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Abstract: Mechanism of two-tone suppression is studied using a coupled-oscillator model of
the cochlea with feed-forward coupling. Local amplification of sound signals is modeled by
using Stuart-Landau oscillators near the Hopf bifurcation, and transmission of sound signals
is described as feed-forward coupling between the oscillators. Effect of suppressor signals on
the response to probe signals is analyzed by numerical simulations. It is found that the effect
of suppression is qualitatively different depending on relative frequency between probe and
suppressor signals. By analyzing a simplified two-oscillator model, we explain the mechanism
of the suppression, where configuration of the oscillators plays an essential role.
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1. Introduction
The cochlea in the inner ear is an auditory sensory organ that transforms sound stimuli into neural
signals. It is known that the cochlea has an active amplification mechanism, which realizes sharp
frequency selectivity and a wide dynamic range [1–7]. The cochlear duct has a tubular shape, which
is separated by a basilar membrane and filled with lymphatic fluid. Sound stimuli coming from the
eardrum propagate through this fluid as pressure waves, and variations in the fluid pressure induce
vibrations of the basilar membrane. Hair cells attached to the basilar membrane actively amplify the
mechanical vibrations and transform them into neural signals.

Depending on the frequency of the sound stimulus, active vibrations of the hair cells are evoked at
different points on the basilar membrane. The most sensitive frequency at each point of the basilar
membrane is called the characteristic frequency (CF). The CF is exponentially distributed along the
cochlea, from higher frequencies at the base (near the entrance) to lower frequencies at the apex (near
the end of the duct). In human, the CF ranges approximately from 20Hz (apex) to 20kHz (base).

It has been shown that the vibrations of the basilar membrane and the hair cells can be modeled by
using a Stuart-Landau oscillator, a normal form of the Hopf bifurcation [3–7]. It is considered that the
cochlea can be modeled as an array of such active oscillators slightly below the onset of spontaneous
oscillation, which are coupled mechanically and through the lymphatic fluid with high viscosity in
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the cochlear duct [8–14]. Development of biomimetic acoustic sensors that take into account the
amplification characteristics of the cochlea has also been attempted [3, 15–17].

In this paper, we study the effect of coupling on two-tone suppression, a well-known auditory
phenomenon in which response to a probe signal is reduced when another suppressor signal with
different frequency is presented [18]. Depending on whether the frequency of the suppressor signal is
higher or lower than that of the probe signal, it is classified into high-side suppression (HSS) and low-
side suppression (LSS), which show qualitatively different characteristics. By numerical simulations
and theoretical analysis of the coupled-oscillator model, we analyze how the effect of suppression
depends on the level and frequency of the suppressor signal, and argue that the qualitative difference
between HSS and LSS is caused by the difference in relative configuration of the oscillators.

Fig. 1. (A) Schematic illustration of the model. The basilar membrane is
modeled as a one-dimensional array of N oscillators with feed-forward coupling.
The external input unidirectionally propagates from the base (j = 1) to the
apex (j = N). (B) Amplitude response of a single oscillator to a sinusoidal
external input vs. relative frequency of the input signal to the natural frequency
of the oscillator. Results for several values of the input amplitude are shown.

2. Model
In this study, we model the propagation of sound pressure in the cochlea using coupled oscillators with
feed-forward coupling. Each oscillator represents vibrations of the basilar membrane and the attached
hair cells, and the feed-forward coupling is assumed to represent the unidirectional propagation of
sound waves in the lymphatic fluid from the base to the apex observed experimentally [19]. Similar
models have also been considered in Refs. [15, 16].

