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Abstract

In this paper, a new class of composite model is proposed for mod-
eling actuarial claims data of mixed sizes. The model is developed us-
ing the Stoppa distribution and a mode-matching procedure. The use
of the Stoppa distribution allows for more flexibility over the thickness
of the tail and the mode-matching procedure gives a simple derivation
of the model compositing with a variety of distributions. In particu-
lar, the Weibull-Stoppa and the Lognormal-Stoppa distributions are
investigated. Their performance is compared with existing composite
models in the context of the well-known Danish fire insurance dataset.
The results suggest the composite Weibull-Stoppa model outperforms
the existing composite models in all seven goodness-of-fit measures
considered.
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1 Introduction

The modeling of claims data is central to many applications in general insur-
ance. The claims faced by insurers are often a mixture of moderate and large
claims. The distribution is typically unimodal, highly positively skewed, and
has a thick upper tail. In the case where the large claims are more dominant,
traditionally the Pareto distribution has been considered. On the other hand,
when the moderate claims are more dominant, continuous parametric fami-
lies with positive support such as Gamma, Lognormal, Inverse Gaussian and
Weibull have been used (Klugmann et al., 2008). Nevertheless, no standard
parametric model seems to provide an acceptable fit to both small and large
claims as probability distributions that provide a good overall fit can perform
badly fitting a local region. In particular, the tail of the claims distribution
can often be underestimated.

To overcome this issue, composite parametric models that use Lognormal
(Cooray and Ananda, 2005) or Weibull (Ciumara, 2006) up to an unknown
single threshold value, estimated from the data, and a two-parameter Pareto
density thereafter have been considered. In both approaches, continuity and
differentiability conditions were imposed at the threshold to yield a smooth
density function and to reduce the number of parameters to be estimated.
The resulting models are similar in shape to the Lognormal and Weibull
distributions but with a thicker tail. These models give a significantly better
fit to claims data compared with the standard parametric families. However,
since these models use fixed and a priori known mixing weights, they can be
very restrictive. In light of that, Scollnik (2007) suggested an improvement to
the composite Lognormal–Pareto model by incorporating unrestricted mixing
weights as coefficients in each component (see also Nadarajah and Bakar,
2014). Similar modification has been made by Scollnik and Sun (2012) to
the composite Weibull–Pareto model.

In this work, a new class of composite models for modeling claims data
of mixed sizes is proposed. This model is based on the Stoppa distribu-
tion. The Stoppa distribution, not sufficiently well–described in the English
language literature, is a generalization of the Pareto distribution (Stoppa,
1990). It is obtained by applying a power transformation to the cumulative
distribution function (cdf) of the Pareto distribution. One main feature of
the Stoppa distribution is that it presents a heavier tail than the classical
Pareto distribution when the additional shape parameter is larger than one.
Recently, Burkhauser et al. (2010) used it to model topcoded income values
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and yielded positive outcomes.
The construction of the proposed composite–Stoppa model uses a mode–

matching procedure. The first component of the spliced model (e.g. Log-
normal or Weibull) is used up to the modal value, which can be estimated
from the data, and the adequate truncation of the Stoppa distribution is
used thereafter. To avoid potential confusion, note that “mode-matching”
in this paper refers to matching the modes of the two distributions of the
spliced model rather than matching the model mode to the empirical mode.
In general, there may be some distance between the mode fitted and the
actual mode computed from the data as it will be seen later in the numer-
ical applications section. This methodology, like the traditional continuity–
differentiability method, incorporates unrestricted mixing weights but in ad-
dition, it gives a simpler derivation of the model over the traditional method
when the mode of the distribution actually has a nice form. The key idea,
as compared with matching the continuity and differentiability conditions,
is based on the assumption that it is easier to match the modal value since
the mode of the distributions that are commonly considered in the content
of actuarial modeling often has a much simpler expression, than the second
derivative of the corresponding density function. This can serve as a useful
alternative when the differentiability condition is hard to solve or when one
wishes to conduct a pilot study. In order to concretely evaluate the composite
Stoppa model, two composite families, namely the Lognormal–Stoppa and
the Weibull–Stoppa families are derived and investigated. These choices are
made so that the result can be compared with existing composite models.

