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ABSTRACT
Understanding the channel popularity or content popularity is an
important step in the workload characterization for modern infor-
mation distribution systems (e.g., World Wide Web, peer-to-peer
file-sharing systems, video-on-demand systems). In this paper, we
focus on analyzing the channel popularity in the context of Inter-
net Protocol Television (IPTV). In particular, we aim at capturing
two important aspects of channel popularity – the distribution and
temporal dynamics of the channel popularity. We conduct in-depth
analysis on channel popularity on a large collection of user channel
access data from a nation-wide commercial IPTV network. Based
on the findings in our analysis, we choose a stochastic model that
finds good matches in all attributes of interest with respect to the
channel popularity. Furthermore, we propose a method to identify
subsets of user population with inherently different channel inter-
est. By tracking the change of population mixtures among differ-
ent user classes, we extend our model to a multi-class population
model, which enables us to capture the moderate diurnal popularity
patterns exhibited in some channels. We also validate our channel
popularity model using real user channel access data from commer-
cial IPTV network.
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1. INTRODUCTION
Understanding the channel popularity or content popularity is an

important step in the workload characterization for modern infor-
mation distribution systems such as World Wide Web, P2P file-
sharing systems, IPTV networks, video-on-demand (VOD) sys-
tems, content distribution networks, publish/subscribe systems, and
RSS feeds distribution systems. The proper modeling of the distri-
bution of user’s interest in various contents and media in the system
is a key building block for system design and performance analy-
sis. For example, it has been well known that web site popularity
is highly skewed and can be characterized by a Zipf-like distribu-
tion [14], a factor that carries important implication in evaluating
different DNS caching policies. Similar popularity skewness has
also been observed in other systems including P2P file-sharing [7],
VOD [20], web servers [1], and IPTV [4].

Another important aspect of the content or channel popularity is
its temporal dynamics, which captures the popularity changes over
time. Examples of such dynamics are the shift of users’ search
and download interest among files in a P2P file-sharing system,
the change of subscriber numbers among different topics in a pub-
lish/subscribe system, and the growth/shrink of community groups
in a social network. The popularity dynamics can be either at-
tributed to the stochastic nature of users’ interest at the time, or
attributed to the change of active users’ population at the time,
or a combination of both. Understanding the process of popular-
ity dynamics can provide important insight into service design and
optimization. For example, properties on TV channel popularity
dynamics are an essential piece of information for evaluating the
proposal of using peer-assisted TV stream distribution (e.g., [12])
in an IPTV system.

In this paper, we focus on analyzing the channel popularity in
the context of Internet Protocol Television (IPTV). Our goal is to
construct mathematical models to capture the distribution and the
time dynamics of channel popularity. This is motivated by re-
cent booming growth among telecommunication companies around
the world in the rapid deployment of the IPTV infrastructure and
service expansion, and hence the increasing demand in the work-
load characterization and performance evaluation of the IPTV sys-
tem. However, we believe that the basic principle and methodology
used herein are applicable to other domains (e.g., RSS feeds, news
groups).

Our analysis is based on a large collection of user channel access
data from a nation-wide commercial IPTV network1. We conduct
an in-depth analysis of the user channel switch activities and study

1To protect the identity of the IPTV network subscribers, individ-
ual set top boxes were assigned a non-identifiable ID number for
purposes of this research. The authors did not have access to sub-
scriber’s identity or address of individual set top boxes.
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Figure 1: IPTV System Architecture

the channel popularity for different channels, at different time and
different aggregation scales (ranging from minutes to days). Then,
we identify a stochastic model that matches well in all attributes
of interest with respect to the channel popularity. We also explore
subsets of user population and investigate whether they intrinsically
have different channel preferences from others. We then construct
multi-class population models that capture the non-stationary be-
havior of channel popularity exhibited by its diurnal patterns, which
has been reported in previous measurement study [4].

Our contributions can be summarized as follows:

• We observe that channel popularity is highly skewed and can
be well captured by a Zipf-like distribution. This holds true
at different times of day and at various aggregation scales.
We find that the popularity of each individual channel has
an exponentially decaying autocorrelation function, a com-
mon behavior across different channels. We also examine
the change of two channel popularity vectors at adjacent time
bins while varying the aggregation step. We find that the co-
sine similarity between channel popularity vectors exhibits
an interesting multi-scale behavior, forming aV-shape when
the aggregation scale increases from minutes to days.

• We model channel popularity dynamics as an Ornstein-Uhlenbeck
process and find that it matches remarkably well with respect
to the above properties. The success in capturing the under-
lying channel popularity dynamics enables our model to pro-
duce a satisfying result for channel popularity prediction.

• We develop a method to identify subsets of user population
with inherently different channel interests. We apply the
K-means clustering algorithm on various features of users,
and use a symmetric uncertainty measure and hypothesis test
to evaluate the significance of channel popularity difference.
By tracking the change of population mixtures among differ-
ent user classes, we extend our model to a multi-class popula-
tion model, which enables us to capture the moderate diurnal
popularity patterns exhibited in some channels.

The rest of the paper is organized as follows. In Section 2, we
provide an overview of the IPTV system and describe the data set
used in this study. In Section 3, we present our analysis result on
channel popularity distribution and channel popularity time dynam-
ics. In Section 4, we present our stochastic model that captures
these behaviors. We extend our analysis to explore the presence of
multiple classes of user population in the system and accordingly
adapt our model in Section 5. We review related work in Section 6
and conclude in Section 7.

2. OVERVIEW OF IPTV SYSTEM
Figure 1 shows a typical IPTV service system, in which live TV

streams are encoded in a series of IP packets and delivered to users
through the residential broadband access network. The SHO (Super
Head-end Office), which is the primary source of television content,

digitally encodes video streams received externally (e.g., via satel-
lite) and transmits them to multiple VHOs (Video Head-end Of-
fices) through a high-speed IP backbone network. The VHOs, each
responsible for a metropolitan area, in turn acquire additional local
contents (e.g., local news), perform some further processing (e.g.,
advertisement insertion) and transmit the processed TV streams to
end users upon request. Inside a residential home, RG (Residen-
tial Gateway) connects to a modem and one or more STBs (Set-
Top Boxes) with coaxial cable, receiving and forwarding all data,
including live TV streams, STB control traffic, VoIP and Internet
data traffic, into and out of the subscriber’s home. Finally, behind
a STB, there connects a TV.

