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Modeling Censored Lifetime Data Using a

Mixture of Gammas Baseline

Timothy E. Hanson∗

Abstract. We propose a Bayesian semiparametric accelerated failure time (AFT)
model in which the baseline survival distribution is modeled as a Dirichlet process
mixture of gamma densities. The model is highly flexible and readily captures
features such as multimodality in predictive survival densities. The approach can
be used in a “black-box” manner in that the prior information needed to fit the
model can be quite vague, and we recommend a particular prior in the absence of
information on the baseline survival distribution. The resulting posterior baseline
distribution has mass only on the positive reals, a desirable feature in a failure-
time model. The formulae needed to fit the model are available in closed-form and
the model is relatively easy to code and implement. We provide both simulated
and real data examples, including data on the cosmetic effects of cancer therapy.

Keywords: Accelerated failure time, Dirichlet process mixture.

1 Introduction

Although fruitful, traditional parametric approaches to the accelerated failure time
model suffer from a marked lack of flexibility. Most statistical packages on the market
today require one to choose from a set of three or four basic baseline models quite sim-
ilar in shape and character; for example, log-logistic and generalized gamma regression
models restrict predictive survival densities to be right-skewed and unimodal. Para-
metric models may be enriched by considering mixtures of parametric densities for the
baseline distribution.

In this paper, we consider a Dirichlet process mixture of gamma densities for the
baseline in the accelerated failure time model. A mixture of gammas can provide a highly
flexible baseline model, allowing for multiple modes. Wiper, Rios Insua, and Ruggeri
(2001) note that any continuous density f(x) on R+ such that limx→∞ f(x) = 0 can be
approximated arbitrarily closely by a countable weighted sum of gamma densities.

Although Dirichlet process mixing in the context of density estimation has received
much attention in the literature (Lo, 1984; Escobar and West, 1995), little research has
been done regarding density estimation on the positive reals, suitable for failure time
modeling. A notable exception is the work of Kuo and Mallick (1997), who propose two
classes of Dirichlet process mixture models in the accelerated failure time (AFT) setting.
In this paper, we consider their “MDPV” class based on gamma densities. In examples,
Kuo and Mallick consider a location mixture of normal kernels with an exponential
base-measure. This approach requires some fine-tuning in the selection of the kernel
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variance since the variance must be small enough to avoid placing significant mass on
the negative reals. Thus, in order to achieve a parsimonious fit to data, the number
of distinct components in the mixture needs to be relatively large. We compliment
the work of Kuo and Mallick by considering a family of densities that have support
only on the positive reals. The kernel is not used to smooth the Dirichlet process;
rather, the baseline survival distribution is modeled as a weighted sum of possibly quite
distinct densities. The prior on the gamma component shape and scale parameters is
somewhat vague, and the expected number of components is a slowly growing function
of the sample size when the Dirichlet process precision is set to unity, diminishing the
possibility of overfitting.

Semiparametric approaches to the AFT model date at least to the initial work of
Buckley and James (1979) in the frequentist realm and Christensen and Johnson (1988)
in the Bayesian realm. More recent frequentist approaches include those by Ying, Jung,
and Wei (1995) and Yang (1999). All four of these approaches are essentially fitting
techniques focused on the estimation of regression effects. In fact, although the latter
two papers include the analysis of failure time data, there are no predictive survival
curves or densities nor mention of how one might obtain these very common loci of in-
ference. Other recent Bayesian approaches include the work of Kuo and Mallick (1997),
Walker and Mallick (1999), Kottas and Gelfand (2001), and Hanson and Johnson (2002).
Walker and Mallick (1999) and Hanson and Johnson (2002) propose a Polya tree and a
mixture of Polya trees, respectively, as priors on the log-baseline survival distribution in
the AFT model. These approaches work quite well on data they present, although the
baseline is centered around a single distribution or family of parametric distributions
for the respective models. Kottas and Gelfand (2001) present Dirichlet mixtures of
split, skewed unimodal densities. Although very useful for a skewed baseline, posterior
predictive densities are also necessarily unimodal and prior specification requires special
consideration.

Recently, Ghosh and Ghosal (2004) proposed a “proportional means” model where
the baseline model is a Dirichlet process scale mixture of Weibull distributions. The
model is fit using a truncated approximation to the Dirichlet process presented by
Ishwaran and Zarepour (2002), and computation is carried out using WinBUGS software
(Spiegelhalter et al., 2003). In the model we consider here, we mix over both the scale
and the shape of the gamma distribution, and augment the model to allow learning
about the Dirichlet process hyperparameters from the data. Mixing over both the shape
and the scale provides a flexible model allowing for the possibility of quite different
gamma component shapes. In related work, Kottas (2005) considers a Dirichlet process
mixture of Weibull distributions for censored survival data without covariates. The
Dirichlet process mixture that Kottas considers mixes over both the Weibull shape and
scale, yielding a highly flexible model that performs well in simulations and on real data.

An alternative mixture of gamma components model is explored by Wiper, Rios
Insua, and Ruggeri (2001). Wiper et al. place prior probabilities on the number of
components in the mixture, and conditional on the number of components, place priors
on the remaining parameters in each mixture model. The reversible jump approach
of Green (1995) and Richardson and Green (1997) is used to obtain inference. The
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proposed prior on the gamma components includes a fixed exponential distribution on
the shape parameter and a fixed inverse-gamma distribution on the mean of each gamma
component. The parameters for the exponential scale and inverse-gamma mean priors
are presumedly picked using some prior knowledge on the data generating mechanism.
A problem with incorporating this fixed prior in the accelerated failure time setting is
that often the baseline distribution is not interpretable, or prior information is simply
not available. Thus, it is desirable to allow the baseline model to accommodate a very
wide variety of shapes and spreads, as does the hierarchical baseline model we consider
in this paper.

