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Abstract. We used cascade-correlation to model human cognitive development on a well studied psychological 
task, the balance scale. In balance scale experiments, the child is asked to predict the outcome of placing certain 
numbers of equal weights at various distances to the left or fight of a fulcrum. Both stage progressions and 
information salience effects have been found with children on this task. Cascade-correlation is a generative 
connectionist algorithm that constructs its own network topology as it learns. Cascade-correlation networks 
provided better fits to these human data than did previous models, whether rule-based or connectionist. The 
network model was used to generate a variety of novel predictions for psychological research. 

Keywords: cognitive development, balance scale, connectionist learning, cascade-correlation 

1. Introduction 

Although connectionist network models have become well known for their ability to sim- 

ulate low level perceptual, learning, and memory phenomena, it has been unclear whether 

they would be suitable for modeling aspects of  higher level psychological  processes and 

their development. The recent appearance of a variety of interesting connectionist models 

of  human development suggests some degree of  applicability (Chauvin 1989; Elman, 1991; 

Harnad, Hanson, & Lubin, 1991; MacWhinney, Leinbach, Taraban, & McDonald,  1989; 

McClelland,  1989; Plunkett & Marchman, 1991; Schyns, 1991). 

In addition to these new empirical results with connectionist modeling, a number of  re- 

cent theoretical papers have argued that the application of  connectionist models  to cognitiye 

development has fostered a return to the long neglected, but traditional concerns of  devel- 

opmental  transition (Bates & Elman, 1993; Plunkett & Sinha, 1992; Shultz, 1991). The 

twin issues of  structure and transition have tended to dominate developmental psychol-  

ogy. Whereas structural issues concern the description and diagnosis of abilities at various 

stages, transition issues concern the mechanisms by which the child moves from one stage 

to the next. Because transition has proven to be such a difficult problem, developmental  

psychologists have tended to ignore it in favor of  more tractable diagnostic studies of  chil- 

dren's  cognition. Likewise, cognitive modelers have typically had greater success model ing 

processing at various stages than with transitions between stages. 

In the present paper, we report on a connectionist model of  cognitive development on 

balance scale phenomena, emphasizing both structural and transition issues. 

* Denis Mareschal is now at the Department of Experimental Psychology, University of Oxford. William Schmidt 
is now at the Department of Psychology, University of Western Ontario. 
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Figure 1. Sample balance scale problems and predicted success. 

2. The balance scale 

An emerging benchmark for detailed computational modeling in cognitive development 

is the ability to capture psychological phenomena associated with the balance scale. The 

clarity and replicability of balance scale phenomena with children, coupled with the classical 

developmental appeal of its stage-like character, have led to both rule-based (Klahr & 

Siegler, 1978; Langley, 1987; Newell, 1990)and connectionist (McClelland, 1989)models. 

2.1. Psychology of the balance scale 

Psychological researchers typically present the child with a rigid balance beam in which 

differing numbers of equal weights are placed on pegs at various distances to the left or 

right of a fulcrum. The child's task is to predict which side of the scale will drop when 

supporting blocks are removed. A five position, five weight version of the balance scale is 

presented in Figure 1. Typically, all of the weights on one side of the fulcrum are placed 

on a single peg. 

Siegler (1976, 1981) has used the six different types of balance scale problems shown in 

Figure 1 to assess the rules that children might be using on this task. So-called balance 

problems have equal numbers of weights placed at equal distances from the fulcrum so that 

the scale balances. For weight problems, the side with more weights goes down since the 

distances from the fulcrum are equal. In distance problems, the side with the weights placed 

a greater distance from the fulcrum goes down since the two sides have equal weights. The 

three types of conflict problems have more weight on one side but more distance on the 

other side. The side that actually goes down is the side with greater weight for conflict- 
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weight problems, and the side with greater distance for conflict-distance ]problems. The 

scale balances in conflict-balance problems. 

Siegler (1976, 1981) has found that children's performance on the balance scale progresses 

through four distinct stages, each of which can be characterized by a symbolic rule: (1) 

use weight information alone to determine if the scale will balance, (2) emphasize weight 

information, but also use distance information in the event that the weights to the left and 

right of the fulcrum are equal, (3) consider both weight and distance information for simple 

problems, but get confused when weight conflicts with distance, (4) multiply distance by 

weight for each side and compare the products. Siegler has noted that each of these rules 

makes specific predictions about the kinds of problems that children using the rule will 

solve. These predictions are given by the predicted percentages correct in Figure 1. This 

orderly stage progression constitutes the first major psychological regularity in the balance 

scale literature. 

The other major balance scale phenomenon is the torque difference effect (Ferretti & 

Butterfield, 1986). The torque on each side of the fulcrum is defined as the product of 

weight and distance for that side, The torque difference for the problem is the absolute 

difference between the torques on the two sides of the fulcrum. The psychological result 

is that the larger the torque difference, the easier the problem is for children to solve. This 

could be regarded as an effect of information salience; the more perceptually salient the 

critical information, the easier the problem is to solve. 

What makes the balance scale task even more interesting is that it is an instance of a much 

larger class of problems in which children integrate information across two dimensions. The 

literature on this class of problems includes projection of shadows, inclined planes, conser- 

vation, class inclusion, fullness, and several other problems (Siegler, 1991). In each case, 

younger children appear to base their judgments on a single dimension, inJ[tially ignoring 

the other relevant dimension. Then they gradually start using the second dimension, first in 

restricted situations and then more generally, while still erring in conflict situations. Finally, 

they may successfully integrate the two dimensions to produce mainly correct judgments. 

2.2. Previous models of balance scale phenomena 

The first computational simulation of balance scale phenomena consisted of Klahr and 

Siegler's (1978) modeling of each the four stages in terms of production rules. This work 

described central features of the child's performance at each stage, but did not explain 

transitions between stages. Since their model appeared well before the torque difference 

effect was known, it did not deal with that effect. It is interesting to note that the torque 

difference effect is not explainable by these sorts of rules since any such rule would apply 

regardless of the torque difference involved in a particular problem. For example, the 

weight or distance on one side is greater than that on the other side regardless of how much 

greater it is. 

The first balance scale model to address the transition issue in a serious way was by Langley 

(1987). He used a production system that modified its existing, overly-general rules through 

discrimination learning. The learning mechanism searched for differences between cases 

where correct predictions were made and cases where errors were made. Unfortunately, 



60 T.R. SHULTZ, D. MARESCHAL, AND W.C. SCHMIDT 

there was no detailed assessment of stages in this model. It was evaluated only by noting 

that there was an increased percentage of problems correct as training progressed. On the 

negative side, it was reported that the model learned rules that children never showed, failed 

to focus on weight in formation before distance information, and never reached stage 4. 

The fact that it did not focus on weight information before distance suggests that the model 

did not capture stages 1 and 2. It was explained that the model could not reach stage 4 

since torque could not be described in the representation language that was employed and 

the program could not construct new representations. The model did not try for the torque 

difference effect and presumably could not capture it because of its exclusive reliance on 

symbolic rules (see General Discussion). 

A rule learning program commonly used in contemporary cognitive modeling is Soar 

(Newell, 1990), which constructs its own rules by caching the results of look-ahead search. 

It too has been applied to balance scale phenomena with some success (Newell, 1990). 