On the user side, IPTV subscribers use a vendor/provider cus-
tomized remote controller to control the STB. Similar to conven-
tional TV remote controller, one may useUp/Downbuttons to se-
quentially switch channels, useReturnbutton to jump back to the
channel previously watched, or enter a channel number to jump
directly to a specific channel. Many IPTV providers add the ca-
pability for a small number of user-definedfavorite channel list,
so that one can easily switch between or scan through the favorite
channels. Furthermore, most STBs support the DVR (Digital Video
Recording) feature, in which with the help of a local hard drive, a
user can pause, rewind, fast forward (up to live play), and recordthe
TV program being played. Some IPTV providers support one chan-
nel being recorded to DVR while another channel being played live
on TV. Since IPTV utilizes IP multicast to deliver video streams
from VHOs to STBs, and due to the overhead of IGMP multicast
group management process, there is typically a delay of up to a
few seconds when user switch from one channel to another2. This
limitation is likely to motivate IPTV users to perform more targeted
channel switches than randomly or sequentially channel scans com-
pared to users from conventional TV systems.

2.1 Data Set Description
The data we use in this study are collected from a large-scale

IPTV service provider in the United States, which has over one
million subscribers and over two million STBs spreading across
three different time zones, carrying over 500 different live TV chan-
nels. With strict adherence to legal and privacy policy require-
ments, we have obtained anonymous subscribers’ STB logs, con-
trol plane messages, network configuration data, and TV channel
lists from this service provider. We construct user activities with
respect to turning on/off STBs, switching channels, and playing
live or recorded TV program by combining these data altogether.
We associate each of the user activities in the anonymous STB logs
with its origin STB and a timestamp (with the resolution of one sec-
ond) in this study. There are a few caveats with the quality of the
data in this study. The channel switch events capture user requests
logged at the STB, with the timestamp indicating the time that the
request is received at the STB. Note this is different from the time
when the request arrives at the VHO, and different from the time
when the streaming content is received at the STB. Requests that
are very rapidly followed by a subsequent request in time may not
be recorded by the STB, hence are missing from our study. Fur-
thermore, we do not have detailed TV program information when
DVR is used – from the STB logs, we know that a recorded video is
being played, but we do not know what is played. Therefore, in this
paper we exclude the user activities when the STB is tuned to DVR
mode. Note that no personally identifiable information is used in
the analysis and all data processing is conducted in accordance with
the privacy policy in place.

We have collected the aforementioned data for one month (June)
in 2008. To account for the time zone differences, we divide the
2How to reduce this delay is an active research area [16].
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Figure 2: The number of online STBs for each hour during a
week.
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Figure 3: The number of channel switches for each hour during
a week.

STBs into three groups, one for each time zone and study their
channel popularity properties separately. In the rest of the paper,
we will use the data from the Eastern time zone while the results
including the other time zones are quantitatively similar.

3. ANALYZING CHANNEL POPULARITY
Channel popularity needs to be precisely defined before we can

present our analysis result. There are two common used metrics to
measure the channel popularity. The first is based onchannel ac-
cess frequencywhich is defined as the number of channel switching
requests to the channel. The other is based onchannel dwell time
defined as the amount of time STBs stay tuned in the channel. They
measure two different aspects of channel popularity: weighted by
visit frequency vs. weighted by watching time.

Figure 2 and Figure 3 show the time series of the number of
online STBs and the total number of channel switches respectively.
As expected, we find both of them highly variable, exhibiting strong
diurnal patterns. To account for the variation due to the change in
the number of active users, we focus on the probability distribution
(i.e., normalized among all channels) instead of the absolute value
of the channel popularity measure.

3.1 Distribution of Channel Popularity
We first examine the long term distribution of channel popularity

(over the entire month) of all channels using both metrics. Figure 4
shows the cumulative distribution function (CDF) of channel pop-
ularity ranked by access frequency and dwell time. We observe a
close match between the CDF curves of the two different popular-
ity metrics. Both distribution functions exhibit high skewness – the
top 10% of channels account for more than 90% of channel access.

We next focus on the short term distribution of channel popular-
ity with respect to the two metrics. We examine this property at dif-
ferent time scales and at different points in time. Interestingly, we
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Figure 4: CDF of channel popularity.

find the channel popularity distribution is nearlyinvariant across a
large range of measurement time scales or over different time pe-
riods. For example, in Figure 5, we show the average popularity
probabilities (i.e., normalized channel access ratio and normalized
channel dwell time ratio) measured during 15-minutes, 1-hour, and
12-hour periods starting from 0 AM. We sort the channels in a de-
creasing order of popularity and plot their rank inx-axis. We find
that the three curves almost overlap on top of each other. In Fig-
ure 6, we also show the channel popularity probabilities of the same
day using 4-hour aggregation granularity (0 AM to 4 AM, 8 AM to
12 PM, and 8 PM to 12 AM). Again, we find the curves very close
to each other. We emphasize that the nearly invariant distribution
function does not necessarily imply the channel popularity itself
being invariant — the rank order of the channels is actually differ-
ent from time to time and from one scale to another. We will turn
to the temporal dynamics of channel popularity in Section 3.3.

The log-log scale curves in Figure 5 and Figure 6 also suggest
that channel popularity is highly skewed in all cases. To simplify
computation, in the rest of the paper, we focus only on the top 150
channels which account for over 98% of the channel accesses. We
acknowledge that modeling the tail part may be important for some
applications. However, this simplification should have little im-
pact on the analysis of overall time dynamics of channel popularity,
which is the main focus of our study.

