
Atten Percept Psychophys (2017) 79:1795–1803
DOI 10.3758/s13414-017-1337-2

Modeling cognitive load effects of conversation between
a passenger and driver

Gabriel Tillman1,4 ·David Strayer2 ·Ami Eidels1 ·Andrew Heathcote1,3

Published online: 23 May 2017
© The Psychonomic Society, Inc. 2017

Abstract Cognitive load from secondary tasks is a source
of distraction causing injuries and fatalities on the road-
way. The Detection Response Task (DRT) is an international
standard for assessing cognitive load on drivers’ attention
that can be performed as a secondary task with little to no
measurable effect on the primary driving task. We investi-
gated whether decrements in DRT performance were related
to the rate of information processing, levels of response
caution, or the non-decision processing of drivers. We had
pairs of participants take part in the DRT while performing
a simulated driving task, manipulated cognitive load via the
conversation between driver and passenger, and observed
associated slowing in DRT response time. Fits of the single-
bound diffusion model indicated that slowing was mediated
by an increase in response caution. We propose the novel
hypothesis that, rather than the DRT’s sensitivity to cog-
nitive load being a direct result of a loss of information
processing capacity to other tasks, it is an indirect result
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of a general tendency to be more cautious when making
responses in more demanding situations.

Keywords Single-bound diffusion · Detection Response
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Cognitive psychologists use the term capacity to refer to
the human ability to cope with the cognitive load associated
with increasing amounts of perceptual information (e.g.,
Eidels, Donkin, Brown, & Heathcote, 2010; Townsend &
Eidels, 2011). Human capacity is often limited (Kahneman,
1973), yet many situations in modern life require simul-
taneous processing of information from multiple signals.
Given the limited capacity for processing, it is important
for researchers to understand the consequences of such
limitations in safety critical activities, such as driving a car.

Cognitive load from secondary tasks, such as talking on a
cell phone, is one of the main studied sources of distraction
while driving (Strayer et al., 2013, 2015). Distraction while
driving is a significant cause of injuries and fatalities for
drivers and passengers on the roadway (Dingus et al., 2006;
Ranney, Mazzae, Garrott, & Goodman, 2000; Sussman,
Bishop, Madnick, & Walter, 1985; Wang, Knipling, &
Goodman, 1996). Strayer and Johnston (2001) studied the
effects of cell phone conversations on performance in a
simulated driving task. They found that conversations with
either a hand-held or a hands-free cell phone while driv-
ing resulted in a failure to detect traffic signals, as well as
slower reactions when the traffic signals were detected (cf.
Strayer, Drews, & Johnston, 2003). Surprisingly, no such
decrements are observed when a similar conversation is
held between the driver and a passenger in the car (Drews,
Pasupathi, & Strayer, 2008). In fact, data on crash risk
reveals lower accident rates when an adult passenger is in
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the car than when the driver is alone (Rueda-Domingo et al.,
2004; Vollrath, Meilinger, & Krüger, 2002).

The Detection Response Task (DRT) is an international
standard for assessing cognitive load on drivers’ attention
(International Organization for Standardization, 2015) that
can safely be deployed with no appreciable effect on driving
performance (Strayer, Turrill, Coleman, Ortiz, & Cooper,
2014). The DRT measures cognitive load by asking partic-
ipants in a driving simulator to respond when they detect a
small light in their peripheral vision. Increases in response
times (RT) in the DRT measure the effect of increased cog-
nitive load. Although the DRT is a valid measure of the
effects of cognitive load during driving (Strayer et al., 2013,
2015), there is little research on what components of DRT
processing are affected by increased cognitive load.

For instance, when using a hands-free cell phone, drivers
are slower to respond in the DRT compared to when they
are not using the device (Strayer et al., 2013). The increased
RT is believed to result from a lower rate of information
processing, perhaps because the DRT and cell phone share
a limited pool of processing resources (Strayer, Watson, &
Drews, 2011; Strayer et al., 2013). However, other causes
are also possible. People could be more cautious in the DRT
with increased cognitive load by setting a higher thresh-
old for the amount of evidence needed to decide the light
is present. Or people may require more time for processes
other than the decision process (i.e., non-decision time),
such as stimulus encoding or response production. We
address the role of processing-rate, threshold, non-decision
time, or some combination of these three, by fitting a cogni-
tive model of the DRT task under conditions that vary in the
load imposed by conversation. In the next section we outline
the modeling framework applied to the DRT data. The data
was collected from drivers performing a simulated driving
task. Cognitive load was manipulated by having the driver
converse with a passenger in person or with a person over a
hands-free cell phone. These conditions were compared to
a baseline where the driver took part in the simulator and
DRT without any conversation.