Soar reportedly acquired stages 1, 2, and 3 but, like Langley's model, did not manage to 

reach the performance characteristic of rule 4. Moreover, it is unclear how dependent the 

Soar model was on getting balance scale problems in a certain order. It may well be that 

different problem orders would yield different orders of acquisition of rules. Like the other 

rule-based models, Soar did not try for the torque difference effect, nor is it apparent how 

it could in principle capture this effect. 

McClelland (1989) reported a simulation of balance scale stages using a connectionist 

network with the back-propagation learning rule. His model required a number of limiting 

assumptions, including a strong bias in the training patterns favoring equal distance prob- 

lems (i.e., balance and weight problems) and a forced segregation of weight vs. distance 

information in connections to the hidden units. The network did progress through the first 

three stages of the balance scale, but there was a great deal of shifting back and forth be- 

tween rules 3 and 4, with stage 4 never being clearly established. Our own experimentation 

with McClelland's network indicates that it can reach stage 4 only by sacrificing stages 1 

and 2, and that it can simulate the torque difference effect (Schmidt & Shultz, 1991). 

In this paper, we report on four simulations with balance scale phenomena. The first 

three involve cascade-correlation networks: one focuses on stage progressions, another on 

the impact of different diagnostic criteria on stage assessment, and the third on the torque 

difference effect. The fourth simulation examines the ability of some simple symbolic rules 

(not Siegler's initial four rules) to capture the torque difference effect. 

3. Cascade-correlation 

In contrast to the static, user-designed networks characteristic of previous developmental 

connectionist research, we favor the use of the cascade-correlation algorithm (Fahlman 

& Lebiere, 1990) for modeling cognitive development. Like other so-called generative 

algorithms, cascade-correlation constructs its own network topology as it learns. It does 

this by recruiting new hidden units into the network as it needs them to solve a problem. 

This generative technique affords a more principled approach to network construction 

than is typical of connectionist research. Instead of merely adjusting weights in a network 

of fixed topology, cascade-correlation starts with a minimal network of input and output 
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units. During learning, it may add hidden units one at a time, installing each on a separate 

layer. If the net is not reducing error fast enough with its current topology, it will select 

and install a new hidden unit whose output activations correlate best over all training cases 

with the existing network error. In essence, cascade-correlation searches not only weight 

space but also the space of network topologies. 

The principal advantage of generative approaches for simulating cognitive development 

is the ability to model qualitative changes in representational power as well as the more 

gradual quantitative adjustments in network weights. Qualitative changes in cognition mean 

that the child comes to process information in a distinctly different way than before, not 

merely that the child is faster, has more stored information, or has a larger memory span. 

Such qualitative leaps have long been considered inherent to children's development (Piaget, 

passim), but until now have been difficult to model in a rigorous way that provides a good fit 

to psychological data. 1 Cascade-correlation affords a novel and natural interpretation of both 

qualitative and quantitative developmental changes. Qualitative changes occur through the 

recruitment of new hidden units, and quantitative changes through the adjustment of network 

weights. Psychologically, new hidden units might correspond to processing structures that 

transform or elaborate the outputs of older structures. Weights might correspond to the 

links or implications among processing structures. 

Learning in cascade-correlation proceeds by the successive alternation of two distinct 

phases. The first of these, called the output training phase, consists in the adjustment of 

selected weights in the existing network. During this output training phase, only the weights 

leading to the output units are adjusted (hence the name: output training phase). All other 

weights in the network are frozen in the sense that they are not adjusted during output 

training. The second learning phase, called input training, is concerned with the training 

and installation of new hidden units into the network. During this input training phase, 

weights leading into units making up a pool of candidate hidden units that are separate 

from the network are adjusted (hence the name: input training phase). Only the weights 

leading to these candidate hidden units are adjusted during input training; all the weights in 

the existing network are frozen. As will be described in more detail, when a candidate unit 

has reached an optimal measure of performance, it is selected and installed in the existing 

network. Cascade-correlation then reverts back to the output training phase. The structures 

of some generic, hypothetical cascade-correlation networks are shown in Figure 2, for both 

output training (a and c) and input training (b) phases. 

Weights are adjusted using a second-order method called quickprop (Fahlman, 1988; 

Fahlman & Lebiere, 1990). The quickprop algorithm is loosely based on Newton's mini- 

mization method and makes use of the current and previous derivative of the potential to be 

minimized in order to construct a local approximation of the potential's curvature. 

All learning occurs in batch mode, meaning that any weight modifications occur after 

a complete presentation of the training input/output pattern pairs. Such a presentation 

constitutes an epoch. Learning continues until the responses of the output units are each 

within a sufficiently small value (the score-threshold) from a desired target, for all pattern 

pairs. At that point, the network declares victory and stops learning. 

Although batch learning is often regarded as psychologically suspect, there is actually 

considerable psychological (Oden, 1987) and physiological (Dudai, 1989; Squire, 1987) 
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Figure 2. Hypothetical cascade-correlation nets. Modifiable weights are represented by dashed lines, frozen 
weights by solid lines. Output phases are shown in a and c. An input phase is shown in b. In each net, input units 
are at the bottom, output units at the top, and hidden units in the middle. The hidden units in b are candidates for 
installation. The hidden unit in c has been installed in the net. 

evidence for it. For example, the hippocampus seems to learn in batch mode for later 

storage in the neocortex (Dudai, 1989; Squire, 1987). The hippocampus apparently stores 

numerous examples and then eventually abstracts and transfers the essential information to 

the neocortex. 

The standard contrast to batch learning is pattern learning in which weights are updated 

after the presentation of each individual pattern. Batch learning normally requires fewer 

weight updates than does pattern learning because in batch learning all patterns are consid- 

ered at once. In contrast, pattern learning may require the undoing of some weight changes 

because not all patterns were considered. Consequently, batch learning is relatively efficient. 

It is also important to note that, even in batch learning, the training patterns are processed 

individually. That is, for each pattern, outputs are compared to their targets independently 

of  other patterns. Thus, the system never has to process more than one pattern at a time. 

It must, however, keep a running sum of the error, which is eventually used to adjust 

the weights. 

All hidden and output units in the simulations presented in this paper possess sigmoid 

activation functions defined by: 

Yi = 1 + exp (-- E j  w i j x i )  - 0.5 (1) 
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where Yi is the resulting activation of the receiving unit indexed by i, xj is the activation 

of a sending unit indexed by j ,  and wij is the weight connecting those two units. The 

cascade-correlation algorithm is also compatible with a number of other activation functions 

including linear and gaussian. 

3.1. Output training phase 

During the output training phase, the weights leading to the output units are modified so as 

to minimize the sum of squared error (E): 

E = ~ ~-~.(Ao, - Top) 2 (2) 

o p 

where o indexes the output units, p indexes the input-output pattern pairs, A is the actual 

activation of an output unit, and T is the target activation for that output unit. If either E 

stagnates (i.e., ceases to change by more than a specified amount for a certain number of 

epochs) or a specified maximum number of epochs elapses, the algorithm changes to the 

input training phase. 

