
Modeling Cerebral Blood Flow Control During
Posture Change from Sitting to Standing

Mette Olufsen (msolufse@math.ncsu.edu)1 and Hien Tran (tran@math.ncsu.edu)2

Center for Research in Scientific Computation

Department of Mathematics

North Carolina State University

Raleigh, NC 27695-8205

Johnny Ottesen (johnny@ruc.dk)

Department of Mathematics and Physics

Roskilde University

Denmark

1The work of this author was supported in part by the National Institute of Health under grant RO3AG20833
2The work of this author was supported in part by the National Institute of Health under grant 1 RO1 GM67299-01

1



Abstract

Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow regula-
tion, are among the first signs indicating the presence of cerebral vascular disease. In this
paper, we will present a mathematical model that can predict blood flow and pressure during
posture change from sitting to standing. The mathematical model uses a compartmental ap-
proach to describe pulsatile blood flow and pressure in a number of compartments representing
the systemic circulation. Our model includes compartments representing the trunk and upper
extremities, the lower extremities, the brain, and the heart. We use physiologically based con-
trol mechanisms to describe the regulation of cerebral blood velocity and arterial pressure in
response to orthostatic hypotension resulting from postural change. To justify the fidelity of
our mathematical model and control mechanisms development, we will show validation results
of our model against experimental data from a young subject.

1 Introduction

The understanding of short term cardiovascular regulation of blood flow to the brain is essential

for development of new strategies to prevent cognitive loss, falls, and syncope, which are major

causes of morbidity and mortality in elderly people. In this paper, we focus our study on short

term cardiovascular regulation by analyzing arterial blood pressure and cerebral blood flow ve-

locity during postural change from sitting to standing. The most important short term regulatory

mechanisms are autonomic reflexes and cerebral autoregulation. Autonomic reflexes are mediated

via sympathetic and parasympathetic nervous responses while cerebral autoregulation is a local

control mediated via changes in active tone in the small blood vessels in the brain. Previous stud-

ies have shown that one of the most important autonomic reflexes, the arterial baroreflex, responds

to postural change by inducing cardiac acceleration and peripheral vasoconstriction, while cerebral

autoregulation regulates cerebral blood flow velocity through cerebral vasodilation [10, 17]. The

interaction between the two types of regulation is not well understood. It is known that with aging,

regulatory capacity declines, and it is believed that the cardiovascular regulation is impaired in

cardiovascular diseases such as hypertension [3, 26, 29].

The overall goal of this paper is to use advanced methods of mathematical modeling to un-

derstand the interaction between autonomic reflexes and cerebral autoregulation during postural

change from sitting to standing. Specific attention will be paid to incorporating parameters repre-
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senting various physiological/biological mechanisms that can be validated using clinical data. To

study these effects we build upon our previous work which suggested (using a 3-element wind-

kessel model) that both systemic and cerebrovascular resistances play a major role in cerebral

blood flow regulation during postural change from sitting to standing [17]. To explore this further,

we have developed a closed loop compartmental model comprising the heart and the systemic cir-

culation [5, 20, 21]. This model includes compartments that represent the heart, the aorta, arteries

in the brain, trunk/upper extremities, and the lower extremities, and the corresponding veins. Hav-

ing a closed loop model enables us to directly model the regulation and then fit the model to data

to determine if our model adequately fits the data. Before fitting the data to the model initial values

for all parameters are computed using standard values of pressures and volume distributions for an

average person. Then, the model was fit to the data to obtain specific values for the subject studied

in the current paper.

The data we used for validating the compartment model include physiological recordings of

blood pressure and blood flow velocity. Blood flow velocity was measured in the middle cerebral

artery (MCA) using transcranial Doppler (TCD) methods. Blood pressure was measured in the in-

dex finger using a Finapres cuff (see Figure 1). The measurements used for validation in this paper

are recordings from one subject during postural change from sitting to standing. After instrumen-

tation and after a steady signal was obtained, blood flow velocity and pressure was measured for 60

seconds before the subject stood up. After standing the measurements were continued for another

60 sec.

The organization of the paper is as follows. In section 2, we give a brief overview on the

physiology of blood flow and pressure regulation. This summary is necessary for the development

of the mathematical model in section 3. Section 4 contains our results and discussions.