The structure of this paper is as follows. In Section 2 a short review
on composite Pareto models with unrestricted mixing weights is provided.
Next in Section 3 some existing results on the Stoppa distribution are given.
Later in Section 4, the genesis of two composite Stoppa models, Lognormal–
Stoppa and Weibull–Stoppa, is described. Afterwards, in Section 5 numerical
illustrations are provided based upon the well–known Danish fire insurance
dataset. Here the composite Stoppa model is compared with existing com-
posite models from two points of view, theoretical plausibility and practical
considerations. Finally conclusions are given in the last Section.
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2 Composite Pareto Models with unrestricted

mixing weights

Scollnik (2007) improved the composite model given in Cooray and Ananda
(2005) by incorporating unrestricted mixing weights. The density function
of the composite model can be written as

f(x) =

{
r f ∗1 (x), 0 < x ≤ θ
(1− r) f ∗2 (x), θ < x <∞ (1)

with 0 ≤ r ≤ 1 , f ∗1 (x) =
f1(x)

F1(θ)
and f ∗2 (x) =

f2(x)

1− F2(θ)
are adequate

truncations of the probability density functions f1 and f2 up to and thereafter
an unknown threshold value θ where F1(θ) and F2(θ) denote the cumulative
distribution function (cdf) of f1 and f2 at θ respectively. Then (1) can be
seen as a convex sum of two density functions and hence it is in a form of a
mixture model. After imposing the continuity condition (i.e. f(θ−) = f(θ+)),
we have

r =
f2(θ)F1(θ)

f2(θ)F1(θ) + f1(θ) (1− F2(θ))
. (2)

Next, differentiability condition at θ was also imposed in order to make (1)
smooth and to reduce the number of parameters.

2.1 Lognormal–Pareto Models

Let

f1(x) =
1√

2π xσ
exp

(
−1

2

(
lnx− µ

σ

)2
)
, x > 0 (3)

be the probability density function (pdf) of a two–parameter Lognormal dis-
tribution, where µ ∈ R, σ > 0, and

f2(x) =
α θα

xα+1
, x > θ, (4)

be the pdf of a two–parameter Pareto distribution, where α, θ > 0.
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The density function of this composite model is given by

f(x) =

 r
f1(x)

Φ(ασ)
, 0 < x ≤ θ

(1− r) f2(x), θ < x <∞
(5)

with 0 ≤ r ≤ 1 and Φ(·) denotes the cdf of the standard normal distribution.
By allowing for continuity and differentiability at θ, we have that

r =

√
2π α σΦ(ασ) exp

(
1
2
(ασ)2

)
√

2 π α σΦ(ασ) exp
(
1
2
(ασ)2

)
+ 1

and

ασ =
ln θ − µ

σ
.

Then (5) is defined by means of the threshold θ, a tail index α and a small
loss parameter σ.

Scollnik (2007) also considered another composite model, the Lognormal–
Type II Pareto (Lomax) with pdf

f(x) =

 r
f1(x)

Φ (A)
, 0 < x ≤ θ

(1− r) f2(x), θ < x <∞

where A =
ln θ − µ

σ
=

(
α θ − λ
λ+ θ

)
σ, and f2(x) is the pdf of the Type II

Pareto given by

f2(x) =
α (λ+ θ)α

(λ+ x)α+1
, x > θ

where the parameters are θ > 0, α > 0, andλ > −θ.
After imposing the continuity and differentiability requirements at θ a smooth
four–parameter density is obtained, r is now provided by

r =

√
2 π α θ σΦ (A) exp

(
1

2
A2

)
√

2 π α θ σΦ (A) exp

(
1

2
A2

)
+ λ+ θ

.

Note that this model nests the composite Lognormal–Pareto model if λ = 0.
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2.2 Weibull–Pareto Models

Let

f1(x) =
τ

x

(
x

φ

)τ
exp

(
−
(
x

φ

)τ)
, x > 0 (6)

be the pdf of a two–parameter Weibull distribution, where φ, τ > 0, and

f2(x) =
α θα

xα+1
, x > θ,

be the pdf of a two–parameter Pareto distribution, where θ, α > 0.
Scollnik and Sun (2012) constructed a composite model with pdf

f(x) =

 r
f1(x)

F1(θ)
, 0 < x ≤ θ

(1− r) f2(x), θ < x <∞
with 0 ≤ r ≤ 1 and F1(θ) is the cdf of the Weibull distribution at θ. By
allowing for continuity and differentiability at θ, a three-parameter model is
obtained. Now r is provided by

r =
α exp (B)− α
α exp (B) + τ

, where B =

(
θ

φ

)τ
=
α

τ
+ 1.

In a similar fashion as in the Lognormal–Pareto composite family, Scoll-
nik and Sun (2012) also considered the composite Weibull-Type II Pareto
(Lomax) with pdf

f(x) =

 r
f1(x)

F1(θ)
, 0 < x ≤ θ

(1− r) f2(x), θ < x <∞
where f2(x) is the pdf of the Type II Pareto and it is given by

f2(x) =
α (λ+ θ)α

(λ+ x)α+1
, x > θ, θ > 0, α > 0, andλ > −θ.