3.2. Input training phase 

During the input training phase, the weights leading to the output units are frozen. A 

number of candidate hidden units are connected with random weights from all input units 

and existing hidden units. The weights leading to each candidate unit are then adjusted so 

as to maximize the absolute value of a modified correlation (C) between the activation of 

that unit and the residual error at the output units, across all pattern pairs: 

C = E o  I E p ( h p  - (h))(eop - (eo)) I (3) 

Eo  E (eo, - (eo)) 

where hp is the activation of the candidate hidden unit for pattern p, (h) is the mean activation 

of the candidate hidden unit for all patterns, eop is the residual error at output o for pattern 

p, and (eo) is the mean residual error at output o for all the patterns. 2 

The input training phase continues until C stagnates or until a specified maximum number 

of epochs has elapsed. At this point, the candidate unit with the largest C is retained while 

all the other candidate hidden units are discarded. The input weights to the new hidden unit 

are then permanently frozen and the new hidden unit is connected to all of the output units. 

The algorithm then returns to the output training phase with the added power of a new unit 

that is particularly good at detecting the network's current residual error. 

Because candidate hidden units receive connections from all input and current hidden 

units during the input phase, any network topology can in theory be constructed by the 

cascade-correlation algorithm. It might be assumed that, since each new hidden unit is 

installed on its own layer, it would not be possible to achieve a back-propagation style net 

with multiple hidden units within a single hidden layer. However, such an arrangement 
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can be achieved in cascade-correlation if cascaded hidden-to-hidden weights become 0 

during training. 

4. Simulation 1: Balance scale stages 3 

4.1. Network design 

All of the cascade-correlation simulations reported here employ the same sort of network 

and a five peg, five weight version of the balance scale. 4 As illustrated in Figure 3a, the 

initial network had four input units, the obligatory bias unit (which always has an input of 1 

in cascade-correlation), and two output units. Of the four input units, one encoded left-side 

weight, a second encoded left-side distance, a third encoded right-side weight, and a fourth 

encoded right-side distance. The input coding of weight and distance information was done 

using integers from 1 to 5. On the output side, there were two sigmoid units that represented 

balance scale results in a distributed fashion. Left-side down was conveyed by excitation 

(0.5) of the first output and inhibition ( -0 .5)  of the second output; right-side down was 

conveyed by the reverse pattern; and a balanced result was conveyed by neutral values (0) on 

both outputs. Any hidden units that were recruited also used a sigmoid activation function. 

Figure 3b shows the structure of a network after two hidden units have been recruited. 

The connections are feed-forward only, from inputs to hiddens to outputs. In addition, the 

output units receive direct connections from input and hidden units, and there is a connection 

from the first hidden unit to the second hidden unit. Both networks 3a and 3b are drawn 

with activations reflecting the input and output coding of the balance scale problem shown 

in Figure 3c. 

4.2. Training 

There were 100 initial training patterns. They were randomly selected without replacement 

from the 625 possible five peg, five weight problems, subject to a 0.9 bias in favor of 

equal distance problems (balance and weight problems, as illustrated in Figure 1). This 

selection bias ensured that the probability of drawing an equal distance problem during 

construction of the training patterns was 0.9. On each epoch in the output phase, another 

training pattern was randomly selected with replacement, also subject to the 0.9 equal 

distance bias, and added to the training patterns. We refer to this as expansion training 

of the 1+ type. The training set is gradually expanded, with one new pattern added on 

each epoch of the output phase. Expansion training conforms to our assumptions that 

the child's learning environment changes gradually and that these changes are marked by 

exposure to more aspects of the environment. This is in contrast to the training regime in 

McClelland's (1989) model which used a completely fresh random selection of training 

patterns each epoch. The constant bias in favor of equal distance problems reflects the 

assumption, originally made by McClelland (1989), that children have plenty of experience 

lifting differing numbers of objects but relatively little experience placing objects at discrete 

different distances from a fulcrum. 
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Figure 3. Initial network (a) and network after addition of two hidden units (b). Activation values represent the 

input and output coding for balance scale problem (c). 

Our pilot simulations had established that, without the strong bias for equal distance prob- 

lems, the network skipped stages 1 and 2, proceeding directly to stages 3 and 4. Although 

bias did not need to be constant across epochs to produce correct stage progressions, con- 

stant bias was considered to be a simpler assumption than a changing environment. Other 

pilot simulations indicated that learning was extremely difficult when 100 training patterns 

were randomly selected each epoch. Still others showed that, without expansion training, 

the network would learn the training patterns before being able to progress very far with 

the stages, as assessed using the testing patterns (see section 4.4). 
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4.3. Parameters 

We used default parameter values for cascade-correlation (Fahlman & Lebiere, 1990), with 

two exceptions. We lowered the input and output Epsilons (learning rates) by 1/2 in order 

to reduce the bounce in errors from epoch to epoch. Also, we used a score-threshold of 

0.25, rather than the default value of 0.4 which is appropriate for sigmoid units coding 

dichotomous target values. Because our output units were also coding neutral (balance) 

patterns, we lowered score-threshold to 0.25 in order to achieve non-overlapping scoring 

ranges. An output activation had to be equal to or greater than absolute 0.25 to count as a 

tipped balance beam. 

Each simulation had 16 networks or runs. Each run was terminated at 300 epochs because 

pilot simulations had established that most runs were well within stage 4 by that epoch. 

Networks did not typically declare victory on the training patterns within 300 epochs because 

expansion training kept the network a bit off balance; each new epoch a possibly novel 

pattern was added to the training patterns. 

4.4. Diagnosing rule use 

Each of the 16 runs used distinct, randomly selected training and test patterns. The 24 test 

patterns in this simulation were balanced for both problem type and torque difference, so 

that there were four patterns from each of Siegler's six problem types (see Figure 1). For 

each problem type, one pattern was selected from each of four levels of torque difference: 

1, 2-5, 6-9, and 10-20. Before each epoch during the output phase, the network was tested 

with these 24 test patterns. Any test problem in which both resulting output activations were 

within score-threshold of their correct targets was coded as correct; any other test problems 

were coded as incorrect. Past simulations (McClelland, 1989) and psychological research 

(Siegler, 1976, 1981) have confounded torque difference level with problem type, thus 

making the diagnosis of rules somewhat ambiguous. Our balanced test patterns eliminate 

this confound. 

The patterns of correct and incorrect problems were used to diagnose rule use, in the 

spirit of Siegler's (1976, 1981) methods with children. A diagnosis of stage 4 required 

20 or more of the 24 test problems correct. Stage 2 required 13 or more correct on the 

16 balance, weight, distance, and conflict-weight problems and less than three correct on 

the eight conflict-distance and conflict-balance problems. Stage 3 required ten or more 

correct on the 12 balance, weight, and distance problems and less than ten correct on the 

12 conflict problems. Stage 1 required 10 or more correct on the 12 balance, weight, and 

conflict-weight problems and less than three correct on the 12 distance, conflict-distance, 

and conflict-balance problems. The priority of scoring for these stages, in decreasing order, 

was 4, 2, 3, and 1. Stage 2 was given a higher priority than stage 3, because rule 2 produces 

fewer errors on conflict-weight problems, as shown in Figure 1. 
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Figure 4. Rule diagnosis for one net on the balance scale task. H indicates the epochs at which hidden units were 

installed. 

4.5. Results: Stage progressions 

Figure 4 plots the stage diagnosed at each output training epoch for a representative network. 

The symbol H on the bottom of the plot signifies the epochs at which hidden units were 

added to the network. 

Tabulation of rule diagnosis results across all 16 networks revealed that 11 showed the 

predicted 1 2 3 4 ordering. Two other nets showed rules 1 2 3; one showed rules 1 2 4; one 

showed rules 1 2 4 with regression to 3 and 2; and one showed rules 1 2. With continued 

training beyond 300 epochs, such nets do tend to converge on stage 4. 