2 Blood Flow and Pressure Regulation - The Physiology

Short-term cardiovascular regulatory mechanisms are intended to buffer transient changes in blood

flow to vital organs occurring as a consequence of posture change, exercise, hemorrhage, or other
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acute stresses. The buffering is accomplished by two mechanisms: (a) Autoregulatory adaption

of blood vessels to altered or redistributed volumes and pressure (b) rapid autonomic sympathetic

and parasympathetic neural responses affecting the heart rate, cardiac contractility, and vascular

resistance [8].

Autonomic reflexes are mainly mediated via baroreflexes. Baroreceptors are stretch receptors

which are sensitive to pressure alterations. High pressure receptors are located in the aortic arch

and carotid sinuses and low pressure receptors are thought to be located in the atria and pulmonary

circulation. The receptors act in concert in an effort to buffer arterial blood pressure changes.

They have cardiovascular and renal manifestations and they can adapt to a sustained alteration by

resetting. In this paper, we focus on hypotensive changes occurring during postural change from

sitting to standing, and hence, we have focussed on modeling autonomic reflexes and cerebral

autoregulation [8, 25].

During postural change from sitting to standing, approximately 500 cc of blood is pooled in

the legs as the result of gravitational force [11]. As a consequence, the blood pressures in the trunk

and upper extremities drop. To compensate for this drop in pressure, short term regulation mecha-

nisms are activated. Autonomic reflexes work in response to the decreased arterial blood pressure

by activating the sympathetic system and deactivating the parasympathetic system. The increase in

sympathetic activity will restore the blood pressure to normal due to an increase in heart rate, my-

ocardial contractility, vasoconstrictor, and venoconstrictor tone. The sympathetic nervous system

normally responds to a decrease in blood pressure rather than an increase (i.e., it is more effective

in combating acute hypotension than acute hypertension). The control forms a hysteresis effect,

an increased sympathetic activity is typically initiated within seconds of the stimulus and it is able

to increase the pressure within 5-10 seconds, whereas sudden inhibition of nervous stimulation

requires 10-40 sec to decrease the arterial blood pressure. In addition to the increased sympathetic

activity, a parasympathetic withdrawal helps to restore the blood pressure. Parasympathetic with-

drawal mainly increases the heart rate, it has a negligible effect on the cardiac contractility and

almost no effect on the peripheral resistance. The parasympathetic response is very fast, faster
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than the sympathetic response. Its effect will be implemented within 1-2 cardiac cycles. In addi-

tion, the parasympathetic response is greatest in the normal range of blood pressure (from 80-150

mmHg) [8, 25]. However, the baroreceptors are able to adapt to permanent or semipermanent al-

terations in arterial blood pressure. Even in acute hypertension (6 hours or less) and in exercise,

the receptors continue to function but are reset at a higher level, which then becomes the baseline

for further response. This reset is reversible if the baseline pressure changes. Experimental studies

have shown that with age the rapidity and the level of the reflex responses take longer. It has been

shown that in the seventh decade the magnitude of the response is decreased up to 50% [3, 12].

Autoregulation is a local control mechanism that regulates blood flow in proportion to the

metabolic needs of the tissue. The aim of autoregulation is to keep the blood flow constant within

some range of mean arterial blood pressure (from 80-150 mmHg). To obtain a constant blood

flow, a drop in pressure is compensated by vasodilation of arterioles and an increase in pressure

by arteriolar vasoconstriction. Outside this range, changes in flow will follow changes in pressure.

When the pressure becomes too low the vessels are already dilated to their maximum and as a

result the flow will drop. When the pressure becomes too high, vasoconstriction is overcome by

the pressure leading to hyperemia. It should be noted that the ranges listed above are for a normal

mean blood pressure of approximately 100 mmHg. This range can be reset to operate at higher

or lower pressures as the result of long term effects such as chronic hypertension. Autoregulation

is mediated via changes of active tone in the small blood vessels. It is not clear exactly how

this change is mediated. It is believed that two mechanisms, myogenic responses and oxygen

demand responses, are engaged [3, 13, 23, 28]. The myogenic responses reacts to an increased

perfusion pressure by increasing muscle tension stimulating the arterioles to contract to reduce

flow [23, 28]. Oxygen demand responses reacts to a decrease in flow producing a decrease in tissue

O2 concentration, which yields an increase in concentration of CO2 and other metabolites [2, 3, 4].