3.2 Correlation between Channel Accesses and
Channel Dwell Time

We have observed in the previous subsection that channel popu-
larity based on access frequency and based on dwell time produces
a very similar result. This may be an indication for a strong correla-
tion between these two popularity measures, which turns out to be
true as illustrated in Figure 7, based on the entire period of trace.
Figure 7(a) shows the scatter plot of the ranks of the channels in
which the popularity rank according to channel access frequency is
shown on thex-axis and the rank according to channel dwell time
on they-axis. Figure 7(b) shows the similar scatter plot of the ac-
tual probability value by the two metrics instead of the correspond-
ing ranks. In both figures, we find that the points are spread well
along the diagonal line — their Spearman rank correlation value
equals to0.98 and their Peterson correlation coefficient equals to
0.97 – demonstrating the strong correlation between the two pop-
ularity metrics. We believe that the relatively long delay during
channel switches (described in Section 2) and the convenient TV
guide and favorite-channel-list features are both contributing fac-
tors to this high correlation, as people are more likely to switch
directly to the channel that they intend to watch. Another factor
that may influence the observed high correlation comes from a lim-
itation of our data source. As described in Section 2.1, channel
switch requests that are rapidly followed by a subsequent request
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Figure 5: Channel popularity distribution (varying time period).
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Figure 6: Channel popularity distribution (varying start time).

are not recorded in our logs.
In the rest of this paper, we use the channel access frequency as

the metric for channel popularity when illustrating our findings.

3.3 Temporal Dynamics of Channel Popular-
ity

We now turn our attention to the time dynamics of popularity for
individual channels. We start by looking at the time series of the
channel popularity. (We refer to channel popularity measured by
channel access frequency simply as channel popularity). Figures 8
and 9 show the time series of 9 days for a kids channelK and
a news channelN respectively. In contrast to the time-invariant
behavior reported in Section 3.1, both time series exhibit strong
fluctuations over time. We next follow classic time series analysis
processes to analyze these channel popularity series. In particu-
lar, we examine their stationarity, their first-order and second-order
statistics, and their autocorrelation structure.

To test the stationarity of the channel popularity series, we apply
the nonparametricruns test[2]. Given a time seriesX(t), the runs
test works as follows: (i) divide the series into equal-length time
intervals and compute a mean valuēXi for each bin, (ii) compute
the median value of̄Xi over all bins and mark the ones below the
median as “−” and the rest as “+”, (iii) consider a consecutive
sequence of “+” or a consecutive sequence of “−” as a run and
count the total number of runs, and (iv) compare the number of runs
against known run-count-distribution for stationary random data.

At the 95-th percentile confidence interval, we find that92% of
the channels pass the stationarity test when aggregated at 15-minute
intervals. A small number of channels that fail the runs test exhibit
non-trivial daily pattern, to which we will offer explanation in Sec-
tion 5.
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Figure 8: The dynamics of channel popularity of kids channel
K, 1 point every 15 minutes

We also calculate the coefficient of variation (CoV) for the chan-
nel popularity series. Figure 10 shows the distribution of CoV’s
of the channels. Despite the wide difference in their mean value
(shown in Figure 4), we find that the CoV’s of channel popularity
series are narrowly centered around0.6. For example, the CoV for
the series of the kids channelK (in Figure 8) is0.57 and that for
the news channelN (in Figure 9) is0.68. We will see how the
empirical CoV help in our model in Section 4.

We further study the autocorrelation structure of the channel pop-
ularity series, defined by their autocorrelation function (ACF):

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2

Figure 11 shows the ACF for the channel popularity series of the
kids channelK and news channelsN (other channels are similar).
The lag ranges from 15 minutes to 8 days. The roughly straight
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Figure 7: The correlation between channel access frequency anddwell time.
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Figure 9: The dynamics of channel popularity of news channel
N , 1 point every 15 minutes
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Figure 10: The distribution of CoV

lines indicate that the autocorrelation decays exponentially (note
the log scale in y-axis) as the time lag increases, a typical behavior
often observed in auto-regression processes. We further observe
that the slope of the decreasing curves, which is the exponent of the
exponentially decreasing ACF, are close among all channels. Using
least square fitting, we obtain the best estimate of the exponent for
each channel and plot their distribution in Figure 12. We find that
their values concentrate at around−0.12.

In Figure 11, besides the sharp decreasing trend, we also observe
small increases at the lags around day boundary (1 day, 2 days,
etc.). This implies that there indeed exist some diurnal patterns,
although minor, in the channel popularity. We address this issue in
Section 5.

3.4 Multi-scale Property of Channel Popular-
ity Similarity

We have examined the autocorrelation structure of the popular-
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Figure 11: The autocorrelation function of both news channel
N and kids channelK
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Figure 12: The distribution of the slope in ACF

ity measure of each individual channel. To quantify the similarity
(or dissimilarity) of the channel popularity collectively among all
channels, we adopt the metric namedcosine similarity. Cosine sim-
ilarity measures the similarity between two vectors by finding the
cosine value of the angle between them. For a pair of vectorsA

andB, the cosine similarity is given by:

similarity(A,B) =
A · B

||A|| ||B||
Its value ranges from−1 to 1, with value closer to1 indicating
higher similarity betweenA andB. Cosine similarity has been
widely used in high-dimensional data analysis such as applications
in text mining [19].

In the context of IPTV, we expect the channel popularity to be
relatively stable over time. This is indeed true—the average cosine
similarity between adjacent 15-minute time bins is around0.97,
indicating the distribution of the channel popularity is quite stable
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Figure 13: The average cosine similarity for different aggrega-
tion time scales

in a short time frame. We further investigate whether the similarity
becomes more pronounced with different time scales and perform
the following multi-scale analysis.

We discretize our data traces by fixed-interval time bins, with in-
terval lengths ranging from 15 minutes to 3 days. At each interval,
we calculate the channel access probability of different channels
for each time bin. Then, for each pair of adjacent time bins, we
compute the cosine similarity of channel popularity vectors. Based
on these values, we calculate the average for each aggregation in-
terval. Figure 13 shows the result wherex-axis is the aggregation
time scale (interval length) andy-axis is the average similarity.