Then by imposing the continuity and differentiability conditions at θ, a four–
parameter smooth density function is derived. Here r is provided by

r =
α

τ

(
λ+ θ

θ

C
exp (C)− 1

+
α

τ

)−1
,

where C =

(
θ

φ

)τ
=

α θ − λ
(λ+ θ) τ

+ 1, clearly, this model nests the composite

Weibull–Pareto model if λ = 0.
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3 Generalizing the Pareto distribution

Although not sufficiently well–described in the English language literature,
a generalization of the Pareto distribution was proposed by Stoppa (1990).
The methodology to derive this family of distributions involves applying a
power transformation to the Pareto cdf. The cdf of the Stoppa distribution
is given by

F (x) =

[
1−

(
x

x0

)−δ]γ
, 0 < x0 ≤ x,

where δ, γ > 0 specify the shape of the distribution and x0 is the minimum
possible value. The classical Pareto distribution is obtained when γ = 1.
The pdf of the Stoppa distribution is provided by

f(x) = γ δ xδ0 x
−(δ+1)

[
1−

(
x

x0

)−δ]γ−1
, 0 < x0 ≤ x. (7)

Some properties of this distribution can be found in Kleiber and Kotz
(2003). In this regard, the kth order moment exists for k < δ is given by

E(Xk) = γ xk0 Be

(
1− k

δ
, γ

)
,

where Be(·, ·) represents the beta function defined by

Be(a, b) =

∫ 1

0

za−1 (1− z)b−1 dz with a, b > 0.

Additionally, the quantile function can be easily derived,

F−1(u) = x0
(
1− u1/γ

)−1/δ
, 0 < u < 1.

As compared with the Pareto distribution, the Stoppa distribution is more
flexible since it includes an additional shape parameter γ that allows for
unimodality for γ > 1 and zeromodality when γ ≤ 1. For the former case
the mode is located at

xMode = x0

(
1 + γ δ

1 + δ

)1/δ

, γ > 1, (8)
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whereas for the latter case it is at x0. Figure 3 shows the effect of increasing
the shape parameter γ on probability density function of the Stoppa distri-
bution while holding x0 and δ fixed. As γ ≥ 1 increases, the mode moves to
the right producing a thicker tail.

Figure 1: Stoppa densities for x0 = 0.5, δ = 1.5, and γ = 1 (dotted), γ = 2
(dashed), γ = 3 (solid thin) and γ = 4 (solid thick).

4 The Composite Stoppa Models

The composite Pareto models described use the Pareto distribution above
the threshold value. As both classical and Type II Pareto distributions are
monotonically decreasing, the threshold estimate is always greater than the
modal value of the composite model. This formulation is natural as it is the
intention to use Pareto distribution to model the large claims.

Yet, one other viewpoint that could be useful is to consider a composite
model where the splice point is at the mode of the data. Under this con-
struction, the use of two distributions for the different sides of the claims
distribution is in effect modeling how fast the probability decreases from the
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mode to either ends of the distribution. This addresses the asymmetric na-
ture of the claims distribution resulting from the asymmetric sizes of the
state space on both sides of the mode of the data. As a result, the data
support of both sides of the spliced model are more balanced, compared with
for example, a composite Pareto model with a large threshold estimate. This
has the benefits that the fitting of the model is more robust to new data,
especially data of large claims, and that the information in the moderate-to-
large claims about the large claims can be captured, through modeling the
transition between the two classes of claims sizes.

Using a mode–matching procedure, the construction of the composite
Stoppa model is now given. Note that this procedure incorporates unre-
stricted mixing weights into the model. The first component of the spliced
model is used up to the modal value (which is to be estimated from the
data) and the adequate truncation of the Stoppa distribution given in (7)
thereafter. Then, the density function of the composite Stoppa model can
be written as

f(x) =

{
r f ∗1 (x), 0 < x ≤ xm
(1− r) f ∗2 (x), xm < x <∞ (9)

with 0 ≤ r ≤ 1, f ∗1 (x) =
f1(x)

F1(xm)
an adequate truncation of the probabil-

ity density functions f1 up to the modal value, where F1(xm) is the cdf of

f1 evaluated at xm, and f ∗2 (x) =
f2(x)

1− F2(xm)
a suitable truncation of the

Stoppa distribution, where 1 − F2(xm) is the survival function evaluated at
xm. Again, (9) is in a form of a mixture model.