As a result, the arterioles relax and the flow rises again. The physiological responses in either of

the two cases involve local blood flow regulation mediated via negative feedback mechanisms. For

healthy young people autoregulation is typically delayed by 5-10 seconds from when the change
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in flow was initiated. Autoregulation takes place in the brain and in all major organs. To study

fast regulatory responses during postural change from sitting to standing, we plan to study effects

of cerebral autoregulation (CA), and neglect regulation in other organs that occurs over longer

timescales.

3 Methods

3.1 Experimental Measurements

The experimental study included ten young carefully screened healthy young volunteers aged 20-

39 years. In this work, we studied data from one subject. The mean cerebral autoregulatory

responses to posture change and carbon dioxide levels are described elsewhere [10, 17].

During the protocol, heart rate was measured continuously from a 3-lead electrocardiogram

and beat-to-beat arterial pressure was determined non-invasively from the middle finger of the non-

dominant hand, using a photoplethysmographic non-invasive Finapres pressure monitor (Ohmeda

Monitoring Systems, Englewood, CO), supported by a sling at the level of the right atrium to

eliminate hydrostatic pressure effects. In order to keep end-tidal CO2 constant, respiration was

measured continuously using an inductive plethysmograph (Respitrace, Ambulatory Monitoring,

Ardsley, NY) and subjects breathed at 0.25 Hz (15 breaths per minute) throughout each standing

procedure by following tape-recorded cues. All subjects underwent Doppler ultrasonography by

a trained technician in order to measure the changes in blood flow velocity within the MCA in

response to active standing. The 2 MHz probe of a portable Doppler system was strapped over the

temporal bone and locked in position with a Mueller-Moll probe fixation device to image the MCA

DWL Doppler system (MultiDop X4, DWL-Transcranial Doppler Systems Inc., Sterling, VA). The

MCA blood flow velocity was identified according to the criteria of Aaslid [1] and recorded at a

depth of 50–65 mm. The envelope of the blood flow velocity waveform, derived from a Fast-

Fourier analysis of the Doppler frequency signal, and continuous pressure and EKG signals were

digitized at 250 Hz and stored in the computer for later off-line analysis.

Following instrumentation, subjects sat in a straight-backed chair with their legs elevated at 90

6



degrees in front of them on a stool. For each of two active stands, subjects rested in the sitting

position for 5 minutes, then stood upright for one minute. The initiation of standing was timed

from the moment both feet touched the floor. Data were collected continuously during the final

minute of sitting and the first minute of standing during both trials. Data to be analyzed in this

paper include the last minute of sitting and the one minute of standing.

The study was approved by the Institutional Review Board at the Hebrew Rehabilitation Cen-

ter for Aged, and all subjects provided written informed consent. In addition, data was used by

permission from Dr. Lipsitz at the Hebrew Rehabilitation Center for Aged, Boston, Massachusetts.

3.2 Mathematical Model

To predict blood pressure in the finger and flow velocity in the MCA we have developed a com-

partment model of the systemic circulation based on volume conservation laws [30]. In our model,

the systemic circulation is divided into 6 compliant compartments that represent the arteries and

veins and one compartment that represent the left ventricle (see Figure 2). Three compartments

represent the systemic arteries (the brain, the lower body (legs), and the upper body) and three

similar compartments represent the systemic veins. The design of the systemic circulation with

arteries and veins separated by capillaries provides some resistance and inertia to the volumetric

blood flow rate. In our model we include effects of resistance between compartments but neglect

effects due to inertia. The description of pressure and volumetric flow rate in a system comprised

of compliant compartments (capacitors) and resistors can be interpreted in terms of an electrical

circuit, where pressurep [mmHg] plays the role of voltage and volumetric flow rateq [cm3/sec]

plays the role of current. Note that the blood flow velocity measured in the MCA can be obtained

by dividing the volumetric flow rate with the area of the vessel. In the remainder of this section we

will use the term “flowq” to describe the volumetric flow rate.

