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Abstract

The vehicular ad hoc network has great potential in traffic change. One of the most important

and interesting issues in the research community is the safety evaluation with limited penetration

rates of vehicles equipped with inter-vehicular communications. In this paper, a stochastic model is

proposed for analyzing the vehicle chain collisions. It takes into account the influences of different

penetration rates and distribution of equipped vehicles, the stochastic nature of inter-vehicular

distance distribution, and the different kinematic parameters related to driver and vehicle. The

usability and accuracy of this model is tested and proved by comparative experiments with Monte

Carlo simulations. The collision possibilities of a platoon in different penetration rates and traffic

scenarios are also analyzed based on this model. These results are useful to provide theoretical

insights into the safety control of a vehicular platoon.

Keywords: vehicular networks, chain collision, penetration rate, stochastic model

1. Introduction

In recent years, the highly advancement of various wireless communication technologies have ac-

celerated the deployment of the advanced transportation information systems (ATIS). Especially,

the ongoing development of dedicated short range communication (DSRC) has made the inter-

vehicle communication (IVC) and the road-vehicle communication (RVC) feasible. The vehicular

ad-hoc networks (VANETs) can support a variety of onboard active safety applications such as the

danger warning systems, the collision avoidance systems, the advanced driver assistance systems
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and so on [1]. Many significant research projects relevant to vehicular communication have been

subsequently launched over the past dozen years. For examples, the Connected Vehicle project un-

dertaken by the U.S. Department of Transportation and the European projects DRIVE C2X and

COMeSafety2 all aim to make the transportation systems benefit from the inter-vehicle communi-

cations. One of the main concerns in most of those research projects is improving the performance

of disseminating safety messages among neighboring vehicles maintaining low latency and high

reliability [2]. Although it has been confirmed that inter-vehicle communication is promising to

improve the safety of vehicles on roads, the inter-vehicle communication systems should be eval-

uated at full length for different driving parameters, vehicle-related properties as well as different

traffic conditions before being deployed in real-life vehicular environments.

As a typical safety application of inter-vehicle communications, vehicle chain cooperative colli-

sion avoidance (CCA) systems or cooperative adaptive cruise control (CACC) systems have recently

received much attention [3–5]. A CCA system allows the DSRC equipped vehicles to promptly

react in time to the abrupt deceleration of their front vehicles, even though the emergency is out

of their sights. Some successful and well known testing work related to CCA applications can be

linked California PATH [6, 7]. Although the U.S. government has announced in February 2014

that new light vehicles should be required to equip V2V (vehicle-to-vehicle) communications [8],

the ubiquitous deployment of inter-vehicle communications onboard is not likely to be achieved

within the next few years. The actual situation is that those equipped and unequipped vehicles

would co-exist in general traffic flows [9]. Therefore, it is meaningful to study the vehicle collisions

in platoons where only a fraction of vehicles are equipped with inter-vehicle communications. We

will explore the collision in a platoon with different penetration rates of vehicular communication

unit.

In this work, we present a stochastic model which removes the assumption that all the vehicles

install the wireless vehicular communications units. In the model, the kinematic parameters (e.g.,

velocity and acceleration) of any vehicle in a platoon are not completely independent but influenced

to some extent by the preceding vehicle’s kinematics, since the driver would make driving decision

partially according to the behavior of its leader, which is called as car-following behavior [10, 11].

The driving operation of one vehicle is a function of the kinematic parameters of its preceding

vehicle, which is formulated as a car-following model. The model is defined with a linear ordinary
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differential equation which can closely model the response of manually driven vehicles [12, 13].

Furthermore, we investigate the vehicle chain collisions in a given platoon, which considers the

influences of different penetration rates of inter-vehicle communication, stochastic nature of inter-

vehicle distance distribution, and different kinematic parameters related to driver and vehicle.

Similarly to some existing studies [9, 12–15], some basic assumptions are also adopted in this

paper to make our work tractable: 1) Each of the vehicles in a given platoon is moving in the

same direction and cannot reverse its motion or change its lane even when it will collide with

its preceding or rear vehicle; 2) Any potential collisions caused by communication device failures

or driver faults are ignored. The model is not limited to the assumption that all the vehicles in

a platoon being equipped with vehicular communications. Therefore, our work can be treated

as a step toward a deep insight into the safety evaluation of vehicle platoons in general mixed-

communication environments, which can help to guide an appropriate implementation of vehicular

safety control applications when inter-vehicle communications are not ubiquitously deployed.

The remainder of this paper is organized as follows. A brief review on the related work is

presented in Section 2. Section 3 presents the basic computation model for the rear-end colli-

sion which takes into account the stochastic nature of inter-vehicular distance distribution and

the heterogeneity of vehicle platoon. In Section 4, based on the proposed computation model, we

present a Markov chain-based approach for the computation of average collision percentage in a

platoon. Section 5 demonstrates the validation and application of our model with different penetra-

tion rates, inter-vehicular broadcasting latencies, driver reaction times and kinematic parameters.

Finally, concluding remarks are given in Section 6.

2. Related Work

As one of specific and typical issues on traffic safety, vehicle chain collision avoidance has

attracted a number of research efforts, and the safety control of automatic vehicle platoons has been

modeled as inter-connection systems with wireless vehicular communications. Many researchers

have investigated the advanced control policies of vehicle platoons with string stability analysis [12,

13, 16–19]. In their control models, the initial velocity and the inter-vehicle distance are almost

assumed to be identical. But, in fact, the inter-vehicle distance between any adjacent vehicles

always follows a specific stochastic distribution in most traffic scenarios. Namely, the inter-distance

3



in a platoon can be reasonably regarded as a random variable when exploring the potential chain

collisions. At this point, deterministic formulations in the form of transfer functions used in the

aforementioned string ability analysis will be unsuitable to model chain collisions in terms of the

stochastic nature of vehicle collisions.

In terms of the stochastic distribution of vehicles in a platoon, a stochastic model is more

effective to describe the potential chain collisions. Recently, the evaluation of chain collisions in

vehicular communication environments based on stochastic models can be found in [14, 20, 21].

[20, 21] have considered the random braking in their model. Similarly, [14] has proposed a stochastic

model for evaluating all the possibilities of chain collisions that may occur in a platoon. The authors

focus on the theoretical computation of the collision probability and the expected collision number.

In their stochastic model, a more realistic assumption that the inter-distance between vehicles is a

random variable is added as well. In addition, in [14], the kinematic parameters of any one vehicle

are assumed to be independent from each other’s. Compared to most of the aforementioned work,

although we also adopt the stochastic model approach, unlike [14, 20, 21], our model removes the

assumption that wireless vehicular communications are ubiquitously required for all the vehicles

in a platoon. We provide a stochastic model in the context of heterogeneous platoons, in which

only partial vehicles are equipped with inter-vehicle communications and they are stochastically

distributed. Additionally, one another main difference between this work and the aforementioned

lies in the adopted kinematic equation for the description of each vehicle’s mobility. In a platoon,

the kinematic parameters (e.g., velocity and acceleration) of any one vehicle are not completely

independent but influenced to some extent by the preceding vehicle’s kinematics, since the driver

would make driving decision partially according to the driving operations of its leader in real-life

scenarios. This is so-called car-following behavior. Unlike [14] that develops their model on the

basis of the simple and independent equation of motion with constant acceleration, we introduce the

car-following behavior in the analysis of chain collisions instead. From this view of point, our model

offers a more significant insight into the influence of car-following behavior on the heterogeneous

platoon safety in a more realistic context. In our model, the driving operation of one vehicle is

a function of the kinematic parameters of the preceding vehicle, which is formulated as a typical

car-following model [11]. This car-following model is presented as a linear ordinary differential

equation, and is validated by [11] through rigorous theoretical analysis and realistic experiments.
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But, just for the sake of example, we point out that our stochastic model is independent of the

car-following model so that other more complex car-following models can also be substituted into

our model.

On the other hand, the authors in [12, 13] focus on the automation of vehicles and have

studied the influence of those mixed manual and semi-automated vehicles on the characteristics

of general traffic flows. However, as [9] has pointed out, both [12] and [13] do not adopt the

assumption of inter-vehicle communications. Namely, their goal does not lay in the context of

wireless vehicular communications. The analysis approach adopted in [9] is similar to [12, 13],

the more realistic scenarios where a fraction of vehicles in a platoon equips with inter-vehicle

communications are investigated, and the Laplace transform is used to formulate the transfer

function of the heterogeneous platoon system. However, Chakravarthy et al’s model will fail to

describe the chain collisions of vehicles whose inter-distance is considered to follow a stochastic

distribution. In order to compute their model, the authors require that the inter-vehicle distance

between vehicles should be determinedly identical. In fact, this assumption is not realistic in

most traffic scenarios as aforementioned. Although our goal of model also focuses on the mixed-

communication conditions, unlike [9], our model is stochastic so that it can deal with the stochastic

nature of the inter-vehicle distance distribution in heterogeneous platoons and is relatively more

appropriate for evaluating the realistic situations.

In this paper, we propose a stochastic model as well as develop a computing paradigm for eval-

uating the collision probability in a heterogeneous platoon under various impacts. The main novel

contributions of our work are threefold: (i) our proposed model deals with the heterogeneity of the

vehicle platoon where only partial vehicles are equipped with inter-vehicle communications and

stochastically distributed; (ii) this model enables the computation of mixed vehicle chain collisions

when taking into account the stochastic nature of the inter-vehicle distance distribution and the

effect of car-following behavior; and (iii) as the application of the model, it can provide the quanti-

tative aspects of collision possibility of the overall heterogeneous platoon with respect to different

traffic conditions, penetration rates, communication delays and driving parameters. Therefore, the

proposed model as well as its computing paradigm can be treated as the supplementary approach

to help evaluate vehicle platoon safety and assist the design of safety applications and the traffic

management.
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3. Basic computation for vehicle collisions

3.1. Description of a vehicle platoon

In this paper, we model a general vehicle platoon moving on a single lane in the same direction

as a set V, and |V| = N + 1 (N > 1). A basic assumption adopted here is that any vehicle Vi ∈ V

(i = 0, 1, · · · , N) is not allowed to change its direction or its lane even when it will collide with

its preceding vehicle or be crashed by its rear one. Thus, the motion trail of each vehicle in this

platoon is simplified to be a one-dimensional line. What’s more, we consider that there are a

certain fraction of vehicles equipped with inter-vehicular communications which are stochastically

distributed in this given platoon. For simplicity, we denote those equipped vehicles as a subset

VE ⊂ V and those unequipped vehicles in the same platoon as VU ⊂ V. It can be obviously seen

that V = VE

∪

VU and VE

∩

VU = ∅. Some significant timing factors are considered in this paper

when a vehicle brakes in response to an emergency. A series of events will successively occur when

a vehicle slows down or stop. These successive events are called as the ‘‘timing events’’ in [22].