The overlap between diagnoses of adjacent rules near transition points in Figure 4 reflects 

the tentative nature of some transitions. There is often a period of going back and forth 

between two stages before settling on the higher level stage. 

Of the 16 nets, nine of them recruited a single hidden unit, six recruited two hidden units, 

and one recruited three hidden units. Of these 24 hidden units, 13 were associated with a 

quick progression from one stage to the next: five advanced to stage 4, seven to stage 3, 

and one to stage 2. The other nine hidden units may have played a role in maintaining the 

current stage or in more gradually preparing the way for the next stage, but this is more 

difficult to verify. The net whose results are displayed in Figure 4 appeared to utilize its 

two hidden units to progress to stages 3 and 4, respectively. 

Mean stages across all 16 nets are plotted in Figure 5 over the first 200 output training 

epochs. Although the subtleties of individual network plots are obscured by the averaging, 

Figure 5 does reveal a clear increase in stage performance as learning progresses. 
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Figure 5. Mean rule diagnosis for all 16 nets on the balance scale task. 

4.6. Results: Network analysis 

To better understand developing network structure and the role of hidden units, we drew 

Hinton diagrams in the middle of each rule-based stage. Each such diagram shows the size 

and sign of incoming weights at a particular epoch. Hinton diagrams for two representative 

networks are presented in Figures 6 and 7. Each gray strip in a diagram contains the weights 

coming into a hidden or output unit from the various sending units that are numbered across 

the top of the strip. The size of each weight is indicated by the size of a corresponding 

square; the sign of each weight is indicated by the color of the corresponding square, with 

white indicating positive and black negative. The precise output training epoch from which 

the weights were taken is also indicated for each Hinton diagram. 5 

Figure 6 shows Hinton diagrams for a net that adds a single hidden unit. During stage 1, 

in which children use only weight information, the output units were highly sensitive to 

weight information coming in from input units 2 and 4. The right-side down output received 

an excitatory signal from the right-side weight input (unit 4) and an inhibitory signal from 

the left-side weight input (unit 2). The opposite was true for the left-side down output unit: 

it received an excitatory signal from the left-side weight input (unit 2) and an inhibitory 

signal from the right-side weight input (unit 4). In the midst of stage 2, in which children 

continue to use weight but begin to use distance information when the weights on each 

side are equal, the network's outputs became more sensitive to distance information. The 

differential sensitivity to sides was retained. In the middle of stage 3, which is characterized 

by children's use of both weight and distance information but confusion when these are in 

conflict, the output units continued to become more sensitive to distance information. More 

importantly, a new hidden unit had been added that precipitated the jump to stage 3. This 

hidden unit was particularly sensitive to side information, with strong excitatory signals from 

right-side inputs and strong inhibitory signals from left-side inputs. During stage 3, this 
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Figure 6. Hinton diagrams of incoming weights in the middle of each of four stages for network 1. 

hidden unit developed an excitatory link to the right-side down output and an inhibitory link 

to the left-side down output. Finally, in stage 4, which signifies nearly correct performance, 

there was additional fine tuning of these connections, but no major qualitative shift. 

A different solution is portrayed in Figure 7 for a net that recruited two hidden units. 

During stage 1 (weight information only), the output units were highly sensitive to weight 

information, much as in the net featured in Figure 6. Again, the right-side down output 

received an excitatory signal from the right-side weight input (unit 4) and an inhibitory signal 

from the left-side weight input (unit 2). The left-side down output received an excitatory 

signal from the left-side weight input (unit 2) and an inhibitory signal from the right-side 

weight input (unit 4). In stage 2 (mainly weight information, but distance information 

when the weights on each side are equal), the network's outputs became far more sensitive 

to distance information. The differential sensitivity to sides was retained, and the new 

hidden unit was particularly sensitive to weight information (from units 2 and 4). In stage 3 

(use of both weight and distance information but confusion when these are in conflict), 
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Figure 7. Hinton diagrams of incoming weights in the middle of each of four stages for network 16. 

the outputs became just about as sensitive to distance as to weight. Finally, in stage 4 

(nearly correct performance), a new hidden unit emerged that was particularly sensitive to 

distance information. The two recruited hidden units, the first representing mainly weight 

and the second mainly distance, sent essentially opposite signals to the output units. The 

first hidden unit (mainly sensitive to weight) inhibits the right-side down output and excites 

the left-side down output. The second hidden unit (mainly sensitive to distance) does the 

opposite although less strongly. 

More generally across the 16 networks, we found that, of the 21 hidden units with relevance 

to the Hinton diagrams, eight were especially sensitive to side information, 11 were mainly 

sensitive to the product of side and distance or side and weight, and two were mainly 

sensitive to the bias unit or to older hidden units. 
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4.7. Discussion 

This first simulation showed that progression through the four rule-like stages of the bal- 

ance scale can be captured by cascade-correlation networks, even though rules are not 

explicitly represented anywhere in the networks. Critical assumptions included a learning 

environment that is heavily biased towards equal distance problems and gradually exposes 

the network to more balance scale problems. Unlike the back-propagation network of 

McClelland (1989) these cascade-correlation nets did not require a pre-designed hidden 

layer, segregated with separate channels for weight and distance information. Also, in con- 

trast to the back-propagation networks, the cascade-correlation nets could remain in stage 

4 without sacrificing an earlier progression through stages 1 and 2. 

There has been an informal debate among balance scale modelers about the advisability 

of capturing stage 4 performance, particularly in view of the fact that many models do not 

naturally end up in stage 4. Much of this debate is fueled by the notion that people who 

perform at stage 4 might be using an explicit torque rule (Siegler & Klahr, 1982). Although 

not everyone reaches stage 4 performance in psychological studies, clearly some individuals 

do (Siegler, 1976, 1981). Therefore, it is our view that the ability to perform at stage 4 is a 

critical feature of balance scale models. The fact that many stage 4 performers can justify 

their predictions by citing a version of the torque rule does not mean that the, y are explicitly 

computing and comparing torques. There is a close, albeit imperfect, correspondence 

between diagnosed stage and verbal justification at each of the four stages of the balance 

scale and related problems, not just at stage 4 (Siegler, 1976, 1981). Moreover, children 

and adults as well are not particularly accurate in reporting on their cognitive processes 

after the fact (Brainerd, 1973; Ericsson & Simon, 1980; Nisbett & Wilson, 1977). Data 

showing that stage 4 adults respond more quickly to non-conflict problems than to conflict 

problems (Siegler & Klahr, 1982, pp. 143-144) are likewise not definitive in establishing 

explicit use of torques since the cause of these reaction time differences is not yet clear. 

Problem type and torque difference are typically confounded in psychological studies, often 

with conflict problems having much smaller torque differences than non-conflict problems. 

Either conflict or low torque difference levels could make problems more difficult. Further, 

it is unknown whether similar reaction time differences might also occur at earlier stages. 

The fact that diagnosis at stage 4 in children between 6 and 11 years varies (from 5% to 

37%) with torque difference level (Ferretti & Butterfield, 1986) suggests that explicit use of 

the torque rule cannot be the entire story. If the torque rule were being explicitly applied, it 

should, like other rules, apply regardless of the amounts of weight and distance differences 

(see General Discussion). 