Predictive inference from the Dirichlet process mixture model can be quite similar
to model averaged inference obtained through reversible jump. The reversible jump
approach allows for very precise prior information on the number of components in the
mixture. However, a Dirichlet process mixture does allow control over the expected
number of distinct components (e.g. see Section 2.2 and Antoniak, 1974). Additionally,
in practice many researchers simply take the mixture weights, conditional on the number
of components d, to have a Dirichlet(δ1d) distribution, yielding a Dirichlet/multinomial
allocation model. This model can be seen as an approximation to a Dirichlet process
mixture as δ → 0+, conditional on components being non-empty (Green and Richard-
son, 2001). We view the significant additional programming involved in setting up the
reversible jump algorithm as unnecessary as we focus on models with a relatively small
number of mixture components, ably fit via Dirichlet process mixtures. We thus also
avoid potential problems with convergence assessment associated with reversible jump,
which can be problematic as there are two types of mixing to consider: convergence
of parameters within a component model in the product space, and mixing among the
component models via reversible jump (Brooks and Giudici, 2000). In the model we
present, the full conditional distributions involved in Gibbs sampling have closed form
and coding is relatively painless.

Section 2 outlines a Dirichlet process mixture of gamma densities model and offers
implementation guidelines that have worked well in practice. Section 3 provides several
simulated and real examples using this model, and we summarize our conclusions and
future research in Section 4.

2 The Model

Modeling a density as a Dirichlet process mixture of continuous kernel densities (Lo,
1984; Escobar and West, 1995) is easily extended to allow covariates in the AFT setting.
We consider typical event-time data. The event-time Ti is to be stochastically modeled
as a function of the p-dimensional covariate vector xi and may be censored to lie in
the interval [ai, bi), where bi is taken to be ∞ for a right-censored observation. In the
exposition that follows we assume the data, T = (T1, . . . , Tn)

′, are uncensored, but we
describe how to include censored data in Section 2.2.
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2.1 The general model

Kuo and Mallick (1997) propose modeling the baseline survival distribution in the AFT
model as a Dirichlet process mixture of smooth kernel densities. Specifically, their model
is written hierarchically as follows:

Ti = exp(−x′iβ)Vi, Vi|θi ind.∼ k(v|θi) for i = 1, . . . , n,

β ∼ f(β), θ1, . . . ,θn|G iid∼ G, G|α,η ∼ DP (αGη),
(B.1)

where k(v|θ) is a continuous density in v given θ and Gη is a specified parametric
probability measure having a density g(·|η). A complete treatment of the Dirichlet

process may be found in Ferguson (1973). For k-dimensional θ1, . . . ,θn|G iid∼ G, the
Dirichlet process prior on the distribution G – denoted G|α,η ∼ DP (αGη) – is a prior
on the set of discrete probability distributions on Rk. The distribution Gη centers the
process in the sense that for any measurable A, E{G(A)} = Gη(A). The parameter α >
0 controls how closely the process G is to Gη: V ar{G(A)} = Gη(A)[1−Gη(A)]/(α+1).

Kuo and Mallick (1997) essentially use this model for smoothing the Dirichlet process
with a known, continuous kernel, and therefore take a kernel k(v|θ) with small variance
in examples. In the sequel, we emphasize a baseline model that is a weighted sum
mixture of possibly quite distinct densities on the positive reals.

Let aη(v)
def
=
∫
k(v|θ)g(θ|η)dθ and note that given Ti and β we have Vi = exp(x′iβ)Ti.

Using results from Escobar (1994), the full conditional distribution of the ith element
of θ is

θi|θ(i),V,η




∼ k(Vi|θ)g(θ|η)

aη(Vi)
w/ prob.

αaη(Vi)
αaη(Vi)+

∑
j 6=i k(Vi|θj)

= θj , j 6= i w/ prob.
k(Vi|θj)

αaη(Vi)+
∑

j 6=i k(Vi|θj)



 , (B.2)

where for an arbitrary vector y, the vector y(i) denotes the vector y with the ith compo-
nent removed. For conjugate families, the parametric density g(·|η) can be chosen such
that aη(v) =

∫
k(v|θ)g(θ|η)dθ is relatively easy to compute. Non-conjugate models,

however, are possible to work with in this context; MacEachern and Müller (1998) and
Neal (2000) describe how to accommodate them. Kuo and Mallick (1997) derive the
density for β|{θi},T, given by

f(β|{θi},T) ∝ f(β)

n∏

i=1

exp(x′iβ)k(Ti exp(x
′
iβ)|θi), (B.3)

which is readily sampled via one or more Metropolis-Hastings steps or through compo-
nentwise slice sampling (Neal, 2003).

The basic model (B.1) of Kuo and Mallick (1997) may be extended by further taking
η ∼ f(η), inducing a mixture of Dirichlet processes prior on G; this allows greater
flexibility in modeling the mixing distribution of the baseline survival function. The
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baseline model then becomes:

V1, . . . , Vn|G iid∼
∫
k(v|θ)G(dθ), G|α,η ∼ DP (αGη), η ∼ f(η). (B.4)

Sampling from the full conditional for the hyperparameters η is accomplished using
Lemma 1 from Antoniak (1974):

f(η|{θj}) ∝ f(η)

d{θj}∏

i=1

g(θ∗i |η), (B.5)

where {θ∗i }
d{θj}
i=1 is the set of d{θj} distinct values of {θj}.