In place of the usual continuity and differentiability conditions, a mode–
matching procedure is used. This procedure ensures the continuity and differ-
entiability conditions are satisfied. In addition, it gives a simpler derivation
of the model compositing with any distributions with a mode that has a
closed form expression. The mode–matching conditions are given as follows.

Denote the modes of the distributions used by the first and second compo-
nents of the composite model by xfirstm , xsecondm respectively. Then the mode–
matching conditions are:

xfirstm = xsecondm (10)

r f ∗1 (xfirstm ) = (1− r) f ∗2 (xsecondm ) (11)
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Clearly, (11) implies the continuity condition is satisfied, and since the
equality in (10) allows us to drop the “first” and “second” labels, the simple
expression for the mixing weight, as seen in the other existing composite
models, is preserved and is given by

r =
f2(xm)F1(xm)

f2(xm)F1(xm) + f1(xm) (1− F2(xm))
. (12)

Next, note that for unimodal distribution, the derivative at the mode is zero,
so it is clear the differentiability condition is also satisfied.

4.1 Lognormal–Stoppa Model

The composite Lognormal–Stoppa model will be derived in terms of the
mixture model (9). Its density function is given by

f(x) =



r

1√
2 π xσ

exp

(
−1

2

(
lnx− µ

σ

)2
)

Φ
(
lnxm−µ

σ

) , 0 < x ≤ xm

(1− r)
γ δ xδ0 x

−(δ+1)

[
1−

(
x
x0

)−δ]γ−1
1−

[
1−

(
xm
x0

)−δ]γ , xm < x <∞

(13)

with µ ∈ R, σ > 0, γ > 1, δ > 0, 0 ≤ r ≤ 1 and Φ(·) denotes the cdf of the
standard normal distribution.

Using the mode–matching procedure, (10) gives

σ =

√√√√µ− ln

[
x0

(
1 + γδ

1 + δ

)1/δ
]
, (14)

note that this result implies an additional constraint that µ > ln

[
x0

(
1 + γδ

1 + δ

)1/δ
]

.

Then, substituting the corresponding densities and distribution functions
into (12) gives
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r = γ δ xδ0 x
−(δ+1)
m

[
1−

(
xm
x0

)−δ]γ−1
Φ

(
lnxm − µ

σ

)

×

γ δ xδ0 x−(δ+1)
m

[
1−

(
xm
x0

)−δ]γ−1
Φ

(
lnxm − µ

σ

)

+
1√

2π xm σ
exp

(
−1

2

(
lnxm − µ

σ

)2
) (

1−

[
1−

(
xm
x0

)−δ]γ)}−1
.

It guarantees that (13) is continuous and smooth. Note that the number of
parameters is reduced to four.

The cdf of the composite Lognormal–Stoppa distribution is provided by

F (x) =



r

Φ

(
lnx− µ

σ

)
Φ

(
lnxm − µ

σ

) , 0 < x ≤ xm

r + (1− r)

[
1−

(
x
x0

)−δ]γ
−
[
1−

(
xm
x0

)−δ]γ
1−

[
1−

(
xm
x0

)−δ]γ , xm < x <∞.

(15)
Furthermore, the moment of order kth of the composite Lognormal–

Stoppa distribution exists when δ > k. Its analytical expression is given
by

E(Xk) = r

Φ

(
lnxm − µ− kσ2

σ

)
Φ

(
lnxm − µ

σ

) ekµ+
k2σ2

2

+ (1− r) 1

1−
[
1−

(
xm
x0

)−δ]γ γ xk0 Be
((

xm
x0

)−δ
; 1− k

δ
, γ

)
,
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where Be(·; ·, ·) represents the incomplete beta function defined by

Be(x; a, b) =

∫ x

0

za−1 (1− z)b−1 dz with a, b > 0.

In preparation for the resampling scheme in the following numerical applica-
tions section, a procedure for generating random variates from the composite
Lognormal–Stoppa distribution is presented. As the cdf of the Lognormal
and Stoppa distributions can be inverted, the inverse transformation method
of simulation can be used for this composite family. If u is a value generated
from the uniform distribution U(0, 1), then a value generated from (13) is
obtained as follows.

• If u ≤ r then

x = exp

{
µ+ σ · Φ−1

(
u

r
Φ

(
lnxm − µ

σ

))}
.

• If u > r then

x = x0

1−

(
u− r
1− r

[
1−

(
1−

(
xm
x0

)−δ)γ]
+

(
1−

(
xm
x0

)−δ)γ)1/γ

−1/δ

.