It is important to realize that this simulation employed a longitudinal research design in 

which each network's performance on the balance scale task was assessed over time. This 

is in contrast to psychological studies of the balance scale, which have so far only involved 

cross-sectional designs in which several age groups were sampled at a particular point in 

time. The relative efficiency of the cross-sectional design has ensured its popularity with 

psychologists as compared to the time consuming and expensive longitudinal design. Lon- 

gitudinal designs, however, are capable of providing much richer detail on developmental 

changes. It is unclear whether longitudinal research designs applied to children would yield 
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the orderly progressions found in this simulation. In this respect, the longitudinal method 

applied here to networks may be a bit too rigorous and conservative for the psychological 

data. The longitudinal method was favored for the simulations, however, because it pro- 

vided a finer grain of analysis than the cross-sectional psychological studies were able to, 

and because a longitudinal design is not difficult to execute with simulations. 

5. Simulation 2: Diagnostic criteria and stage assessment 

Simulation 1 utilized a rule diagnosis scheme that was very much in the spirit of those used by 

psychological researchers and other computational modelers of balance scale phenomena. 

It is not, however, the only available diagnostic scheme. Consequently, the purpose of this 

simulation was to examine the impact of certain variations in diagnostic criteria on stage 

assessment in cascade-correlation networks. 

£1. Me&od 

Two principal scoring variations were studied. One involved the imposition of two ad- 

ditional scoring criteria introduced by Siegler (1976, 1981) for diagnosing balance scale 

rules in children. He required at least three correct responses to the four distance prob- 

lems in the test set for a diagnosis of stage 2 or stage 3; and he required three or more 

incorrect responses on distance problems for a diagnosis of stage 1. We refer to this as 

Siegler scoring to distinguish it from the somewhat less rigorous SMS scoring system used 

in simulation 1. 

The other scoring variation was to give priority to stage 3 over stage 2, rather than 2 over 3 

as in the previous simulation. Thus, four different stage diagnosis schemes were employed 

here, termed Siegler2, Siegler3, SMS2, and SMS3. The numerical suffix indicates the stage 

that has priority in case the criteria for more than one stage are satisfied. Only stages 2 

and 3 suffered from this sort of diagnostic ambiguity. Apart from these variations in rule 

diagnosis, the simulations proceeded exactly as those in simulation 1. 

5.2. Results 

Each of 16 network runs yielded a series of rule diagnoses over epochs of learning. The 

canonical, predicted series of 1 2 3 4 was the most frequent outcome for the Siegler2, SMS2, 

and SMS3 scoring methods. For the Siegler3 method, which lacked many diagnoses of 

rule 2, the most common pattern was 1 3 4. A good deal of regression and stage skipping 

can be observed within all four scoring methods. 

We needed a metric with which to assess the various scoring methods for their ability to 

capture the psychological data on stage progression. Using the rule progression data just 

described, we noted the position occupied by each rule. The positions in the diagnostic 

series occupied by each of the four rules were subjected to an ANOVA in which the rules, 

with four levels, and diagnostic methods, with three levels (Siegler2, SMS2, and SMS3), 
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Figure 8. Mean position of each rule in stages as diagnosed by each of four scoring methods. 

served as factors. Each rule occurrence contributed a single data point in this analysis. This 

analysis yielded a large main effect of rule, F(3,177) = 44.25, p < .0001, and a small main 

effect of method, F(2,177) = 3.95, p < .05. There was no method by rule interaction. 

Mean positions of each of the rules in the diagnostic stage series for all four diagnostic 

methods are presented in Figure 8. A linear contrast test for the three methods included in 

the ANOVA yielded F(1,177) = 127.56, p < .0001. Each successive rule tends to occur 

in successively higher serial positions of the diagnostic record, regardless of the diagnostic 

method. Rule 1 tends to occur first, rule 2 second, rule 3 third, and rule 4 last, all of which 

is consistent with the cross-sectional psychological data. 

5.3. Discussion 

The finding of higher stages with more learning in cascade-correlation nets is relatively 

robust against these variations in scoring method. To our knowledge, there has been no 

analogous comparison of these scoring variations in studies with children. Indeed, the 

diagnostic ambiguity arising from the fact that many behavior patterns can equally well be 

classified as rule 2 or rule 3 has not been acknowledged in psychological research. Nor is 

it clear how these diagnostic ambiguities may have been resolved in various studies. As 

noted in section 4.4, we favor giving scoring priority to rule 2 over rule 3 because rule 2 

is characterized by a definite advantage in number correct on conflict-weight problems 

(Figure 1). The drop in performance on conflict-weight problems is an instance of U- 

shaped development, wherein children get worse before they get better. Although it is true 

that stage 3 performance is supposed to be better than stage 2 performance on conflict- 

distance and conflict-balance problems, this is attributed to a muddle through strategy, 

whereby children simply guess on conflict problems (Figure 1; S iegler, 1976, 1981). The 

more definite superiority in performance between stages 2 and 3 is provided by stage 2 

children performing at near perfect level on the conflict-weight problems as compared to 
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the chance-like muddling through of stage 3 children on those problems. So, on the grounds 

of giving priority to systematically correct performance, stage 2 should have scoring priority 

over stage 3. 

6. Simulation 3: Torque difference effect 6 

~1. Me~od 

Exactly the same networks and techniques were employed as in the first two simulations 

except that the principal interest was in recording errors at four different torque difference 

levels: 1, 2-5, 6-9, and 10-20. Consequently, the testing patterns had to be quite different 

for this simulation. For each of 16 runs, four sets of test patterns were randomly selected 

from each of Siegler's six problem types. Each set of test patterns contained only problems 

representing one of the four torque difference levels. 

We assessed ease of solution by examining the network's error on problems of different 

torque difference during learning. Error was computed as the sum of squared discrepancy 

between actual and target outputs, as shown in Equation 2, summed over the 24 problems 

of each torque difference level. 

6.2. Results 

Errors are plotted over epochs for two representative networks in Figure 9. Only every fifth 

epoc is plotted to increase clarity. As expected, each network showed faster and deeper 

error reduction with increasing torque difference. 

In addition, two serendipitous findings emerged from these error plots. First, the sharp 

discontinuities in the error plots coincide with the installation of new hidden units. Pre- 

sumably, error can get a little worse until the output weights from the new hidden unit are 

adjusted early in the next output phase. Second, the emergence of stage 1 at around 25 

epochs was typically characterized by an increase in error. That is, a strong focus on weight 

information worsens performance on the test problems as a whole. Both of these phenom- 

ena may be regarded as instances of U-shaped development. This is seen in Figure 9 as an 

inverted U since error is being plotted, rather than correct performance. 

To assess the torque difference effect more systematically, an ANOVA of these error 

signals midway (epoch 75) and late (last epoch) in learning was performed across the 16 

networks. In this analysis, torque difference level and epoch served as within net factors. 

This analysis yielded only a main effect for torque difference level, F(3, 42) -- 48.57, 

p < .001, with a strong negative linear trend, F(1, 42) = 140.45, p < .001. The mean 

errors at these two epochs for the four torque difference levels are presented in Figure 10. In 

general, the larger the torque difference, the smaller the error as could have been predicted 

from the psychological data. Thus, cascade-correlation networks easily capture the torque 

difference effect that has been observed with children. 
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Figure 9. Errors on test problems at four levels of torque difference, plotted every fifth epoch, for two distinct 

networks. 

