βj
δmnδ(t − t ′), (2)

where m and n are vector component labels in the three-

dimensional space and D is a diffusion coefficient. This

noise term is a coarse-grained description of molecular-level

fluctuations of a mesoscopic region of cytoskeleton,

originating from thermal noise and uncorrelated

polymerization/depolymerization events. Correlated

polymerization/depolymerization events, which are crucial

for active cell motion and large-scale deformations, will not

be considered in this paper, but can be implemented in the

SEM framework by correlated creation and annihilation of

elements. Vintra and Vinter are element–element interaction
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Figure 2. (a) The scaled interaction potential V (r), as expressed in equation (4). The solid (dashed) line shows this potential with
ρ = 2.0(4.0). Note that increasing ρ pinches the potential well, which increases the strength of repulsion and decreases the range of
attraction. (b) The scaled radial interaction force F(r) = −∂rV (r). The solid (dashed) line corresponds to ρ = 2.0(4.0). Note that
increasing ρ moves the inflection point of the interaction potential, shown by round circles, closer to the equilibrium distance. The two
tangent lines show the harmonic approximations for the two cases as expressed by equation (5).

potentials describing intra-cellular and inter-cellular

interactions, respectively. An illustration showing these two

types of element–element interactions is shown in figure 1(a).

In a non-biological application, Vinter could also be used to

model heterogeneous aggregates. We have written the SEM

at the lowest level of complexity in which element–element

interactions are isotropic and elements are identical in their

mechanical properties. Naturally, heterogeneous elements

and/or anisotropic potentials can be used in more detailed

models of specific cell properties.

Given that the purpose of this paper is to examine the

viscoelastic properties of a single cell, we can drop the

Roman indices and discard the inter-cellular potential, thus

simplifying the Langevin equation to

ηẏα = ξα − ∇α

∑

β �=α

Vintra(|yα − yβ |). (3)

In our rheological ‘computer experiments’ it will be necessary

to perturb some elements, and to hold others fixed, thus

simulating deformations with external forces.

Hereafter, we shall refer to Vintra simply as V . We take V

to have the following form, which is illustrated in figure 2(a):

V (r) = u0 e
2ρ(1− r2

r2
eq

)
− 2u0 e

ρ(1− r2

r2
eq

)
. (4)

Here, u0 is the depth of the potential well, req is the equilibrium

distance of the potential well and ρ is a scaling factor. This

potential is reminiscent of the Morse potential commonly used

to describe intra-molecular forces. The precise functional

form of the potential has no qualitative impact on the emergent

properties of the system, so long as the same energy and length

scales are used. We choose to write the exponential terms

as Gaussian functions as these provide a rapidly decaying

potential written purely in terms of the squared distance r2

(useful for optimized computer implementation). For small

deviations about the equilibrium distance the elastic coupling

of the interaction can be approximated by a linear spring, with

spring constant κ , given by the following expression:

κ =
8ρ2u0

r2
eq

. (5)

Considering briefly a system of just two elements, and

using the harmonic approximation, equation (3) can be

(a)

(b)

2 3

321

1

Figure 3. (a) A system of two Kelvin–Voigt bodies connected in
series. A single Kelvin–Voigt body shown outlined is constructed of
a dashpot and spring in parallel configuration. A dashpot has a
damping force proportional to the velocity of deformation, and a
spring has an elastic force proportional to deformation. (b) The
respective system but with damping relative to the medium as
represented with the SEM in equations (1) and (3).

simplified to

ηẏ1 = ξ1 − κ(y1 − y2), (6)

with a similar equation for y2. In the absence of noise,

this equation of motion is very similar to that of an isolated

viscoelastic system known as the Voigt model or Kelvin

model, illustrated in figure 3(a). A Kelvin–Voigt model is

a phenomenological viscoelastic body consisting of a linear

elastic spring and a linear viscous dashpot in a parallel

configuration. More details on the viscoelastic properties of

the Kelvin–Voigt model can be found in appendix A. One

might think that the SEM is a generalized, multi-node Kelvin–

Voigt model in three dimensions. However this is not the case.

With the Kelvin–Voigt model, the damping force felt by an

element is dependent on its relative velocity with neighboring

elements. As already discussed, in equations (1) and (3) the

damping force on an element is dependent only on its relative

velocity with the reference frame of the cell. This difference

between the SEM and a generalized Kelvin–Voigt model is

illustrated in figure 3.
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(b)(a)

Figure 4. Visualization of structures formed by the SEM. Spheres represent the elements with a radius req/2 and filaments represent the
interactions between the elements. Thick filaments roughly denote nearest neighbor interactions and increasingly thinner filaments roughly
denote next-nearest interactions. (a) An aggregate of 1024 elements which were initialized in random positions, but relatively close
proximity. The elements have equilibrated into a random amorphous viscoelastic network with an overall macroscopic spherical shape.
(b) A close-packing arrangement of 5161 elements.

1.2. The equilibrated single cell

Using the phenomenological potential equation (4), N

elements randomly placed in close proximity will equilibrate

into an amorphous spherical shape as shown in figure 4(a).