Figure 1A shows a schematic illustration of the model, a one-dimensional array of nonlinear os-
cillators with feed-forward coupling. Each oscillator is described by a Stuart-Landau model, whose
characteristic frequency gradually varies along the cochlea, and receives an input from the previous
oscillator. The dynamics of the model is described by

żj = ωc,j [(μj + i)zj − |zj |2zj + Fj ], (j = 1, 2, . . . , N), (1)

where i =
√−1, zj(t) is a complex variable representing the state of the oscillator j at time t,

ωc,j is its natural frequency, μj is a bifurcation parameter, and Fj(t) is an input from the previous
oscillator. The real part of zj(t) corresponds to the displacement of the basilar membrane. The
bifurcation parameter μ takes a negative value close to zero, which represents that the oscillators are
slightly below the critical point of the Hopf bifurcation. Physiologically, this parameter characterizes
dynamical properties of the hair cells and basilar membrane, as well as the viscous lymphatic fluid,
and represents how close the system is to the onset of spontaneous oscillation. We assume that the
input is given by Fj(t) = zj−1(t) for j = 2, . . . , N , namely, the oscillation of the previous oscillator is
directly relayed to the next oscillator without transmission loss.

The oscillator j = 1 at the base of the cochlea receives an external input Fext from the eardrum.
We consider two-tone stimuli and assume that the external input is a superposition of a probe signal
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with frequency ωprobe and a suppressor signal with frequency ωsup, both of which are sinusoidal. The
external input Fext(t) is thus given by

Fext(t) = feiωprobet + geiωsupt, (2)

where f ≥ 0 and g ≥ 0 are the amplitudes of the probe and suppressor signals, respectively.
We use N = 10 oscillators and fix their bifurcation parameters at μj = μ = −0.05 for all j =

1, . . . , N . This value is slightly below the critical value μc = 0 of a Hopf bifurcation. The properties
of the system are qualitatively the same for other values of μ, as long as μ takes a negative value
close to zero. Natural frequencies of the oscillators are assumed to be ωc,j = ωc,1 γ−(j−1), taking into
account the exponential distribution the CF in the actual cochlea [19]. Ratio of natural frequencies
between two neighboring oscillators is set at γ = ωc,n/ωc,n−1 = 2 (n = 2, . . . , N), and the natural
frequency of the first oscillator is fixed at ωc,1 = 105[rad/s].

With these parameters, each oscillator converges to a stable fixed point at zj = 0 when no input is
given (Fj = 0). When the oscillator receives a periodic input whose frequency is close to its natural
frequency ωc,j , it starts to exhibit a stable limit-cycle oscillation with the same frequency as the
periodic input, thereby actively amplifying the input signal. When the input frequency is lower than
the natural frequency, the oscillator does not exhibit a significant response and conveys the input
signal to the next oscillator without amplification or attenuation. On the other hand, when the input
frequency is higher than the natural frequency, the oscillator does not respond actively and the signal
is conveyed to the next oscillator after some attenuation. In the next section, we perform numerical
simulations of the model Eq. (1) to analyze its response properties to two-tone signals.

Before going into numerical simulations, it is instructive to see the response properties of a single
oscillator, following Egúıluz et al. [4]. Figure 1B shows the response of a single Stuart-Landau oscillator
to a monotone sinusoidal input, F (t) = aeiωt, where the response amplitude R = |z(t)| (constant for
a sinusoidal input) is plotted as a function of the relative frequency ω/ωc for several values of the
amplitude a of the input signal. These curves depend only on the relative frequency ω/ωc and are
independent of the absolute value of the natural frequency ωc. Here, the intensity of a sound signal
is characterized by the sound pressure level (SPL), where 0dB SPL corresponds to the amplitude of
10−4. 20dB increase in the SPL corresponds to 10 times increase in the amplitude of the sound
signal. The oscillator exhibits the maximal response to the input signal with ω = ωc, which is sharply
amplified when a is small and compressed when a is large. It is known that these frequency selectivity
and nonlinear amplification and compression are close to those of the actual basilar membrane [4].
In the following, we identify the CF of the basilar membrane with the natural frequency ωc of the
corresponding oscillator.