Modeling the Detection Response Task

Sequential sampling models characterize responding as the
result of a noisy process of accumulating evidence towards
a response threshold. They have been extensively used
to understand choice RT in terms of effects on evidence
accumulation rate, response threshold, and non-decision
time (e.g., Brown & Heathcote, 2008; Ratcliff & McKoon,
2008; Tillman, Benders, Brown, & van Ravenzwaaij, 2017;
Tillman, Osth, van Ravenzwaaij, & Heathcote, 2017).
Recently, sequential sampling models – and in particu-
lar the single-bound diffusion model (Heathcote, 2004;

Schwarz, 2001) – have been applied to simple RT data (i.e.,
data where participants make only one type of response)
from a range of paradigms such as the psychomotor vig-
ilance test and brightness detection tasks (Ratcliff & Van
Dongen, 2011), simulated driving tasks (Ratcliff, 2015; Rat-
cliff & Strayer, 2014), go/no-go tasks (Heathcote, 2004;
Schwarz, 2001), as well as pointing, picture naming and
eye-movement tasks (Anders, Alario, & van Maanen, 2016).
We collected simple RT data from the DRT (‘press a key if
you detect a light’) and fit the single-bound diffusion model
in order to investigate the causes underlying slowing due to
increased cognitive load.

Figure 1 is a schematic of the single-bound diffusion
model. The response threshold, ‘a’, quantifies the amount
of evidence needed to make a response. On each trial, noisy
evidence accumulates towards the response threshold at
some rate – the drift rate. Within-trial (moment-to-moment)
noise causes accumulation of evidence towards the thresh-
old according to a Brownian motion. The Wald distribution
(Wald, 1947) describes the first passage times for Brownian
motion with positive drift rate toward a positive response
threshold. When the threshold is crossed response produc-
tion is triggered. The time it takes to reach the response
threshold is the decision time. Non-decision time, Ter , is
added to the decision time to make up the total observed RT,
so simple RT is described by a shifted-Wald distribution,
with a shift equal to the non-decision time.

Ratcliff & Van Dongen (2011; see also Ratcliff, 2015;
Ratcliff & Strayer, 2014) fit an elaborated version of the
single-bound diffusion model, where on each trial the drift
rate is sampled from a normal distribution with mean v and
standard deviation η. Including drift variability significantly
improved their model fit to simple RT data. When the sam-
pled drift rates are strictly positive, the resulting mixture of
Wald distributions has an easily computed likelihood (see
Equation 3 in Desmond & Yang, 2011). However, when the

Fig. 1 The single-bound diffusion model and its parameter values:
response boundary (a), mean drift rate (v), between-trial variability in
drift rate (η), between trial variability in starting point (sz), and non-
decision time (Ter )
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sampled drift rates can be negative the likelihood cannot be
directly computed, and so, Ratcliff and Van Dongen resorted
to simulation methods. They were interested in negative
rates because they can result in the threshold never being
crossed, and so can account for failures to respond, which
were common in their application; simple RT data from
sleep-deprived participants. The trial-to-trial rate variabil-
ity gives the single-bound diffusion model more flexibility
(Ratcliff & Van Dongen, 2011), yet also has a down side;
it is only possible to identify two of the three parameters
associated with evidence accumulation (i.e., the response
threshold and the drift rate mean and standard deviation; see
Ratcliff & Van Dongen, 2011).

We also fit a model that allowed the starting point of
evidence accumulation to vary according to a uniform distri-
bution with width sz.1 Choice RT models commonly allow
for start-point variability in order to account for fast errors
(Ratcliff & Rouder, 1998), an issue that does not apply to
simple RT. However, allowing for start-point variability may
be as appropriate for simple RT tasks, due to the poten-
tial for “premature sampling” (Laming, 1968), which is the
sampling of evidence before the onset of the stimulus. In
choice RT, stimulus onset provides an appropriate signal
to start sampling choice evidence (i.e., evidence that dis-
criminates between different types of stimuli). In simple RT
tasks, the presence of the stimulus is itself the evidence, and
so, it is somewhat circular to assume that the onset of the
stimulus can be used to trigger sampling of such evidence
(i.e., stimulus detection cannot be used to trigger the detec-
tion process). In the context of the DRT task, where the
only cue for a new stimulus is the inter-stimulus interval,
continual or premature sampling during that interval seems
likely.