7. Simulation 4: Symbolic rules for torque difference? 

In describing these torque difference results to a leading balance scale researcher and noting 

the apparent difficulty that rule-based models have with this phenomenon, one of us elicited 

the counter-argument that there could well be some simple, alternate rules that children 

might follow in conformity with the torque difference effect. That is, even though the rules 

embodied in Siegler's four balance scale stages cannot seem to capture the torque difference 

effect, perhaps other simple rules could. 
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Figure 10. Mean errors on balance scale test problems at four torque difference levels. 

We investigated two such suggested rules. One could be called the addition rule. It 

specifies that the side with the larger sum of weight + distance will go down. When 

the sums on the two sides are equal, presumably this rule would predict that the scale 

should balance. 

The other rule could be called the critical dimension rule. It first defines the critical 

dimension, either weight or distance, as the dimension that produces the larger absolute 

difference. That is, which is larger: absolute (left weight - right weight) or absolute (left 

distance - right distance)? Then the rule specifies that the side with the larger value on that 

critical dimension will be the one to drop. When the two absolute differences are equal, 

we can specify that the weight dimension is favored. Under such circumstances, if it is 

furthermore true that the weights are equal, we can predict that the scale should balance. 

If either of these two rules could produce the torque difference effect, this would contradict 

our argument that only connectionist models, and not symbolic rule-based models, could 

capture this effect. 

7.1. Method 

We tested these two rules with a simple simulation. We first generated all possible balance 

scale problems of sizes 2, 3, 4, 5, and 6. Size in this context refers to the maximum number 

of weights and also to the maximum number of pegs on each side of the fulcrum. There was 

the usual restriction that all weights on each side of the fulcrum are placed on a single peg. 

Then we computed the proportion of correct balance scale predictions given by the addition 

and the critical dimension rules for each size of problem and each torque difference. 
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Table 1. Proportions of correct balance scale predictions by the addi- 
tion and critical dimension rules. 

Rule 

Problem size Torque difference Addition Critical dimension 

2 0 1.00 0.67 
1-3 1.00 1.00 

3 0 1.00 0.60 
1 0.75 0.88 

2-8 1.00 1.00 
4 0 0.88 0.50 

1 0.71 0.86 
2 0.78 0.89 

3-15 1.00 1.00 
5 0 0.92 0.51 

1 0.64 0.75 
2 0.73 0.87 
3 0.83 0.91 
4 0.92 0.96 

5-24 1.00 1.00 
6 0 0.77 0.42 

1 0.65 0.76 
2 0.68 0.80 
3 0.74 0.85 
4 0.82 0.91 
5 1.00 1.00 
6 0.92 0.96 

7-35 1.00 1.00 

7.2. Results 

These proportions correct are presented in Table 1. At  most levels of  problem size and 

torque difference, both rules generated perfectly correct predictions, i.e., ]proportions of  

1.00. 7 It is only at very low torque differences that these two rules falter a bit. 

7.3. Discussion 

These results do not support the claim that use of these two rules can capture the torque 

difference effect. This is because, over a wide range of  torque differences, the rules fail to 

vary in their rate of  success. The research with children showed variation in success over a 

wide range of  torque differences (Ferretti & Butterfield, 1986) as did the cascade-correlation 

nets reported in simulation 3 (section 6). 

To put this another way, there is a need to produce the torque difference effect at all four 

balance scale stages. The overall high rate of correct performance generated by these two 

rules suggests that they would function mainly at the higher stages. But the results with 

children show the torque difference effect at every stage of  development, even in stage 1. To 

produce torque difference effects in stage 1 with symbolic rules would require very simple 



78 T.R. SHULTZ, D. MARESCHAL, AND W.C. SCHMIDT 

rules indeed to compete with the ultra-simple weight rule that defines stage 1. Such rules 

would have to be far less successful that the rules simulated here to yield the low rate of 

success characteristic of stage 1. 

In contrast to these apparent difficulties with a symbolic rule approach, cascade-correla- 

tion nets capture the torque difference effect at every stage, with no ad-hoc assumptions. 

The torque difference effect falls naturally out of the network solutions. 

8. General discussion 

In these simulations, cascade-correlation networks learned to perform on balance scale 

problems as if they were following rules, including clear performance at the level of the 

rule that characterizes stage 4. Further, these stages tended to emerge in the psychologically 

correct order. Some developmental regressions and stage skipping were observed and the 

transitions between stages tended to be soft and tentative. Psychological longitudinal studies 

suggest that all of these phenomena are characteristic of cognitive development in children 

(Siegler & Jenkins, 1989). The cross-sectional research designs used with children on the 

balance scale are less than ideal for investigating issues of regression and skipping. Stage 

skipping, in particular, would require very small time slices to be sure that children actually 

missed a stage. Some regression to earlier balance scale stages, however, has been noted 

in existing cross-sectional research (Chletsos, De Lisi, Turner, & McGillicuddy-De Lisi, 

1989; Siegler, 1981). 

Unlike previous models, these nets also captured the torque difference effect. We had ac- 

tually predicted the torque difference effect from early simulation results before discovering 

the Ferretti and Butterfield (1986) paper in the literature. 

The cascade-correlation networks covered the relevant psychological phenomena with- 

out at least some of the restrictive assumptions of McClelland's (1989) back-propagation 

networks. We didn't need to implant segregated hidden units for weight vs. distance infor- 

mation. Indeed, because we were using cascade-correlation, we did not initially implant 

any hidden units at all. We did, however, follow McClelland's lead in strongly biasing 

the training patterns in favor of equal distance problems. Such input bias is not the only 

way to obtain human-like stages in connectionist models of the balance scale, but it's ef- 

fectiveness in producing stages may encourage researchers to examine biases in the child's 

learning environment. 

We have found that a more "nativist" simulation in which the network starts (by virtue 

of some pre-training) with knowledge of how weight information affects balance scale per- 

formance also captures the correct stage progression, even without biased training patterns 

(Shultz, Schmidt, Buckingham, & Mareschal, in press). These networks were initially 

trained only on weight problems (Figure 1). Then the training set was changed to include 

all six problem types in an unbiased fashion. In addition to correct stage progressions, these 

nets also showed the torque difference effect. It is critical for capturing correct stage pro- 

gressions that the network emphasize weight information at some point early in its history, 

but it appears that this emphasis can be achieved in more than one way. This knowledge can 

either be wired in, or it can reflect bias in the learning environment, or presumably some 

combination of both. Further psychological and computational work is obviously neces- 
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sary to determine the best model of the child's cognitive development on the', balance scale. 

Examination of behavioral subtleties not yet available in the psychological literature may 

be necessary to sort out the various candidate models. At this early stage, it is important 

to note tl~at connectionist techniques are not bound exclusively to an experiential approach 

to the neglect of nativistic concerns. Indeed, connectionist networks seem ideally suited to 

investigate the integration and interaction of experiential and innate forces (Bates & Elman, 

1993; Belew, 1993; Karmiloff-Smith, 1992; Nolfi, Elman, & Parisi, 1990). 

Like other connectionist models of developmental phenomena, the present simulations 

suggest that the connectionist approach deserves serious consideration as a means of study- 

ing transition mechanisms for higher level reasoning. Connectionist networks appear ca- 

pable of reproducing classic developmental phenomena such as rules and stages, as well as 

more subtle effects such as information salience that explicit symbolic rule systems have 

particular difficulty with. 