The time to slow down or stop an unequipped vehicle Vi is τi. Then, according to [22], this timing

parameter τi can be dissected as

τi = κi + ϵi + εi (1)

where κi is the driver perception time, ϵi is the driver reaction time, and εi is the vehicle deceleration

time. Similarly, if one vehicle is equipped with some advanced features such as emergency warning

system that is supported by inter-vehicular communication, the driver is able to receive an early

emergency warning broadcasted from another preceding equipped vehicle via vehicular wireless

communication. In this way, even when the emergency is out of the scope of the driver’s sight,

this vehicle can react to this collision threat ahead of time when compared to some preceding

unequipped vehicles in the same platoon. In this paper, we assume that the warning message is

broadcasted via one single hop between any two successive equipped vehicles in the same platoon.

The driver of an equipped vehicle can sense the emergency via vehicular communication instead

of visual perception. Thus, the time interval an equipped vehicle Vj takes from the moment when

the warning message is broadcasted by its previous equipped vehicle to the time when it begins

slowing down can be simply dissected as

δj = γj + ϵj + εj (2)
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Figure 1 An example for a platoon where those equipped vehicles are marked in red while those unequipped

vehicles in green.

where γj is the inter-vehicular communication time, ϵj is the driver reaction time, and εj is the

vehicle deceleration time (it is worth pointing out that the vehicle deceleration time εj denotes

the reaction latency of the vehicular braking system). Actually, the inter-vehicular communication

time consists of two main factors that have influence on the timing of emergency perception. As

[22] suggested, these factors include the data transmission and broadcasting latencies between

vehicular DSRC-based devices. That is, the communication time γj can be further expressed as

γj = γ
(1)
j + γ

(2)
j (3)

where γ
(1)
j is the transmission latency and γ

(2)
j is the broadcasting latency. Generally, the time

for exchanging a data packet between two equipped vehicles within communication range is in

milliseconds, and it would vary from time to time comprehensively depending on the load of wireless

communication channels, the density of connected vehicles and the time to digitaly transmit the

data packet. More detailed discussion on the timing factors related to vehicular communication as

well as the efficiency of DSRC-based communication device can be found in [22, 23].

Consider a vehicle platoon shown in Fig.1 where we assume its leader V0 is an equipped vehicle

that starts braking at the initial time tb0 = 0 due to sensing an emergency in front on the road. Then

the emergency warning message is immediately transmitted to the following equipped vehicles via

multiple hops. At this point, the time tbj for an equipped vehicle Vj ∈ VE to begin deceleration

can be accumulatively computed as follows:

tbj =
∑

1≤l≤j−1,Vl∈VE

γl + δj (4)

In comparison to those equipped vehicles, those unequipped can only start their deceleration ac-

cording to the status of the braking light of the preceding vehicles. Thus, the time tbi for an
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unequipped vehicle Vi ∈ VU to begin braking is

tbi = tbj∗ +
∑

j∗+1≤l≤i,Vl∈VU

τl (5)

where Vj∗ is the nearest equipped vehicle in front of the unequipped one Vi. This means that those

vehicles located between Vj∗ and Vi are all unequipped.

From the equations (4) and (5), it can be found that an unequipped vehicle back in the platoon

(which means that it is assigned with a larger index) could start braking earlier than a preceding

unequipped one. For instance, the vehicle V4 in Fig.1 will start braking at tb4 = tb3 + τ4 while V2 at

tb2 = tb0 + τ1 + τ2, and tb4 could be smaller than tb2 when given δ3 is much smaller than τ1 and τ2.

At this point, the fact shown in Fig.1 implies that the penetration rate and distribution of those

equipped vehicles in a vehicle platoon significantly affects the potential of inter-vehicular collisions.

We define the length of a vehicle Vi ∈ V as Li, and the velocity at time t as vi(t). Here,

we assume that all the vehicles in the given platoon share the same coordinate system. In this

coordinate system, the position of a vehicle Vi at time t can be denoted as si(t). The space headway

between any two adjacent vehicles Vi and Vi+1 at time t can be calculated as si(t) − si+1(t) (it

should be noted that the space headway between vehicles represents the distance from the front

bumper of the preceding vehicle to that of the rear one). With these notations, the inter-vehicular

distance between Vi and Vi+1 at time t can be calculated as xi,i+1(t) = si(t)− Li − si+1(t). Thus,

if a rear-end collision occurs between Vi and Vi+1 at time t, the inter-vehicular distance xi,i+1(t)

will satisfy xi,i+1(t) ≤ 0. For simplicity, we assume that the length of every vehicle is equal to

L, i.e. Li = L for ∀Vi ∈ V. Also, we assume that the overall platoon stays in a stable state at

the beginning time t = 0. So, every vehicle is assumed to has the same initial velocity v0, i.e.

vi(0) = v0 for ∀Vi ∈ V.

3.2. Formulation of vehicle motion

With the help of DSRC system, an equipped vehicle can independently and early start braking

after it receives a warning message, while an unequipped one can not sense the existing emergency

out of the scope of visual perception, and it can only depend on the velocity of its preceding

vehicle or the inter-vehicular distance to slow down once it is aware of the brake light flashing

ahead. At this point, we are allowed to assume that the reaction of the driver of an equipped

vehicle is independent of the motion state of its preceding vehicle with the assistance of the DSRC,
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and this equipped vehicle will start a braking after being informed of an emergency, even when its

preceding vehicle has not yet started braking. Additionally, we must point out that in an actual

scenario, there exist many factors such as the road surface condition, the road slop, vehicular load,

brake lining condition and other complex mechanical factors that should be taken into account to

determine the deceleration rate of a vehicle. And the deceleration of the vehicle could be varying

during braking. That is, when a driver of a equipped vehicle is informed of the emergency via the

inter-vehicular communication system, he/she may operate a moderate brake instead of braking

maximally at the beginning, while this driver may increase the deceleration (via increasing the

force acting on the brake pedal) after the inter-vehicular distance is obviously shorten and the

urgency of the potential rear-end collision is strengthen. In this situation, the deceleration of this

vehicle is changing along with the variation of the force acting on the brake pedal. Consequently,

the potential manual factor increases the complexity of modeling the vehicle motion. To make our

work tractable but without loss of practical meaning, we present the deceleration of those equipped

vehicles Vj ∈ VE as a constant aj . The similar model for describing the movement of an equipped

vehicle and the assumption of operating a constant deceleration are also used in other research

works such as [14, 24–26]. The braking process of those equipped vehicles is approximated by the

uniformly retarded motion, which can be defined as:

vj(t) =































v0, 0 ≤ t < tbj

v0 + aj(t− tbj), tbj ≤ t < (tbj +
−v0
aj

)

0, t ≥ (tbj +
−v0
aj

)

(6)

where aj is the deceleration of the equipped vehicle Vj and its algebra value is negative, i.e. aj < 0.

If it does not collide, the maximum distance traveled by Vj can be calculated as

dmax
j = tbjv0 −

v0
2

2aj
(7)

In order to demonstrate the validity of the aforementioned model, we compare the stopping

distance calculated by equation (7) with the actual testing results obtained in the work of [22].

They adopted the car model manufactured by GM to explore the rear-end collision and inter-

section collision with DSRC-based inter-vehicular communication systems. We adopt the poorer

manufacturer-tested braking conditions which has more practical significance to the design of some

vehicular safety applications, the relevant data can be found in Table 2 in Appendix A of [22]. In
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Figure 2 Comparing the equipped vehicle stopping distance under the manufacture-tested conditions with

that obtained by (7).

the experiment, the vehicle response time is set at 50ms and the driver perception and reaction

time at 2.5s, the average deceleration of the hard braking is −6m/s2, the initial velocity varies

from 10km/h to 110km/h. In addition, to provide the upper and lower bounds of the stopping

distance obtained by the proposed motion model at each velocity point, we also assume that the

deceleration adopted is always bounded within [−7.5,−4.5]m/s2. Then, we use the equation (7)

to calculate the average stopping distance and its upper and lower bounds corresponding to each

initial velocity. The comparative results are shown in Fig.2. It should be noted that the up-

per and lower bounds of the result at each velocity point are obtained by (7) with two settings

aj = −4.5m/s2 and aj = −7.5m/s2, respectively. And they are presented by the upper and lower

ends of the corresponding error bar in Fig.2.

From Fig.2, it can be found that the result obtained by equation (7) is almost between those

obtained in moderate braking and hard braking, and closer to the actual testing result of hard

braking under poorer condition. And more importantly, the upper bound of the defined model is

also near the testing result in moderate braking, and the lower bound contains the testing result

obtained in the hard braking situation. This means that the model can approximate the actual

result of braking with varying deceleration (as concerned in real-world situations). Therefore, the

adopted model with the setting aj ∈ [−7.5,−4.5]m/s2 is reasonable enough to approximate the

actual braking situation in real world. In the following experiments, the independent deceleration

of every equipped vehicle is bounded within [−7.5,−4.5]m/s2.

Next, we come to model the motion of those unequipped vehicles. Since an unequipped vehicle’s

motion depending on the behavior of the nearest preceding vehicle, its movement is modeled by
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the car-following approach proposed in [10, 11]. This car-following model can give a smooth

approximation of the manual driving response and has been used for the mixed manual and semi-

automated vehicle simulations in [12, 13]. Consider that an unequipped vehicle Vi ∈ VU follows its

nearest preceding vehicle Vi−1. Then, according to the car-following model, the response of Vi can

be defined as
dvi(t)

dt
= µi × (vi−1(t− τi)− vi(t− τi))× u (t− τi) (8)

where µi is a sensitivity factor, and u(t− τi) is an indicator function that is given by

u(t− τi) =











1, t > τi

0, t ≤ τi

(9)

In equation (8), the reaction of the unequipped vehicle Vi is a function of its own parameters

and those of the preceding vehicle Vi−1. That is, its velocity in a given vehicle platoon at time t

should be computed recursively by taking the integral

vi(t) = v0 +

∫ t

0

dvi(l)

dl
dl = v0 +

∫ t

τi

µi × (vi−1(l − τi)− vi(l − τi)) dl (10)

3.3. Collision computation model

Consider that those equipped and unequipped vehicles are stochastically mixed in the same

platoon as shown in Fig.1. All the possible car-following situations can be summed up as four

cases (see Fig.3). In the first case, the preceding vehicle is considered to be an equipped while

the rear one is unequipped. The second case is contrary to this case, in which the forward is

an unequipped vehicle but the follower is an equipped one. In the third case, both vehicles are

equipped. And both vehicles are unequipped in the fourth case. Based on this, we are allowed to

investigate the possibility of a collision occurring between any two adjacent vehicles. When a rear

vehicle is unequipped as the first and the fourth cases illustrate, it can only follow its preceding

vehicle to brake after being aware of the flashing brake light of the preceding vehicle. If there is

not enough time for slowing the rear vehicle safely, a collision may occur in this situation. In the

third case, although both the equipped vehicles are assumed to independently decelerate with the

assistance of the inter-vehicular communication system, a potential collision also exists. This is

because the magnitude of the deceleration of the rear vehicle may be smaller than the forward’s.

In the second case where an equipped vehicle follows an unequipped, the rear equipped vehicle
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 3 All the possible car-following cases between adjacent vehicles, the equipped vehicle is red and the

unequipped one is green.