A Markov chain is set up and a dependent random sample from the posterior
{(βj ,θj ,ηj |T)}Jj=1 is collected.

2.2 Mixture of gamma densities baseline

As a possible Dirichlet process mixture model, one may consider as a baseline the full
mixture presented in Escobar and West (1995). However, as in the examples presented
in Kuo and Mallick (1997), this model places mass on the negative reals. A kernel that
places mass only on R+ may be better suited for modeling survival data and provide
more parsimonious fit with fewer mixture components. In this paper, we examine the
mixture of gammas model θi = (λi, γi), Vi|{λi, γi} ∼ Γ(λi, γi). To allow for quite dif-
ferent gamma components in the mixture, the parametric base-measure of the Dirichlet
process Gη should be somewhat dispersed. We take η = (aλ, aγ) and

g(λ, γ|η) = aλ exp(−aλλ)aγ exp(−aγγ).

That is, under Gη, λ and γ are distributed as independent exponential random vari-
ables. We further take flexible gamma priors for the hyperparameters; aλ ∼ Γ(bλ, cλ)
independent of aγ ∼ Γ(bγ , cγ), where in examples we fix bλ = cλ = bγ = cγ = 0.0001.

Although assuming independent exponential distributions is computationally con-
venient, one might expect some dependence a priori between λi and γi. Certainly this
dependence is expressed in the posterior of E(G), but it may be useful to allow some
prior dependence in G as well. A referee has suggested that the bivariate Dirichlet
process of Walker and Muliere (2003) may prove useful in this regard.

Copsey and Webb (2003) consider a similar mixture but rather assume λ follows a
Poisson distribution shifted by unity – λ ∼ Poisson(φ)+1, independent of γ ∼ Γ(ν, ξ).
In their example, φ = 2, ξ is a function of training data, and ν = 1.001, so γ is
approximately exponential as in the model we consider here.

The parameter α, along with the sample size n, affects the expected number of
gamma components E(d{θj}) = E(d). Table 1 in Escobar (1994) gives E(d) for various
values of α = α(n) and samples sizes n. In the absence of prior information on the
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number of gamma components needed to adequately model the baseline, a default value
might be α = 1. Using results from Antoniak (1974) and Escobar (1994), when α = 1,
the prior expected number of gamma components for a sample size of n = 20 is 4. The
prior expected number of components for n equal to 100, 200, and 1000 is 5, 6, and
7 components, respectively. The prior expected number of components grows with n,
but slowly, and the possibility of overfitting is diminished as compared to, for example,
α =

√
n. When α =

√
n, n = 20 implies E(d) ≈ 8 and n = 100 implies E(d) ≈ 24. A

finite mixture model for n = 20 with 8 gamma components would not be identifiable.
A finite mixture model with 24 components seems excessive under most circumstances.

As an alternative to fixing α at a pre-specified value, Escobar and West (1995)
describe a useful data augmentation trick allowing for the prior α ∼ Γ(aα, bα) if desired.
For every paper published using a Dirichlet process mixture at some level of model
hierarchy there is a different gamma prior or set of priors considered for α; a sampling
includes Γ(1, 1), Γ(1, 0.2), Γ(1, 0.005), Γ(5, 0.5), Γ(2, 4), Γ(3, 0.005), Γ(2, 0.1), and many
more. The general argument is that the prior should “support large and small values”
of α, possibly appealing to Escobar (1994), where a uniform prior on logn α over the
range (n−1, n2) was suggested, yielding the prior p(α) ∝ 1/α on the interval (n−1, n2).
Escobar (1994) actually considered a discrete prior placing mass 0.25 on the values
{n−1, 1, n, n2}, allowing the prior E(d) to range from one to n, with either extreme
value equally likely. The priors Γ(2, 2) and Γ(2, 0.5) are considered in Section 3.2 along
with fixing α = 0.1 and α = 1.

We derive the induced prior on the mean and variance of a gamma component.
Where V ∼ Γ(λ, γ), let µ = λ/γ and σ2 = λ/γ2; then, given aλ and aγ , the induced
prior on µ is f(µ|aλ, aγ) = aλaγ(aγ + aλµ)

−2 for µ > 0. Given µ, aλ, and aγ , the
precision σ−2 is distributed Γ(2, aλµ

2 + aγµ). Note that the induced density for µ is
monotone decreasing and can be very diffuse on the positive reals. The larger µ is,
the smaller the precision (and hence the larger the variance) is expected to be. Under
the prior, a component close to zero will typically have a small variance whereas a
component far from zero will have a relatively large variance.