The basic equations predicting blood pressure and flow can be obtained by computing the

volume and change of volume for each compartment. The equations representing the arterial and

venous compartments can all be described similarly. For each of these compartments the volume
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V = Cp [cm3], whereC [cm3/mmHg] is the compliance andp [mmHg] is the pressure. The

cardiac output from the heart is given byV = VstrokeH, whereVstroke is the stroke volume andH

[beats/sec] is the heart rate. For each compartment, the net change of volume is given by the flow

into the compartment minus the flow out of the compartment;

dVi

dt
= qin − qout. (1)

For the compartment representing the upper arteries there are two flows leaving the compartment

(qout = qaup + qal) and for the compartment representing the upper veins there are two flows

entering the compartment (qin = qaup + qvl). All other compartments have one inflow and one

outflow. For the heart it is necessary to take the state of the heart valves into account. The model

discussed in this paper only includes the left ventricle, hence, the states of the mitral and the aortic

valves must be taken into account. During diastole the mitral valve is open (op) while the aortic

valve is closed (cl) allowing blood to enter the ventricle, when the ventricle is full the ventricle

contracts to increase the pressure. Once the ventricular pressure is above the aortic pressure, the

aortic valve opens and a pulse-wave is pumped out. It is noted that the state where both valves

are open does not occur under normal condition. Consequently, the change in volume of the left

ventricle can be modeled as:

dVl

dt
=





qmv mv-op, av-cl

qmv − qav mv-op, av-op

0 mv-cl, av-cl

qav mv-cl, av-op

= smvqmv − savqav, (2)

wheresmv = 1 if the mitral valve is open and0 otherwise andsav = 1 if the aotic valve is open

and zero otherwise. With this state variable added, the equation (2) has the same functional form

as (1). Conservation of volumeV requires thatVtot =
∑

i

Vi is constant or thatdVtot/dt = 0.

The equations derived above provide relations between volume and flow and volume and pres-

sure. To obtain relations between flow and pressure an additional equations must be derived.

Kirchoff’s current law provides a linear relation between pressure and flow of the form:

qi =
pin − pout

Ri

, (3)
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whereRi is the resistance to the flow. Differentiating the volume equationVi = Cipi and inserting

(1) gives

Ci
dpi

dt
= qin − qout − pi

dCi

dt
. (4)

The term containing the derivative ofCi is located on the right hand side since we assume that a

functional relation can be obtained for the compliance. The circuit in Figure 2 will give rise to a

total of 6 differential equations of the form (4), one for each of the arterial and venous compart-

ments. To model the branching before and after the left ventricle two algebraic equations forpav

andpmv are computed. These can be obtained by ensuring conservation of flow (qav = qac + qau

andqmv = qvu + qvc).

The only pressure not yet defined in terms of an equation is the left ventricular pressure. To

obtain a pulse-wave that is propagated along the artery this pressure must be described in terms of

an activation function. There are a number of such functions defined in the literature [14, 22, 27].

In the current work, we will use the model by Ottesen [22] since it provides the ability to use a

variable heart-rate as well as specifying both the onset of the ventricular contraction and relaxation.

This model is given by

pl = a(Vl − b)2 + (cVl − d)g(t), (5)

wherepl is an isovolumic pressure that is modeled using the parametersa, b, c, andd, and an

activation functiong(t). The parametera [mmHg/cm3] relates to ventricular elastance during re-

laxation andb [cm3] represents ventricular volume for zero diastolic pressure, the parametersc

[mmHg/cm3] (contractility) andd relate to the volume dependent and volume independent com-

ponents of the developed pressure [7, 22]. The activation is described by a polynomial of degree

(n,m) and it provides an expression forg(t) = f(t)/f(tp) with

f(t) =





0, 0 ≤ t < α

pp(H)
(t− α)n(β(H)− t)m

nnmm[(β(H)− α)/(m + n)]m+n
, α ≤ t ≤ β(H)

0, β(H) < t ≤ T,

(6)

whereT [sec] is the length of the cardiac cycle,H is the heart-rate, the parametersα andβ(H)

9



[sec] denote the onset of contraction and relaxation, respectively. The parametersn andm charac-

terize the contraction and relaxation phases of the left ventricle, and the parameterpp is the peak

value of the activation function. Note that the polynomial function has compact support with a

simple algebraic expression. The ability to vary the heart-rate is included in the isovolumic pres-

sure equation (5) by scaling time and peak values of the activation functionf . This is possible

since the compact support causes the ventricular end of contractionβ to appear explicitly in (6).