The whole platoon

···

The k
th

 subqueue whose leader is the equipped vehicle Vjk

V jk

··· ···

VjK+mk+nk VjK+mk+1

···

VjK+mk

···
V0VjkVjM

···

Figure 4 An example of a subqueue.

usually responds to the emergency much earlier than the preceding vehicle. Recalling that we have

assumed the equipped vehicle independently decelerates in a hard braking manner, we further

assume this equipped vehicle does not crash into the preceding unequipped one.

Based on the above discussion, we are allowed to simplify the overall platoon by dividing the

overall platoon into a series of subqueues. The leader of each subqueue is an equipped vehicle while

its successive followers could be equipped ones or unequipped. And the vehicle in front of each

subqueue leader is unequipped. Let M + 1 be the total number of the subqueues. The equipped

leader of the k-th subqueue is denoted as Vjk ∈ VE(k = 0, 1, . . . ,M). Furthermore, we assume that

there are mk successive equipped vehicles and nk unequipped vehicles following Vjk in the k-th

subqueue. That is, we have Vjk , Vjk+1, . . . , Vjk+mk
∈ VE and Vjk+mk+1, Vjk+mk+2, . . . , Vjk+mk+nk

∈

VU , see Fig. 4.

To derive our basic collision computation model, we first introduce the assumption that if any

two adjacent vehicles are collided with each other, they will stop immediately at the position where

the collision occurs. This assumption neglects the effect of the momentum conservation law on the
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Figure 5 The positional relationship between Vjk+i−1 and Vjk+i when a rear-end collision occurs.

motion of two crashed vehicles for the sake of simplicity. It is worth pointing out that this assump-

tion has also been adopted in other existing works such as [14, 20], which allows one to evaluate

the worst collision situation. Since the overall platoon is divided into a series of subqueues, we

turn to focus on a subqueue denoted as the set {Vjk , Vjk+1, . . . , Vjk+mk
, Vjk+mk+1, . . . , Vjk+mk+nk

}

where Vjk , Vjk+1, . . . , Vjk+mk
∈ VE and

Vjk+mk+1, . . . , Vjk+mk+nk
∈ VU . Let the initial inter-vehicular distance between any adjacent

vehicles Vjk+i−1 and Vjk+i be x
0
jk+i−1,jk+i = xjk+i−1,jk+i(0)(i = 1, 2, . . . ,mk +nk) and the distance

traveled by Vjk+i by the time t be djk+i(t)(i = 0, 1, . . . ,mk + nk). Thus, a sufficient and necessary

condition for determining a rear-end collision between two adjacent vehicles Vjk+i−1 and Vjk+i can

be mathematically defined as

max
t∈[0,+∞)

{djk+i(t)− djk+i−1(t)} ≥ x0jk+i−1,jk+i (11)

If a rear-end collision is considered to occur between Vjk+i−1 and Vjk+i (see Fig.5), the time

instant of the collision occuring is defined as tcjk+i−1,jk+i, which is a finite positive real number, i.e.

tcjk+i−1,jk+i ∈ (0,+∞).

In the equation (11), it can be found that the initial inter-vehicular distance is one of the most

significant parameters to determine the vehicle collision. Generally, those equipped and unequipped

vehicles are considered to stochastically distribute in one platoon, and the space headway between

vehicles always follows a certain stochastic distribution. Therefore, the inter-vehicular distance

should also be a random variable following the same stochastic distribution when every vehicle has

a constant length. The exponential distribution assumption has been widely used in many recent

works such as [27–30]. In this paper, we also assume that the space headways in the given platoon

follow an exponential distribution so that the initial inter-vehicular distance x0jk+i−1,jk+i is an

exponentially distributed random variable. Let this exponential distribution be characterized with

the parameter ρ. Then, we have x0jk+i−1,jk+i ∼ exp(ρ) for i = 1, 2, . . . ,mk+nk and k = 0, 1, . . . ,M .

13



ρ represents the density of the traffic flow on the road whose unit is veh/m. The corresponding

probability density function (pdf) is

f(x; ρ) =











ρe−ρx, x > 0

0, x ≤ 0
(12)

It is worth pointing out that the inter-vehicular distance in different traffic flows will follow different

stochastic distributions. The exponential distribution adopted in this paper is not unique. Once

other specific formulation of the pdf of the inter-vehicular distance distribution is derived, it can

be used to substitute the exponential pdf. That is, our model is independent of the specific inter-

vehicular distance distribution.

In a given subqueue, the probability p
(1)
jk+i−1,jk+i that the rear vehicle Vjk+i does not crash into

its preceding vehicle Vjk+i−1 (i = 1, 2, . . . ,mk + nk) can be calculated as follows:

p
(1)
jk+i−1,jk+i = 1− Pro

{

∆d∗jk+i−1,jk+i ≥ x0jk+i−1,jk+i

}

= 1−

∫ ∆d∗jk+i−1,jk+i

−∞

f(x; ρ)dx = 1−

∫ ∆d∗jk+i−1,jk+i

0
ρe−ρxdx = e

−ρ∆d∗jk+i−1,jk+i

(13)

And the corresponding inter-vehicular collision probability p
(2)
jk+i−1,jk+i is derived as

p
(2)
jk+i−1,jk+i = 1− p

(1)
jk+i−1,jk+i (14)

In the equation (13), the parameter ∆d∗jk+i−1,jk+i is set to the maximum relative inter-vehicular

distance, i.e. ∆d∗jk+i−1,jk+i = maxt∈[0,+∞) {djk+i(t)− djk+i−1(t)}.

From the equations (11) and (13), it can be found that the maximum relative inter-vehicular

distance ∆d∗jk+i−1,jk+i should be determined before deriving p
(1)
jk+i−1,jk+i and p

(2)
jk+i−1,jk+i. How-

ever, when considering the initial inter-vehicular distance follows the stochastic distribution, it

is not tractable to deterministically calculate ∆d∗jk+i−1,jk+i. Even it is difficult to directly de-

rive djk+i−1(t) and djk+i(t). Therefore, to make the computation tractable, we resort to the

concept of the mathematical expectation in probability theory so as to define our stochastic

model. We calculate the expected value E[djk+i(t
s
jk+i)] of the total distance djk+i(t

s
jk+i) trav-

eled by any vehicle Vjk+i(i = 0, 1, . . . ,mk + nk) when it stops at time tsjk+i as well as the ex-

pected relative distance E(∆djk+ik−1,jk+ik) between any two adjacent vehicles Vjk+i−1 and Vjk+i.

For simplicity, let djk+i = E[djk+i(t
s
jk+i)] and ∆djk+i−1,jk+i = E(∆djk+ik−1,jk+ik). As the sub-

queue example shown in Fig.4, there are only three car-following situations (shown by Case 1,

14



Case 3 and Case 4 in Fig.3) possibly involved in a subqueue. Accordingly, the subqueue can

further be divided into two parts, one of which comprises those successive equipped vehicles

{Vjk , Vjk+1, . . . , Vjk+mk
} ⊂ VE in the front of this subqueue, the other comprises those rear un-

equipped vehicles {Vjk+mk+1, Vjk+mk+2, . . . , Vjk+mk+nk
}. Therefore, we can consider two situations

in detail, respectively.

3.3.1. Collision computation model if the rear vehicle is equipped

In the first situation, consider an equipped vehicle Vjk+j that follows another equipped vehicle

Vjk+j−1(1 ≤ j ≤ mk). Through equation (7), it can be known that the distance djk+j(t
s
jk+j) traveled

by Vjk+j attains the maximum value dmax
jk+j when giving Vjk+j does not collide with Vjk+j−1 and

normally stops at time tsjk+j . If given the expected distance djk+j−1 traveled by Vjk+j−1, we can

approximate the maximum relative distance between Vjk+j−1 and Vjk+j as:

∆d∗jk+j−1,jk+j = dmax
jk+j − djk+j−1 (15)

By substituting the result of the equation (15) into the equation (13), the probabilities p
(1)
jk+j−1,jk+j

and p
(2)
jk+j−1,jk+j can be derived.

On the other hand, according to the definition of the expected value, the expected distance

djk+j traveled by the rear vehicle Vjk+j can be calculated by the probability-weighted average of

all possible values of djk+j(t
s
jk+j). Thus, we get

djk+j = p
(1)
jk+j−1,jk+j × dmax

jk+j + p
(2)
jk+j−1,jk+j × d

c

jk+j (16)

where d
c

jk+j is the expected distance traveled by Vjk+j by the time when it is considered to collide

with Vjk+j−1.

More specifically, recalling that these two adjacent equipped vehicles have the same initial ve-

locity and independently decelerate, these two vehicles may collide in three ways: i) the preceding

vehicle is braking while the rear keeps traveling ; ii) both vehicles are braking ; and iii) the preced-

ing vehicle has stopped. Each of those rear-end collision ways could lead to a different expected

distance d
c

jk+j traveled by Vjk+j . For convenience of discussion, we first denote d
c1
jk+j that is the

expected distance traveled by Vjk+j to stop when considering the rear-end collision occurs in the

way i), d
c2
jk+j corresponding to ii) and d

c3
jk+j to iii). Furthermore, the probability of the rear-end

collision occurring in those three ways are denoted as pc1jk+j−1,jk+j , p
c2
jk+j−1,jk+j and pc3jk+j−1,jk+j ,
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respectively. Subsequently, we can replace the term p
(2)
jk+j−1,jk+j × dcjk+j in the equation (16) by

using those different expected distances to stop as follows

djk+j = p
(1)
jk+j−1,jk+j×dmax

jk+j+pc1jk+j−1,jk+j×d
c1
jk+j+pc2jk+j−1,jk+j×d

c2
jk+j+pc3jk+j−1,jk+j×d

c3
jk+j (17)

Through equation (17), we can approximate the distance traveled by an equipped vehicle by the

time when it stops in the sense of the mathematical expectation. This approximation is reasonable

since it takes into account the stochastic nature of the inter-vehicular distance distribution and the

similar computation technique has also been adopted in the work of [14, 26].

By referring to the computation formula of the mathematical expectation in the probability

theory, we can present the general formula for computing the expected distance as follows:

distjk+j =
1

∫

ΩL
f(l; ρ)dl

∫

ΩL

distjk+j(l)× f(l; ρ)dl (18)

where distjk+j(l) is the distance to stop traveled by the vehicle Vjk+j when given the initial inter-

vehicular distance between Vjk+j−1 and Vjk+j is the random variable l, distjk+j is the corresponding

expected distance and f(l; ρ) is the probability density function of l. ΩL denotes the value space of

l. By following (18), we can derive the computation models of d
c1
jk+j , d

c2
jk+j and d

c3
jk+j respectively

as follows:

For proceeding the derivation, we firstly introduce some time notations including tsjk+j−1 and

tjk+j(l). t
s
jk+j−1 is defined as the time spent by the vehicle Vjk+j−1 to travel the expected distance

djk+j−1 to stop. tjk+j(l) represents the time instant at which the rear-end collision occurs in the

ii) way mentioned before, where the initial inter-vehicular distance between Vjk+j−1 and Vjk+j is

l. Let tims
jk+j(l) represent the time spent by the vehicle Vjk+j to travel the distance l. Then,

tims
jk+j(l)(forj = 0, 1, . . . ,mk) can be calculated as

tims
jk+j(l) =



















l

v0
, 0 ≤ l ≤ v0t

b
jk+j

tbjk+j −
v0

ajk+j
−

√

2

ajk+j
(l − dmax

jk+j), v0t
b
jk+j < l ≤ dmax

jk+j

(19)

Hence, we can derive tsjk+j−1 = tims
jk+j−1(djk+j−1).