3. Numerical simulations
To analyze the response properties of the model to two-tone stimuli, we perform direct numerical
simulations of Eq. (1). We fix the frequency and level of the probe signal at ωprobe/2π = 994.7Hz and
30dB SPL, respectively, and vary the frequency and level of the suppressor signal. The suppressor
frequency is specified by its ratio to the probe frequency, Δωsup = ωsup/ωprobe. The output of
each oscillator can approximately be represented as a superposition of the two main frequencies as
zj(t) ≈ Aje

iωprobet + Bje
iωsupt when ωprobe and ωsup are not too close, where Aj and Bj are response

amplitudes of the oscillator j to probe and suppressor signals, respectively.
Figure 2 shows the change in the response amplitude of the oscillator to the probe signal caused by

the suppressor signal, where logarithm of the relative response amplitude of each oscillator to the probe
signal, 10 log10(Aj/Aj,30dB), is plotted in color scale with respect to the oscillator number and the
suppressor level. Here, Aj,30dB is a reference response amplitude to the probe signal when a suppressor
signal of 30dB SPL is applied. Figure 2A is for the LSS case with Δωsup = ωsup/ωprobe = 0.125, i.e.,
when the suppressor frequency is lower. Similarly, Fig. 2B is for the HSS case with Δωprobe = 8, i.e.,
when the suppressor frequency is higher. In both figures, the oscillator j = 5 has a CF that is equal
to the probe signal (hereafter denoted as CFprobe).
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Fig. 2. Suppression of response amplitude to probe signals due to suppressor
signals. In each figure, the black triangle indicates the oscillator with CFprobe

and the red circle indicates the oscillator with CFsup. Logarithm of the relative
response amplitude of each oscillator is plotted in color scale. (A) Low-side
suppression (LSS) with Δωsup = 0.125. (B) High-side suppression (HSS) with
Δωsup = 8.

In the LSS case, we can observe that the effect of suppression is stronger for the oscillators with
j ≥ 6 behind the probe oscillator j = 5 with CFprobe, that is, for the oscillators having lower CFs
than the probe frequency. In contrast, in the HSS case, the effect of suppression is stronger for the
oscillators with j ≤ 4 in front of the probe oscillator j = 5 with CFprobe, namely, for the oscillators
whose CFs are higher than the probe frequency.

The effect of the suppressor signal on the oscillator j = 5 with CFprobe is physiologically important,
because the sound pressure is detected around such a point whose CF is close to the probe frequency
in the actual basilar membrane. We thus analyze dependence of the effect of suppression on the
frequency and level of the suppressor signal at this oscillator.

Figures 3A and B show the response amplitudes of the oscillator j = 5 to the probe signal and to the
suppressor signal, respectively, for the cases with Δωsup = 8, 4 (HSS) and Δωsup = 0.25, 0.125 (LSS)
as functions of the suppressor level. Similarly to Fig. 2, logarithm of relative response amplitudes to
the probe and suppressor signals, 10 log10(Aj/Aj,30dB) and 10 log10(Bj/Bj,30dB), are plotted, where
Aj,30dB and Bj,30dB are the reference response amplitudes to the probe and suppressor signals when
a suppressor signal of 30dB SPL is applied.

It can be seen that the effect of suppression is stronger when the probe frequency and suppressor
frequency are closer for both LSS and HSS. Here, it is notable in Fig. 3A that the decay of the
curves for HSS is considerably slower than those for LSS. Thus, there is a qualitative difference in
the effect of suppression between LSS and HSS. Such an asymmetry is also observed experimentally

Fig. 3. (A) Response amplitude of oscillator j = 5 to the probe signal vs.
suppressor level. (B) Response amplitude of the oscillator j = 5 to the suppres-
sor signal vs. suppressor level. In each graph, logarithm of relative amplitude
to the probe or suppressor signal is plotted. The curves with Δωsup = 8, 4 are
for the HSS case, and those with Δωsup = 0.25, 0.125 are for the LSS case.
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in the actual cochlea [18]. The response amplitude to the suppressor signal also exhibits qualitatively
different dependence on the suppressor level between LSS and HSS as shown in Fig. 3B.