The time for peak value of the contraction is scaled by introducing a sigmoidal function between

time for peak pressuretp and heart-rateH of the form:

tp = tmin +
θν

Hν + θν
(tmax − tmin), (7)

whereθ represents the median andν represents the steepness of the relation,tmin and tmax de-

note the minimum and maximum values, respectively. The peak ventricular pressurepp is scaled

similarly using a sigmoidal function of the form:

pp = pmin +
Hη

Hη + φη
(pmax − pmin), (8)

whereφ represents the median andη represents the steepness of the relation,pmin andpmax denote

the minimum and maximum values, respectively.

Finally, the time for onset of ventricular relaxationβ(H) is modeled as

β(H) =
n + m

n
tp(H)− αm

n
. (9)

This equation is obtained by recognizing that the time for peak pressuretp is related to the param-

eterβ in the isovolumic pressure model (5). Initial values for all parameters were obtained from

the work by Ottesen and Danielsen [22]. In their work, the parameters were obtained by validat-

ing their model to data from a dog. To obtain values that would work for a person, we fitted the

parameters during our model validation. The resulting parameters can be found in Table 1.

We have modeled transition from sitting to standing by including gravitational forces to the

pressures in the lower compartmentsal andvl as:

[pal]st = [pal]sit + ρgh(t), [pvl]st = [pvl]sit + ρgh(t), (10)
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whereρ = 1.055 [g/cm3] is the density,g = 981 [cm/s2] is the gravitational acceleration, and

h [cm] is the change in height from sitting to standing. To capture the transition from sitting to

standingh is defined as the stepwise increasing linear function

h(t) =





0, t < tst

hM(t− tst)/τ, tst ≤ t ≤ tst + τ

hM , t ≥ tst + τ,

(11)

wheretst is the time at which the subject stands up,τ is the duration of the transition, andhM is

the maximum height needed for the mean arterial pressure in the finger to drop as indicated by the

data. The parameters for this equation have to be justified based on measurements of displaced

volumes and observed pressure changes. Results from fitting the model to data from one subject

gave thathM = 25.26[cm] andtst = 1.56[sec], see Table 3.

To include regulatory compensation (autonomic and autoregulation) responding to restore blood

pressure and flow, heart-rate, contractility, resistors, and capacitors are controlled. The control will

be implemented by defining the model parameters (resistors, capacitors, heart-rate, and contractil-

ity) as functions of time [21].

The autonomic regulation is modeled as a pressure regulation where heart-rate (H), cardiac

contractility (c), systemic resistances (Rau, Ral, Raup, Ralp, Rac), and systemic compliances (Cau,

Cal, Cac, Cvl, Cvu, Cvc) are functions of the arterial pressurepau. The autoregulation affecting es-

pecially the cerebrovascular resistance is modeled using optimal control. In particular, we assume

thatRacp is parameterized as follows:

Racp(t) =
n∑

i=1

γiHi(t), (12)

whereHi are the standard Hat functions given by

Hi(t) =





t− ti−1

ti − ti−1

, ti−1 ≤ t ≤ ti

ti+1 − t

ti+1 − ti
, ti ≤ t ≤ ti+1

0, otherwise

(13)
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and the coefficientsγi are unknown to be estimated with other unknown parameters in the model

via an inverse least squares problem.

The functional relations for the parameters have been obtained in two steps: The change in the

controlled parameter is modeled using a first order differential equation with a set-point function

dependent on the mean pressurepau.

dx(t)

dt
=
−x(t) + xctr(pau)

τ
. (14)

Here, x(t) is the controlled parameter andxctr(pau) is the set-point function, andτ is a time

constant characterizing the time it takes for the controlled variable to obtain its full effect. Different

values ofτ were used for control of cardiac contractility, compliance, and resistances (see Table 3).

The set-point function is given by

xctr(pau) = (xmax − xmin)
αk

2

pk
au + αk

2

+ xmin. (15)

The control equation is used for parameters that increase as a function ofpau. The parameters

xmax and xmin are minimum and maximum values for the controlled parameterx (we control