A. When considering Vjk+j−1 is braking while Vjk+j keeps traveling with the constant velocity

In this situation, it implies that the time instant when the preceding vehicle Vjk+j−1 stops should

not be less than the time instant at which this vehicle starts braking, i.e., tsjk+j−1 ≤ tbjk+j−1. Thus,
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when tsjk+j−1 > tbjk+j−1, we can simply set d
c1
jk+j = 0. Otherwise, a time instant must exist when

Vjk+j crashes into Vjk+j−1. Given an initial inter-vehicular distance x0jk+j−1,jk+j (for simplicity,

we use l to substitute the notation x0jk+j−1,jk+j in the following discussion), we denote this time

instant as tjk+j(l), and it should satisfy

tbjk+j−1 ≤ tjk+j(l) ≤ min
{

tsjk+j−1, t
b
jk+j

}

(20)

and

v0tjk+j(l) = l + v0tjk+j(l) +
1

2
ajk+j−1(tjk+j(l)− tbjk+j−1)

2 (21)

Thus, from the equation (21), we can further get

l = −
1

2
ajk+j−1(tjk+j(l)− tbjk+j−1)

2 (22)

Accordingly, we can get the upper and lower bounds Lmin
1 , Lmax

1 for l by substituting the bounds

of tjk+j(l) into the equation (22) so as to get

Lmin
1 = −

1

2
ajk+j−1(t

b
jk+j−1 − tbjk+j−1)

2 = 0 (23)

Lmax
1 = −

1

2
ajk+j−1min

{

(tsjk+j−1 − tbjk+j−1)
2, (tbjk+j − tbjk+j−1)

2
}

= −
1

2
ajk+j−1min

{

(tsjk+j−1 − tbjk+j−1)
2, δ2jk+j

}

(24)

By solving (22), we get

tjk+j(l) =

√

−2l

ajk+j−1
+ tbjk+j−1 (25)

Then, substituting the result of (25) into the term v0tjk+j(l), we can obtain the distance traveled

by Vjk+j when given an initial inter-vehicular distance l:

distjk+j(l) = v0

(
√

−2l

ajk+j−1
+ tbjk+j−1

)

(26)

Hence, we set the value space as ΩL =
{

l|∀l ∈ [Lmin
1 , Lmax

1 ]
}

and substitute (26) into the integral

(18) to get

d
c1
jk+j =

1

pc1jk+j−1,jk+j

∫ Lmax
1

Lmin
1

v0

(
√

−2l

ajk+j−1
+ tbjk+j−1

)

ρe−ρldl (27)

where pc1jk+j−1,jk+j =
∫ Lmax

1

Lmin
1

ρe−ρldl.
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B. When considering both vehicles Vjk+j−1 and Vjk+j are braking

When a rear-end collision would not occur during both vehicles braking, i.e., tsjk+j−1 ≤ tbjk+j−1,

we can simply set d
c2
jk+j = 0. Otherwise, when a rear-end collision occurs during both vehicles

braking, a time instant tjk+j(l) should exist and satisfy:

tbjk+j−1 ≤ tjk+j(l) ≤ tsjk+j−1 (28)

and

tbjk+j ≤ tjk+j(l) ≤ tbjk+j −
v0

ajk+j
(29)

Based on the definition of tjk+j(l), the distance traveled by Vjk+j by the time it stops can be

yielded as

distjk+j(l) = v0tjk+j(l) +
1

2
ajk+j(tjk+j(l)− tbjk+j)

2 (30)

By substituting (30) into (18), we can have

d
c2
jk+j =

1

pc2jk+j−1,jk+j

∫ Lmax
2

Lmin
2

[v0tjk+j(l) +
1

2
ajk+j(tjk+j(l)− tbjk+j)

2]ρe−ρldl (31)

where the parameters Lmin
2 and Lmax

2 are defined as the lower and upper bounds of l in this integral.

Accordingly, we can further represent d
c2
jk+j as

d
c2
jk+j =

1

pc2jk+j−1,jk+j

×















0, tsjk+j−1 ≤ tbjk+j−1
∫ Lmax

2

Lmin
2

[v0tjk+j(l) +
1

2
ajk+j(tjk+j(l)− tbjk+j)

2]ρe−ρldl, tsjk+j−1 > tbjk+j−1

(32)

Additionally, we discuss the calculations of those parameters Lmin
2 , Lmax

2 and tjk+j(l) in three

situations where the decelerations ajk+j and ajk+j−1 may have different relationships: (i) (ajk+j −

ajk+j−1) > 0, (ii) ajk+j = ajk+j−1 and (iii) (ajk+j−ajk+j−1) < 0. Recalling tbjk+j = tbjk+j−1+δjk+j >

tbjk+j−1, we can lump (28) and (29) as

tbjk+j ≤ tjk+j(l) ≤ min

{

tsjk+j−1, t
b
jk+j −

v0
ajk+j

}

(33)

On the other side, this time instant tjk+j(l) should also satisfy the kinematic relation

v0tjk+j(l) +
1

2
ajk+j(tjk+j(l)− tbjk+j)

2 = l + v0tjk+j(l) +
1

2
ajk+j−1(tjk+j(l)− tbjk+j−1)

2 (34)

By substituting tbjk+j = tbjk+j−1 + δjk+j into (34), we get

l =
1

2
(ajk+j − ajk+j−1)(tjk+j(l)− tbjk+j−1)

2 − ajk+jδjk+j(tjk+j(l)− tbjk+j−1) +
1

2
ajk+jδ

2
jk+j (35)
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The equation (35) above can be treated as a quadratic function of l with respect to (tjk+j(l) −

tbjk+j−1). For simplifying the mathematical expressions, we denote x = tjk+j(l) − tbjk+j−1 and

l = g(x) = 1
2(ajk+j − ajk+j−1)x

2 − ajk+jδjk+jx+ 1
2ajk+jδ

2
jk+j . Recalling (33), we can have tbjk+j −

tbjk+j−1 = δjk+j ≤ x ≤ tsupjk+j where tsupjk+j = min
{

tsjk+j−1, t
b
jk+j −

v0
ajk+j

}

− tbjk+j−1.

(i) When (ajk+j − ajk+j−1) > 0, the quadratic function g(x) is the parabola that opens upward

and the axis of symmetry (i.e., the x-coordinate of the vertex) of which is x∗ =
ajk+jδjk+j

(ajk+j−ajk+j−1)
< 0

(noting that ajk+j < 0). Since this quadratic function g(x) will increase with increasing x in the

range [x∗,+∞), we can obtain the minimum and maximum values Lmin
2 , Lmax

2 of g(x) in the closed

interval [δjk+j , t
sup
jk+j ] ⊂ [x∗,+∞) as

Lmin
2 =

1

2
(ajk+j − ajk+j−1)δ

2
jk+j − ajk+jδ

2
jk+j +

1

2
ajk+jδ

2
jk+j = −

1

2
ajk+j−1δ

2
jk+j (36)

Lmax
2 = g(tsupjk+j) =

1

2
(ajk+j − ajk+j−1)(t

sup
jk+j)

2 − ajk+jδjk+j(t
sup
jk+j) +

1

2
ajk+jδ

2
jk+j (37)

In addition, by solving l = g(x), we can get two real roots:



























x1 =
ajk+jδjk+j +

√

(ajk+jδjk+j)2 − 2(ajk+j − ajk+j−1)(
1
2ajk+jδ2jk+j − l)

(ajk+j − ajk+j−1)

x2 =
ajk+jδjk+j −

√

(ajk+jδjk+j)2 − 2(ajk+j − ajk+j−1)(
1
2ajk+jδ2jk+j − l)

(ajk+j − ajk+j−1)

(38)

From (38), we can see that x2 < 0 while x1 > 0. At this point, recalling x = tjk+j(l) − tbjk+j−1 ≥

δjk+j > 0, we can get

tjk+j(l) = x1+tbjk+j−1 =
ajk+jδjk+j +

√

(ajk+jδjk+j)2 − 2(ajk+j − ajk+j−1)(
1
2ajk+jδ2jk+j − l)

(ajk+j − ajk+j−1)
+tbjk+j−1

(39)

(ii) When (ajk+j − ajk+j−1) = 0, we are allowed to simplify l = g(x) as a linear function

l = g(x) = −ajk+jδjk+jx + 1
2ajk+jδ

2
jk+j . Since the coefficient −ajk+jδjk+j > 0, l = g(x) is a

monotonously increasing function of x. Therefore, it can be obviously obtained that

Lmin
2 = g(δjk+j) = −

1

2
ajk+jδ

2
jk+j (40)

and

Lmax
2 = g(tsupjk+j) = −ajk+jδjk+jt

sup
jk+j +

1

2
ajk+jδ

2
jk+j (41)
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At the meanwhile, the time instant tjk+j(l) can be calculated by solving l = g(x):

tjk+j(l) =
1
2ajk+jδ

2
jk+j − l

ajk+jδjk+j
+ tbjk+j−1 (42)

(iii) When (ajk+j − ajk+j−1) < 0, the quadratic function l = g(x) becomes the parabola that

opens downward and the axis of symmetry x∗ =
ajk+jδjk+j

(ajk+j−ajk+j−1)
> δjk+j . By solving g(x) = 0, we

can get two square real roots as























r1 =

√

|ajk+j |
√

|ajk+j |+
√

|ajk+j−1|
δjk+j

r2 =
−
√

|ajk+j |
√

|ajk+j−1| −
√

|ajk+j |
δjk+j

(43)

From (43), it can be found that r1 < δjk+j < r2. Thus, in order to guarantee l = g(x) ≥ 0,

the variable x should be limited within [r1, r2]. In [r1, r2], the maximum value of l = g(x) is
(ajk+j−ajk+j−1)ajk+jδ

2
jk+j−a2jk+jδ

2
jk+j

2(ajk+j−ajk+j−1)
. Furthermore, since δjk+j ≤ x ≤ tsupjk+j , l ≥ 0 holds with the

condition δjk+j ≤ x ≤ min
{

tsupjk+j , r2

}

. More specifically, if tsupjk+j ≥ r2, we can set















Lmin
2 = g(r2) = 0

Lmax
2 =

(ajk+j − ajk+j−1)ajk+jδ
2
jk+j − a2jk+jδ

2
jk+j

2(ajk+j − ajk+j−1)

(44)

Otherwise, if tsupjk+j < r2, we can get

Lmin
2 = min

{

g(δjk+j), g(t
sup
jk+j)

}

= min

{

−
1

2
ajk+j−1δ

2
jk+j , g(t

sup
jk+j)

}

(45)