4.2 Weibull–Stoppa Model

The composite Weibull–Stoppa model will be also obtained in terms of the
mixture model (9). Its density function is given by

f(x) =



r
1

1− exp
(
−
(
xm
φ

)τ) (τ
x

)(x
φ

)τ
exp

(
−
(
x

φ

)τ)
, 0 < x ≤ xm

(1− r)
γ δ xδ0 x

−(δ+1)

[
1−

(
x
x0

)−δ]γ−1
1−

[
1−

(
xm
x0

)−δ]γ , xm < x <∞

(16)
with φ > 0, γ > 1, δ > 0, 0 ≤ r ≤ 1 and τ > 1 to define a positive modal
value.
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Now, again applying the mode-matching conditions, (10) gives

φ =

[
x0

(
1 + γδ

1 + δ

)1/δ
] (

τ

τ − 1

)1/τ

. (17)

Similarly, substituting the corresponding densities and distribution functions
into (12) gives

r = γ δ xδ0 x
−(δ+1)
m

[
1−

(
xm
x0

)−δ]γ−1 (
1− exp

(
−
(
xm
φ

)τ))

×

γ δ xδ0 x−(δ+1)
m

[
1−

(
xm
x0

)−δ]γ−1 (
1− exp

(
−
(
xm
φ

)τ))

+

(
τ

xm

)(
xm
φ

)τ
exp

(
−
(
xm
φ

)τ) (
1−

[
1−

(
xm
x0

)−δ]γ)}−1
.

The cdf of the composite Weibull–Stoppa distribution is yielded by

F (x) =



r
1− exp

(
−
(
x
φ

)τ)
1− exp

(
−
(
xm
φ

)τ) , 0 < x ≤ xm

r + (1− r)

[
1−

(
x
x0

)−δ]γ
−
[
1−

(
xm
x0

)−δ]γ
1−

[
1−

(
xm
x0

)−δ]γ , xm < x <∞.

(18)
Now, kth order moment of the composite Weibull–Stoppa distribution exists
again if δ > k. Its analytical expression is provided by

E(Xk) = r
φk Γ

(
1 + k

τ

)
− Γ

(
1 + k

τ
;
(
xm
φ

)τ)
(

1− exp
(
−
(
xm
φ

)τ))
+ (1− r) 1

1−
[
1−

(
xm
x0

)−δ]γ γ xk0 Be
((

xm
x0

)−δ
; 1− k

δ
, γ

)
,
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where Γ(·) and Γ(·; ·) are the complete and incomplete gamma functions
defined by

Γ(a) =

∫ ∞
0

za−1 e−z dz and Γ(a;x) =

∫ x

0

za−1 e−z dz with a, x > 0,

respectively and Be(·; ·, ·) is the incomplete beta function.
The procedure for generating random variates from the Weibull–Stoppa

distribution is also presented. Similar to the previous section, the inverse
transformation method of simulation can be applied as the cdf of the Weibull
and Stoppa distributions are invertible. If u is a value generated from the uni-
form distribution U(0, 1), then a value generated from (16) can be obtained
as follows.

• If u ≤ r then

x = −φ
{

ln

[
1− u

r

(
1− exp

[
−
(
θ

φ

)τ])]}1/τ

.

• If u > r then

x = x0

1−

(
u− r
1− r

[
1−

(
1−

(
xm
x0

)−δ)γ]
+

(
1−

(
xm
x0

)−δ)γ)1/γ

−1/δ

.

5 Numerical applications

In this section, the versatility of the composite Lognormal–Stoppa and Weibull–
Stoppa models, as compared with the composite Pareto and composite Lo-
max families, is tested using the classic Danish fire insurance dataset. The
dataset contains 2,492 fire insurance losses in millions of Danish kroner (DKr)
from the years 1980 to 1990 inclusively, adjusted to reflect 1985 values. This
dataset may be found in the “SMPracticals” add-on package for R, available
from the CRAN website http://cran.r-project.org/.

Parameter estimation for all the models considered in this paper has been
completed by the method of maximum likelihood (ML)(which is implemented
using the function “mle”/“mle2” in R). The ML estimates for the different
composite models, together with their corresponding standard errors, are
reported in Table 1.
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5.1 Model assessment

Model assessment is presented from two points of view, theoretical plau-
sibility and practical consideration. For the former point, the theoretical
plausibility is justified by means of Kullback-Leibler divergence, suggesting
an information-criterion based approach. The following four information cri-
terions are used:

1. Negative log–likelihood (NLL): Calculated by taking the negative of
the value of the log–likelihood evaluated at the ML estimates.