This is also shown in supplemental movie 1. The elements

can also be systematically placed into ordered close-packing

arrangements as shown in figure 4(b). In these arrangements

the elements are in a metastable state of equilibrium and they

will rearrange to minimize surface area if thermal fluctuations

are sufficiently large. For the amorphous arrangement the

aggregate of elements forms an approximately spherical ‘cell’

of radius Rcell. By regarding the elements as closely packed

uniform spheres, we can relate the cell radius to the inter-

element distance via

p3

4

3
πR3

cell = N
4

3
π

( req

2

)2

. (7)

Here p3 is a three-dimensional packing density (of spheres), N

is the number of elements and req is the equilibrium distance

of the interaction potential. We can use this expression to set

the scale for req for given values of Rcell and N.

From equation (7) we have

req (N) = 2Rcell

(p3

N

)
1
3

. (8)

For randomly packed spheres it has been shown that the

packing density is p3 = 0.64 [7]. For a highly efficient

uniform sphere packing arrangement, cubic close packing or

hexagonal close packing for example, the packing density is

p3 = π/3
√

2 ∼= 0.7405 [8]. The subcellular elements have a

mutual attraction for each other and are weakly compressible.

As we shall see below, their equilibrated packing will be of

higher efficiency than that of randomly packed spheres.

To further understand what a reasonable value for the

packing density p3 may be for a given system, we measured

the probability distribution of element–element interaction

distances for all interacting elements in an equilibrated

aggregate. In particular, we use the pair distribution function

P (r) =
1

M

M
∑

m=1

1

N2

∑

β �=α

δ(|yα(mδt) − yβ(mδt)| − r). (9)

We stress that in the above expression r is not a measure

of radial distance within the cell, but, rather, denotes the

separation between two elements. This function is defined

as a discrete time average over the stochastic dynamics for a

given realization. We perform time averaging as opposed to

ensemble averaging because of the significant time required

to equilibrate each realization prior to measuring P (r). We

show measurements for five different realizations in figure 5

and there are no significant sample–sample fluctuations. P (r),

for a 256 element cell, is shown in figure 5(a). The two sets of

curves correspond to two different values for the scaling factor

ρ (which appears in the interaction potential, equation (4)).

The set of curves which are highly peaked at r = req

corresponds to ρ = 4.0, and the other set corresponds to

ρ = 2.0. Figure 5(b) is similar, but gives results for a cell

consisting of 1024 elements.

The differences between figures 5(a) and (b) arise from, in

the case of different element quantities, the effects of averaging

over more surface elements relative to the number of bulk

elements. The interacting pair distribution shows, for ρ = 4.0,

that the packing density of the equilibrated elements is roughly

that of closely packed arrangements of uniformly-sized hard

spheres. For uniform close-packing arrangements, the nearest

neighbor and next-nearest neighbor distances are (in units

relative to the diameter of the spheres) 1,
√

2 ≃ 1.4142,
√

3 ≃
1.7321 and 2. As figure 5 shows, for ρ = 4.0, the interacting

pair distributions are clearly peaked at around 1,
√

3 and 2,

and slightly peaked at around
√

2. The barely resolved peak

just below
√

3 can be explained by the next-nearest neighbor

distance of the closely packed triangular dipyramid which

is 2
√

6/3 ≃ 1.6329. The broadness of the peaks indicates

that the equilibrated elements are not in lattice configurations.

4
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Figure 5. Pair distribution functions of all interacting elements within equilibrated aggregates of 256 elements (a) and 1024 elements (b).
For both (a) and (b), sets of curves labeled A and B denote aggregates with element–element interaction potentials using ρ = 2.0 and
ρ = 4.0, respectively. In each case, pair distributions are measured for five different equilibrated aggregates. It is clear that sample
fluctuations are minimal.

Though the elements are densely packed, the aggregate is

amorphous. For ρ = 2.0, the interacting pair distribution is

indicative of a more compressed aggregate of relatively softer

spheres. In comparison to the data for ρ = 4.0, one can see

that for ρ = 2.0 the nearest neighbor peak is much broader,

with a maximum peak at r/req a little less than 1. The next-

nearest neighbor peaks are not resolved. The reason for these

differences can be traced to the distance dependence of the

inter-element forces, as illustrated in figure 2(b). For ρ = 4.0,

the attractive force decays more rapidly than for ρ = 2.0.

Also, the repulsive force is greater for ρ = 4.0 than for

ρ = 2.0. The weaker repulsion for separations less than req

and stronger attraction for separations greater than req cause

greater self-compression of the ρ = 2.0 aggregates.

There may be biological significance in varying the

scaling factor ρ, that being cytoskeletal prestress, which is

a compressive force caused by tensile forces from activity of

molecular motors. This is thought to create rigidity or stiffness

to the cytoskeletal network in the cell. It has been shown that

this prestress may have a major effect on cell elasticity [9].

In the SEM framework, lowering the value for ρ effectively

increases prestress in the simulated cell.