In Figure 13, we observe that the curve forms aV-shape as we in-
crease the aggregation level. Specifically, the similarity value first
decreases as the aggregation times increases, reaching its minimum
at around 3-4 hour aggregation scale. After that, we observe an in-
creasing trend as we increase the aggregation time scale. This is
because when the time scale is short, the similarity/dissimilarity of
the channel popularity is determined by the TV program (shows)
of the time. On the other hand, when the time scale is long, the
similarity/dissimilarity is determined by the overall type of TV pro-
gram on the channels. Both the viewer base of individual TV shows
and the long term user affinity to the type of program are relatively
more stable, which makes the time scale in between the weakest
in term of channel popularity stability. We can also gain some in-
tuition from the perspective of process analysis. Specifically, Fig-
ure 11 shows the exponentially decaying autocorrelation function
of channel popularity (note the log-scale on y-axis), causing the
fast decreasing stability in short time scales. As the aggregation
level becomes sufficiently large, the short term disturbances are
smoothed out, converging to long term average, and hence improv-
ing the stability. We next present our model and demonstrate that
our proposed model can closely match this behavior.

4. MODELING CHANNEL POPULARITY
We now present our model for channel popularity. We will use

Zipf-like model to capture the long term channel popularity distri-
bution among different channels and mean reversion model to cap-
ture the stochastic process of popularity fluctuation for individual
channels.

4.1 Zipf-like model
The Zipf-like distribution has been proved successful in captur-

ing the skewness in content popularity such as Web [1] and VOD [17].
In the Zipf-like distribution, an object of the ranki has the access
probability ofC/i1−α, whereC is a normalization constant andα
is the distribution skew parameter. In Section 3, we have observed
that the channel popularity is also highly skewed. We naturally
model it using Zipf-like distribution. Figure 14 shows the access
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Figure 14: Channel popularity distribution.

frequencies of all channels in the order of decreasing popularity
from the real trace and the fitted Zipf-like distribution (the dashed
line with α = 0.55). We observe a very good match up to around
150 channels, which account for over 98% of the channel-switches
(see Figure 4).

4.2 Mean reversion model
Modeling the temporal dynamics of channel popularity is more

challenging. Based on our analysis in Section 3, we choose a class
of stocastic models, namelymean reversion modelfor this purpose.
Mean reversion model has been widely used in financial data anal-
ysis. The basic idea is that the price of a stock or a commodity may
fluctuate but will revert to its long-term equilibrium level. Ornstein-
Uhlenbeck (OU) process{Xt : t > 0} is the most widely used
mean reverting stochastic process in financial modeling [18]. It
is stationary, Gaussian, Markovian, and continuous in probability.
The Ornstein-Uhlenbeck process is characterized by the following
linear stochastic differential equation (SDE) [9]:

dXt = λ(µ − Xt) dt + σ dWt, (1)

whereλ > 0 is the mean reversion rate,µ the long-term mean,
andσ the volatility. Wt denotes a Wiener process (also known as
Brownian motion), which is characterized by: (i)W0 = 0, (ii) Wt

is almost surely (i.e., with probability one) continuous, and (iii)Wt

has independent increments with distributionWt−Ws ∼ N (0, t−
s) for 0 ≤ s < t.

To understand the OU process, we can view the RHS of Eq (1)
as summation of a deterministic term (the first term in RHS) and
a stochastic term (the second term in RHS). WhenXt > µ, the
deterministic termλ(µ−Xt) is negative, resulting in pulling back
down toward the equilibrium level (i.e.,µ); if Xt < µ, the deter-
ministic term is positive, pushingXt back up to the equilibrium
level. As a result, every time the stochastic term makesXt deviate
from the equilibrium, the deterministic term will act in such a way
thatXt will head back to the equilibriumµ.

For an OU process, we have the moments:

E(X) = µ (2)

Cov(Xs, Xt) =
σ2

2λ
e−λ|s−t| (3)

This implies that the autocorrelation function of an OU process de-
cays exponentially as the lag|s − t| increases, which would match
well with the empirical ACF of channel popularity series in Fig-
ure 11.

We now determine the model parameters from the analysis result
in the previous section. It is straightforward to see that the long
term equilibriumµ can be derived from Eq (2), which we further
model by the Zipf-like distribution. From Eq (3), we find that the
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Figure 15: Fitting autocorrelation function with λ = 0.12
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Figure 16: Cosine similarity using a simulated trace based on
the mean reversion process.

autocorrelation decreases with lag at the ratee−λ. Use the value
extracted from in Figure 12, we setλ = 0.12. Finally, to determine
σ, we use the coefficient of variation (CoV). Using Eq (3), we can
deriveσ as follows:

σ = µ ×
√

2λ × CoV

Using fixed time steps of 1, we can obtain a discrete version of the
OU process and derive a first-order autoregressive sequence ofXt:

Xi+1 = Xie
−λ + µ(1 − e−λ) + σ

r

1 − e−2λ

2λ
N0,1 (4)

whereN0,1 is a standard Gaussian random variable. This can be
used to drive simulation of IPTV channel popularity.

We validate our model against measurement data. Figure 15
shows the ACF of the news channelN compared against the sim-
ulation from the model withλ = 0.12. We observe a remarkable
match, with the exception of the surges at lags that are multiple
of one day. We further examine the multi-scale property as shown
in Figure 13. Figure 16 shows that our model faithfully reproduce
theV -shape behavior in the cosine similarity of channel popularity
vectors.

4.3 Forecasting channel popularity
We have shown that with properly chosen parameters, the OU

process can nicely capture various properties on the channel pop-
ularity. We now explore whether we can use it as the underlying
process to perform forecasting. More specifically, given the his-
torical states fromX0 to Xi for a channel, how accurately can we
predictXi+1?

This can be viewed as a linear regression problem due to the
AR(1) model of the sequence ofXi in Eq (4). To facilitate the

regression analysis, we rewrite Eq (4) as:

Xi+1 = aXi + b + ǫ (5)

The first objective of linear regression analysis is to best-fit the data
by estimating the parameters of the model. Of the different crite-
ria that can be used to define what constitutes a best fit, the least
squares criterion is a very powerful one. Using the least squares
criterion, we obtain the model parameters as follows.

a =
nXxy − XxXy

nXxx − X2
x

b =
Xy − aXx

n

sd(ǫ) =

s

nXyy − X2
y − a (nXxy − XxXy)

n(n − 2)

where

Xx =
n

X

i=1

Xi−1, Xy =
n

X

i=1

Xi,

Xxx =
n

X

i=1

X2
i−1, Xxy =

n
X

i=1

Xi−1Xi, Xyy =
n

X

i=1

X2
i

We take the trace of a news channel to evaluate the performance
of our forecasting model. We find that a small resulting mean
squared error (MSE) (= 8 × 10−8) is obtained compared to its
mean value0.0014 and variance9.3× 10−7. This means our fore-
casting model predicts the dynamics of channel popularity reason-
ably well. We have performed the prediction on various channels
and observed the similar results.