2. Akaike information criterion (AIC): Calculated by twice the NLL, eval-
uated at the ML estimates, plus twice the number of estimated param-
eters

3. Bayesian information criterion (BIC): Obtained as twice the NLL, eval-
uated at the ML estimates, plus k ln(n), where k is the number of
estimated parameters and n is the sample size)

4. Consistent Akaike Information Criteria (CAIC): A corrected version of
the AIC, proposed by Bozdogan (1987) to overcome the tendency of the
AIC overestimating the complexity of the underlying model as it lacks
the asymptotic property of consistency. In order to calculate the CAIC,
a correction factor based on the sample size is used to compensate for
the overestimating nature of AIC. The CAIC is defined as twice the
NLL plus k (1 + ln(n)), again k is the number of free parameters and
n refers to the sample size.

Note that for all the information criterion above, smaller values indicate a
better fit of the model to the data. The results are shown in Table 1. It
can be seen that within each of the Lognormal-composite family and the
Weibull-composite family, the model associated with the Stoppa distribution
outperforms the ones assocciated with the Pareto or Lomax distributions in
all of the goodness-of-fit measures mentioned before. Overall, the Weibull-
Stoppa composite model provides the best fit, again consistently across the
different measures, to the data. Illustration of the fit of all the compos-
ite models is given in Figure 2 and Figure 3. Upon the recommendation
of an anonymous reviewer, we have calculated the values of the NLL for
the Lognormall–Stoppa and Weibull–Stoppa distributions under the tradi-
tional continuity–differentiability conditions. Those figures are 3858.51 for
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the former model and 3818.79 for the latter one; it is important to men-
tion that the ML estimates obtained by using this approach are located in
the neighbourhood of the ones computed under the mode–matching proce-
dure. Probably the reason for that is that local maxima were found for these
models and the probabilistic families derived under the mode–matching pro-
cedure can be considered a particular case of those ones obtained by using
the continuity–differentiability approach. As a side note, an evaluation of
the fitted mode is given. The sample mode of the data is 0.8873114. The
Lognormal–Stoppa distribution gives a theoretical mode of 1.06041 and a
mixing weight of r = 0.1657338; the Lognormal–Lomax distribution gives a
mode of 1.072794 and a weight of r = 0.2381526 and the Lognormal–Pareto
distribution gives 1.103568 and 0.2900379 respectively. For the composite
models based on the Weibull distribution, we have a mode of 0.9454775 and
a weight of r = 0.08148809 for the Weibull–Stoppa distribution, a mode of
0.9647542 and a weight of r = 0.1063022 for the Weibull–Lomax distribution
and a mode of 0.9913752 and a weight of r = 0.1394686 for the Weibull–
Pareto distribution. The Lognormal–Stoppa distribution and the Weibull–
Stoppa distribution have the closest fitted mode to the sample mode within
their own family of distributions; and considering the two families together,
Weibull–Stoppa has the closest fitted mode.

For the latter point, applications of the composite model, especially in the
context of actuarial studies, involve mostly calculations done using the dis-
tribution function of the fitted model, for instance, the expected loss above
a threshold and the value-at-risk. Hence, it is useful to express the fit of
the model to the data in terms of distribution functions. In particular, it is
suggested to use the following three empirical distribution function (EDF)
goodness-of-fit measures to quantify the “distance” between the empirical
distribution function constructed from the data and the cumulative distribu-
tion function of the fitted models. They are the Kolmogorov-Smirnov test
statistics, the Cramer-von Mises test statistics and the Anderson-Darling test
statistics (Rizzo, 2009). The definition of the test statistics are given as fol-
lows: Denote the cumulative distribution function of the fitted model by F̂ ,
the original data by x1, ..., xN and the ordered data in increasing magnitude
by x(1), ..., x(N), then we have:

1. Kolmogorov-Smirnov (KS) test statistics: D = max(D+, D−), where

D+ = max
1≤j≤N

{
j

N
− F̂ (x(j)))

}
, D− = max

1≤j≤N

{
F̂ (x(j))−

j − 1

N

}
.
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Fitted Density Curves for the Composite Lognormal Models
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Fitted Density Curves for the Composite Lognormal Models
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Figure 2: Comparison of empirical histogram for the Danish fire in-
surance data, Lognormal–Stoppa (solid), Lognormal–Lomax (dashed) and
Lognormal–Pareto (dotted).
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Fitted Density Curves for the Composite Weibull Models
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Fitted Density Curves for the Composite Weibull Models
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Figure 3: Comparison of empirical histogram for the Danish fire insurance
data, Weibull–Stoppa (solid), Weibull–Lomax (dashed) and Weibull–Pareto
(dotted).
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2. Cramer-von Mises (CvM) test statistics:

W 2 =
N∑
j=1

[
F̂ (x(j))−

2j − 1

2N

]2
+

1

12N
.