2. Scaling the viscoelastic network

The subcellular elements allow us to simulate the cell, but

of course they are not biological entities. Therefore, it is

crucial that measurable properties of the cell, as simulated

using the SEM, do not depend on the number of elements

used. As we explain in more detail below, varying the number

of elements (N) in the cell, without scaling the SEM parameters

with N in some fashion, will quantitatively change rheological

characteristics, such as bulk elasticity and viscosity. In this

section we motivate two scaling laws—one for the effective

spring constant between neighboring elements and the other

for the element damping constant. These are sufficient to

ensure that, so long as N is reasonably large (about 100

or greater), biomechanical properties of the SEM cell are

independent of N.

To start the discussion, consider a simple one-dimensional
example: the effective elasticity of springs placed in series. If
N identical Hookean springs, each with a spring constant κ ,
are placed in series, then the effective spring constant for
the collection of springs is κeff = κ/N . If one requires
that the effective spring constant be independent of N, then
one must scale the individual spring constants by N. Now
consider three-dimensional elastic networks, where we will
require that the effective elastic modulus be independent of N

(which we now take to be the number of nodes or subcellular
elements). For configurations in which elements have short-
range interactions, we argue below that, for large N, the elastic
modulus should scale as N1/3. Consider a three-dimensional
elastic network of macroscopic fixed length scale l0, with
the N elements positioned in a cubic lattice configuration.
If the N elements are connected by identical springs, with
spring constants κ , the elastic modulus (without considering a
Poisson’s ratio for volumetric change) is

σ

ε
=

N2/3

N1/3 − 1

κ

l0
, (10)

where we have written the elastic modulus as the ratio of stress
σ to strain ε. This relation is derived in appendix B.

Beyond the simple cubic configuration, and especially
for more complex elastic networks, it becomes very tedious
or impossible to find exact expressions relating the elastic
modulus of the network to the pairwise elasticity and number
of constituent building blocks. A cell, as modeled by the
SEM, will be formed from an amorphous network of elements;
as such we use an approximate scaling relation, namely the
scaling relationship for the cubic lattice network, but with an
adjustable parameter λ to tune the leading correction to scaling.
Using equation (10), we scale the pairwise elasticity (i.e. the
spring constant for small deviations from equilibrium between
two elements) as

κ = κ0N
−1/3(1 − λN−1/3). (11)

We must also scale the viscous damping constant. The
damping of N elements scales linearly with N, so we use the
scaling relation

η = η0N
−1. (12)

5
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Using equation (11) with equation (5), we scale the elastic

coupling at the equilibrium distance accordingly and use this

to compute u0 for the element–element interaction potential.

Now, for a given N, η0 and κ0 (and hence u0) can be set

so that the bulk viscoelastic properties of the collection of

elements will have the desired elastic stiffness and time scale

for deformation dynamics. To estimate a value κ0 consider

the elastic properties of a living cell, which has an elastic

modulus on the order of 100–1000 Pa [10–12]. Combining

equations (10) and (11), this indicates that the elastic modulus

of the SEM network will be on the order of κ0/l0, where l0 is

about 10 µm. From this we find that κ0 should have a value

on the order of 10−3–10−2 N m−1. To estimate a value for η0

we consider the time scale over which the Kelvin–Voigt model

transitions from a fluid to a solid. This is given by η0/κ0, and

is comparable, for a living cell, to a time scale of about 1 s

[11, 13, 14]. Therefore η0 should have a value on the order of

10−3–10−2 N s m−1.

3. Methods

3.1. Measuring bulk rheology

In order to measure the bulk rheology, we equilibrate an SEM

cell within two parallel planes, which represent the plates

used in experiments to which the cell membrane can adhere

[11, 12]. The element–boundary interaction is computed only

in the direction perpendicular to the plane, and the potential

describing this interaction uses the same parameter values

as the element–element interaction potential, thus minimizing

the effect of the boundaries on the rheological properties of

the system. The upper boundary is free to move and the

lower one is fixed. The equilibration of this system creates

an aggregate of elements with two parallel, relatively flat

surfaces of elements adhering to the boundaries, as shown

in figure 6(a). We will refer to these flat surfaces of elements

as slabs. The upper slab is free to move (in unison with

the boundary) and the lower one is fixed. The elements

making up these slabs will be used to strain the bulk or

perturb the macroscopic shape of the aggregate. To control

the applied stress, we compute the surface area of the upper

slab, Aslab, and count the number of elements in the slab,

Nslab. Each element in the upper slab has applied to it a

force of magnitude fext = Fext/Nslab. The applied stress has

a magnitude σ = Fext/Aslab. By varying the direction of

the applied force, the cell can be subjected to tensile stress,

shear stress or other types of external perturbation. To match

the measurement protocol of recent cell rheology experiments

[12, 13], we employ uniaxial stretching with constant stress: to

ensure this, the upper slab elements are allowed to move only

in the direction of the applied forces. Supplemental movies 2

and 3 vizualize uniaxial stretching, with constant applied stress,

of 256 and 1024 element aggregates, respectively.