Raup, Ralp, Ral, Rau, c, and all compliances using this model),α2 is the pressure at which we want

to achieve the mean value(xmax + xmin)/2, andk provides the steepness of the sigmoid. The

parameterα2 is computed such thatx gives the right value of the controlled parameterx at the

steady state valuepau. As initial values of parameters fork, xmin, andxmax, we used parameters

suggested by Danielsen [6]. All of these parameters were fitted to data to obtain parameter values

that were better suited for our study during postural change. To obtain values forxmin andxmax

we fitted a factorf such thatxmin = xset/f andxmax = xsetf , wherexset is the set-point value

used during steady state (sitting). These set-point values can be found in Tables 1 and 2. We did

not fit the factor and steepness separately for all parameters but separated them into groups. In

this way we had one set of parameters fork andf for arterial resistancesRak, Raf . Other groups

included cardiac contractilityck andcf , venous compliancesCvk, Cvf , arterial compliancesCak,

Caf , cerebral venous compliancesCvck, Cvcf , and cerebral arterial compliancesCack, Cacf . Values

for these parameters obtained after optimization can be found in Table 3.
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The above control equations are all based on values of the mean arterial pressure and the mean

cerebral blood flow. However, our circuit model only describes the instantaneous (pulsatile) values.

Mean values are computed as weighted averages where the present time is weighted more than past

time:

x =
1

N

∫ t

0

x(s) exp(−ψ(t− s)) ds, (16)

wherex = pau. The factorψ were found to be 0.002 from fitting our model to data, see Table 1.

The factorN is a normalization factor to ensure that forx(s) = 1 we get the correct mean pressure,

i.e.,

N =

∫ t

0

exp(−ψ(t− s)) ds =
1− exp(−ψt)

ψ
. (17)

Differentiating (16) gives the following differential equation:

dx

dt
=
−x + x(t)

N
. (18)

The system of differential equations from our mathematical model, (4), (14), and (18), are

solved using MATLAB (The Math Works, Inc., Natick, MA) differential equations solver ode45.

The initial time value for all numerical simulations corresponds to the time value of 50 sec in the

data. All unknown parameters are estimated from the data via a nonlinear inverse least squares

problem. Values for all parameters and variables can be found in Tables 1 to 3.

4 Results and Discussion

In this section, we will discuss some of the preliminary results obtained with our mathematical

model. The aim with our modeling efforts is to be able to reproduce changes in arterial blood

pressure and cerebral blood flow during sitting to standing. Figure 3 shows the traces obtained

from a young subject. The characteristic features are that after standing up at 60 sec, the pressure

(both systolic and diastolic values) drops significantly. From a mean pressure of approximately 95

mmHg to a mean pressure of approximately 58 mmHg. At the same time, the blood flow velocity

also decreases followed by an increase, however, it should be noticed that while the mean velocity
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decreases, the decrease is not as big, because a large widening of the pulse-amplitude (systolic

value minus diastolic value). The aim with our model is to be able to reproduce the characteristics

observed in the data discussed above.

The first step towards being able to reproduce the data is for our model to be able to repro-

duce the dynamics during steady state (i.e., during sitting). We obtained initial parameter values

from physiological considerations for the distribution between the total blood volume between the

compartments and initial estimates for the pressure values in the various compartments. The total

amount of blood was computed as a function of the total body surface area, body weight, height,

and sex [24]. The distribution of the total blood volume are obtained using the quantities suggested

by [6]. After obtaining initial guesses of parameters, we fitted our model (without including equa-

tions describing the control (14)) to the datasets shown in Figure 3. To obtain the correct length for

each cardiac cycle we extracted the heart-rate from the data, see Figure 4. Results of our simula-

tion are depicted in Figure 5. The figure shows that without control we have obtained an excellent

agreement between our model and the data. The model is fitted to the data using the Nelder-Mead

algorithm, which is based on function information computed on sequences of simplexes [9].

The second step in validating our model is to illustrate that we can redistribute the volumes

after standing up. The result of redistributing the volume is that both cerebral blood flow velocity

and the arterial pressure is decreased. Again, we show the result without including the effects of

the control. These results are shown in Figure 6. This figure indicates that with the parameters

listed in Tables 1 to 3 it is possible to decrease both blood flow velocity and pressure. Two things

should be noted about this figure: First, while we did not include effects of the control, we still see

an increase in heart-rate, because heart-rate information is subtracted from the data (see Figure 4).

Second, it should be noted that even though both blood flow velocity and pressure drops, the pulse-

amplitude for both blood flow velocity and pressure are too narrow. One reason for this could be

that we need to investigate the role of compliances further. Compliance is related to the volume

throughCp = V .