Under the model of Wiper et al. (2001), the prior on the mean is specified µ−1 ∼
Γ(a, b) and the conditional precision can be shown to be distributed σ−2|µ ∼ exp(θµ2),
where a, b, and θ are fixed. Note then that, roughly similar to the prior we suggest,
the conditional expected precision E(σ−2|µ) decreases quadratically with increasing µ.
Wiper et al. (2001) suggest that they might typically take θ = 0.01 and a = b = 1,
and further note that this implies the prior moments of µ do not exist. In simulations,
Wiper et al. find that the model fits data admirably. Probably in practice, one would
take a, b, and θ to somehow reflect prior belief in the location and spread of the gamma
components. Alternatively, analogous to the normal component model of Richardson
and Green (1997) and the model we consider here, perhaps one or more of these pa-
rameters might be assumed to arise iid from a hyperprior distribution. Regardless, we
see that the priors behave somewhat similarly, with perhaps the major difference being
that the values of θ, a, and b are fixed in the Wiper et al. prior, whereas the parameters
aλ and aγ are random in the model described above, and can be learned about from
the data.
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Note that in the model we propose, the marginal priors for λ and γ are p(λ|bλ, cλ) =
bλc

bλ
λ /(λ+ cλ)

bλ+1 independent of p(γ|bγ , cγ) = bγc
bγ
γ /(γ+ cγ)

bγ+1. These densities are
similar to Pareto pdfs and quantities of interest are readily computed. For example
E(λ|bλ, cλ) = cλ/(bλ − 1) when bλ > 1, the cdf is F (t|bλ, cλ) = 1 − [1 + t/cλ]

−bλ , the
quantile function is F−1(p|bλ, cλ) = cλ[(1−p)−1/bλ−1], et cetera. Like Pareto pdfs, these
marginal densities are strictly decreasing and convex, as are the conditional exponential
densities. When bλ, cλ, bγ , and cγ are quite small, the (marginal) prior is approximately
p(λ, γ) ∝ (λγ)−1. However, an informative prior for the gamma components can be
specified through appropriate choice of bλ, cλ, bγ , and cγ . An empirical Bayes approach

would estimate b̃λ, c̃λ, b̃γ , and c̃γ from an initial fit fixing bλ = cλ = bγ = cγ = ε, where
ε is some small value.

Kottas (2005) describes a related model for survival estimation without covariates.
Briefly, the Weibull kernel k(t|λ, γ) = λγtλ−1 exp(−γtλ) is used in the Dirichlet process
mixture, with the baseline model γ|τ ∼ Γ(2, τ) independent of λ|φ ∼ Uniform(0, φ).
The shape and scale parameters have independent distributions and the hyperpriors
are further specified τ ∼ exp(aτ ) independent of φ ∼ Pareto(2, bφ). Kottas suggests
choosing aτ and bφ to match a prior marginal median and interquartile range for one
Weibull component, obtained when α→ 0+.

It is straightforward, but tedious, to find the necessary formulae to implement the
Gibbs sampler in the model proposed in this paper. Where k(v|λ, γ) denotes a Γ(λ, γ)
density, the algorithm uses the following results:

Result 1

∫
k(v|λ, γ)P (dλ, dγ|aλ, aγ) =

aλaγ
v(v + aγ)[aλ − log(v/(v + aγ))]2

.

Result 2 The conditional distribution of the random vector (λ, γ) given (V, aλ, aγ), with
density k(V |λ, γ)g(λ, γ|η)/aη(V ), can be sampled λ|V, aλ, aγ ∼ Γ(2, aλ − log[V/(V +
aγ)]), then γ|λ, V, aλ, aγ ∼ Γ(λ+ 1, V + aγ).

Result 3 Let (λ∗i , γ
∗
i ), i = 1, . . . , d{θj} denote the d{θj} distinct values of {θj}. Then

aλ|θ ∼ Γ(bλ+d{θj}, cλ+
∑d{θj}

i=1 λ∗i ) independent of aγ |θ ∼ Γ(bγ+d{θj}, cγ+
∑d{θj}

i=1 γ∗i ).

Results 1 and 2 enable the use of an unusually simple MCMC sampling scheme for
obtaining inference. Let λ = (λ1, . . . , λn)

′ and γ = (γ1, . . . , γn)
′. Using these results,

the simplest algorithm, corresponding to Algorithm 1 in Neal (2000), for obtaining
inference follows:

Algorithm 1 We set up the Markov chain {Xj}j≥1 with stationary distribution π,
where π(A) = P ((β,λ,γ, aλ, aγ) ∈ A|T). Initialize the initial stateX0 = (β0,λ0,γ0, a0

λ, a
0
γ).

Where θi = (λi, γi), the jth state is generated:

1. Let θi = θ
j−1
i and V j−1

i = Ti exp(x
′
iβ

j−1), i = 1, . . . , n. In turn, generate

θi|θ(i),Vj−1,ηj−1, i = 1, . . . , n, according to (B.2). Set θji = θi, i = 1, . . . , n.
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Result 1 facilitates the computation of the probabilities in (2); Result 2 allows for
sampling k(Vi|θ)g(θ|η)/aη(Vi) in (2).

2. Repeat one or more times:

(a) Sample β∗ ∼ q(β∗|βj−1) where q is a symmetric candidate generating kernel:
q(x|y) = q(y|x) for all x,y ∈ Rp. Set V ∗i = Ti exp(x

′
iβ
∗), i = 1, . . . , n.

(b) Using (B.3), form ρ(β∗,βj−1) = min

{
1,

f(β∗|λj , γj ,T)

f(βj−1|λj , γj ,T)

}
.

(c) Take βj = β∗ with prob. ρ(β∗,βj−1) or else take βj = βj−1.

3. Sample ηj using (B.5), which reduces to Result 3.

In practice, Algorithm 2 in Neal (2000) can significantly improve the convergence
properties of the Markov chain with some additional coding. Depending on one’s tol-
erance for programming, the additional coding may be preferred over the simpler algo-
rithm above. The examples in this paper use the above algorithm and convergence has
not been an issue. However, the MCMC sample sizes used in Section 3, conservatively
ranging from 5,000 to 1,000,000, could certainly be reduced, so the improved algorithm
is outlined for completeness.