3.2. Measuring microrheology

To understand the rheological properties of the material at

the microscopic level, we perturb a single element within the

(b)

(a)

Figure 6. Methods of measuring bulk rheology and microrheology
in the SEM. (a) 1024 elements equilibrated between two
boundaries. The macroscopic shape of the aggregate has two
relatively flat surfaces of ‘slab’ elements, shown in white (both slabs
have the same degree of ‘flatness’ though this is not obvious from
the perspective shown). These slabs are used to measure the
macroscopic properties of the bulk. In this case to stretch the bulk,
the bottom slab is fixed and the top slab is pulled upward with a
constant applied stress. Red arrows indicate the uniform force
vectors applied to each individual element within the top slab.
(b) A hemispherical cross-section of a 4096 element aggregate
equilibrated with a bead in the bulk. The bead, shown in red, is used
to probe the local properties of the system. Once the aggregate and
bead are equilibrated, the outer surface elements, shown in white,
are fixed.

bulk and measure its response, which is mediated in a non-

trivial manner through interactions with surrounding elements

in the cell. The perturbed element represents the magnetic

bead used in these types of microrheology experiments on

single cells [10, 15]. In order to properly probe the properties

of the material in this way, it is necessary to fix the outer

surface elements of the cell; otherwise the perturbations will

cause an overall global cell motion that will obscure the local

response to the perturbation. Referring to figure 6(b), the fixed

surface elements are shown in white, while the unconstrained

bulk elements are shown in blue. The perturbed element is

colored red.

Using the magnetic bead microrheology protocol

established by Lutz et al [16], we apply an oscillatory force

to the bead and compute the storage modulus G′(ω), and loss

6
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modulus G′′(ω), with the following expressions:

G′(ω) =
f0

g|x0(ω)|
cos[φ(ω)],

G′′(ω) =
f0

g|x0(ω)|
sin[φ(ω)].

(13)

Here, f0 is the amplitude of an oscillatory driving force, ω is

the driving frequency, x0(ω) is the amplitude of displacement

of the perturbed bead and φ(ω) is the phase shift between the

driving force and bead displacement. The geometric prefactor

g is determined by the surrounding strain field of the perturbed

bead. Since the bead is spherically symmetric we approximate

the geometric prefactor to be that of a sphere: g = 6πRb

where Rb is the radius of the spherical bead. The interaction

potential between the bead and the elements is different to the

element–element interaction potential. We represent the bead

as a non-adhesive hard sphere, and use the following repulsive

potential for the bead–element interaction:

Vb(r) = ub e
2ρb(1− r2

R2
b

)
. (14)

The stiffness of the bead κb at r = Rb is given by

κb =
4ubρb(4ρb − 1)

R2
b

. (15)

We must also specify a separate reference frame damping

constant for the bead, which we denote by ηb. Supplemental

movie 4 visualizes this bead microrheology, showing

oscillatory perturbation on a bead within the bulk of a 4096

element aggregate.

4. Results

4.1. Results for bulk rheology

The first bulk measurement we report is creep response.

For a material, creep is the temporal deformation in

response to a constant applied stress. We apply such

a constant stretching stress to an aggregate of elements

equilibrated between two boundaries, as illustrated in

figure 6(a). Visualizations showing examples of this with

256 and 1024 element aggregates can be seen, respectively,

in supplemental movies 2 and 3. We use the following

system parameters: scaling parameter for spring constant κ0 =
5.0 × 10−3 N m−1, scaling parameter for damping η0 = 5.0 ×
10−3 N s m−1, diffusion coefficient D = 1.6 × 10−13 m2 s−1.

The parameters of the interaction potential, equation (4), were:

ρ = 2.0, u0 as computed by equation (5) in combination

with equation (11) with λ = 0.75 and req = 2.85 µm as

computed from equation (8) with N = 256, Rcell = 10 µm

and p3 = π/3
√

2. We measured a creep strain for different

values of constant applied stress ranging from about 7Pa to

20Pa (figure 7). The creep strain curves show that for small

applied stress there is (i) a macroscopic deformation which is

finite on long time scales and (ii) total recovery after stress

release. This is much like the creep for the Kelvin–Voigt

model as described in appendix A. Also note that the creep

plateaus at around 1 s, which is consistent with the ratio

η0/κ0 = 1 s. These measurements match quantitatively well
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Figure 7. Creep strain versus time with constant stress applied to an
aggregate of 256 elements. The different curves show
measurements for different values of constant stress applied from
t = 0 to t = 7 s. The constant stresses applied were
6.59Pa, 8.66Pa, 11.40Pa, 15.00Pa and 19.75Pa. For small applied
stress we see finite deformations on long time scales with a total
recovery after stress release. Above a deformational strain of about
0.1, the aggregate starts to flow or break apart and does not show
total recovery after stress release.