5. MULTI-CLASS POPULARITY MODEL-
ING

So far we have presented our analysis on the dynamics of chan-
nel popularity and developed a mean reversion process to model
them. Although the model in the previous section works reasonably
well, it is incapable of capturing some diurnal patterns in the dy-
namics such as the small increases around daily boundary in ACF
(see Figure 15). In this section, to enhance our model to capture
these diurnal patterns, we investigate whether we can identify sub-
groups of STBs that have distinct channel preference, compared to
the overall pattern and dynamics of channel popularity. We first ex-
plore various features that we can use to group STBs (Section 5.1),
and then analyze properties of different groupings to identify a de-
sirable grouping that we can use for our multi-class modeling (Sec-
tion 5.2 and 5.3). This grouping method actually provides an in-
teresting insight behind the dynamics of channel popularity (Sec-
tion 5.4), and we employ this finding to develop a multi-class pop-
ularity model that better captures the channel popularity dynamics
(Section 5.5).

5.1 Grouping STBs
Given the data set we have, we have a number of different ways

to group the appearing STBs. Here we choose the following at-
tributes which can best characterize a STB for grouping:

• TV watching time: For each STB, we consider various as-
pects of TV watching time, such as daily average, hourly
average, and average nightly watching time.

• Channel change frequency:We consider the daily average
and hourly average of channel changes to group STBs.



• Dwell time per channel change:For each channel change,
we determine how long a STB stays on the channel. This
dwell time can be reported long when a user does not watch
the channel, but leaves the STB on. To minimize such effect
in our analysis, we investigate both the median value and the
average value of dwell time per channel change.

• Location: We use the network location of a STB to group
STBs.

We use the first 15 days of the logs to calculate the attributes
for each STB. In other words, we use the data in these days as the
training set. As described later in this section, we use the remain-
ing data to evaluate the properties of grouping. We next describe
different grouping strategies that we use to identify various group-
ings of STBs, which can be classified into two categories. One is
threshold-based grouping. The other is clustering algorithm-based
group.

5.1.1 Threshold-based
In this grouping, we select a grouping attribute and a set of cor-

responding thresholds to group STBs. These thresholds are chosen
by the common sense of viewers instead of some specific computer
algorithm.

• Daily watching time (WT-D): We consider the daily average
TV watching time for each STB. Specifically, we call a STB
a heavy-watcherif the STB spends more than 12 hours on
average, and alight-watcher if it spends less than 1 hour.
We call the remaining STBsmedium-watchers. In our data,
28% of STBs are heavy-watchers, and 36% of them are light-
watchers. In the rest of this section, we call this grouping
outcomeWT-D.

• Daytime vs. Nighttime (DN-D): We define a STB as a
daytime-watcherif the average TV watching time during the
day (from 6am to 6pm) is more than twice the time during
the night (from 6pm to 6am). We define anighttime-watcher
similarly. We call the remaining STBsall-time-watchers.
We observe 31% of STBs are daytime-watchers, and 39%
of them are nighttime-watchers.

• Daily channel change count (CHG-D): We use the aver-
age channel change count per day. We define the STBs that
switch channels more than 200 times on average asfrequent-
switchers(24% of STBs), and the STBs that switch the chan-
nel less than 10 times asinfrequent-switchers(12% of all).
We call the remaining 64% of STBsmoderate-switchers.

• Median dwell time (DWL): For each STB, we use the log of
15 days and find the median value for the dwell time per
channel change. Then we use 10, 20, and 30 minutes as
thresholds to divide them into four groups.

• Location (LC): We use the metropolitan area as the granu-
larity of grouping STBs based on the location.

5.1.2 Clustering Algorithm-based
In this category, we employ unsupervised clustering algorithms

to group STBs. While we have explored multiple clustering algo-
rithms, we focus on the results based on the well-knownK-mean
algorithm [13], which is effective for large data sets. In this algo-
rithm, we need to provide the number groupsK as input parame-
ter. While there are several ways to find the optimalK, we use the
intra-cluster dissimilarityWK as the measure:

WK =
K

X

k=1

X

C(i)=k

||xi − x̂k||2,
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Figure 17: Dissimilarity vs. K when we use TV watching time
as grouping feature.

wherexi is the data item, and̂xk is the center of items ink-th clus-
ter. We varyK ∈ {1, 2, . . . , Kmax} and obtain a separate group-
ing result and the correspondingWK for eachK. Then, we con-
sider the trade-off between dissimilarity and the number of clusters
when we choose the optimalK. We present a concrete example
below when we use the following set of attributes as input feature
to the clustering algorithm. Different from the threshold-based cat-
egory, they are all feature vectors.

• Hourly TV watching time ( WT-H): We assign a 24-element
tuple to each STB, where each value corresponds to the av-
erage TV watching time per hour in a day. Then we perform
the K-mean algorithm to cluster the STBs. In a sense,WT-H

simultaneously considers the two features used inWT-D and
DN-D. In Figure 17, we plotWK as a function ofK. We
can observe that as small a value asK = 3 provides a good
grouping result. These three clusters cover 60%, 27%, and
13% of STBs, respectively.

• Hourly channel change (CHG-H): Similar toWT-H, we col-
lect the number of channel changes for each hour in a day
and assign a 24-element vector to each STB. In this group-
ing, K = 4 leads to the optimal grouping result, where the
clusters have 47%, 25%, 21%, and 7% of STBs, respectively.

• Hourly dwell time ( DWL-H): For each hour, we calculate the
average dwell time per channel change. Then, we assign 24-
element vector to each STB, to obtain four groups with 37%,
31%, 24%, and 8% of STBs from the K-mean algorithm,
respectively.

• Hourly median dwell time (MDWL -H): Unlike DWL-H, we
use 1-hour intervals and calculate the median dwell time value
for each 1-hour bin and input them into the K-mean algo-
rithm. From this grouping, we obtain four groups with 41%,
20%, 10%, and 29% of STBs, respectively.