Lmax
2 =















g(tsupjk+j), tsupjk+j ≤ x∗

(ajk+j − ajk+j−1)ajk+jδ
2
jk+j − a2jk+jδ

2
jk+j

2(ajk+j − ajk+j−1)
, r2 > tsupjk+j > x∗

(46)

In order to guarantee that tjk+j(l) ∈ [δjk+j ,min
{

r2, t
sup
jk+j

}

] when l ranging within the closed

interval [Lmin
2 , Lmax

2 ] obtained above, the time instant tjk+j(l) should be correspondingly set as

tjk+j(l) =











x2 + tbjk+j−1, tsupjk+j ≥ r2, or x∗ ≤ tsupjk+j ≤ r2 and |δjk+j − x∗| ≤ |tsupjk+j − x∗|

x1 + tbjk+j−1, tsupjk+j ≤ x∗, or x∗ ≤ tsupjk+j ≤ r2 and |δjk+j − x∗| > |tsupjk+j − x∗|
(47)

C. When considering the vehicle Vjk+j−1 has stopped
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It can be easily seen that if the stopping time of the vehicle Vjk+j , t
b
jk+j +

−v0
ajk+j

, were earlier

than the stopping time of Vjk+j−1, t
s
jk+j−1, in this situation, no collision would occur. In this

sense, d
c3
jk+j can be simply set to 0. On the other side, if tsjk+j−1 ≤ tbjk+j +

−v0
ajk+j

and the initial

inter-vehicular distance between Vjk+j−1 and Vjk+j is given as l, the distance traveled by the vehicle

Vjk+j when it stops can be expressed as distjk+j(l) = djk+j−1 + l. Thus, substituting distjk+j(l)

into (18) can yield d
c3
jk+j = 1

pc3jk+j−1,jk+j

∫ Lmax
3

Lmin
3

[djk+j−1 + l]ρe−ρldl where the parameters Lmin
3 and

Lmax
3 are defined as the lower and upper bounds of l in the integral. Therefore, we can derive d

c3
jk+j

as

d
c3
jk+j =

1

pc3jk+j−1,jk+j

×



















0, tsjk+j−1 > tbjk+j +
−v0
ajk+j

∫ Lmax
3

Lmin
3

[djk+j−1 + l]ρe−ρldl, tsjk+j−1 ≤ tbjk+j +
−v0
ajk+j

(48)

In addition, if the rear vehicle Vjk+j crashes into Vjk+j−1 which has stopped, it is required

that tsjk+j−1 ≤ tbjk+j −
v0

ajk+j
. Hence, a time instant tjk+j(l) should exist and satisfy tsjk+j−1 ≤

tjk+j(l) ≤ tbjk+j −
v0

ajk+j
. Additionally, this rear-end collision could occur during Vjk+j moving

with the constant velocity v0, or during Vjk+j braking. In the first case, tjk+j(l) is limited within

[tsjk+j−1, t
b
jk+j ], and we can get

v0tjk+j(l) = djk+j−1 + l (49)

In the second case, tjk+j(l) satisfies t
b
jk+j < tjk+j(l) ≤ tbjk+j −

v0
ajk+j

, we get

v0tjk+j(l) +
1

2
ajk+j(tjk+j(l)− tbjk+j)

2 = djk+j−1 + l (50)

Therefore, the upper bound Lmax
3 is obtained under the condition that Vjk+j collides with Vjk+j−1

at the terminal time instant tbjk+j −
v0

ajk+j
when Vjk+j just happens to finish braking:

Lmax
3 = v0(t

b
jk+j−

v0
ajk+j

)+
1

2
ajk+j(t

b
jk+j−

v0
ajk+j

−tbjk+j)
2−djk+j−1 = v0t

b
jk+j−

v20
2ajk+j

−djk+j−1 (51)

But the lower bound Lmin
3 should be derived under the condition that Vjk+j crashes into Vjk+j

before starting braking. That is,

Lmin
3 = v0t

s
jk+j−1 − djk+j−1 (52)

.
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3.3.2. Collision computation model if the rear vehicle is unequipped

The successive unequipped vehicle’s movement are formulated with the car-following model

defined by equation (8). From equation (10), it can be found that the velocity of an unequipped

vehicle is a function of its own and its preceding vehicle. This means that there are no closed-

form expressions for the velocity of an unequipped vehicle. Nevertheless, once the velocity of the

preceding vehicle is updated, the velocity of this unequipped vehicle can be updated, subsequently.

First, recalling equation (6), we rewrite the velocity of the equipped vehicle Vjk+mk
which is

located in front of the first unequipped vehicle Vjk+mk+1 in the same subqueue as v∗jk+mk
(t) =

vjk+mk
(t) ×

[

1− u(t− tsjk+mk
)
]

. Subsequently, we can rearrange the equation (10) to recursively

calculate the velocity of Vjk+mk+1 as:

vjk+mk+1(t) = v0+

∫ t

τjk+mk+1

µjk+mk+1×
(

v∗jk+mk
(l − τjk+mk+1)− vjk+mk+1(l − τjk+mk+1)

)

dl (53)

Additionally, we denote the time instant at which Vjk+mk+1 stops as tsjk+mk+1. Hence, the

distance traveled by Vjk+mk+1 by the time t can be calculated by the integral as

djk+mk+1(t) =



















∫ t

0
(vjk+mk+1(l)) dl, 0 ≤ t ≤ tsjk+mk+1;

∫ tsjk+mk+1

0
(vjk+mk+1(l)) dl, t > tsjk+mk+1.

(54)

The maximum distance traveled by Vjk+mk+1 should be attained when this vehicle can normally

stop. That is, if the unequipped Vjk+mk+1 does not collide or be collided with others during braking

in the car-following manner, its distance djk+mk+1(t) will attain the maximum value at the time

instant when Vjk+mk+1 stops. Let this maximum distance be dmax
jk+mk+1. Thus, we can set the

value of tsjk+mk+1 equal to the time instant at which vjk+mk+1(t) = 0, i.e., vjk+mk+1(t
s
jk+mk+1) = 0,

and then derive dmax
jk+mk+1 = djk+mk+1(t

s
jk+mk+1). Therefore, similarly to the equation (15), the

maximum relative distance between Vjk+mk
and Vjk+mk+1 can be approximated as

∆d∗jk+mk,jk+mk+1 = dmax
jk+mk+1 − djk+mk

(55)

And, based on the result of (55), the non-collision probability p
(1)
jk+mk,jk+mk+1 and collision proba-

bility p
(2)
jk+mk,jk+mk+1 can be calculated by (13) and (14).

After that, the actual value of the time instant tsjk+mk+1 should be recaclulated since Vjk+mk+1

may collide with its preceding vehicle or be collided by its rear vehicle before its traveled distance
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attaining the maximum value. Once it is obtained, it is used to update the velocity of Vjk+mk+1

by using v∗jk+mk+1(t) = vjk+mk+1(t) ×
[

1− u(t− tsjk+mk+1)
]

. However, it is difficult to derive

tsjk+mk+1 in the same approach to calculate the counterpart of an equipped vehicle by using (19).

The reason is that the velocity of this unequipped vehicle Vjk+mk+1 are partially dependent on

those of its preceding vehicle and it brakes in the car-following manner. It is not feasible to

derive a closed-form expression to formulate the distance distjk+mk+1(l) traveled by Vjk+mk+1

when given an initial inter-vehicular distance l. Consequently, nor is it feasible to calculate its

expected distance d
c

jk+mk+1 in the case of rear-end collision by equation (18), or to calculate

the total expected distance djk+mk+1 by equation (16). We derive this time instant tsjk+mk+1 by

computing the expected relative distance ∆djk+mk,jk+mk+1 between Vjk+mk
and Vjk+mk+1. By

referring to equation (16), ∆djk+mk,jk+mk+1 can be calculated as

∆djk+mk,jk+mk+1 = p
(1)
jk+mk,jk+mk+1×∆d

∗

jk+mk,jk+mk+1+p
(2)
jk+mk,jk+mk+1×∆d

c

jk+mk,jk+mk+1 (56)

where ∆d
c

jk+mk,jk+mk+1 is the expected relative distance in the case of colliding with its preceding

vehicle or being collided by its rear vehicle. By referring to equation (18), we derive the similar

formula for computing ∆d
c

jk+mk,jk+mk+1: if an inter-vehicular distance is l, we can get

∆d
c

jk+mk,jk+mk+1 =
1

p
(2)
jk+mk,jk+mk+1

∫ ∆d
∗

jk+mk,jk+mk+1

0
lρe−ρldl

=
1

p
(2)
jk+mk,jk+mk+1

(

1

ρ
−∆d

∗

jk+mk,jk+mk+1e
−ρ∆d

∗

jk+mk,jk+mk+1 −
1

ρ
e−ρ∆d

∗

jk+mk,jk+mk+1

)

(57)

Once the expected distance ∆djk+mk,jk+mk+1 is calculated by the above equations, we can

define a function as

W (t) = ∆djk+mk,jk+mk+1(t)−∆djk+mk,jk+mk+1 = djk+mk+1(t)− djk+mk
(t)−∆djk+mk,jk+mk+1

(58)

Here, it should be noted that given a ∆djk+mk,jk+mk+1 obtained by the equation (56), at least one

real root of W (t) = 0 exists. The proof is given in the following corollary:

Theorem 1 Given ∆djk+mk,jk+mk+1 and the corresponding W (t) in (58), there exists at least one

real root ϕ ∈ [0,+∞) for the equation W (t) = 0
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Proof 1 See Appendix Appendix A.�

Accordingly, we can set the time instant tsjk+mk+1 equal to the real root of the equation W (t) =

0, i.e., W (tsjk+mk+1) = 0, and use this time instant tsjk+mk+1 to update the velocity of Vjk+mk+1 as

v∗jk+mk+1(t) = vjk+mk+1(t) ×
[

1− u(t− tsjk+mk+1)
]

. Moreover, we also set the expected distance

djk+mk+1 equal to the distance traveled by Vjk+mk+1 by the time instant tsjk+mk+1. That is, we

can get djk+mk+1 = djk+mk+1(t
s
jk+mk+1). Once djk+mk+1 is derived, the parameters tsjk+mk+i and

djk+mk+i of other rear unequipped vehicles Vjk+mk+i (i = 2, 3, . . . , nk) can also be computed by

using the same procedure consisting of (53)∼(58). It is worth pointing out that in this computation

framework, the computation of the velocity and distance of any unequipped vehicle should be

recursive since they slow down in the car-following manner. The overall computation of those

successive unequipped vehicles {Vjk+mk+1, Vjk+mk+2, . . . , Vjk+mk+nk
} can be summarized as the

main four steps: initially, set i = 1 and then

Step 1: update the velocity Vjk+mk+i−1 by v
∗
jk+mk+i−1(t) = vjk+mk+i−1(t)×

(

1− u
(

t− tsjk+mk+i−1

))

and then recursively calculate vjk+mk+i(t) as well as djk+mk+i(t) in this subqueue;

Step 2: calculate the maximum expected distance dmax
jk+mk+i(t) as well as the maximum expect-

ed relative distance ∆d∗jk+mk+i−1,jk+mk+i(t); based on these results, derive the non-collision and

collision probabilities p
(1)
jk+mk+i−1,jk+mk+i and p

(2)
jk+mk+i−1,jk+mk+i;

Step 3: calculate the expected relative distance in case of collision ∆d
c

jk+mk+i−1,jk+mk+i as well

as ∆djk+mk+i−1,jk+mk+i; then, solve the equation W (t) = 0 so as to get a real root ξ with these

results. Thus, set tsjk+mk+i = ξ and djk+mk+i = djk+mk+i(t
s
jk+mk+i);

Step4 : if i < nk, then set i = i+1 and go to Step 1 to continuously the procedure; otherwise,

stop the procedure.