 0.01

 0.1

 1

 10

 100

 0.0001  0.001  0.01  0.1  1

(strain)ε

σ
o

(P
a)

Figure 8. Stress versus strain for eight different equilibrated
aggregates of 256 elements on a log–log scale. The curves are
consistent with a power law of unity and an elastic modulus of
360 ± 19 Pa for strain below about 0.1. Thus, the aggregates have a
macroscopic elasticity which is Hookean for small strain. Above
10% strain, the elasticity decreases showing breakage or plasticity.

with intermediate time scale, low strain creep measurements

done by Wottawah et al; specifically when they applied a

constant stress of 15 Pa for a period of 2.5 s [13]. For larger

applied stress, there is a macroscopic deformation which is

plastic for long time scales. This can be seen more clearly from

the stress versus strain curve (figure 8). These measurements

were taken from eight different equilibrated aggregates of 256

elements with constant stresses ranging from about 0.05Pa to

30Pa. The stress versus strain curves show that the aggregates

have an elastic modulus of 360 ± 19Pa, which is Hookean

below a strain of about 0.1. Above this strain value, the

aggregates break apart. This critical stain value emerges from

a microscopic property of the aggregates, namely that the

element–element interaction potential (equation (4)) has an

inflection point, shown by circles, at about r/req = 1.1. This
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Figure 9. Creep strain curves for different sized systems of the 14:10 ordered structure with λ = 0.5. (a) With the same constant stress of
5.0 Pa applied from t = 0 to t = 5 s, the creep strain curves for N = 139, 789 and 5161 overlap well. (b) Shown in log–log scale, it is
apparent that the trajectories do not overlap in the shorter time regime. The solid black curve shows the creep strain for the Kelvin–Voigt
model which has a single time scale η/κ for the fluid–solid transition (appendix A).

can be seen clearly from the relative maxima, shown by circles,

in the force curves shown in figure 2(b). Thus, when a pair of

interacting elements is being stretched apart, once their mutual

separation is beyond this inflection point the force which has

moved them from equilibrium to this point will overpower the

element–element elastic restoring force, resulting in the pair

breaking apart. This microscopic property scales up to give

the macroscopic material the property of plasticity for larger

strain.

4.1.1. Scaling ordered viscoelastic networks. To test the

scaling relations discussed in section 2 we employed bulk

measurements on deterministic ordered viscoelastic networks

using the block shaped arrangement as shown in figure 4(b).

Following the same procedures outlined in section 3.1, we

measured macroscopic stress and strain relations for networks

constructed of elements whose elasticity was scaled by

equation (11) and viscosity scaled by equation (12). For

equation (11), we found that λ = 0.5 gives the best scaling

results. The parameter settings for the following results were:

κ0 = 5.0 × 10−3 N m−1, η0 = 5.0 × 10−3 N s m−1. The

parameters of the interaction potential, equation (4), were:

ρ = 4.0, u0 as computed by equation (5) in combination with

equation (11) (with λ = 0.5) and req computed for various

system sizes and arrangements. We have used ρ = 2.0 for all

measurements in this paper, except for those made on ordered

viscoelastic networks: ρ = 4.0 is used for these because

this reduces next-nearest neighbor interactions and avoids the

stable but warped block shapes that otherwise occur with the

choice ρ = 2.0. For the system size of the arrangements, an

initial height was set as 10 µm. We used an aspect ratio of

roughly 14:10 (width to height) for the network. To vary the

number of elements which make up the structure we varied the

number of lateral lattices from 5, then 9 and finally 17, which

correspond to N = 139, 789, 5161, respectively.

As stated, we found that λ = 0.5 works best for scaling

the microscopic elasticity. This is illustrated with the creep

strain curves for different sized systems in figure 9. Shown

in log–log scale, figure 9(b), we can see that the trajectories
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Figure 10. Stress versus strain with λ = 0.5 for three different
values of N. The elastic modulus is relatively scale invariant with N.
The elastic modulus is measured to 357 ± 4Pa.

do not overlap for the shortest time scale. These short time

scales of less than 1 s are biologically irrelevant in the context

of bulk rheology experiments. In the following subsection

on microrheology results we show that scaling is good over

a wide range of time scales and that ‘weak power law’

rheology, as observed in cells for frequencies around 1–10 Hz,

is reproduced in the SEM.

Given that good scaling was achieved for the creep curves

using λ = 0.5, we used this value in our measurement of stress

versus strain curves for the different values of N (figure 10).

The measured elastic modulus was found to be independent of

N as desired, and to have a value of 357 ± 4Pa.

4.1.2. Scaling random viscoelastic networks. We have

shown in section 4.1.1 that the scaling relations, equations (12)

and (11), work quite well with λ = 0.5 for deterministic

ordered aggregates of elements (figure 4(b)). We now examine

whether these scaling relations hold for random amorphous

aggregates of elements, such as those shown in figures 4(a)

and 6(a).
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Figure 11. Stress versus strain curves for multiple amorphous
aggregates of different sizes: N = 64, 256 and 1024. Measuring the
elastic modulus from these data points as shown in table 1, we see
that the macroscopic elastic modulus is scale invariant with N,
within sampling error, if λ is about 0.5. This is consistent with the
most effective value of λ found for scaling ordered networks.

We employed bulk measurements on random amorphous

networks, using the method outlined in section 3.1. The

parameter values used were κ0 = 5.0 × 10−3 N m−1 and

η0 = 5.0 × 10−3 N s m−1. The parameters of the interaction

potential, equation (4), were: ρ = 2.0, u0 as computed

from equation (5) in combination with equation (11) for

various λ and req as computed from equation (8) with various

N,Rcell = 10 µm and p3 = π/3
√

2. We worked with

three different system sizes: N = 64, 256 and 1024. Since

the arrangement of elements is different for every randomly

initiated aggregate, the macroscopic properties of the bulk

will not be exactly reproducible (for finite N). Thus, in order

Table 1. Values for the measured elastic modulus (in units of Pa), for
different sized systems for various values of λ as shown in figure 11.