In summary, we fit models without any between-trial
variability, and with either trial-to-trial starting point vari-
ability or trial-to-trial rate variability. Because failures to
respond were relatively rare in our data (less than 5% of
all trials), we assumed that drift rate variability followed a
normal distribution truncated below zero. The truncated nor-
mal assumption enabled the easy calculation of likelihoods,
and consequently allowed us to use hierarchical Bayesian
methods of estimation. This in turn allowed us to fit data
sets with a relatively small number of observations per par-
ticipant (200 per condition) based on the extra constraint
afforded by hierarchical shrinkage effects (Shiffrin, Lee,
Kim, & Wagenmakers, 2008), which improve estimation of
each participant’s parameters by constraining them using
information about the parameters of all participants.

1Note that start point and threshold variability are mathematically
indistinguishable in this model. We used the R code provided in asso-
ciation with Logan, Van Zandt, Verbruggen, & Wagenmakers (2014)
to implement this model

The cognitive load effects of conversation

Established measures of cognitive capacity (Townsend &
Eidels, 2011; Townsend & Nozawa, 1995) correspond with
drift rates in choice RT tasks (Eidels et al., 2010). Increased
cognitive load has been shown to have large effects on the
tail of RT distributions in both choice (Shahar, Teodorescu,
Usher, Pereg, & Meiran, 2014) and simple (Ratcliff &
Strayer, 2014) RT tasks. Smaller drift rates and larger
response thresholds are also known to lengthen the tail
of RT distributions (Brown & Heathcote, 2008; Matzke &
Wagenmakers, 2009; Ratcliff & McKoon, 2008; Usher &
McClelland, 2001). Thus, it is tempting to conclude that
increased cognitive load is related to and possibly even
causes changes in drift rates and/or thresholds.

However, when researchers have used sequential sam-
pling models to investigate cognitive load manipulations
they have found that increased load affects a range of
cognitive processes. Specifically, these studies found that
increases in load either increase response thresholds (e.g.,
Heathcote, Loft, & Remington, 2015), trial-to-trial drift
rate variability (McVay & Kane, 2012), non-decision
times (Shahar et al., 2014), or decrease drift rates (e.g.,
Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007;
Sewell, Lilburn, & Smith, 2016). When the single-bound
diffusion model with trial-to-trial rate variability was fit
to data from a simulated driving task – where participants
needed to press the brake to prevent a collision with a car in
front – talking on a cell phone affected the drift rate and/or
response threshold of drivers, but the effects could not
be disentangled because of the aforementioned parameter
identifiability issues (Ratcliff & Strayer, 2014).

To date, it is not clear how cognitive load imposed by
passenger and cell phone conversation impacts the cognitive
processes underpinning DRT performance. Our experiment
investigated this issue by assigning pairs of participants to
roles of a passenger or a driver in a high-fidelity driving
simulator. Passengers were either seated next to the driver
or in a separate room. In both cases they were instructed to
converse casually with the driver, but to refrain from com-
ments concerning the road. The latter stipulation aimed to
remove a likely cause of the lack of DRT decrements noted
by Drews et al. (2008) when the passenger was in the car;
facilitation due to passenger-supplied warnings. However,
other causes, such as timing of conversation to avoid conflict
with safety critical events, may remain. Both driver and pas-
senger were fitted with a DRT device (Strayer et al., 2013),
as illustrated in Fig. 2. The driver was requested to drive
as normal but also to respond quickly and accurately to the
DRT signal when they detected the red light in their visual
field.

Cognitive load was manipulated across three conditions
for the driver: a baseline where they were driving alone with
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Fig. 2 The DRT device used in the current study

no conversation, driving while talking with a passenger sit-
ting next to them in the simulator, or driving while talking
over a hands-free cell phone to a person in another room.
We used a one-way Bayesian ANOVA (Morey, Rouder, &
Jamil, 2014; Rouder, Morey, Speckman, & Province, 2012)
to examine directly observed DRT performance. We hypoth-
esized that drivers in the no conversation condition would
respond more quickly to the DRT signal relative to driving
while conversing with a passenger or over a cell phone. We
also hypothesized that the decrements due to conversation
could be larger with the hands-free cell phone relative to in-
car conversation, but that this difference may be minimal
due to our instruction to avoid comments about the driving
task.