4. Computation of the average collision percentage

In this section, we firstly compute the vehicle collision times in the given subqueue, and then

adopt the Monte Carlo based approach to derive the average collision percentage of the platoon

based on the computation outcome of each subqueue. To achieve the computation of the average

collision times in a subqueue, we adopt the Markov chain modeling technique used in [14], where

the causal chain of possible rear-end collisions occurring between adjacent vehicles in a platoon

is modeled as a probability tree diagram. To represent a stochastic state in the probability tree,
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Figure 6 Probability tree diagram for a given subqueue.

we use the statistical concept of ‘‘times’’ as a measure of the frequency of an event occurring such

as a rear-end collision or a successfully stopping instead of the amount of collided or successfully

stopped vehicles. Hence, all the possible rear-end collision outcomes can be represented by the

endings of the constructed probability tree.

4.1. Average collision percentage of a subqueue

When given a finite time window [0, T ], i.e., t ∈ [0, T ], based on the stochastic model proposed

above, we can calculate the velocity, distance as well as the collision probability between any two

adjacent vehicles in a given subqueue during [0, T ]. Subsequently, we use the Markov chain to

compute the average collision times occurring in the given subqueue. Here, we denote β1 as the

number of times of those vehicles in a given subqueue colliding with its preceding vehicle and β2

as that of the vehicles successfully avoiding crashing into its preceding. Then, a probabilistic state

can be defined as S(β1, β2). Consider a given subqueue {Vjk , . . . , Vjk+mk
, . . . , Vjk+mk+nk

} in which

there exist mk + 1 equipped vehicles and nk unequipped vehicles. We can construct a probability

tree for all possibilities of state transition of the given subqueue (see Fig. 6).

In Fig. 6, the initial state S(0, 0) represents that only one equipped leading vehicle Vjk exists and

no collision occurs in this subqueue. Once a vehicle Vjk+1 comes to follow Vjk , two possible events

are considered to happen between Vjk+1 and Vjk : i) Vjk+1 collides with Vjk , or ii) Vjk+1 successfully

avoids crashing into Vjk . Accordingly, there are two possible states denoted by S(1, 0) and S(0, 1)

to which the initial state S(0, 0) will migrate. Similarly, when the next vehicle Vjk+2 follows Vjk+1,

each of the preceding states S(1, 0) and S(0, 1) is then possibly transferred to another two states,

and so forth. The probability tree stretches until the last vehicle Vjk+mk+nk
is considered. The
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transition probability between any two possible states is defined as the non-collision probability

p
(1)
jk+i−1,jk+i or the collision probability p

(2)
jk+i−1,jk+i (i = 1, 2, . . . ,mk +nk). And these probabilities

are calculated by the equations presented in Subsection 3.3.

From the probability tree in Fig. 6, we can see that there are totally mk+nk+1 possible states

at the end of the tree. One path from the initial state (the root of the probability tree) to one

of the last states at the end of the tree structure (one leaf of the probability tree) represents one

possible outcome of the given subqueue. And different paths may reach the same final outcome of

the probability tree. Thus, in order to compute the probability of each outcome, we construct the

transition probability matrix denoted by P so as to represent the transition relationships between

the probabilistic states in the probability tree. There are totally (mk + nk + 2)× (mk + nk + 1)/2

states in the Markov chain as {S(0, 0), S(1, 0), S(0, 1), . . . , S(0,mk + nk)}.

P =



























0 p
(2)
jk,jk+1 p

(1)
jk,jk+1 0 0 0 0 0 0 0 ... 0

0 0 0 p
(2)
jk+1,jk+2 p

(1)
jk+1,jk+2 0 0 0 0 0 ... 0

0 0 0 0 p
(2)
jk+1,jk+2 p

(1)
jk+1,jk+2 0 0 0 0 ... 0

0 0 0 0 0 0 p
(2)
jk+2,jk+3 p

(1)
jk+2,jk+3 0 0 ... 0

0 0 0 0 0 0 0 p
(2)
jk+2,jk+3 p

(1)
jk+2,jk+3 0 ... 0

0 0 0 0 0 0 0 0 p
(2)
jk+2,jk+3 p

(1)
jk+2,jk+3 ... 0

...
...

...
...

...
...

...
...

...
...

. . .
...

0 0 0 0 0 0 0 0 0 0 ... 0



























(59)

Each element in the first row of P corresponds to the probability of the initial state transferring

to each state in the Markov chain by one step. The Markov chain is homogeneous so that the

probabilities of the initial state reaching each of mk + nk + 1 final states by taking mk + nk steps

can be given by the last mk+nk+1 elements in the first row of Pmk+nk . Given that the element at

the o1th row and the o2th column of Pmk+nk can be indexed as Pmk+nk [o1, o2], and the probability

of q collision events occurring in the given subqueue is denoted as pq(mk, nk) (q = 0, 1, . . . ,mk+nk).

Then, we have

pq(mk, nk) = P
mk+nk [1,

(mk + nk + 2)(mk + nk + 1)

2
− q] (60)

Therefore, following (60), we can compute the expected number of times of vehicle collision in this

given subqueue, i.e. the average vehicle collision times, as follows:

N c(mk, nk) =

mk+nk
∑

q=0

q × pq(mk, nk) (61)
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In addition, we also can compute the average collision percentage of the given subqueue by deter-

mining the ratio between the number of times of collision events and the total amount of events.

Let P k
c be the average collision percentage. We obtain the value of P k

c by

P k
c =

N c(mk, nk)

mk + nk

(62)

In order to validate the equations proposed in Subsections 3.3 and 4.1, we conduct a numerical

experiment in which we compare the result of the proposed stochastic model with that of Monte

Carlo simulation. In the given subqueue, the total number of vehicles is set to 10 and the pene-

tration rate of the equipped vehicle is set to 0.4. That is, the amount of the equipped vehicles is

4 = 0.4×10. The four equipped vehicles are located in front of those successive 6 unequipped vehi-

cles. And Their initial velocity is set to 90km/h. Furthermore, the deceleration of those equipped

vehicles are set different from each other’s. Without loss of generality, their decelerations are as-

sumed to be generated from the uniform distribution between −7.5 and −4.5 m/s2, and the maxi-

mum deceleration of all the unequipped vehicles is limited to −8 m/s2. Now, we come to consider

these timing parameters δj (since there are 4 equipped vehicles in this subqueue, so j = 1, 2, 3, 4)

and τi (for i = 5, . . . , 10). By referring to the DSRC-based transmission and broadcasting latencies

discussed in [22], the transmission latency γ
(1)
j can be 0 ∼ 25 ms in normal condition while the

broadcasting latency γ
(2)
j can be 100 ∼ 1000 ms. In the experiment, we fix each γ

(1)
j as 20 ms and

uniformly stochastically generate γ
(2)
j in [100, 1000] ms. The vehicular braking system reaction

time to generate the expected deceleration from a stimulus on the brake pedal εi should not be

neglected. This vehicle reaction time is dependent on the comprehensive dynamic performance of

the vehicle Vi. Its precise estimation is complex and out of the scope of this work. For the sake

of example, every εi (i = 1, 2 . . . , 10) is generated from the uniform distribution between 30 and

70 ms. As discussed in [22, 31–34], the driver reaction time depends on several complex factors such

as driver’s age, brake reaction time and neural central processing time, etc. Its test value usually

varies around 500 ms in those works. In our experiment, we simply set the driver reaction time ϵj

as a uniform random variable between 400 and 1000 ms for the equipped vehicles Vj (j = 1, 2, 3, 4).

And as for the unequipped vehicles Vi (i = 5, . . . , 10), we uniformly and stochastically set the

sum of the driver perception and reaction times (κi + ϵi) which is between 2.5 − 0.3 = 2.2s and

2.5 + 0.3 = 2.8s according to the suggestion from [22, 35]. In the experiment, the average initial

inter-vehicular distance is 1/ρ− L and it is set to discretely range from (5− L)m to (150− L)m.
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Figure 7 Validation of the computation model when given a subqueue.

The length of every vehicle is set L = 4.5m. Thus, each initial inter-vehicular distance between

vehicles can be independently stochastically generated by following the exponential distribution

with the parameter ρ. Additionally, both of the theoretical model-based computation and the com-

parative Monte Carlo simulation are repeatedly performed 100 times at each point of the initial

inter-vehicular distance so that the corresponding averaged result and its standard deviation can

be derived for comparison. The experimental results are shown in Fig.7. From Fig.7(a), it can be

found that the results obtained by our proposed computation model well approximates those of

simulation. In Fig.7(b), the root mean squared error between the theoretical and simulated results

is about 3.5%. At this point, it proves that it is reasonable enough to use the mathematical expec-

tation of the distance traveled by each individual vehicle and the expected relative inter-vehicular

distance to formulate the computation model when taking into account the stochastic nature of

inter-vehicular distance distribution. And the Markov Chain model represented as the tree-type

diagram is also validated by those comparative results.

4.2. Average collision percentage of the platoon

As mentioned before, we have divided the overall vehicle platoon V (|V| = N) into M + 1

subqueues. Recalling that in the kth subqueue the total number of vehicles is 1+mk+nk, we can get

N+1 =
∑M

k=0 (1 +mk + nk) and the total amount of the equipped vehicles is C =
∑M

k=0 (mk + 1).

When considering the actual scenario where those equipped vehicles are stochastically distributed

in the platoon and the vehicle amount is large, the number of the approaches to divide the platoon

will be tremendously large. That is, if the penetration rate of the equipped vehicles (we denote thise
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penetration rate as α) and the total amount of the vehicles (N + 1) are given, the number of the

subqueues M +1, the number of the equipped vehicles mk +1 and the unequipped vehicle amount

nk in each subqueue have large amounts of possible values. It is not feasible to enumerate all the

possible situations. Therefore, we adopt the Monte Carlo simulation approach to approximate the

stochastic distribution of those equipped vehicles in the given platoon.