N λ = 0.0 λ = 0.5 λ = 1.0

64 407 ± 16 359 ± 11 308 ± 9
256 389 ± 12 366 ± 13 336 ± 7

1024 370 ± 24 354 ± 18 326 ± 8

to assess the correct scaling relation, we measured stress

versus strain curves for 100 different equilibrated aggregates,

for each given system size. This was repeated for three

values of λ: 0.0, 0.5 and 1.0. Reviewing the results of these

measurements as shown in figure 11, we see there is significant

sample-to-sample fluctuations in the aggregate stiffness. The

measurements of the elastic modulus from these stress–strain

curves are shown in table 1. Within the sample-to-sample

fluctuations, the scaling relation, equation (5), works well for

λ = 0.5.

4.2. Results for microrheology

Finally, we present measurements of microrheology in a cell

described by the SEM. We measure the storage and loss

moduli, following the procedures outlined in section 3.2. The

parameter values used were κ0 = 5.0 × 10−3 N m−1, η0 =
5.0 × 10−3 N s m−1. The parameters of the element–

element interaction potential equation (4) were ρ = 2.0, u0 as

computed by equation (5) in combination with equation (11)

with λ = 1.0 and req as computed from equation (8) with

various N,Rcell = 10 µm and p3 = π/3
√

2. We use λ = 1.0

as supposed to 0.5 simply because these measurements were

made before we discovered that λ = 0.5 produces better

scaling behavior. The microrheology measurements required

significant computer time to produce, and it was deemed

unnecessary to repeat them for λ = 0.5, since, as discussed

below, good scaling was found for λ = 1.0. We worked with

three different system sizes: N = 256, 1024 and 4096.

The parameters of the element–bead interaction potential,

equation (14), were ρb = 4.0, ub as computed by

equation (15) with κb = 2.67×10−4 N m−1 and rb = 3.0 µm.

For the reference frame viscosity of the bead ηb we used a

value of 5.0 × 10−6 N s m−1; evaluating Stoke’s formula for a

sphere in a viscous medium, this is about 100 times larger than

the viscosity of water at 37◦ C. Perturbing the bead with a 10pN

amplitude driving force f0, we oscillated the bead with driving

frequencies ranging from ω/2π = 0.1 Hz to 104 Hz. With this

driving force amplitude, the maximum trajectory amplitude

x0 was about 5 nm and was reached at driving frequencies

greater than 1 Hz. Supplemental movie 4 shows an example

of oscillatory perturbation on a bead within the bulk of a 4096

element aggregate. For each system size, we measured the

storage modulus G′(ω) and the loss modulus G′′(ω) as shown

in figure 12. Because the elements interacting with the bead

are not isotropically arranged around the bead, we investigated

the strength of anisotropy by measuring G′(ω) and G′′(ω) for

bead oscillations in the x, y and z directions. From figure 12

one sees that anisotropy has an observable effect (since the

fixed cell boundary elements are not isotropically distributed),

9
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Figure 12. Measurements of the storage modulus G′(ω) and the loss modulus G′′(ω) in the x, y and z directions for three different system
sizes (N = 256, 1024 and 4096) (a). In common with the Kelvin–Voigt model G′(ω) is constant in the long and short time regimes and
G′′(ω) has a power law of one in the long and short time regimes. In the intermediate time regime, as shown in closer view with the x, y, z
data for N = 4096 in (b), it can be seen that G′(ω) has a weak apparent power law with exponent 0.14 ± 0.02 and G′′(ω) has an apparent
power law with exponent 0.55 ± 0.05.

but decreases as N gets larger. This is expected, since in the

limit that N → ∞, the stress field which the elements pose

on the bead becomes isotropic. It is clear from figure 12

that scaling with N is reasonable. G′(ω/2π < 1Hz) plateaus

to a value of about 40Pa; comparing this to the results from

bulk rheology, this is one order of magnitude smaller than the

macroscopic elastic modulus. Qualitatively, the storage and

loss moduli are similar to those calculated for the Kelvin–Voigt

model (appendix A). For short time scales G′′(ω) dominates

and for long time scales G′(ω) dominates. In the intermediate

time regime G′(ω) and G′′(ω) have apparent power laws, with

the weak power law exponents 0.14 ± 0.02 and 0.55 ± 0.05,

respectively. These effective exponents have been observed

in cell rheology experiments [17, 15]. It is possible that

these weak power laws arise from many-body viscoelastic

interactions – we intend to pursue this connection in future

work.

5. Discussion and conclusion

We have measured both bulk and microrheological properties

of aggregates (both ordered and amorphous) using the SEM.

We have shown how to make the viscoelastic properties

scale invariant with respect to the total number of interacting

elements (N)—this is an essential property of the SEM as the

subcellular elements are a modeling device, and measurable

quantities must not depend on N. Estimating parameter values

in the scaling laws, equations (11) and (12), we showed that the

aggregates of elements had an elastic modulus with the same

order of magnitude as that measured for living cells [10–12].