An explicit symbolic rule-based model trying to capture the torque difference effect would 

presumably find itself in the paradoxical position of having to compute torque differences 

well before stage 4. It might require rules of the form if torque difference is greater than 

x then apply rule i, where z is some integer between 1 and 20 that decreases with age, 

and i is the current stage. Such a model would apparently have to compute and use torque 

differences to mimic the torque difference effect well before it could compute and use 

torques to solve balance scale problems. This would possibly fit the psychological data, 

but would be extraordinarily awkward. 

The reason that connectionist network models are able to capture the torque difference 

effect so naturally is based on their sensitivity to the amounts of weight and distance. Net- 

works such as cascade-correlation are naturally sensitive to input magnitudes. Activations 

of the units in the network are a continuous function of the magnitudes of the inputs. The 

hidden and output units are relatively more affected by inputs of greater intensity. Thus, 

larger and more distinctive differences in weight or distance inputs will tend to yield clearer 

activation patterns on the hidden units and consequently more decisive predictions on the 

output units. In contrast to this, symbolic rules encode and combine discrete values of 

weight and distance. Rules are thus sensitive only to the direction of weight and distance 

differences, but not to the extent of these differences. In summary, computation is contin- 

uous in networks, but discrete in symbolic rules; continuous computation would appear to 

be essential for phenomena like the torque difference effect, s 

The present model is, like other current models, highly simplified compared to the actual 

learning environment and computational resources of children. There are two principal 

differences between children and these networks, one of them favoring the children and 

the other favoring the networks. First, children have the advantage of applying their con- 

siderable knowledge to the balance scale task, whereas the networks start learning about 

the balance scale from scratch, that is, from a set of random weights. The interaction of 

network learning with pre-existing network knowledge has not yet been much studied, but 

is likely to attract considerable attention in the near future. Second, networks have the 

advantage of being able to devote their full resources to the balance scale problem. In 

contrast, children rarely think solely about balance scales or weights for long periods of 
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time because they are more fully engaged with a complex ongoing flux of other, usually 

more pressing, problems. 

Nonetheless, along with other connectionist simulations, this work suggests that a con- 

nectionist approach can successfully model aspects of children's cognitive development. 

We are particularly keen on using generative algorithms, such as cascade-correlation, for 

this modeling. With a generative'algorithm, not only is network design more principled, 

but the structure of the network undergoes qualitative increases in representational power. 

Such changes may well underlie some observed stage transitions. 

It is also possible to achieve large qualitative changes in behavior through continuous small 

changes in the weights inside a network of fixed topology. Such outcomes can be described 

in terms of mathematical catastrophe theory (Pollack, 1990; van der Maas & Molenaar, 

1992). That is, qualitative behavioral changes can arise either from a major restructuring of 

cognitive processing or from continuous small changes of chaotic systems. The former is 

the traditional view of cognitive development (Piaget, passim), whereas the latter is a major 

principle in catastrophe theory. A possible advantage of cascade-correlation models is that 

both types of transition mechanisms can be examined simultaneously. Results so far suggest 

that some transitions occur when hidden units are recruited, whereas others occur through 

weight modifications. The fact that cascade-correlation nets sometimes fit psychological 

data better than do topologically static nets suggests that both transition mechanisms are 

required. Alternate systems based exclusively on either quantitative (e.g., McClelland, 

1989) or qualitative (e.g., Newell, 1990) transition mechanisms do not facilitate study of 

the interaction among qualitative and quantitative processes. 

The qualitative-quantitative distinction can also be viewed in terms of Piaget's (1936/ 

1963) distinction between assimilation and accommodation. Assimilation is the child's 

tendency to distort incoming information so that it better fits the child's existing cogni- 

tive structures. Accommodation is the contrasting tendency to adjust internal cognitive 

structures so that they more accurately reflect incoming information. Together assimilation 

and accommodation describe, albeit vaguely, the child's adaptation to the external world. 

These adaptational processes can be re-interpreted in terms of the computational mech- 

anisms of the cascade-correlation algorithm. Accommodation can be understood as the 

recruitment of hidden units, the building of qualitatively different representational power. 

Assimilation can be viewed as correct generalization to novel cognitive tasks, requiring 

neither hidden unit recruitment nor weight changes. Cascade-correlation also allows a con- 

crete interpretation of assimilative learning, something that Piaget never really explained. 

Assimilative learning can be understood as the quantitative adjustment of weights in a net- 

work, without the necessity of undergoing qualitative topological change. This represents 

not only a novel interpretation of Piaget's theory of cognitive adaptation, but an important 

extension to it. 

9. Predictions and future work 

One of the most useful features of a detailed computational model is the ability to gen- 

erate predictions for new psychological research. Our cascade-correlation balance scale 
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model suggests a number of different avenues to explore, within the context of both further 

computational modeling and empirical investigation of children's behavior. 

9.1. Torque difference 

One of the model's chief predictions, the torque difference effect, is already an established 

psychological result. We insist on calling it a prediction because we discovered it in 

cascade-correlation nets before any of us knew of the Ferretti and Butterfield (1986) paper. 

That none of the several previous computational papers on the balance scale have even 

mentioned the torque difference effect attests to the fact that it is not nearly as well known 

as the stage progressions. 

Our networks suggest that the torque difference effect is related to the perceptible magni- 

tude of the information entering the computational system. A problem is easier to solve if 

its torque difference is larger. The torque difference effect occurs in connectionist networks 

because the magnitudes of the inputs reflect the numbers of the weights and the magnitudes 

of the distances in the problem. This suggests that exaggeration of weight and distance 

quantities could enhance the torque difference effect in children. The locus of the torque 

difference effect could also be focused on a particular dimension, by making either the 

numbers of weights or the magnitudes of distances larger. Again these effects could not be 

captured by rules that were sensitive only to difference directions, but not to magnitudes. 

Figure 9 reports that the lowering of error over learning time increases with torque dif- 

ference. Note also in this figure that there is a spreading out of the different torque levels 

as learning progresses. This implies that, with increasing age, the torque difference effect 

would become more pronounced. This makes sense since the notion of torque requires 

integration of both distance and weight information. According to the error plots in Fig- 

ure 9, the lack of a torque difference effect should be most pronounced prior to, or early in, 

stage 1. This would presumably be a time of mostly random predictions, even on simple 

balance scale problems. 

9.2. Tentative transitions with non-random behavior 

The cascade-correlation model suggests that. balance scale stage transitions are soft and 

tentative rather than abrupt and definitive. However, during these transition periods, the 

nets continue to have diagnosable behavior that alternates between two successive stages 

over proximal testing sessions. This suggests that, during stage transitions, children would 

continue to show distinct, classifiable behaviors rather than perfoming in a random, unin- 

terpretable fashion. Testing of these predictions would, of course, require a longitudinal 

research design. 
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9.3. Stage skipping and regression 

Stage skipping and regression to earlier stages did occur in our networks. Longitudinal 

balance scale studies of children, with repeated testing on small time slices, could be used 

to investigate these network predictions more thoroughly than has been possible in existing 

cross-sectional designs. Again, such effects would be difficult to capture in symbolic rule- 

based models. In most such models, once a behavior has become prominent it remains so 

until superseded by the next stage. 

9.4. U-shaped development 

U-shaped development has been interesting to psychologists because it deviates from the 

general, and more obvious trend for children to improve their performance with age and 

practice. Numerous examples of U-shaped development have been documented in the 

developmental literature (Strauss, 1982), but coherent theoretical explanations of it have 

been lacking. Past modeling has shown that U-shaped development can occur as a natural 

result of connectionist learning in certain environments. Generally, U-shaped development 

can he understood in terms of the network's sensitivity to frequencies in the training patterns. 