4. Theoretical analysis
In the previous section, we have observed that the effect of suppression is qualitatively different
between LSS and HSS by numerical simulations. In this section, we theoretically analyze a simplified
model to clarify the dependence of the effect of suppression on the suppressor frequency and level,
and explain the origin of the asymmetry between LSS and HSS observed in the numerical simulations.

From the one-dimensional structure of the model and the response property of a single oscillator
shown in Fig. 1B, propagation of the input signal in the model can be considered as follows. The
external input received at the base propagates along the oscillators without significant amplification
or attenuation until it reaches the oscillator whose natural frequency ωc is close to the input frequency
ω. The signal is then selectively and nonlinearly amplified or compressed at this oscillator, and then
further propagated toward the apex with gradual attenuation.

Thus, it is expected that the essential difference between LSS and HSS is whether the oscillator
with CFsup, whose CF is equal to the suppression frequency ωsup, is located in front of the probe
oscillator with CFprobe or behind it. To understand the consequence of this difference, we analyze
a simplified model with just two oscillators whose characteristic frequencies are CFprobe and CFsup,
respectively. For simplicity of the analysis, we consider the cases when ωprobe � ωsup (for LSS) or
ωprobe � ωsup (for HSS), that is, when the probe and suppressor frequencies are not close, as in the
case of Figs. 2 and 3. The configurations of the two oscillators corresponding to LSS and HSS are
shown in Figs. 4A and B, respectively.

Firstly, in the LSS case, both probe and suppressor signals propagate to the probe oscillator with
CFprobe without significant attenuation. Therefore, the suppression effect on the probe oscillator with
CFprobe should be close to that of a single oscillator with CFprobe subjected to a superposition of
probe and suppressor signals,

F (t) = feiωprobet + geiωsupt. (3)

The dynamics of such an oscillator with natural frequency ωc = ωprobe is given by

ż = ωprobe[(μ + i)z − |z|2z + feiωprobet + geiωsupt], (4)

where z(t) is the complex amplitude of the oscillator.

Fig. 4. Simplified model with two oscillators. The natural frequency of each
oscillator is equal to either of the probe or suppressor frequency. (A) Low-side
suppression (LSS). (B) High-side suppression (HSS).

We assume that the steady solution to Eq. (4) is given by

z(t) = Aeiωprobet + Beiωsupt, (5)

where A and B are the response amplitudes to the probe and suppressor signals, respectively. Plugging
this into Eq. (4) and collecting the terms with the same frequencies, we find that the response
amplitudes of Eq. (5) in the steady state are approximately given as real solutions to the following
set of equations:

−(|μ| + 2B2)A − A3 + f = 0, (6)

B6 + 2(|μ| + 2A2)B4 + {(|μ| + 2A2)2 + (1 − Δωsup)2}B2 = g2, (7)

94



where Δωsup = ωsup/ωprobe.
Because we have assumed ωprobe � ωsup, the term (1 − Δωsup)2 becomes dominant in Eq. (7), so

we approximately obtain (1 − Δωsup)2B2 ≈ g2. Thus, the response amplitude B to the suppressor
signal is approximately given by

B ≈ g

|1 − Δωsup| . (8)

Plugging Eq. (8) into Eq. (6), we obtain an approximate equation for the response amplitude A to
the probe signal as

−
[
|μ| + 2

(
g

1 − Δωsup

)2
]

A − A3 + f ≈ 0. (9)

Next, we consider the HSS case. The difference from the LSS case is that the suppressor signal
passes through the oscillator with CFsup before reaching the probe oscillator with CFprobe. The
dynamics of the two oscillators with natural frequencies ωc = ωsup and ωc = ωprobe are given by

żsup = ωsup[(μ + i)zsup − |zsup|2zsup + fsupe
iωprobet + gsupe

iωsupt], (10)

żprobe = ωprobe[(μ + i)zprobe − |zprobe|2zprobe + fprobee
iωprobet + gprobee

iωsupt], (11)

where the inputs to the oscillators are assumed to be

Fsup(t) = fsupe
iωprobet + gsupe

iωsupt,

Fprobe(t) = fprobee
iωprobet + gprobee

iωsupt. (12)

Here, fsup and gsup are the amplitudes of the probe and suppressor signals received by the oscillator
with CFsup, and fprobe and gprobe are the amplitudes of the probe and suppressor signals received by
the probe oscillator with CFprobe.