For strain below 10%, the characteristics of the creep curve

matched those for the Kelvin–Voigt model. Above strain of

10%, the aggregates show characteristics of flow or plastic

breakage. With this, the model lacks cellular characteristics

when it comes to high strain deformations. Desprat et al and

Micoulet et al report being able to stretch cells to strain values

of around 4–6 before cell rupture. Comparing our results

with experimental whole cell creep measurements [12, 13],

the model does not show characteristics of flow over long time

scales. This is expected, as the simplest version of the SEM, as

studied here, has no processes modeling active rearrangement

of cytoskeleton. Creep measurements of high strain over long

time scales from Desprat et al showed a creep compliance

which behaved as a power law for strain below 1 over a time

scale of hundreds of seconds. However, creep measurements

of small strain over an intermediate time scale by Wottawah

et al match quite well with our results, specifically when

they applied a constant stress of 15 Pa for a period of

2.5 s. Over long time scales, intra-cellular activity starts to

affect the rheological properties of the cell. At a given instant

in time, the cell is a watery bag of organelles shrouded by a

vast entangled network of semi-flexible polymers interlocked

with cross-linkers [18]. Because of these cross-linkers, as a

non-active material, the cell should show dynamic properties

of being a viscoelastic solid over long time scales [19]. It

is believed that intra-cellular activity such as cytoskeletal

reconstruction is the reason the cell shows fluidity on long

time scales [12, 14].

Another attribute of cell behavior is active contraction

under a residual external force following prior extension of

the cell [11]. A similar effect has also been observed for

cells stressed by a sustained external force (Atef Asnacios,

personal communication). Dynamic stiffening is another

cell response stimulated by mechanical perturbation. This

stiffening need not involve contraction. Although not known

to be an active or passive response of the cytoskeleton,

Fernández et al have shown that a force above a cell-

dependent critical value can induce a transition from linear

viscoelastic behavior to power law stress stiffening [20].

Recent measurements reported by Trepat et al strongly indicate

that stiffening, in part, is an active response of the cell [21]. By

performing a macroscopic transient pulse extension (stretch–

unstretch) on the cell, they microrheologically measured a

cytoskeletal response of prompt fluidization followed by slow

resolidification on the time scale of hundreds of seconds.

Interestingly, the rate of stiffening was found to be dependent
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on the ATP available to the cell: ATP-depleted cells showed

a dramatically slower resolidification rate. Fluidization

response, however, was found to be independent of ATP

availability. Cytoskeletal dynamics and cell response to

mechanical stimulus, whether passive or active, continue to

bemuse the scientific community and much has yet to be

understood—especially when classifying these properties with

cell type. These properties have not been considered in this

paper but are being studied in our group, using extensions

of the SEM which phenomenologically incorporate more

sophisticated cytoskeletal dynamics.

In comparing our microrheology measurements with

experiment measurements performed on living cells, we find

broad qualitative agreement. The SEM does not reproduce the

3/4 scaling for G′ and G′′ in the high frequency regime. This is

an emergent property of semi-flexible polymer networks [19]

that has recently been observed in living cells [15]. The SEM is

designed to capture whole cell/tissue properties and contains

no basic polymer physics, which is essential to capture high

frequency behavior. Microrheology measurements performed

here in silico on the SEM elucidate a mechanism which may

play a role in the emergence of weak power law rheology on

intermediate timescales [22]—something which is observed

in real cells [17, 15, 23]. In the same spirit as the theoretical

model from Balland et al, we find that weak power law

rheology emerges from many relaxation times inherent to

the material (figures 9(b) and 12). Our findings show that

this intermediate time regime/weak power law rheology can

emerge due to structure alone and not necessarily due to

structural rearrangements as propounded by the theory of

soft-glass rheology (SGR) [23, 24]. Because the SEM is

a three-dimensional network, the multiple orientations of

viscoelastically interacting elements (figure 6) create the

multiple relaxation times which are needed for intermediate

time regime/weak power law rheology to emerge.

6. Outlook

As mentioned in the introduction, the original motivation for

the SEM was to simulate large three-dimensional multicellular

clusters of deformable cells (as illustrated in figure 1). In

this paper, we have shown that the cells that make up

these structures are not simply ‘cartoons’ of real cells. The

SEM is able to capture, in a semi-quantitative manner,

the intermediate-frequency rheology of living cells. This

strengthens our confidence in (i) using the SEM as a cutting-

edge computational tool for multicellular systems and (ii)

introducing new biological features into the model, that can

account for more sophisticated cell behavior beyond simple

(non-active) mechanics, and tailoring the model for a variety

of cell types. As a next step we plan to introduce targeted

element decay, growth and structural rearrangement to model

active cytoskeletal dynamics underpinning cell mechanics

such as active motility, polarity and long-time/large-strain

responses. Another short-term goal is to interface the

SEM biomechanics with numerical simulation of intra-cellular

biochemical kinetics. This is an important step to allow closer

connection to cell biology experiments, and is an important

goal for the modeling community as a whole, regardless of

which particular simulation framework/algorithm is utilized.
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Appendix A