For example, the presence of many different regular forms temporarily interferes with 

performance on smaller numbers of irregular forms (Plunkett & Marchman, 1991). 

The present model exhibited two U-shaped effects. One instance occurred in stage 1, 

where error on the total set of testing problems increased in response to an increased focus 

on weight information (Figure 9). Although it is already well-known that stage 1 children 

get fewer balance scale problems correct than children in higher stages, the novelty of 

this prediction lies in a comparison to children before stage 1. These very young children 

may make more correct predictions overall than their stage 1 counterparts, a fairly counter- 

intuitive prediction. The explanation for this U-shaped effect would lie in the sensitivity to 

differential frequencies of items in the training set. 

The second U-shaped effect in our nets occurred just after hidden unit recruitment. As 

noted in Figure 9, there were often sharp discontinuities in error reduction at these points, 

usually an increase in error followed by a decrease. This U-shaped effect can be attributed 

to the need for additional adjustment of output-side weights after the installation of a new 

hidden unit. In longitudinal studies of children, independently measured representational 

changes may accompany increases in error. If this prediction could be verified, then repre- 

sentational change could perhaps be indexed by an abrupt increase and decrease in error. 

This U-shaped effect can be compared to Karmiloff-Smith's (1984) three phase model 

of children's problem solving. She described phase 1 as an error-decreasing adaptation to 

external information resulting in successful implicit procedures. In phase 2, children sim- 

plify their procedures into an implicit "theory-in-action" that ignores some of the precise 

adaptation seen in phase 1, thus increasing error. Phase 3 is characterized by an integration 

of the adaptational and re-descriptive accomplishments of the first two phases, resulting 

in error reduction and richer representations. The transition between Karmiloff-Smith's 

phases 1 and 2 appears somewhat analogous to the increase in error observed in cascade- 

correlation nets just after the transition from input phase back to output phase following the 
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installation of a hidden unit that represents the network's output in a novel way. In both 

cases, new representations temporarily interfere with previous performance. The transi- 

tion to Karmiloff-Smith's phase 3 is likewise analogous to cascade-correlation's eventual 

adjustment of output-side weights after hidden unit installation. Error decreases and the 

network's representation of the problem being learned is better tuned than ever. 

A major difference between the two approaches is that the re-description in Karmiloff- 

Smith's phases 2 and 3 is driven by an as yet unspecified analysis of earlier procedures 

and theories, not by performance error. In contrast, both the input and output phases in 

cascade-correlation are driven by the necessity to reduce error. The output phase reduces 

error directly by adjusting output-side weights; and the input phase creates; a hidden unit 

whose activations re-describe the network's output in a way that correlates with existing 

error. Another difference is that cascade-correlation may not create the explicit awareness of 

knowledge that is often credited to children, for example in Karmiloff-Smith's (1984, 1992) 

phase 3. At this point, it is very unclear how or whether connectionist models can model such 

a transition. Nonetheless, the present simulations show that at least some developmental 

increases and decreases in error can be accounted for by a single, homogeneous error- 

correction mechanism. 

9.5. Biased learning environment 

• A major assumption underlying both our model and McClelland's (1989) model is that 

a learning environment biased in favor of equal distance balance scale problems causes 

networks to pass through stages 1 and 2. Although, as noted earlier, this is not the only way 

to produce stages 1 and 2, it is clearly one effective way to do so. Consequently, the idea of a 

biased learning environment can be regarded as a prediction to be tested with children. This 

would entail an unusual type of balance scale study that examines the natural environments 

of children for opportunities to observe or interact with weights and fulcrurn distances. A 

focus on the sheer frequencies of such instances may need to be tempered with concern for 

what aspects of the phenomena the child is attending to. 

9.6. Rule diagnosis 

Our simulations uncovered some ambiguity as to whether rule 2 or rule 3 should be given 

precedence in the many cases in which they both fit the obtained pattern of correct and 

incorrect balance scale predictions. Although our principal results were relatively robust 

against modifications in diagnostic methods, this scoring ambiguity should probably be 

addressed in future psychological research on the balance scale. This is an example of how 

relatively precise computational modeling can help to frame empirical psychological issues. 



84 T.R. SHULTZ, D. MARESCHAL, AND W.C. SCHMIDT 

9.7. Stage 4performance 

In our network models, reaching stage 4 is essentially a matter of learning the balance scale 

problem to a sufficient depth. Given sufficient experience, most of our nets eventually reach 

stage 4. It is quite possible that the same is true of people. Perhaps extensive balance scale 

experience, with corrective feedback, would lead stage 3 individuals to perform at stage 4, 

even without teaching them the torque rule. 

10. Conclusion 

The simulations reported here suggest that cascade-correlation networks can capture the 

main features of cognitive development on the balance scale. Combined with other sim- 

ulations (Shultz et al., in press), this suggests that cascade-correlation is a particularly 

promising tool for modeling cognitive development. Such successful models could well 

provoke new theories of cognitive development, including explanations of performance on 

the balance scale. Much further computational and psychological work will be required 

to formulate any such theory in full, but we close with some speculations about the broad 

outline of such a theory. 

A theory inspired by cascade-correlation models would view the child as being equipped 

with powerful, general purpose learning techniques, based primarily on pattern association, 

but capable of constructing new representations with greater computational power when 

necessary. Knowledge is represented by distributed patterns of activation across simple 

processing units, rather than by explicit symbolic rules. This knowledge is implicit rather 

than explicit, and graded rather than all-or-none. Processing occurs according to basic 

principles of neuronal function, such as excitation and inhibition, rather than by the matching 

and firing of rules. There is a tight integration of perceptual and cognitive processes, as 

opposed to an artificial separation between them. Such a system learns from environmental 

feedback, based primarily on correlations among events and is sensitive to biases afforded 

by the training environment. Qualitatively new representational skills emerge as required 

to reduce the discrepancy between expectations and results. When these qualitatively new 

structures do emerge, they operate on the output of existing structures when appropriate, 

thus ensuring a gradual hierarchical development that utilizes, rather than ignores, earlier 

contributions. Evolutionary pressures may affect the topology, processing and learning 

mechanisms, parameters, and even the initial weights in this type of system. Learning 

from environmental feedback is the primary transition mechanism, producing the various 

qualitative and quantitative changes one sees in cognitive development. 
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Notes 

1. Self-modifying production systems do yield qualitative changes in processing, but as will be noted later, have 

trouble capturing perceptual effects. 

2. This formulation of C is based on Lisp code in release I1 May 1991 of cascade-correlation. 

3. A preliminary report of this simulation was given in Shultz and Schmidt (1991). 

4. The five peg, five weight version of the balance scale task was also used in McClelland's (1989) simulation. 

5. Since the weights in these diagrams are standardized for each epoch, they may appear to vary slightly across 

epochs even when frozen. 

6. A preliminary report of this simulation was given in Shultz and Schmidt (1991). 

7. The critical dimension rule would do considerably better than it does here if it were written to predict more 

balanced outcomes, e.g., predict balance when the two dimensions are equally critical. 

8. Note that the torque difference effect does not depend on integer coding since it is robust against considerable 

variation in input codes; it emerges even with codes that initially convey no direct dimensional information. 

In the latter cases, the network constructs quantitative dimensions during learning. 
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