Next, we will show simulation results obtained when all control mechanisms are activated.
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Figure 7 depicts the final result for both blood flow velocity and blood flow pressure and Figure 8

displays a close-up plot for73.8 ≤ t ≤ 84.5. The results show that even though our model does

not quite capture the dynamics during the transitional region it is very good at obtaining the new

steady state values during standing. However, it should be noticed that we are currently not able

to capture the widening of the blood flow velocity during the transitional region. This may be

partially explained from the result we got for the cerebrovascular resistance. This resistance is not

obtained by a model, since its control includes effects both of autoregulation and of autonomic

regulation. Instead we have used optimal control to fit the data to the model (see equation (12)).

We have chosen to include nine points to represent the dynamics of the resistance (γ1 to γ9; see

Table 3). The result is shown in Figure 9. This figure shows a small initial increase followed by

a decrease. From earlier work [17] we expected an increase, however much bigger than the one

observed in our simulation. In fact the figure shows a decrease followed by an increase and the

increase does not come above the base value. The rough results could be an artifact from only

having the cerebral resistance represented by 9 points.

Finally, Figure 10 depicts the dynamics of some of the controlled variables. The figure shows

one arterial resistanceRaup, the cardiac contractilityc, and a venous complianceCvu. These results

do display quite different dynamics of the three types of variables. It should be noted that the

dynamics of other resistances and capacitors are similar to the ones shown here. Most noticeable

is it that the compliance does not seem to reach a steady state before we stand up. We believe

that changes in compliance as well as changes in unstressed volumes are partly responsible for the

fact that we did not completely capture the detailed dynamics during the transition from sitting

to standing. Another important deficiency that we plan to study in the future, is that our model

does not include specific time delays. Earlier work by Ottesen [19] has shown that time delays are

important and that they can give rise to dynamics that cannot be captured without them.

In summary, we have developed a model in which the controls have been obtained by including

biological mechanisms for changing resistors, cardiac contractility, and compliances. Our results

show that our model is able to capture the increase in pressure and blood flow velocity needed to
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compensate for hypotension obtained during postural change from sitting to standing. However,

more work is needed to capture the details of the regulation observed during the transitional period.
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Resistances Heart parameters

[mmHg sec/cm3]

Rav 0.0004 a [mmHg/cm6] 0.0003

Rmv 0.0037 b [cm3] 6.3041

Rvl 0.1541 d [mmHg] 1.1264

Rvu 0.0302 n 5.9717

Rvc 0.2159 m 4.0917

Rac 1.1355 fct 0.3614

ν 9.1682

θ [beats/sec] 1.1364

tmin [sec] 0.0801

tmax [sec] 0.2653

pmin [mmHg] 1.0994

pmax [mmHg] 1.2028

η 19.0681

α [sec] 0.0000

φ [beats/sec] 1.3296

Table 1: The values listed in this table are for uncontrolled parameters. Resistances are used in
equation (3), and parameters for the heart are used in equations (5) and (6).

17



Setpoints

Rau [mmHg sec/cm3] 0.0700

Raup [mmHg sec/cm3] 2.6410

Ralp [mmHg sec/cm3] 3.1209

Ral [mmHg sec/cm3] 3.5657

Cvu [cm3/mmHg] 14.1549

Cvl [cm3/mmHg] 10.3195

Cvc [cm3/mmHg] 7.8787

Cau [cm3/mmHg] 0.7382

Cal [cm3/mmHg] 1.2873

Cac [cm3/mmHg] 0.0279

c [mmHg/cm3] 2.2311

pau [mmHg] 92.7000

Table 2: Set-point values for all controlled parameters. These parameters are used to control
maximum and minimum values for the controlled functions discussed in equation (14).
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Optimized Parameters