• Channel preference (PREF): For each STB, we calculate the
access probability to each of top 150 channels (which covers
98% of channel popularity as shown in Figure 4). Then, us-
ing Table 13, we classify these channels based on their pro-
gram contents and obtain aggregate access probabilities for 8
types, which we use as the grouping attribute. We useK = 8
after the number of types.

3In this classification, both educational channels and documentary
channels belong to “science.” The category “others” includes chan-
nels that offer diverse programs (e.g., news, TV series, shows,etc.)
as well as less known channels that are not easy to classify.



Table 1: Classification of top 150 IPTV channels
Type Examples # channels
News CNN, NBC News 13
Kids Disney, Cartoon Network 15
Sports ESPN, Star games, NBA TV 20
Movies HBO, Cinemax 15
Science Discovery channel, Animal planet 20
Music MCM, MTV 21
Foreign TF1, BFM, Al jazeera, CCTV 18
Others TBN, EWTN 28

In the rest of this section, we investigate whether we observe any
correlation among the features and corresponding groupings and
we can explain underlying channel popularity dynamics based on
the identified sub-groups.

5.2 Measuring Difference in Channel Prefer-
ences of STB Groups

In this part, we examine whether STBs in different groups ex-
hibit different channel preferences. We usemutual informationin
measuring thedifferenceof channel preferences of STBs belonging
to different groups.

In probability theory and information theory, the mutual infor-
mation of two random variables quantitatively measures their mu-
tual dependence. Formally, the mutual information of two discrete
random variablesX andY can be defined as:

I(X; Y ) =
X

y∈Y

X

x∈X

p(x, y) log

„

p(x, y)

p1(x) p2(y)

«

(6)

wherep(x, y) is the joint probability distribution function ofX
andY , andp1(x) andp2(y) are the marginal probability distribu-
tion functions ofX andY respectively. The smaller the mutual
information value is, the larger the difference betweenX andY is.

We conductsignificance testingto determine whether the chan-
nel preference of a given STB groupG is significantly different
from that of all STBsS. For this, we first compute the mutual in-
formationIG between channel preference vector ofG and that of
S using Equation (6). Here,X andY are two variables describing
channel preferences. In particular,p1(x = X) is the probability to
choose a typeX channel for groupG. Similarly, p2(y = Y ) is a
probability to choose a typeY channel forS. p(x = X, y = Y ) is
the probability of choosing typeX channel inG and choosing type
Y channel inS.

Then we randomly select a subsetSi of S, which has the same
size as groupG. Similarly, we compute the mutual information
ISi

. After taking a large number of random selections ofSi, we
can get the empirical distribution ofISi

. According to the Cen-
tral Limit Theorem,ĪSi

is approximately normally distributed with
meanµ̂ and deviation̂δ. Here, our null hypothesisH0 is: group
G is not significantly different fromS in terms of channel pref-
erences. For the sampled distribution, we compute thep-value
Pr[X̄ ≤ IG|(µ̂, δ̂)]. If the p-value is very small, e.g.,< 0.005,
we shall rejectH0. Using this method, we can verify if a group
G has a significant difference in the channel preference compared
with all STBsS. We can also apply the same method on a given
type of channels to determine ifG has a significant difference in
preference for that type of channels.

Table 2 shows channel preferences of all STBs as well as STB
groups based onPREF. There are eight STB groups, each of which
corresponds to one type of channels. The size of STB groups varies
from 45% of all STBs to 2% of all STBs. The STB group preferring
news channels is the largest, and STB groups preferring music and

foreign channels are the smallest. We highlight the identified sig-
nificant difference in channel preference in bold. Compared to all
STBs, we observe that each group clearly exhibits distinct prefer-
ence for the corresponding type of channels. For example, group1
shows significant preference for news channels. These results in-
dicate the potential benefit of modeling different groups seperately,
which we focus on later in Section 5.5.

5.3 Identifying Best Grouping Methods
Now we propose a generic method for selecting the best group-

ing methods. In our case, a “good” grouping should achieve the
following two goals. First, the method should yield STB groups
that well represent the channel preferences. Second, the resulting
STB groups should be stable over time.

To identify grouping methods that yield good representation of
channel preferences of STBs, we compute mutual information be-
tween STB groups based onPREFand those based on each of other
grouping methods (denoted asM ) using Equation (6). Here, we
consider each STB group as a random variable.p1(x = X) is
the probability that a STB belongs to groupX according toPREF.
p2(y = Y ) is the probability that a STB belongs to groupY
according to a given grouping methodM . The joint distribution
p(x = X, y = Y ) is the probability that a STB belongs to group
X based onPREFand belongs to groupY based onM .

It is likely that different grouping methods yield different number
of groupings. For example, the location based grouping will yield
over 150 clusters while other grouping methods usually yield a
handful of groups. In such a case, the mutual informationI(X; Y )
defined in Equation (6) can be misleading. In order to perform a fair
comparison on different grouping methods, we adopt a normalized
metric calledsymmetric uncertainty, which is defined as:

U(X, Y ) = 2
I(X; Y )

H(X) + H(Y )
(7)

whereI(X; Y ) is the mutual information defined in Equation (6)
andH is the entropy:

H(X) = −
n

X

i=1

p(xi) log p(xi), (8)

WhenX andY are independent,U(X, Y ) = 0. WhenX is a
function ofY , U(X, Y ) = 1.

Table 3 shows the symmetric uncertainty between the channel
preferences (i.e.,PREF) and different grouping methods described
in Section 5.1. We find that clustering algorithm-based on hourly
median dwell time (MDWL -H) and on hourly TV watching time
(WT-H) yield the highest and lowest symmetric uncertainty values
(0.513 and 0.123) among all the grouping methods. Intuitively, this
can be explained as follows. Users who watch TV at the same time
during a day does not necessarily watch the same set of channels
(i.e., they do not necessarily have a clear mutual interest in chan-
nels). However, users who switch channels at the same time during
a day may have a strong preference for the type of channels they
watch. This is because most of the channel change behaviors are
impacted by the start/end times and commercial breaks of the TV
program. The symmetric uncertainty values for threshold-based
grouping methods range from 0.179 to 0.314, with the grouping
based on the daily watching timeWT-D having the highest value
and grouping based on the locationLC having the lowest value.