Essentially, the improved algorithm (Bush and MacEachern, 1996) employs step 1
in the above algorithm to sample a configuration of ties in {θj}. This configuration is
represented by n variables ci, i = 1, . . . , n, which indicate which of the distinct {θ∗j}
that θi is equal to. Conditional on a configuration c = (c1, . . . , cn)

′, θ∗j = (λ∗j , γ
∗
j ) is

drawn from the density

pλ∗j ,γ∗j (λ, γ|V, c, aλ, aγ) ∝
γNjλ

Γ(λ)Nj
Ṽ
Njλ
j e−γSjaλe

−aλλaγe
−aγγ ,

where Nj is the number of c such that ci = j, Ṽj =
[∏

i:ci=j
Vi

]Nj
is the geometric

mean of those {Vi} associated with cluster j and Sj =
∑

i:ci=j
Vi is the sum. This is a

non-standard density, but sampling can proceed by first sampling λ∗j from the marginal
density proportional to

Γ(Njλ+ 1)

Γ(λ)Nj

[
Ṽj

Sj + aγ

]Njλ
e−aλλ

via a Metropolis step. Note that this density boils down to that described in Result 2
when only one of {Vi} is associated with cluster j. If λ∗j is accepted, then γ∗j is sampled
from Γ(Njλ

∗
j + 1, Sj + aγ); otherwise both are left at their previous values. Alter-

native algorithms for non-conjugate pairings of base-measure and kernel are provided
in MacEachern and Müller (1998) and Neal (2000), but these are unnecessary for the
model we propose.
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A candidate generating kernel for sampling β∗ can be obtained by a least squares fit
of the data to the log-linear model Yi = log(Ti) = β0 − x′iβ + εi. Define the following:

X =




1 −x′1
1 −x′2
...

...
1 −x′n


 , β̂ = (X ′X)−1X ′Y, and MSE =

n∑

i=1

(Yi − x′iβ̂)
2

n− p− 1
.

We take the initial value β0 to be the last p components of β̂ and use the scaled,
lower right p × p submatrix of (X ′X)−1MSE as the covariance matrix for a mul-
tivariate normal candidate generating kernel for β∗. Define the “baseline residuals”
v̂i = Ti exp(x

′
iβ

0 − β̂0). We start the Markov chain at one distinct gamma component
using method of moments estimates based on v̂1, . . . , v̂n. Where v̄ =

∑n
i=1 v̂i/n and

s2v =
∑n

i=1(v̂i − v̄)2/n, take d(θ0) = 1, λ0
i = v̄2/s2v, and γ0

i = v̄/s2v. This approach is
taken in Section 3.3.

Note that alternatively, the parametric gamma model can be fit to censored data
and the resulting maximum likelihood estimates β̂, λ̂, and γ̂ used as starting values
instead of values described above. The estimated asymptotic covariance matrix ĉov(β̂)
provides a reasonable multivariate normal proposal for a random walk Metropolis step
for sampling the full conditional for β in the Gibbs sampler. This approach is taken in
Section 3.2.

Using Bayes’ rule and Result 1, given λ,γ, aλ, aγ , we compute the posterior predic-
tive baseline density for Vn+1 as

fVn+1
(v|λ,γ, aλ, aγ) =

1

α+ n

[
αaλaγ

v(v + aγ)[aλ − log(v/(v + aγ))]2
+

n∑

i=1

k(v|λi, γi)
]
.

Note that as the sample size increases, the predictive density essentially becomes a
weighted sum of gamma densities. Given the vector β and covariates x, the predictive
survival density for Tn+1 is given by

fTn+1
(t|β,x,λ,γ, aλ, aγ) = fVn+1

(t exp(x′β)|λ,γ, aλ, aγ) exp(x′β).

Given realizations from the Markov chain {(βj ,λj ,γj , ajλ, ajγ)}Jj=1, an estimate of the
posterior predictive density for covariates x is given by

f̂Tn+1
(t|T,x) = 1

J

J∑

j=1

fVn+1
(t exp(x′βj)|λj ,γj , ajλ, ajγ) exp(x′βj).

Now assume that the first n1 observations are known only up to the censoring in-
tervals Ti ∈ [ai, bi), i = 1, . . . , n1, where bi = ∞ for right-censored data. Split T into
T = (T′1,T

′
2)
′, where T1 = (T1, . . . , Tn1

)′ and T2 = (Tn1+1, . . . , Tn)
′. We denote the in-

clusion of the first n1 observations in their respective censoring intervals as T1 ∈ [a,b).
The sampling of the latent Ti’s is worked into the Markov chain by considering the
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conditional distribution of {Ti|Ti ∈ [ai, bi),β, λi, γi}. Note that Ti is conditionally inde-

pendent of {λ(i),γ(i),T(i), aλ, aγ} given {Ti ∈ [ai, bi),β, λi, γi}. Observing Ti ∈ [ai, bi)
implies Vi ∈ [ai exp(x

′
iβ), bi exp(x

′
iβ)), and {Vi|Vi ∈ [ai exp(x

′
iβ), bi exp(xiβ)),Λi,Γi}

is simply distributed Γ(λi, γi) restricted to the interval [ai exp(x
′
iβ), bi exp(x

′
iβ)). We

thus sample {Ti|Ti ∈ [ai, bi),T
(i),β, λi, γi} using the inverse CDF method by sampling

U ∼ U(K(ai exp(x
′
iβ)|λi, γi),K(bi exp(x

′
iβ)|λi, γi)), taking Vi = K−1(U |λi, γi) where

K(v|λ, γ) is the c.d.f. of a Γ(λ, γ) random variable, and then setting Ti = Vi exp(−x′iβ).
This approach, also used in Ghosh and Ghosal (2004) and Kottas (2005), requires little
computation and does not use the rejection algorithm of Kuo and Mallick (1997), and
thus is efficient even for very small censoring intervals.