We then fit a set of single-bound diffusion models with
different parameter settings instantiating different explana-
tions of the effects of experimental manipulations in terms
of drift rates, response thresholds, non-decision times, or
any combination thereof. In addition, we compared model
fits with and without between-trial drift rate variability
or starting point variability. These competing explanations
were compared based on the Watanabe-Akaike informa-
tion criterion (WAIC) measure of out-of-sample prediction
error (Gelman, Hwang, & Vehtari 2014; Watanabe, 2010).
WAIC involves calculating a goodness-of-fit measure and
subtracting a measure of model complexity from this value
to approximate how well the model predicts future data.
WAIC is similar to the deviance information criterion in this
respect (DIC; Spiegelhalter, Best, Carlin, & van der Linde
2002), but is considered an improvement because it does
not assume the posterior distribution is a normal distribution
and it is calculated from each data point, which improves
accuracy.

Method

Participants

Participants were undergraduates (40 total, 28 females) at
the University of Utah. They had an average age of 23
years old and a driving experience ranging from 3 to 16
years with an average of 6.5 years. All participants had nor-
mal or corrected-to-normal visual acuity, a valid driver’s
license, and were fluent in English. All participants owned
a cell phone and reported that they used it regularly while
driving.

Stimuli and design

The DriveSafetyT MDS-600 simulator was used in this
experiment. The DS-600 consists of a Ford Focus cab sur-
rounded by three large screens encompassing a 270◦ view.
The simulated vehicle is based on the vehicular dynamics
of a compact passenger sedan with automatic transmis-
sion. The driving scenario was designed using DriveSafety
HyperDrive Authoring Suite. A two-way, four-lane inter-
state highway scenario was designed for this experiment.
The roadway has four straight sections (10 miles each)
connected by two wide-radius curves (1 mile each).

Both the driver and passenger were fitted with the DRT.
The light diode was positioned an average 15◦ to the left and
7.5◦ above the participant’s left eye and was held in a fixed
position on the head with a headband (see Fig. 2 again).
RT to the DRT signal was recorded with millisecond accu-
racy via a button attached to participant’s left thumb and
encompassed the time between stimulus presentation and
response. Participants were instructed to press the micro-
switch, attached to their left thumb, every time they detected
the light presented by the their headset. The participants
were steering the simulated vehicle, so they pressed the but-
ton against the steering wheel. The DRT protocol for each
device followed the specifications outlined in International
Organization for Standardization (2015).

There were a total of three within-subject conditions for
each pair of participants, which were counterbalanced using
a quasi Latin Square design. Each condition lasted approx-
imately 14 minutes and the order of these conditions was
counterbalanced across participants. For drivers these were:
(1) single (driving only) task, where drivers drove the sim-
ulated car and responded to the red light, but were not
engaged in any type of conversation; (2) Dual task ‘passen-
ger’ – driving and conversing with a passenger seated next
to the driver; (3) Dual task ‘cell phone’ – driving and con-
versing, through a cell phone, with another person seated in
a separate room.
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Procedure

The passenger and driver were peer students assigned ran-
domly to the driver and passenger roles when they arrived
at the laboratory. Participants were instructed to have a nat-
ural conversation as they would in real life; no restrictions
about the topics covered in the conversation were provided
to them, except they could not discuss the DRT. The DRT
was used to assess the workload of the driver (and passen-
ger) and it is not intended to mimic real-world aspects of
driving (e.g., traffic lights).

Participants drove on a simulated multi-lane freeway
with moderate traffic, which had approximately 1500 vehi-
cles in each lane per hour. Participants were given a five-
minute practice session to familiarize themselves with the
driving simulator. In each of the conditions, except for con-
dition 1, the drivers and passengers were asked to speak and
listen in equal proportions (i.e., 50% speaking and 50% lis-
tening). In condition 3 the driver and passenger initiated a
call via a hands-free Bluetooth earpiece. Participants were
allowed to adjust the volume on the cell phone so that they
could clearly hear the conversation.

The DRT task presented red lights every three to five sec-
onds via the head mounted device, where the presentation
times followed a rectangular distribution bounded between
3 and 5 seconds. This resulted in 200 trials per condition for
each participant. The light signal remained illuminated until
a response was made or 1000 msec had elapsed.

Mean RT analysis

All RTs below 250ms (0.02%) were discarded, as were all
RTs slower than 1000ms (0.2%). There were total of 22 false
alarms, approximately .001% of all trials. In the driver only
condition, the miss rate was 0%; for the driver and passenger
in car condition, the miss rate was 4.7%; for the driver and
cell phone condition, the miss rate was 3.5%. Both misses
and false alarms were excluded from analysis. Using the R
programming language (R Development Core Team, 2016)
and ‘Bayesfactor’ package (Morey et al., 2014), RTs were
analyzed with a one-way JZS Bayesian ANOVA (Morey
et al., 2014; Rouder et al., 2012), with a default setting
for Cauchy priors and with subjects included as a random
effect. The cognitive load manipulation was included as a
main effect with levels – driver responding only (D), driver
responding while talking with a passenger in the car (DP),
driver responding while talking to the passenger on a cell
phone (DC). The mean RTs (in seconds) in each condition
were D = .466 (SD = .135), DP = .502 (SD = .140), and
DC = .505 (SD = .140).