Fig. 5. Schematic illustration of the theoretical results for the two-oscillator
system, where response amplitudes to the probe and suppressor signals are
plotted with respect to the suppressor level in logarithmic scales. Solid and
broken lines correspond to the LSS and HSS cases, respectively.

Similarly to the previous LSS case, we assume steady response of the oscillators as

zsup(t) = Asupe
iωprobet + Bsupe

iωsupt, (13)

zprobe(t) = Aprobee
iωprobet + Bprobee

iωsupt, (14)

where Asup and Bsup are the response amplitudes of the oscillator with CFsup to the probe and
suppressor signals, and Aprobe and Bprobe are the response amplitudes of the oscillator with CFprobe

to the probe and suppressor signals, respectively. For the oscillator with CFsup, we obtain

A6
sup + 2(|μ| + 2B2

sup)A
4
sup + {(|μ| + 2B2

sup)
2 + (1 − Δωprobe)2}A2

sup = f2
sup (15)
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and

−(|μ| + 2A2
sup)Bsup − B3

sup + gsup = 0 (16)

by plugging Eq. (13) into Eq. (10), where Δωprobe = ωprobe/ωsup is introduced. Here, because the
response amplitude Bsup to the suppressor signal becomes dominant at the oscillator with CFsup, we
may approximate the latter equation as

B3
sup ≈ gsup. (17)

On the other hand, for the oscillator with CFprobe, we obtain

−(|μ| + 2B2
probe)Aprobe − A3

probe + fprobe = 0 (18)

and

B6
probe + 2(|μ| + 2A2

probe)B
4
probe + {(|μ| + 2A2

probe)
2 + (1 − Δωsup)2}B2

probe = g2
probe (19)

by plugging Eq. (14) into Eq. (11), where Δωsup = ωsup/ωprobe as before.
Because we have assumed ωprobe � ωsup, the term (1 − Δωsup)2 is dominant in the above equa-

tion and the response amplitude to the suppressor signal at the probe oscillator with CFprobe is
approximately given by

Bprobe ≈ gprobe

|1 − Δωsup| , (20)

and the response amplitude to the probe signal satisfies

−
[
|μ| + 2

(
gprobe

1 − Δωsup

)2
]

Aprobe − A3
probe + fprobe ≈ 0. (21)

Fig. 6. Theoretical curves of the response amplitude to the probe signal
vs. suppressor level for the same set of frequency ratios as used in Fig. 3A.
Logarithm of the relative amplitude to the probe signal is plotted as in Fig. 3A.
Results for ωsup = 8, 4 (HSS) and ωsup = 0.25, 0.125 (LSS) are shown.

Now, if we assume that the output of the oscillator with CFsup is directly propagated to the
oscillator with CFprobe, that is, if fprobe = Asup and gprobe = Bsup hold, we obtain

Bprobe ≈ gprobe

|1 − Δωsup| ≈
g

1
3
sup

|1 − Δωsup| (22)

and

−
⎡
⎣|μ| + 2

(
g

1
3
sup

1 − Δωsup

)2⎤⎦Aprobe − A3
probe + fprobe ≈ 0, (23)
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which describe the effect of suppression on the probe oscillator with CFprobe.
Figure 5 schematically illustrates the above theoretical results for the response amplitudes, where

the curves for LSS are given by Eqs. (8) and (9), and those for HSS are given by Eqs. (22) and (23).
It can be seen that the qualitative features of the response curves shown in Fig. 3A for the probe
signal and in Fig. 3B for the suppressor signal are reproduced by the two-oscillator model. The curve
showing the response amplitude Aprobe to the probe signal for LSS is steeper than that for HSS and,
as far as the approximation in Eqs. (8) and (22) is valid, the asymptotic slopes of the curves are given
by −1dB/dB (LSS) and −1