The algorithm for obtaining inference yields an approximation to the posterior of all
model parameters, having marginalized the Dirichlet process. A procedure for obtaining
full semiparametric posterior inference of arbitrary functionals of the posteriorG is given
by Gelfand and Kottas (2002). This algorithm is useful for obtaining credible intervals
for posterior survival quantiles or hazard functions, for example (Kottas, 2005). Note
that the implicit modeling of baseline draws {Vi} and the log-linear structure of the
model allows the use of standard residual plots to check model adequacy. That is,
ei = E{log(Vi)|T1 ∈ [a,b),T2} can be easily computed from the MCMC output and
plotted versus various predictors or log-predicted values. These plots should display
homoscedascity and lack any overall pattern if the model fits.

3 Examples

3.1 Simulated data

2 4 6 8 10 12 14
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Figure 1: Density estimates. Solid is f(x), long-dashed is kernel estimate, medium-
dashed is reversible jump estimate, and short-dashed is Dirichlet process mixture esti-
mate.
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Wiper et al. (2001) consider the reversible jump algorithm of Green (1995) using
gamma density mixtures for density estimation. The reversible jump algorithm allows
transitions between parameter spaces of differing dimensions, which in this case is the
number of components in the gamma mixture and their associated parameters. Within
the Markov chain, the transitions are limited to “jumps” in the number of components
in either direction (one less component or one more component) – hence the term
“reversible jump.” By considering a Dirichlet process mixture, we achieve the same
result but bypass the need to restrict the order of the component locations and allow
components of differing locations to have the same spread.

We examine one of the distributions considered in Wiper et al. – a mixture of three
gamma densities – and compare three density estimation techniques. The density is

f(x) = 0.2k(x|40, 20) + 0.6k(x|6, 1) + 0.2k(x|200, 20).

We generated a random sample of size 1000 from f(x) and computed the posterior
density estimates from the proposed Dirichlet process mixture of gamma densities (the
no-covariate AFT model) and from the reversible jump model of Wiper et al. (2001),
using recommendations provided for both models in the absence of any real prior in-
formation. We were also interested in how a frequentist model might fare on these
data and computed a Gaussian kernel-smoothed estimate using a bandwidth chosen
by pseudo-likelihood cross validation (Habbema, Hermans, and van den Broak, 1974).
Figure 1 displays the density estimates and the generating density. All three approaches
yield valid density estimates, although the kernel smoothed estimate is more “wiggly”
by comparison and less accurate at the first density mode. The two Bayesian mixture
models yield remarkably similar estimates, which is typical in the author’s experience.

To quantify the difference in estimating this density at small sample sizes, we ex-
amine the mean integrated squared error (MISE) of the Dirichlet process mixture es-
timate, the reversible jump estimate of Wiper et al., and the kernel smoothed esti-
mate. The integrated square error (ISE) of an estimate f̂(x|X), based on a data sample

X = (X1, . . . , Xn)
′, is defined to be ISE =

∫
(f̂(x|X) − f(x))2dx. The ISE is a ran-

dom variable, but the “typical” error is given by MISE = EX(ISE). We generated
1000 samples from the density f(x) of sizes n = 10 and n = 100. We fixed α = 1
in the Dirichlet process mixture model and used the pseudo-likelihood cross validation
bandwidth to obtain kernel smoothed estimates. The MISE estimates and standard
errors for the estimates are presented in Table 1. The Dirichlet process mixture and the
Wiper et al. approach perform better than the kernel-smoothed estimate for the chosen
kernel and bandwidth selection procedure. This is not surprising for two reasons: first,
kernel-smoothed estimates are known to be biased at the extrema of f(x) and second,
one would expect procedures based on a mixture of gammas to estimate a mixture of
gammas well. The Dirichlet process mixture is inferior to Wiper et al. when n = 10,
but superior when n = 100. This may be due in part to decreasing weight placed on the
function

aλaγ
v(v+aγ)[aλ−log(v/(v+aγ))]2 in the predictive density as the sample size increases,

and in part due to increased flexibility from specifying a hyperprior for the gamma
component parameters rather than fixed values.
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Table 1: Comparison of MISE across models.

DP mixture Wiper et al. Kernel Smoothed
n = 10 0.0396 (0.0016) 0.0349 (0.0012) 0.0466 (0.0017)
n = 100 0.0097 (0.0003) 0.0156 (0.0005) 0.0316 (0.0027)

3.2 Cosmetic effects of cancer therapy

Beadle et al. (1984) and Finkelstein and Wolfe (1985) consider data from a retrospective
study designed to compare the cosmetic effects of radiotherapy versus radiotherapy and

chemotherapy on women with early breast cancer; both treatments are alternatives to
a mastectomy that preserve (and thus enhance the appearance of) the breast. It is
postulated that chemotherapy in addition to radiotherapy reduces the cosmetic effect
of the procedure by inducing breast retraction more quickly than radiotherapy alone.