Let the number of times of performing Monte Carlo simulation be an appropriate finite integer

SimNum (SimNum > 0). In each Monte Carlo simulation, let the leading vehicle of the platoon

be an equipped one. Additionally, we stochastically assign ⌊α× (N + 1)⌋ vehicles of the platoon as

the equipped vehicles. Subsequently, the given platoon can be divided into a series of subqueues ac-

cording to the distribution of those equipped vehicles generated by Monte Carlo simulation. Thus,

the numbers of those equipped and unequipped vehicles in each subqueue can also be determined

respectively. Let Qv be the set of the results of dividing the whole platoon through stochastically

assigning those equipped vehicles in the vth Monte Carlo simulation. For simplicity, this set Qv is

expressed as

Qv = {(mv
k, n

v
k)|m

v
k and nv

k ≥ 0 for k = 0, 1, . . . ,Mv} (63)

where (Mv+1) is the total number of the subqueues determined in the vth Monte Carlo simulation,

(mv
k + 1) and nv

k are the equipped and the unequipped vehicle amounts in the kth subqueue in

this simulation. And these parameters should satisfy that N + 1 =
∑Mv

k=0 (1 +mv
k + nv

k) and

⌊α× (N + 1)⌋ =
∑Mv

0 (1 +mv
k). Furthermore, based on the equation (61), we can approximate

the total expected number of rear-end collision events occurring in the platoon when considering

that those equipped vehicles are stochastically distributed as follows:

N
c
=

∑SimNum
v=1

∑

(mk,nk)∈Qv
N c(mk, nk)

SimNum
=

∑SimNum
v=1

∑

(mk,nk)∈Qv

∑mk+nk

q=0 q × pq(mk, nk)

SimNum
(64)

By following (64), the average collision percentage of the whole platoon can be denoted as P c and

calculated as

P c =
N

c

N
(65)

5. Experiments

In this section, the validation as well as the application of the proposed stochastic model is

investigated through extensive numerical experiments. To comparatively validate the results ob-

tained by our computation model, we also conduct extensive Monte Carlo simulations and perform
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the comparison between the results of the theoretical computations and the simulations. Different

traffic scenarios are set up to demonstrate the utilization of the model. All the numerical exper-

iments including the theoretical computations and Monte Carlo simulations are implemented in

MATLAB.

5.1. Model validations

We simulate two traffic scenarios for the model validation. In these two simulated scenarios, the

total amount of vehicles in the platoon is fixed at (N +1) = 25. The length of each vehicle is fixed

at 4.5m. The average initial inter-vehicular distance (1/ρ− L) discretely ranges from 10-L=5.5m

to 150-L=145.5m. And we assume that at the initial time instant t0 = 0 the leader of the given

platoon starts braking. On the other side, we vary the penetration rate of the equipped vehicles

in the platoon as α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, so as to compare the numerical results obtained

by our theoretical model and by the Monte Carlo simulations over those different penetration

rates. Furthermore, in each of these two traffic scenarios, we conduct three cases so as to validate

our theoretical model with different parameter settings. The basic characteristics of each of the

simulation cases in each of the two mobility scenarios are summarized in Tab.I. Those significant

parameters involved in the proposed computation model include the driver sensitivity coefficient

µi in the car-following model, the timing parameters τi and δj . The details on different parameter

settings are described as follows:

Table I The characteristics of different simulation cases.

settings
scenarios

high mobility: v0 = 110km/h & low mobility: v0 = 60km/h

Case 1 µi ∼ U(0.6, 1)s−1, aj ∼ U(−7.5,−4.5)m/s2.

Case 2 (κi + ϵi) ∼ U(2.2, 2.8)s, γ
(2)
j ∼ U(100, 1000)ms

Case 3 µi, (κi + ϵi), aj , γ
(2)
j set as in Case 1 and Case 2, ϵj ∼ U(300, 700)ms

i) In the first case, we simply fix the driver perception and reaction time (κi + ϵi) at 2.5s for

every unequipped vehicle and the vehicle deceleration time εi at 50ms for all the vehicles. Also, the

reaction time of those equipped vehicle driver ϵj is set at 0.5s. As for those equipped vehicles, their

DSRC-based transmission latency γ
(1)
j and broadcasting latency γ

(2)
j are fixed at 25ms and 100ms.
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On the other side, we vary the driver sensitivity coefficient µi for each unequipped vehicle and the

deceleration aj for each equipped vehicle in this case. Here, those µi are assumed to identically

and independently follow a uniform distribution whose limited interval is set as [0.6, 1]s−1.

ii) We consider to vary (κi + ϵi) and γ
(2)
j in the second case. Here, (κi + ϵi) and γ

(2)
j are also

assumed to be random variables following the uniform stochastic distribution. Besides, in this case,

µi is fixed at 0.8s−1 for all the unequipped vehicles, and the deceleration aj at −6m/s2 for all the

equipped vehicles. The other parameter settings in the second case are the same as those of the

first case.

iii) In the third case, the vehicle deceleration time εi is fixed at 50ms for all the vehicles and the

transmission latency γ
(1)
j at 25ms for those equipped vehicles. In addition, the parameters related

to the unequipped vehicles (κi + ϵi), µi (for ∀ Vi ∈ VU ), and those related to the equipped vehicles

ϵj , γ
(2)
j , aj (for ∀ Vj ∈ VE) are assumed to be uniform random variables.

In the Monte Carlo simulation, the initial space headway between vehicles is stochastically

generated from the exponential distribution with ρ. And the motion of each unequipped vehicle

is simulated in the car-following behavior while those equipped can independently decelerate (see

Subsection 3.2). The Monte Carlo simulation is performed with 100 replications at each point

of (1/ρ− L), and the simulation outcomes are then averaged. It is worth pointing out that at

each point of (1/ρ− L) we also compute the proposed theoretical model with 100 replications

and provide the average value of its outcomes, since we adopt the Monte Carlo simulation based

technique to approximate the stochastic distribution of those equipped vehicles in the platoon. In

the following figures of this subsection, the theoretical computing results are presented by the solid

line while those results obtained by the simulations are marked by the dashed line. All the results

corresponding to different penetration rate settings are represented in different colors: the results

obtained with α = 0.1 are colored in red, those with α = 0.3, α = 0.5, α = 0.7 and α = 0.9 are

assigned in blue, green, magenta and cyan, respectively. Besides, the standard deviation of the

results at each point is represented by the error bar.

5.1.1. High mobility scenario

In the first scenario, the initial velocity v0 of all vehicles in the platoon is identically set to

a relatively high value, i.e. v0 = 110km/h. The results obtained by computing our stochastic

model and by processing Monte Carlo simulation are shown in Fig. 8. It can be found that when
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Figure 8 The model validation in the high mobility scenario.

the average inter-vehicular distance is small and the penetration rate α of the equipped vehicles

is low, the value of average collision percentage is relatively higher. For example, the average

collision percentages at the data point of (1/ρ− L) = 5.5m with α = 0.1 are above 90%. However,

the probability of chain collisions in the platoon is relatively smaller, when both (1/ρ− L) and α

are large enough. The reason is that the larger inter-vehicular distance is reserved for vehicle’s

deceleration, the smaller the chance of vehicle crashing into its preceding one becomes, and the

more vehicles are equipped with inter-vehicular communications, the shorter the cumulative arrival

time of warning message propagating between vehicles is. Moreover, those subfigures show that

the theoretical results are close to those of the simulations. At this point, our theoretical model

can capture the basic property of the platoon as the simulation based approach does.
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Figure 9 The model validation in the low mobility scenario.

5.1.2. Low mobility scenario

Different from the high mobility scenario, in the low mobility scenario, the initial velocity is

set as v0 = 60km/h. And the results are illustrated in Fig. 9. The similar conclusion can also be

drawn. It can be seen that our stochastic model provides an excellent approximation to the exact

outcomes from the simulations. Moreover, it can be found that the lower mobility may lead to

less rear-end collision in the given platoon under the same penetration rate. For example, when

the average initial inter-vehicular distance is set to about 100m and α = 0.9, the average collision

percentages obtained in the three cases of the high mobility scenario are around 20%, while those

obtained in the low mobility are obviously below 20%. The results is consistent with the fact that

the relatively smaller velocity could result in a lower severity of vehicular rear-end collision when

compared to the high mobility situation in the same traffic density. In both scenarios, the results

of the theoretical model well approximates those of simulations and capture the actual fact.
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Figure 10 The average collision percentage in two scenarios with different mean velocities.

5.2. Model applications

To show the model applications, we conduct the following experiments. We set up two typical

traffic urban scenarios: one is related to the urban traffic flow during the peak hours and another

is the non-peak hour traffic flow. Generally, the space headway distribution and the mean velocity

of the traffic flow are two main parameters to characterize these two traffic scenarios. Thus, we

focus on different settings of those two parameters. In the following experiments, we also assume

that all the vehicles have the same length L = 4.5m. In the peak-hour traffic scenario, the average

space headway between vehicles is set as 1/ρ = 18m. That is, in this scenario, the average initial

inter-vehicular distance is set to (1/ρ− L) = 18−4.5 = 13.5m. And the mean velocity of the traffic

flow is set to 6.5m/s. For comparison, the average space headway is fixed at 40m in the non-peak-

hour scenario (similarly, the average initial inter-vehicular distance is equal to 40− 4.5 = 35.5m in

this scenario). In addition, the mean traffic flow velocity is set to a relatively high value 13.5m/s.

For both scenarios, the number of the vehicles in the platoon is also equal to (N +1) = 25. Hence,

with those parameter settings corresponding to the different traffic scenarios, we are allowed to

apply our proposed model to evaluate the influence of the different model parameters on the chain

collision in a given platoon.

5.2.1. Evaluation of the influence of the different initial velocities on the average collision percent-

age

Fig. 10 shows the results with different settings on the initial velocity of the platoon as well as

on the penetration rate α. The initial velocity v0 ranges within different intervals in the two traffic
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scenarios. In the non-peak-hour traffic scenario, v0 discretely ranges within [13.5− 3× 1.5, 13.5 +

3× 1.5] = [9, 18] m/s, while in the peak-hour traffic scenario within [6.5− 3× 1.2, 6.5 + 3× 1.2] =

[2.9, 10.1] m/s. The other parameters are set in the same way of the third case in the previous

experiments for model validation: the vehicle deceleration time εi is fixed at 50ms for every vehicle,

the transmission latency γ
(1)
j at 25ms for those equipped vehicles, while (κi + ϵi) ∼ U(2.2, 2.8)s,

µi ∼ U(0.6, 1)s−1, ϵj ∼ U(300, 700)ms, γ
(2)
j ∼ U(100, 1000)ms, aj ∼ U(−7.5,−4.5)m/s2. It should

be pointed out that at each point of the initial velocity the theoretical model is performed with

100 replications and then, the averaged result and its corresponding standard deviation at each

point are provided in the following figures (illustrated by markers and error bars, respectively).