We also prefer a grouping method that yields STB groups that
are stable over time. We perform a stability test on our grouping
results in the following way. We use the percentage of STBs that
stay in the same group over a certain time period (e.g., 15 days) as
the metrics to measure the stability of STB groups. In our analy-
sis, we divided our data traces into two parts, where each part lasts



Table 2: Channel preferences of STB groups based onPREF.
News Kids Sports Movies Science Music Foreign Others Group size (%)

All STBs (%) 52.3 14.4 5.2 3.1 1.8 0.3 0.4 22.4 100
Group1 (%) 67.8 9.7 3.5 2.1 1.2 0.2 0.3 15.2 45
Group2 (%) 49.5 19.0 4.9 2.9 1.7 0.3 0.4 21.2 12
Group3 (%) 50.2 13.8 9.0 3.0 1.7 0.3 0.4 21.5 5
Group4 (%) 50.7 14.0 5.1 6.0 1.8 0.3 0.4 21.8 6
Group5 (%) 50.6 13.9 5.0 3.9 5.1 0.3 0.4 21.7 3
Group6 (%) 51.0 14.8 5.1 3.0 1.8 3.0 0.4 21.8 2
Group7 (%) 51.6 14.2 5.1 3.0 1.9 0.3 1.8 22.1 2
Group8 (%) 48.9 13.5 4.9 2.9 1.7 0.3 0.4 27.5 27

Table 3: Symmetric uncertainty betweenPREFand different grouping methods
WT-D DN-D CHG-D DWL LC WT-H CHG-H DWL-H MDWL -H

PREF 0.314 0.305 0.254 0.309 0.179 0.123 0.206 0.430 0.513

Table 4: Stability of different grouping methods
PREF WT-D DN-D CHG-D DWL LC WT-H CHG-H DWL-H MDWL -H

67.1% 83.5 % 79.4% 77.6% 74.3% 100% 70.4% 72.3% 66.5% 69.4 %

15 days. We compute STB groups on each 15-day trace separately
and examine the stability of STB groups. Note that for cluster-
ing algorithm based grouping methods, because the group centers
are determined non-deterministically, we group the second 15-day
trace by using the same group centers as those that are identified in
the first 15-day trace. Then, for each STB, we compute the distance
between attribute vector obtained from the second 15-day trace and
each group center identified in the first 15-day trace. The STB is
assigned to the group of which the center is closest.

Table 4 shows the stability of different grouping methods. We
have four key observations. First, the grouping based on channel
preferencePREF is not stable over time. This indicates thatPREF

may not be a good grouping method to be used in our model even
though Table 2 showsPREFclearly represents distinct channel pref-
erences in each STB group. Second, we find that all the grouping
methods based on hourly features (i.e.,WT-H, CHG-H, DWL-H, and
MDWL -H) have low stability over time. Hence, they are not con-
sidered good grouping methods to be used in the model. Third, we
observe that grouping based on locationLC yields perfect stabil-
ity of STB groups. This is expected because STBs location is less
likely to change over time. However, sinceLC has a low symmet-
ric certainty value as shown in Table 3, it is not considered a good
choice either. Finally, we observe that the grouping based on daily
TV watching timeWT-D has the highest stability among all group-
ing methods other thanLC. In addition,WT-D also has a relative
high value in symmetric uncertainty as shown in Table 3 (it is the
highest among the threshold based grouping methods). Thus, we
identify WT-D to be the best grouping method based on our data
trace.

5.4 Explaining Channel Popularity Dynamics
In Section 3, we have observed diurnal patterns in channel ac-

cess popularity (Figures 8 and 9). In this subsection, we examine
whether some of these groups exhibit different channel access pref-
erence. Based on the result in the previous subsection, we focus on
the grouping result byWT-D, because it has the highest stability
(except forLC) as well as a reasonably high symmetric uncertainty
measure againstPREF. Table 5 compares the channel preference
of each group based onWT-D with that of all STBs. Based on our
significance testing, we find that heavy-watchers group and light-
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Figure 18: Time-of-day dynamics for news channels, compar-
ing WT-D with all watchers
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Figure 19: Time-of-day dynamics for kids channels, comparing
WT-D with all watchers

watchers group have distinct preferences to news and kids channels,
which are marked in bold. In this subsection, we focus on the pref-
erence for these two channel types. Although we do not present
here, we also investigated other groupings and observed a similar
result in many cases.

In Figures 18 and 19, we show the access probability of news
channels and kids channels (as defined in Table 1), respectively.
We display one line for each group inWT-D as well as an additional
line for the all-STBs case (denoted by “all-watchers”). We observe



Table 5: Channel preferences of STB groups based onWT-D.
News Kids Sports Movies Science Music Foreign Others Group size (%)

all watchers (%) 52.3 14.4 5.2 3.1 1.8 0.3 0.4 22.4 100
heavy-watchers(%) 62.6 9.7 4.9 2.3 2.0 0.4 0.3 19.6 28
light-watchers (%) 47.4 17.5 5.4 2.3 1.7 0.4 0.4 25.3 36

medium watchers (%) 53.3 13.9 4.7 3.0 1.9 0.3 0.3 22.5 36
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Figure 20: Population mix for each group based onWT-D

that while the line for all-watchers shows a clear diurnal access
pattern (e.g., with peaks around 7am and 8pm for news channels),
the channel preference within a group is more stable throughout
the day, except for heavy-watchers’ increased preference during the
morning time. Specifically, in Figure 18, at least 60% of channel
changes by heavy-watchers are for news channels throughout the
day, which is significantly higher than the overall average 52.3%.
While the average preference of medium-watchers for news chan-
nels (53.3%) is similar to the daily average, this group also exhibits
a more stable access pattern, compared to all-watchers. In Fig-
ure 19, while the group-level access probabilities for kids channels
fluctuate more than for news channels, the values are still more sta-
ble than that of all-watchers. These results illustrate that we can
identify sub-groups that have distinct channel preference, and al-
though the channel popularity within the groups may vary over
time, some groups often have fairly constant channel preference
for some channels.