τS [sec] 2.8890 Rak [mmHg sec/cm3] 1.5401

τC [sec] 11.3246 Raf [mmHg sec/cm3] 7.0067

τR [sec] 9.9907 ck 2.3516

hM [cm] 25.2647 cf 1.4609

tst [sec] 1.5628 Cvk 26.2226

γ1 [mmHg sec/cm3] 3.8734 Cvf 11.4609

γ2 [mmHg sec/cm3] 3.4381 Cak 14.2914

γ3 [mmHg sec/cm3] 3.0587 Caf 3.8616

γ4 [mmHg sec/cm3] 3.5190 Cack 0.1025

γ5 [mmHg sec/cm3] 3.2199 Cacf 4.3577

γ6 [mmHg sec/cm3] 2.3538 Cvck 5.2542

γ7 [mmHg sec/cm3] 3.6325 Cvcf 14.7510

γ8 [mmHg sec/cm3] 3.6450 ψ [1/sec] 0.0020

γ9 [mmHg sec/cm3] 3.9006

Table 3: Parameters obtained after optimization. Time-constantsτi denote the time delay involved
with the controlled variables, parameters for gravity denote the max height needed to obtain ob-
served pressure drop, and the length of the time over which the subject stands up. Optimized values
for the resistancesγ(1)−γ(9) denote the optimized values for the cerebrovascular resistanceRacp.
Finally, subscriptk gives the steepness of the sigmoid in the set-point functions in equation (15).
The scaling factors, subscriptf , give the scaling forxmin andxmax in equation (15).
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Figure 1: Experimental setup

20



Rvl

Vl
Left ventricle

El(t)

pl
Rav

pav

Val Sys Art (legs)

pal

Cal

Vvl

Cvl

pvl

Veins (legs)

pmv

qvu

Rmv
AVMV

qmv qav

Cer ArtVacVvc Cer Veins

qvcRvc

RacpCvc

Cac

pvc pac

qac Rac

Rvu

Sys Art (up)Vau

qau Rau

Veins (up)Vvu

Cvu
paupvu

Cau

Ralqal

qaup

Raup

Ralp

qalp

qacp

qvl

Figure 2: The circuit. Following terminology from electrical circuit theory, resistorsR [mmHg
sec/cm3] are marked with dashed zig-zag lines. CapacitorsC [cm3/mmHg] representing com-
pliance are marked with dashed parallel lines inside compartments (indicating that they contain
volumes), and the aortic and mitral valves are marked with small lines inside the compartment rep-
resenting the left ventricle. The abbreviations arel left ventricle,av aortic valve,mv mitral valve,
au upper arteries,al lower arteries,aup upper peripheral arteries,alp lower peripheral arteries,
ac cerebral arteries,acp peripheral cerebral arteries,vl lower systemic veins,vu upper systemic
veins,vc cerebral veins.
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Figure 3: Measurements of cerebral blood flow velocityv [cm/sec] and arterial pressurep [mmHg].
The subject stands up att = 60 sec.
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Figure 4: The heart-rate is not controlled but taken from the data. The hear-rate HR [beats/sec] is
plotted as a function of time. They-value for each star indicates the value of the heart-rate, the
x-value indicates the time for onset of that cardiac cycle.
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Figure 5: Modeling of cerebral blood flow velocity and arterial pressure (vac [cm/sec] andpau

[mmHg] on Figure 2). Note on the circuit it is indicated that our model computes flow [cm3/sec]
not velocity [cm/sec]. The velocity shown in this figure is obtained by scaling the flow with a
constant factor representing the cross-sectional area of the middle cerebral artery. The dashed line
shows the result of our computation and the solid line shows the data.
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Figure 6: Modeling of cerebral blood flow velocity and arterial pressure (vac [cm/sec] andpau

[mmHg] on Figure 2). This figure shows the effect of standing up without including control
mechanisms. The figure shows that both blood flow velocity and pressure decreases due to the
redistribution of volumes obtained by changes in the hydrostatic pressure.
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Figure 7: With control, both blood pressurep [mmHg] and blood flow velocityv [cm/sec] recover
to normal levels after the transitional period.
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Figure 8: Zoom of the control for the cardiac cycles for73.8 ≤ t ≤ 84.5. The dashed curve shows
our computed results and the solid curve shows the data. The results show that even though, the
oscillations were too narrow during the transition, we do obtain a very good fit for the end of the
regulatory domain.
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Figure 9: Cerebral vascular resistanceRacp. We used 9 values to fit the cerebral vascular resistance
to data. Our results show an initial decrease followed by an increase, and then a decrease. We
expect that the first increase is a consequence of autonomic regulation, while the second decrease
is a result of cerebral autoregulation.
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Figure 10: Dynamics of the controlled variables. The figure shows the peripheral resistance in the
upper bodyRaup, the cardiac contractilitycvu, and the compliance of the veins in the upper body.
Other resistances and compliances were regulated similar to the ones shown here.
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