From Fig. 10, it can be found that the slope of the curve corresponding to a smaller α is relatively

larger. That is, when the penetration rate of those equipped vehicles in the given platoon is

relatively smaller (e.g., when the penetration rate α is set to be 0.1), the average collision percentage

is more sensitive to the variability of the initial velocity. But a relatively larger penetration rate

can reduce that sensitivity so as to make the variation of the average collision percentage over the

velocity become gentler. Furthermore, by comparing Fig. 10(a) and Fig. 10(b), it can be found

that when given the same initial velocity (e.g., v0 = 9m/s) and attempting to guarantee the same

degree of average collision percentage (e.g., P c = 30%) in the two scenarios, the penetration rate

α needs to be 0.5 in the non-peak-hour scenario while α should be set to 0.9 in the peak-hour

scenario. The reason is that the inter-vehicular distance in the peak-hour scenario is much smaller

on average than that in the non-peak-hour scenario. Nevertheless, from another perspective, this

also implies that with the same velocity and safety level, a larger penetration rate of the equipped

vehicles can improve the capacity of the road. That is, when more vehicles are equipped with inter-

vehicular communications, the inter-vehicular distance can be appropriately reduced in a general

traffic flow at the meanwhile maintaining a certain safety level of the traffic flow. No matter what

traffic scenarios the vehicle platoon moves in, the increase in the penetration rate of the equipped

vehicles in the platoon will lead to the decrease in the average collision percentage. The fact

indicated by the experiment results is reasonable and consistent with the researches of [9, 26].
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5.2.2. Evaluation of the influence of the different driver perception and reaction times on the av-

erage collision percentage

In the next experiment, we fix the parameter v0 at the mean velocity of both scenarios, i.e., v0 =

13.5m/s in the non-peak-hour traffic scenario and v0 = 6.5m/s in the peak-hour traffic scenario.

The driver perception and reaction time (κi + ϵi) (∀Vi ∈ VU ) is set to range within [2.2, 2.8]s, and

the penetration rate α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for both scenarios. Meanwhile, the other parameters

are set as: εi = 50ms (for ∀Vi ∈ V), γ
(1)
j = 25ms (for ∀Vj ∈ VE), γ

(2)
j = 100ms (for ∀Vj ∈ VE),

µi = 0.8s−1 (for ∀Vi ∈ VU ), ϵj = 500ms (for ∀Vj ∈ VE) and aj ∼ U(−7.5,−4.5)m/s2 (for ∀Vj ∈

VE).

The numerical results of evaluating the impact of the parameter (κi + ϵi) combined with α are

given in Fig.11. From these results, we can see that a larger latency of the manual operation could

lead to a higher severity of the rear-end collision in both traffic scenarios. However, the safety degree

of the platoon can be improved by increasing the penetration rate of the equipped vehicles. For

instance, in both scenarios, when α increases to 0.9, the average collision percentage is maintained

under 20%. From these figures, it can be found that a slight increase in the penetration rate could

result in a obvious decrease in the average collision percentage. This confirms the improvement

of traffic safety induced by inter-vehicular communications. On the other hand, the statistical

difference between the results in the non-peak-hour and the peak-hour scenarios is moderate when

α is set to the same value. The reason is that the potential of the rear-end collision is not only

dependent on the inter-vehicular distance but also the vehicular velocity. That is, even though

the inter-vehicular distance is smaller in the peak-hour scenario when compared to that in the

non-peak-hour scenario, the mean traffic velocity is also relatively smaller. So, it does not seem to

be an obvious difference between the potentials of the rear-end collision in these traffic scenarios

when the penetration rates of these scenarios are the same value.

5.2.3. Evaluation of the influence of the different broadcasting latencies on the average collision

percentage

Generally, the broadcasting frequency of different vehicular communication system may differ,

and the magnitude of the broadcasting latency could range in a certain larger interval when com-

pared to the transmission latency that is mainly dependent on the process of the physical commu-

nication. Thus, similarly to the experiment in the 5.2.2, we investigate the impact of the parameter
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Figure 11 The average collision percentage in two scenarios with different settings on (κi+ϵi) (for ∀Vi ∈ VU )

and α.
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Figure 12 The average collision percentage in two scenarios with different settings on γ
(2)
j (for ∀Vj ∈ VE)

and α.

γ
(2)
j (for ∀Vj ∈ VE) on the potential of chain collisions in the platoon. By referring to [22], we

vary γ
(2)
j from 100ms to 1000ms. The penetration rate is also set as α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Except that the parameter related to the driver perception and reaction time of those unequipped

vehicles (κi + ϵi) is fixed at 2.5s for ∀Vi ∈ VU , the settings on the other parameters including v0,

εi (for ∀Vi ∈ V), γ
(1)
j (for ∀Vj ∈ VE), µi (for ∀Vi ∈ VU ), ϵj (for ∀Vj ∈ VE) and aj (for ∀Vj ∈ VE)

are the same as those in the experiment of the 5.2.2.

The similar conclusion can also be drawn from the experimental results given in Fig.12. A

larger warning information propagation latency between those equipped vehicles could induce a

higher average collision percentage. On the other side, from Fig.12, it can be found that when α
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Figure 13 The average collision percentage in two scenarios with different settings on µi (for ∀Vi ∈ VU )

and α.

is set to be a relatively higher value (e.g., α = 0.9), the average collision percentage does seem to

be more sensitive to the variation of γ
(2)
j . That is, with α = 0.9, the average collision percentage

will decrease more abruptly along with decreasing γ
(2)
j when compared to other situations where

α is set to a relatively smaller value such as 0.5, 0.3 or 0.1, etc. This result suggests that the

performance of the inter-vehicular communication system indicated by the message broadcasting

delay really has a remarkable impact on the potential of chain collisions in the overall platoon,

and vehicles can benefit from a more reliable and low-latency vehicular communication system,

especially when the penetration rate is high.

5.2.4. Evaluation of the influence of the different driver sensitivity coefficients on the average

collision percentage

Since µi is an important parameter to indicate the driver sensitivity of those unequipped vehi-

cles, in the final experiment, we use our proposed model to evaluate the influence of µi on the chain

collisions in the platoon. Here, we consider that µi for (∀Vi ∈ VU ) ranges within [0.3, 0.9] s−1 and

α is also set as α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Similarly to the 5.2.3, let (κi+ϵi) equal to 2.5s. Also, we

set γ
(2)
j = 100ms for ∀Vj ∈ VE . The settings on the other parameters such as v0, εi (for ∀Vi ∈ V),

γ
(1)
j (for ∀Vj ∈ VE), ϵj (for ∀Vj ∈ VE) and aj (for ∀Vj ∈ VE) are the same as those in the 5.2.2.

The results are shown in Fig.13. It can be found that the average collision percentage is sensitive

to the driver’s sensitivity coefficient, especially when the penetration rate is kept at a low level (e.g.

α = 0.1). In both traffic scenarios, the larger the parameter µi is, the lower the accident severity
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becomes. This result is consistent with the fact that a driver with a higher sensitivity will push on

the brake pedal more sharply so as to generate a larger deceleration for collision avoidance. On the

other hand, the increase in the penetration rate can reduce the variability of the average collision

percentage resulting from the variation of µi. That is, even with a relatively lower sensitivity, a

higher penetration rate could make up the shortage due to the low driver sensitivity. For example,

when α attains 0.9, the average collision percentage can be maintained below 20% regardless of µi

ranging from 0.3s−1 to 0.9s−1. This strengthens once more that the overall safety degree of the

platoon can be enhanced by inter-vehicular communications.

6. Conclusions

In this paper we propose a computation model for analyzing the process of collisions potentially

occurring in a platoon, where considering only partial vehicles are equipped with inter-vehicular

communications. The model supports the scenarios where the DSRC equipped vehicles are s-

tochastically distributed, and the inter-vehicular distance between adjacent vehicles follows a cer-

tain stochastic distribution. Furthermore, the model is independent of the driver-related operation

characteristics and the vehicle-related reaction latency, so it enables the safety evaluation of dif-

ferent driver characteristics and vehicle brake control system in the different traffic scenarios. The

usability and accuracy of this model is tested and validated by comparing its theoretical computing

results with those of extensive Monte Carlo simulations under different parameter settings. Based

on the proposed model, we have also presented extensive experiments in different traffic scenarios

to analyze the influence of DSRC penetration rates, inter-vehicular broadcasting latency, driver

reaction latency and vehicular kinematic characteristics on the potential of the rear-end collision

occurring in the platoon. As model application, it can be drawn from the numerical evaluation

results of our proposed model that the increased inter-vehicular distance and the penetration rate

can alleviate chain collisions in the platoon. Another conclusion can also be indicated from those

numerical results provided by our model that even with a part of equipped vehicles, it is possible

to keep the severity of chain collisions in the platoon below a certain level when some driver, ve-

hicle, inter-vehicular communication system related characteristics are appropriately constrained

such as the driver perception and reaction time, the driver sensitivity, the vehicle speed and the

broadcasting latency.
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Appendix A. Proof of Theorem 1

First, we introduce an inequality as follows. It can be proven that for all x ∈ (0,+∞),

x ≥ 1− e−x. (A.1)

Next, let x = ρ∆d∗, and substitute this x into (A.1). Subsequently, we can get

ρ∆d∗ ≥ 1− e−ρ∆d∗

∆d∗ ≥
1

ρ
−

1

ρ
e−ρ∆d∗

∆d∗
(

1− e−ρ∆d∗
)

≥
1

ρ
−∆d∗e−ρ∆d∗ −

1

ρ
e−ρ∆d∗

∆d∗ ≥

(

1
ρ
−∆d∗e−ρ∆d∗ − 1

ρ
e−ρ∆d∗

)

1− e−ρ∆d∗
(A.2)

where we use ∆d∗ to denote ∆d∗jk+mk,jk+mk+1 for the sake of simplicity.

Accordingly, by the expressions of p
(2)
jk+mk,jk+mk+1 and ∆dcjk+mk,jk+mk+1, it can be observed

that

∆d∗jk+mk,jk+mk+1 ≥ ∆dcjk+mk,jk+mk+1 (A.3)

Note that t ∈ (0,+∞). Hence, by setting t = 0, we can observe djk+mk+1(0) = djk+mk+1(0) and

W (0) = djk+mk+1(0)− djk+mk,jk+mk+1(0)−∆djk+mk+1 = −∆djk+mk+1 < 0 (A.4)

On the other hand, within the open interval (0,+∞), there must be at least one time instant that

makes the term (djk+mk+1(t)− djk+mk,jk+mk+1(t)) attain the maximum value ∆d∗jk+mk,jk+mk+1.

We denote this time instant as ϕ. That is, we have

(djk+mk+1(ϕ)− djk+mk,jk+mk+1(ϕ)) = ∆d∗jk+mk,jk+mk+1 (A.5)
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Hence, according to (56) and (A.3), we can further get

W (ϕ) = ∆d∗jk+mk,jk+mk+1 −∆djk+mk,jk+mk+1

= ∆d∗jk+mk,jk+mk+1 −
(

p
(1)
jk+mk,jk+mk+1 ×∆d

∗

jk+mk,jk+mk+1 + p
(2)
jk+mk,jk+mk+1 ×∆d

c

jk+mk,jk+mk+1

)

≥ ∆d∗jk+mk,jk+mk+1 −
(

p
(1)
jk+mk,jk+mk+1 ×∆d

∗

jk+mk,jk+mk+1 + p
(2)
jk+mk,jk+mk+1 ×∆d∗jk+mk,jk+mk+1

)

= 0

(A.6)

At this point, W (ϕ) ≥ 0. In addition, W (t) is continuous for t ∈ [0, ϕ] ⊂ (0,+∞), so that at

least one real root ξ ∈ (0, ϕ] that satisfies W (ξ) = 0. Thus, this corollary is proven.
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