We consider here the viscoelastic properties of the Kelvin–

Voigt model, the equation of motion for which is written as

ηẏ = −κy + Fext. (A.1)

Viscosity is given by η and elasticity is given by κ . Solving this

differential equation with constant force Fext, and with initial

conditions ẏ(t = 0) = y(t = 0) = 0, we find the following

creep function:

y(t) =
Fext

κ

(

1 − e− κ
η
t
)

. (A.2)

We note that this is a one-dimensional system even though the

terms are boldfaced (representing vectors). Because of this,

the creep compliance is J (t) = y(t)/Fext:

J (t) =
1

κ
(1 − e− κ

η
t
). (A.3)

Within the linear viscoelastic regime [25], the complex

modulus G∗(ω) is related to the creep compliance by the

following expression:

G∗(ω) =
1

iωĴ (ω)
. (A.4)

The storage modulus G′(ω) and the loss modulus G′′(ω) are

equal to the real and imaginary parts of the complex modulus:

G∗(ω) = G′(ω) + iG′′(ω). (A.5)

Loosely speaking, G′(ω) captures elastic properties and G′′(ω)

captures viscous properties of the viscoelastic model. In

equation (A.4), Ĵ (ω) is the Fourier transform of J (t) which is

defined as

Ĵ (ω) =
∫ ∞

−∞
J (t) e−iωt dt. (A.6)

Because J (t) = 0 for t < 0, we obtain

Ĵ (ω) =
1

κ

∫ ∞

0

e−iωt dt −
1

κ

∫ ∞

0

e−( κ
η

+iω)t dt. (A.7)

Evaluating this integral, we find (for ω �= 0)

Ĵ (ω) =
1

iωη(iω + κ/η)
, (A.8)

Using equation (A.4) we can now get the complex modulus:

G∗(ω) = κ + iηω. (A.9)

From this it is trivial to separate the real and imaginary parts

to obtain the storage and loss moduli:

G′(ω) = κ, G′′(ω) = ηω. (A.10)

11



Phys. Biol. 5 (2008) 015002 S A Sandersius and T J Newman

wo

lo

h

x

h
o+

∆
h

o

o

Figure 13. A cubic lattice of N elements elastically coupled to
nearest neighbors by Hookean springs of equilibrium length x0.
With a stress applied to the top surface area (outline by a translucent
plane), the elastic network deforms with a change in height �h.

As we can see from this, G′(ω) is a constant and G′′(ω) is

linearly dependent on ω. This tells us that the Kelvin–Voigt

model is more of a fluid for high frequency (short time domain)

and more of a solid for low frequency (long time domain). The

frequency scale for which the model transitions from a fluid

to a solid, G′(ω0) = G′′(ω0), is given by ω0 = κ/η.

Appendix B

Consider an elastic network of N elements elastically coupled

in cubic lattice configuration (figure 13). The elements are

elastically coupled by uniform springs of linear elasticity κ

and with equilibrium length x0. Though the local lattice

configuration is cubic, the macroscopic shape of the network

is taken to be cuboidal, with length l0, width w0 and height h0.

The total number of elements is N = nlnwnh. Accordingly,

l0 = x0(nl − 1), w0 = x0(nw − 1),

h0 = x0(nh − 1). (B.1)

To stretch the object, the bottom surface elements are fixed and

a force F0 is applied to each of the top surface elements. These

forces, shown as vector arrows in figure 13, when applied to

the top surface area create a stress:

σ =
nlnwF0

l0w0

. (B.2)

With a stress applied to the top surface of the network, a strain

ε = �h/h0 will result. Using Hooke’s law and realizing that

in a single column there are nh − 1 springs, we have

F0 =
κ

nh − 1
�h. (B.3)

Following from this and substituting equation (B.3) into

equation (B.2), the elastic modulus is

σ

ε
=

nlnw

(nh − 1)

h0κ

l0w0

. (B.4)

Considering the case of a symmetric macroscopic shape in

which nl = nw = nh and l0 = w0 = h0, the elastic modulus

simplifies to

σ

ε
=

N
2
3

N
1
3 − 1

κ

l0
. (B.5)

Glossary

Cytoskeleton. A vast network of biopolymers giving the

eukaryotic animal cell structural stability, and which together

with the regulation of associated proteins enables an array of

mechanical functions not limited to: division, motility and

intra-cellular motion.

Langevin equation. Named after physicist Paul Langevin,

the Langevin equation is a stochastic differential equation

naturally incorporating microscopic fluctuations with

deterministic mesoscopic dynamics.

Kelvin–Voigt model. Named after physicists Baron Kelvin

(William Thomson) and Woldemar Voigt, the Kelvin–Voigt

body is a phenomenological model used to quantitatively

describe viscoelastic materials.

Rheology/microrheology. Rheology is the study of the

deformation and flow of matter. Microrheology is

specifically the study of deformation and flow of the

microscopic constituents of a material.

Off-lattice simulation. A class of simulation methods in

which the position vectors of the fundamental objects (e.g.

atoms, subcellular element, cells, etc) are not constrained to

an underlying grid. Such methods allow efficient simulation

of three-dimensional systems and avoid possible artifacts

which may arise from an imposed grid.
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