In Figures 18 and 19, we observed that group-level channel pref-
erence stays reasonably stable all day, but the overall channel pop-
ularity shows a diurnal pattern. How can we explain two seemingly
conflicting results? In Figure 20, we show the proportion of active
STBs for each group byWT-D. We determine that a STB is active
if there is a channel change during the 1-hour window. This fig-
ure shows that medium-watchers constitutes around 35% of active
STBs throughout the day, heavy-watchers between 15% and 35%,
and light-watchers between 30% and 50%. We observe that there
is strong correlation between channel popularity change and popu-
lation mix change. For instance, in Figure 19, the overall channel
access probability for kids channels peaks between 8am and noon.
This coincides with the population gain by light-watchers (Fig-
ure 20), which has significantly higher preference for kids chan-
nels. In Figure 18, while the overall channel popularity peaks at
the morning time (7am) due to the change in preference by heavy-
watchers, the increase of heavy-watchers in the population mix ob-
viously explains the other peak at later time (around 8pm).

In sum, our results show that some sub-groups have different
channel preference, and their population mix change has a strong
correlation with overall popularity change. In the rest of this sec-
tion, we further investigate these findings and demonstrate that we
can better model channel popularity dynamics by employing this
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Figure 21: The autocorrelation function based on multi-class
model.
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Figure 22: The cosine similarity function when varying lag.
The solid line represents the real trace, the dash line represents
the model. Top: single-class, bottom: multi-class.

grouping methodology.

5.5 Modeling and Simulation
Now we can use our classification results to further improve the

modeling results shown in Section 4. We use the grouping result
from the featureWT-D since it has the highest stability over time
and a reasonably large symmetric uncertainty value. Assume that
all channels still follow the mean reversion model in each group.
But the parameters need to be revisited. LetXt

ij , µij , λij andσij

denote the popularity measure, the long-term mean, the mean rever-
sion rate and the volatility of the groupj on the channeli, respec-
tively. The estimation procedure described in Section 4 can be eas-
ily adapted to derived the parameters for every(channel, group)
combination.

Then to simulate the temporal popularity dynamics for a channel
i, we mix all (i, j), j = 1, 2, ..., using the empirical population
proportion for each group (see Figure 20) as the mixture weight. In
other words,

Xt
i =

X

j

W t
j × Xt

ij

whereXt
i denotes the popularity of channeli at time t andW t

j

denotes the proportion of STBs in groupj at timet.
To evaluate the above multi-class model, we use the model to

simulate the process of the popularity dynamics and compare it to



the real trace in two aspects. First, in Section 4 we have shown
that the mean reversion model on a single class cannot model the
daily bumps on autocorrelation curve well (see Figure 15). Here,
we can do much better as shown in Figure 21. It is not hard to
observe that our multi-class model captures the most of bumps at
the daily boundary. As the result, the MSE of the model is equal
to 1.6 × 10−5 which is more than one order of magnitude smaller
than that (= 2.4 × 10−4) of the single-class model in Section 4.

Second, we compute cosine similarity (defined in Section 3) on
the trace generated by our models. Again, we compare the cosine
similarity of both single- and multi-class models with that from the
real trace. In Figure 22, given a fixed lag, we compute the cosine
similarity between the channel popularity vectors of two adjacent
15 minute-time-bins and take average on the length of 9 days. We
repeat this by gradually varying the length of lag. This resulting
curve from the real trace reflects the degree of similarity of channel
popularity across the time domain. The top and bottom subfigures
in Figure 22 compare the single-class model and multi-class model
to the real trace in terms of cosine similarity, respectively. It is
clear that the multi-class model can capture the high daily similar-
ity, but single class model fails to do so. As the result, the MSE
of multi-class model is10−3 which is around one order of magni-
tude smaller than that (= 9 × 10−3) from single-class model. In
summary, taking advantage of a good grouping feature with high
stability and symmetric uncertainty scores, our multi-class model
can generate a more accurate temporal dynamics process to simu-
late the real scenario than the previous single-class model.

6. RELATED WORK
The channel popularity or content/media popularity, in general,

has been widely studied in different applications. Costa et al. [8]
analyzed user activities and media distribution in media streaming
applications. Cherkasova et al. [5], Chesire et al. [6], and Tang
et al. [17] modeled workload of media streaming service. Yu et
al. [21] studied the user activities to access a Video-on-Demand
(VoD) system. Cha et al. [3] explored how users access videos in
the YouTube system. Guo et al. [10] compared access patterns of
different types of media content on the Internet including Web, P2P,
VoD, and live streaming. However, the findings in these studies
may not be applicable to IPTV systems as the user behavior can be
inherently different from those in other applications.

More recently, there are a number of studies on IPTV system.
Cha et al. [4] report various findings about user watching behavior
by analyzing control messages in an IPTV system. While some of
our findings are consistent with those reported in their study, we
focus developing a multi-class population model of channel popu-
larity based on key observations in our analysis. Smith [16] models
bandwidth demand to support both multicast and unicast for fast
channel change, where channel switching is modeled as a renewal
process. However, the work does not consider the temporal dy-
namics within a day. Hei et al. [11] and Silverston et al. [15] report
their measurement studies on P2P-based IPTV systems, while our
work focuses on analyzing and modeling a large commercial IPTV
system.

7. CONCLUSIONS
In this paper, we analyze and model channel popularity based on

user channel access data in a nation-wide commercial IPTV sys-
tem. We find that the channel popularity is highly skewed and can
be well captured by a Zipf-like distribution. We also observe a fair
amount of channel access popularity change during a short time
window, although we find that channel popularity during moder-
ately long time windows stays relatively stable. We demonstrate

that we can model such popularity dynamics using a mean rever-
sion process. Further, we develop a method for identifying groups
of users which show intrinsic difference in their channel preference.
We demonstrate that we can combine this grouping and the change
of population mix to obtain a multi-class population model, which
enables us to capture diurnal patterns in channel popularity dynam-
ics. Although the focus in this paper is on analyzing and modeling
channel popularity in an IPTV system, our methodology can be ap-
plicable to other systems, which we plan to investigate in our future
work.
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