3dB/dB (HSS), respectively. This reflects the different scaling relations of
the response amplitude Bprobe to the suppressor signal on the suppressor amplitude between LSS and
HSS, given by Eqs. (8) and (22). The asymptotic slope −1 for LSS is close to the slope −0.9dB/dB
obtained experimentally by Rhode et al. [18], and the result for HSS also qualitatively agree with the
experimental result in that the slope is shallower than the LSS case.

Figure 6 shows theoretical curves of the response amplitude Aprobe to the probe signal for several
frequency ratios used in the numerical simulations shown in Fig. 3A. Similarly to Fig. 2, logarithm
of relative response amplitudes to the probe signal, 10 log10(Aprobe/Aprobe,30dB), is plotted. The
theoretical curves for the two-oscillator system reproduce the results of numerical simulations for
the 10-oscillator system in Fig. 3A qualitatively well. That is, the suppression is stronger when the
suppressor frequency is closer to the probe frequency, and the decay of the curves for HSS is much
slower than those for LSS.

The above theoretical results suggest that the nonlinear amplification and compression property
in the cochlea can give rise to qualitatively different suppression properties between HSS and LSS.
Figure 7 schematically illustrates the difference in the configuration of the two oscillators with CFprobe

and CFsup between LSS and HSS, as well as the propagation of the suppressor signal and the sup-
pressed domain. In the LSS case, the suppressor signal propagates through the probe oscillator with
CFprobe without significant amplification and then later amplified near the oscillator with CFsup.
Thus, the suppression domain arises behind the oscillator with CFprobe as shown in Fig. 2A. In
contrast, in the HSS case, the suppressor signal is nonlinearly amplified before reaching the probe
oscillator with CFprobe. Thus, the suppression domain arises in front of the oscillator with CFprobe as
shown in Fig. 2B. Moreover, because of the nonlinear amplification and compression of the suppressor
signal in the HSS case, the response amplitude exhibits much slower decay with the increase in the
suppressor level than that in the LSS case as shown in Fig. 3A.

Fig. 7. Schematic illustration of the configuration of the oscillators with
CFprobe and CFsup and the suppression domain. (A) LSS, (B) HSS.

5. Summary
Using a one-dimensional array of Stuart-Landau oscillators with feed-forward coupling as a model
of the cochlea, we have studied two-tone suppression effect by analyzing dependence of the response
amplitude to the probe signal on the frequency and level of the suppressor signal. We have found by
numerical simulations that the suppression effect is qualitatively different between the HSS and LSS
cases, which is also observed in physiological experiments. By theoretically analyzing a simplified
two-oscillator model, we have clarified that the difference between HSS and LSS is caused by the
difference in the relative configuration of the oscillators with CFprobe and CFsup. In particular, the
nonlinear amplification and compression property plays an important role in the case of HSS.
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The discrepancies of the HSS curves between the numerical simulations and theoretical analysis
are caused by the simplification of the original 10-oscillator system to a two-oscillator system. This
can be improved by considering more complex models, but the essential reason for the qualitative
difference between LSS and HSS is already clear from the present theoretical analysis on the two-
oscillator system. The insights gained in this study may be relevant in understanding the auditory
mechanism of two-tone suppression phenomena in the actual cochlea.
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[4] V.M. Egúıluz, M. Ospeck, Y. Choe, A.J. Hudspeth, and M.O. Magnasco, “Essential nonlinear-

ities in hearing,” Physical Review Letters, vol. 84, no. 22, pp. 5232–5235, 2000.
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