3. Anderson-Darling (AD) test statistics:

A2 = −N− 1

N

N∑
j=1

[(2j−1) log(F̂ (x(j)))+(2n+1−2j) log(1− F̂ (x(j)))].

For all the EDF goodness-of-fit measures above, smaller values indicate a
better fit of the model to the data. The results are summarized in Table
2. It can be seen that using the CvM and AD measure, within each of the
Lognormal-composite family and the Weibull-composite family, the compos-
ite model associated with the Stoppa distribution gives the best fit. In fact,
unlike the case in the information-criterion section, the Lognormal-Stoppa
and Weibull-Stoppa models are the best two models considering all the mod-
els at once. In the KS case, it is observed that while the Weibull-Stoppa
model is still the best overall, the Lognormal-Lomax model outperforms the
Lognormal-Stoppa model by a slight margin. The reason is believed to be
that Kolmogorov-Smirnov test is relatively insensitive to deviations occuring
in the tail (Mason and Schuenemeyer, 1983). Besides, since the improvement
brought by using the Stoppa distribution in place of the Lomax distribution
only occurs in the tail, the KS test statistics may not have fully reflected the
improvement, resulting in the slightly superior fit of the Lognormal-Lomax
model over the Lognormal-Stoppa model.

Note that the test statistics not only provide a way to measure the fit in
terms of distribution functions, but also allow us to perform hypothesis test-
ing for model validation purposes. We remark that to perform the goodness-
of-fit tests, it is required the proposed model is specified completely, i.e.
parameters need to be specified too. In the case where parameters are esti-
mated from data, the critical values produced using the standard procedure
are no longer valid (Babu and Rao, 2004). To circumvent this problem, we
use the bootstrap method. The validity is justified by the work of Babu and
Rao (2004), in which the consistency of the bootstrap method estimating the
null distribution of the goodness-of-fit test statistics was shown. We present
a brief outline of the bootstrap procedure. Denote the data by x1, ..., xN .
For each proposed composite model, fit the model to the data. Then,
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Table 2: EDF goodness-of-fit measures of the composite models.

test statistics
Model KS CvM AD
Lognormal–Pareto 0.032304 0.47814 3.15964
Lognormal–Lomax 0.019515 0.21406 1.95087
Lognormal–Stoppa 0.019739 0.14493 1.70092
Weibull–Pareto 0.051729 1.51904 7.33822
Weibull–Lomax 0.025506 0.33780 1.90971
Weibull–Stoppa 0.017340 0.12615 0.88225

1. Compute the goodness-of-fit test statistics, tKS, tCvM , tAD.

2. Use the fitted model to perform parametric bootstrapping.

• Generate M sets of resampled data, denote as x̂
(i)
1 , ..., x̂

(i)
N , i =

1, ...,M .

• For each set of the resampled data, fit the composite model and
compute the test statistics, t

(i)
KS, t

(i)
CvM , t

(i)
AS, i = 1, ...,M .

3. The p-value of the respective original test statistics are given by

#{i : t
(i)
KS ≥ tKS}
M

,
#{i : t

(i)
CvM ≥ tCvM}
M

,
#{i : t

(i)
AD ≥ tAD}
M

.

The p-value of the test statistics, computed using M = 10000 simula-
tions, are presented in Table 3. We remark that while an extremely small
p-value may lead to a confident rejection of the null hypothesis that the data
comes from the proposed model, and in general a larger p-value is favourable,
a p-value being large doesn’t serve well as evidence of the model being cor-
rect especially when there are other models with a p-value of comparable
magnitude. It can be seen that none of the models are rejected, validat-
ing that the models are statistically legitimate candidates. In addition, the
composite-Stoppa models, together with the composite-Lomax models in this
case, have relatively high (hence favourable) p-values across different EDF
goodness-of-fit measures.
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Table 3: p-values of the EDF goodness-of-fit measures of the composite mod-
els, computed with 10000 sets of bootstrap resamples.

p-value of the test statistics
Model KS CvM AD
Lognormal–Pareto 0.5314 0.5527 0.6968
Lognormal–Lomax 0.9741 0.9219 0.9410
Lognormal–Stoppa 0.9360 0.9530 0.9440
Weibull–Pareto 0.5071 0.5086 0.5324
Weibull–Lomax 0.7949 0.7760 0.8364
Weibull–Stoppa 0.6955 0.7104 0.7571

5.2 Applications

In this section, investigation on two practical concerns, namely the high
quantiles and the probable maximal loss, is presented. As both the quantities
are related to the distribution function of the model, the performance in these
terms is expected to be in line with the results shown in the EDF goodness-
of-fit section.