A retrospective study of 46 radiation only and 48 radiation plus chemotherapy pa-
tients was made. Patients were observed typically every 4 to 6 months and at each
observation a clinician recorded the level of breast retraction that had taken place since
the last visit: none, moderate, or severe. The time-to-event considered was the time
until moderate or severe breast retraction, and this time is interval-censored between
patient visits or right censored if no breast retraction was detected over the study period
of 48 months.

To test whether chemotherapy in addition to radiotherapy has an effect on time-to-
breast-retraction, we fit the Dirichlet process mixture of gammas model to these data
with α = 1. The covariate of interest is xi = 0 if the ith patient had radiotherapy only,
and xi = 1 if the ith patient had radiotherapy and chemotherapy; a flat prior was placed
on the regression effect.

The posterior median for the regression effect is 0.59 and the 95% equal-tailed cred-
ible interval is (0.22, 0.97), indicating that including chemotherapy significantly reduces
the time to deterioration; the mean and median time to deterioration is reduced by
a factor ranging from 0.4 to 0.8. A log-normal maximum likelihood analysis yields a
point estimate and confidence interval of 0.21(0.01, 0.40), which is only marginally sig-
nificant (p-value=0.04). Allowing a nonparametric baseline survival function changes
the regression effects markedly. Figure 2 displays predictive survival curves for the two
treatment groups across four α priors described below. For α = 1 the posterior mode
number of months until deterioration is 17, versus 31 when chemotherapy is added to
radiotherapy; the posterior median number of months is 22 versus 40.

As a small sensitivity analysis on the choice of α, three other specifications were
fit: α = 0.1, α ∼ Γ(2, 2), and α ∼ Γ(2, 0.5). Fixing α = 0.1 produces an essentially

parametric analysis. The posterior median of β is reduced to β̂ = 0.46, closer to the
log-normal result (Table 2), and predictive survival densities look like a single gamma
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component (Figure 2). Fixing α = 1 yields a mixture model with a small but random
number of components; predictive survival distributions have a bit of a “dip” to them
relative to α = 0.1. The prior α ∼ Γ(2, 2) has mean E(α) = 1 and produces predictive
survival densities similar to α = 1, but encourages a much greater spread on the number
of distinct components d = d{θj}. The prior α ∼ Γ(2, 0.5) has mean E(α) = 4 and
larger variance than α ∼ Γ(2, 2); this prior has the effect of allowing for a much greater
number of components in the mixture (Table 2) and also produces a second mode in
the predictive survival densities (Figure 2). Except when fixing the precision to be
quite small, α = 0.1, posterior inferences, including predictive survival densities and
posterior regression coefficient estimates, are fairly robust to the choice of α prior, fixed
or continuous. This has been the experience of the author in general. Kottas (2005)
also notes robustness of posterior estimates of functionals of the survival density to the
choice of continuous α prior.

These data are also analyzed using a Bayesian semiparametric AFT model with a
mixture of Dirichlet processes baseline (versus a Dirichlet process mixture) in Hanson
and Johnson (2004). Inferences from the semiparametric models closely agree.
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Figure 2: Predictive survival densities for α = 0.1 (a), α = 1 (b), α ∼ Γ(2, 2) (c), and
α ∼ Γ(2, 0.5) (d). Dashed is radiotherapy only, solid is radiotherapy and chemotherapy.

3.3 Lung cancer data

We consider a data set presented in Maksymiuk et al. (1993) and subsequently analyzed
by Ying, Jung, and Wei (1995), Walker and Mallick (1999), Yang (1999), and Kottas
and Gelfand (2001), on the treatment of limited-stage small cell lung cancer in n = 121
patients. In the study, it was of interest to determine which sequencing of the drugs
cisplaten and etoposide increased the lifetimes of those with limited-stage small cell
lung cancer. Treatment A treated an individual with cisplaten followed by etoposide;
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Table 2: Posterior inferences for various α priors. Estimates α̂, β̂, and d̂ are posterior
medians. The posterior credible intervals (CI) are equal-tailed.

α = 0.1 α = 1 α ∼ Γ(2, 2) α ∼ Γ(2, 0.5)

β̂ 0.46 0.59 0.61 0.61
95% CI: β (0.19,0.95) (0.22,0.97) (0.18,0.98) (0.23,0.99)

α̂ 0.1 1.0 1.05 3.16
95% CI: α NA NA (0.20,3.36) (0.51,10.95)

d̂ 1 4 4 10
95% CI: d [1,3] [1,9] [1,13] [2,26]
P (d = 1) 0.75 0.03 0.06 0.02
P (d = 2) 0.22 0.10 0.14 0.03
P (d = 3) 0.03 0.18 0.15 0.05
P (d = 4) 0 0.20 0.15 0.05
P (d ≥ 5) 0 0.49 0.50 0.85

treatment B was etoposide followed by cisplaten. We indicate xi,1 = 0, 1 for treatments
A and B respectively. The patient’s age in years at entry into the study xi,2 was
included as a concomitant variable. Treatment A was administered to 62 patients,
while treatment B was administered to 59 patients; 23 patients were administratively
right-censored. The data set is thus {(Ti, δi,xi)}121i=1 where Ti is either the observed
lifetime in days (δ = 1) or the censoring time (δ = 0).

Ying et al. (1995) analyzed these data with a median-regression model; inference was
based on estimating equations and asymptotic normality. Yang (1999) also proposed
a median-regression model, but used weighted empirical survival and hazard functions
in estimation. We compare the median-regression approaches of Ying et al. (1995)
and Yang (1999), mean-regression approach of Buckley and James (1979), a mixture of
Polya trees median regression model (Hanson and Johnson, 2002), a Dirichlet process
mixture of gamma densities AFT model, and a parametric generalized gamma fit of
these data. The model in each case is written

Yi = log(Ti) = β1xi,1 + β2xi,2 +Wi,

with different assumptions on the error Wi depending on the model.