5.2.1 Estimation of high quantiles

It is often convenient for practitioners to obtain reliable information about
the tail of the claim size distribution. A measure that yields an acceptable
knowledge of the right tail of the model is the high quantiles. Empirical and
fitted quantiles in the extreme portion of the tail for composite Lognormal
and composite Weibull are given in Table 4 and Table 5 respectively. The
empirical quantiles have been computed using the Type 8 quantile algorithm
suggested by Hyndman and Fan (1996). It is our interest to analyze how
much theoretical tail quantiles of each fitted composite model deviate from
the empirical quantiles in the extreme portion of the tail. It can be seen
that the composite Stoppa models demonstrate a better fit to the data in
the high quantiles, likewise suggesting it being a favourable model for the
given data. The Lognormal–Pareto and Weibull–Pareto distributions tend
to overestimate the exteme tail quantiles whereas Lognormal–Lomax and
Weibull–Lomax composite models underestimate them. We remark that in-
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terpretation of the results obtained from this table needs to be prudently
made given that the extreme-value data is scarce. To illustrate the point,
note that the sample size of the dataset is only 2492 while the value of the
99.99% empirical quantile represents an event that occurs 1 in 10000 times.

Table 4: Empirical and fitted composite Lognormal model quantiles.

Composite Lognormal
Quantiles Empirical Pareto Lomax Stoppa
0.50 1.634 1.572 1.611 1.590
0.90 5.086 5.282 5.164 5.028
0.95 8.459 8.902 8.249 8.134
0.99 24.870 29.903 23.750 24.683
0.999 146.010 169.227 104.835 120.322
0.9995 199.020 285.259 163.540 193.801
0.9999 263.250 958.261 458.572 586.128

Table 5: Empirical and fitted composite Weibull model quantiles.

Composite Weibull
Quantiles Empirical Pareto Lomax Stoppa
0.50 1.634 1.542 1.615 1.632
0.90 5.086 5.522 5.201 5.129
0.95 8.459 9.566 8.203 8.211
0.99 24.870 34.262 22.648 24.223
0.999 146.010 212.586 92.931 113.126
0.9995 199.020 368.271 141.649 179.885
0.9999 263.250 1319.032 376.050 527.741

5.2.2 Probable maximum loss

We conclude this section by presenting the probable maximum loss (PML)
for the family of composite models described in this paper. In general terms,
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the PML can be defined as the worst loss likely to happen (Cebrián et al
(2003)). To be specific, given a random variable N that follows a Poisson
distribution with mean ζ, and X1, . . . , XN a sequence of independent and
identically distributed random variables, define a sequence of maxima MN =
max(X1, . . . , XN) with cdf FMN

. Then, the PML is the quantile function of
the maximum loss MN and is given by PML = F−1MN

(q). For implementation,
the value of ζ is needed, we follow Pigeon and Denuit (2011) and use the
average annual frequency as an estimate, which is given by ζ̂ = 226.5455.
Results of PML for values of q = 0.90, q = 0.95 and q = 0.99 are shown in
Table 6.

Table 6: Probable maximal losses for different values of q.

Probable Maximal Loss q
Model 0.90 0.95 0.99
Lognormal–Pareto 301.20 517.86 1766.67
Lognormal–Lomax 171.10 271.32 770.04
Lognormal–Stoppa 229.74 376.89 1156.00
Weibull–Pareto 390.10 690.25 2513.00
Weibull–Lomax 147.65 228.48 613.17
Weibull–Stoppa 195.11 315.78 939.37

6 Conclusions

A new composite family for modeling claims data of mixed sizes has been pro-
posed and its performance is compared with existing models using a classic
insurance dataset. The composite model is developed using a mode–matching
procedure. The Lognormal or Weibull distribution is used up to its mode as
the first component of the spliced model and thereafter, the Stoppa distribu-
tion is used as the second component. The Goodness–of–fit has been analyzed
using two different methodologies, an information–criterion approach and an
empirical–distribution–function approach. The choices are made to address
theoretical plausibility and practical considerations. Numerical results show
that the composite Stoppa model outperforms the existing composite models
under six goodness-of-fit measures in the context of the Danish fire insurance
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data set. This together with its simple implementation make it an appeal-
ing tool to model claims of mixed sizes. Finally, although the simplification
and numerical implemetation of the resulting models could be cumbersome
and tedious, it might be interesting to consider a further extension of the
composite Stoppa models under the traditional continuity–differentiability
approach.
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