The results of the parametric generalized gamma fit were obtained in SAS (SAS
Institute, Inc.), the results of the Ying et al. (1995) and Yang (1999) models were
obtained from their papers, and the results of the Buckley and James (1979) model
were obtained using Frank Harrell’s Design library for R, specifically the bj() fun-
tion, obtainable from the Comprehensive R Archive Network (CRAN), for example at
http://cran.us.r-project.org/. We fit the mixture of finite Polya trees regression
model to the data as described in Hanson and Johnson (2002) based on their recom-
mendations and using uninformative priors. Convergence was conservatively assessed
through running quantile plots.
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Table 3: Lung cancer data: regression effect estimates across models.

Coef. Generalized Gamma Ying, Jung, & Wei (1995)
β1 −0.404 (−0.678,−0.130) −0.375 (−0.983,−0.081)
β2 −0.017 (−0.033,−0.001) −0.009 (−0.037,0.007)

Coef. Buckley & James (1979) Mixture of Polya trees
β1 −0.419 (−0.640,−0.196) −0.363 (−0.682,−0.186)
β2 −0.018 (−0.030,−0.005) −0.005 (−0.033,0.007)

Coef. Yang (1999) DP mixture of gammas
β1 −0.368 (−0.530,−0.230) −0.398 (−0.635,−0.157)
β2 −0.012 (−0.018,−0.002) −0.010 (−0.026,0.004)

A Dirichlet process mixture of gamma densities model was fit to the data, fixing
α = 1 and taking a flat prior on β: f(β) ∝ 1. The resulting predictive survival density
for treatment A at the sample mean age of 62.11 is shown in Figure 3, along with the
density from the generalized gamma fit of the data. The densities are somewhat close,
which is what we would expect as the simpler parametric model provides fairly adequate
fit based on various residual plots. However, the mixture model is slightly shifted and
indicates that perhaps two or more gamma components are necessary to fit these data.
In our experience with simulated data, the Dirichlet process mixture model tends to
give similar results for a wide range of α’s and typically does not “overfit” data when
α = 1. A plot of ei = E{log(Vi)|T1 ∈ [a,b),T2} versus age xi,2 shows no signs of
curvature or heteroscedascity (Figure 4).

We present results on the regression coefficients for each model in Table 3. The
four frequentist approaches yield a point estimate and 95% confidence interval for the
parameters of interest; the two Bayesian models yield posterior median and equal-tailed
95% credible intervals. The results from all models agree somewhat, although the age
effect is significant in neither Bayesian semiparametric model nor the model of Ying et
al. (1995).

4 Conclusions

Mixture of gammas models provide a rich baseline for the accelerated failure time model.
We have proposed a Dirichlet process mixture of gammas model that can be used with
a minimal amount of prior specification and which does not tend to “overfit” data. The
model can accommodate arbitrarily censored data (including interval censoring) and is
relatively easy to code and implement.

Often, semiparametric and nonparametric techniques are overlooked by practitioners
due to the availability of simpler methods in widely available packages. We are currently
working on implementing this and related models in the popular R statistical package
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Figure 3: Lung cancer data: predictive survival densities in days for treatment A, age
at entry 62. Solid is DP mixture of gammas, dashed is generalized gamma.

(Ihaka and Gentleman, 1996) for those who wish to explore these models, but are not
fond of coding. Two successful examples of such novel R code for fitting AFT mod-
els include Arnost Komarek’s functions smoothSurvReg(), which models the log-error
distribution in the AFT model as a penalized G-spline and bayessurvreg1(), which
models the log-error distribution as a mixture of Gaussian components via reversible
jump. Both of these functions are available from the CRAN.

Clustered survival data are often modeled through the use of random effects termed
frailties. It is straightforward to extend the model considered in this paper to the frailty
model

Tij = exp(−x′ijβ)WiVij ,

where i = 1, . . . , n indexes clusters and j = 1, . . . , ni indexes observations within a
cluster. The Vij are iid from the Dirichlet process mixture of gammas baseline, and the
frailties Wi arise as iid from some distribution with mean or median one – often Γ(ρ, ρ)
or log-normal(0, ρ) in the literature. Walker and Mallick (1997) consider a Polya tree
prior on the distribution of {Wi} whereas Sahu and Dey (2004) introduce a family of
log-skew-t distributions. Another possibility is a mixture of Polya trees constrained to
have median one (Hanson, 2004).

Ghosh and Ghosal (2004) consider a scale Dirichlet process mixture of Weibull com-
ponents baseline in the AFT model, whereas Kottas (2005) considers Dirichlet process
mixing over both the shape and the scale, but without covariates. A formal comparison
of these approaches and the Dirichlet process mixtures of gammas model considered in
this paper, with all models incorporating covariates, would be a welcome addition to the
literature. A comprehensive comparison could also include the AFT models of Walker
and Mallick (1999), Kottas and Gelfand (2001), and Hanson and Johnson (2002), as well
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Figure 4: Lung cancer data. A plot of the posterior error estimates ei = E{log(Vi)|T1 ∈
[a,b),T2} versus the predictor age xi,2 shows no obvious lack of fit.

as the work of Brunner (1995), which considers log-baseline densities that are unimodal
and symmetric.
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