We tested the main effect model against a null model
which suggests no main effect on RT, reporting Bayes fac-
tors (BF10), which quantify evidence in favor of the main
effect model over the no main effect model as a ratio.
For example, when BF10 = 5 the observed data make the
main effect model 5 times more likely than the no main
effect model. When BF10 = 1/5 = .2 the observed data
increase the likelihood of the no main effect model by a
factor of 5 relative to the main effect model. The Bayes
factor ANOVA revealed that the cognitive load main effect
model was preferred to the null model by a Bayes factor
of 257. Thus the data provide strong evidence (Kass and
Raftery, 1995) against the hypothesis of no main effect on
RT.

We conducted post-hoc Bayesian paired-samples t-tests
to examine which conditions differed from each other, with
detailed results reported in Fig. 3. There was strong evi-
dence that the driver’s responses to the DRT signal were
slower when conversing (DP vs. D and DC vs. D), indicat-
ing the DRT was sensitive to the additional cognitive load.
There was positive evidence for no difference in the driver’s
RT as a function of the passenger’s location, in the passenger
seat or another room (DP vs. DC).
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Fig. 3 Violin plots of predicted response time data from the one-
way JZS Bayesian ANOVA. Violin plots include an ×, which marks
the predicted median RT, and mirrored on either side are rotated
kernel density plots of the 95% highest density interval of each pos-
terior distribution. Superimposed are Bayes factors from post-hoc
paired-samples t-tests. The three cognitive load conditions were driver
responding only (D), driver responding with a passenger in the car
(DP), and driver responding while talking to the passenger on a cell
phone (DC)
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Model-based analysis

Data, fitting code, and details about the hierarchical
Bayesian model fitting routine are presented in the supple-
mentary materials, which is available online at https://osf.
io/d7eru. To select between competing models we measured
how well each model could predict future data using WAIC.
WAIC includes a goodness of fit value and a measure of
the model’s complexity. Model complexity is subtracted
from the goodness-of-fit measure to approximate an unbi-
ased estimate of the model’s out-of-sample prediction error.
When comparing models, the model with the lower WAIC
value is better able to predict future data.

We fit 22 separate single bound diffusion models to the
DRT data, 7 models with trial-to-trial rate variability (η)
fixed at zero, 7 models where we estimated η, and 7 mod-
els where we estimated sz. For reference, we also fit a null
model with no variability and no parameters free to vary
across conditions. Table 1 provides a measure of the best
fit for each model and a measure of each model’s complex-
ity, the effective number of parameters. The WAIC analysis
indicates a clear preference for allowing both response
threshold and non-decision time to vary over cognitive load
conditions, and this was consistent regardless of the trial-
to-trial variability assumption. Most importantly, models
in which the mean drift rate explained the effect of the
experimental factor were strongly rejected. We refer to the
response threshold and non-decision time model with trial-
to-trial starting point variability as the winning or a + Ter

model and we will focus further analysis on this model.
Plots presented in the supplementary materials show that the
a + Ter model captured all response time distributions well.
In addition, the model only predicted that 0.2% of trials
were misses (i.e., greater than 1 second).

The winning a+Ter model contained between-trial start-
ing point variability. This suggests that accumulation of
information that occurs without a signal present has non-
negligible effects on the response time data. In particular,
it appears likely the accumulation process does not always
reset to a baseline after a response before the presentation
of the next DRT signal. The starting point variability cap-
tures this, likely reflecting uncertainty caused by varying
inter-trial-intervals of 3–5 seconds.

Table 2 shows median values of the group-level mean
posterior distributions for response threshold, drift rate, and
non-decision time from the winning a+Ter model. We used
Bayesian predictive p-values to statistically test for differ-
ences between the posterior distributions (Meng, 1994). We
calculated the difference between subject level posterior dis-
tributions, or plausible values (Marsman, Maris, Bechger, &
Glas, 2016), and then averaged the differences over subjects.

We calculated the probability (p-value) that the distribu-
tions of differences between parameters were equal to or
less than 0. Similar to the traditional p-value, a low pre-
dictive p-value indicates a low probability of the model
producing this or more extreme data. The response thresh-
old increased from the D to the DP condition (p < .001) and
from the D to the DC condition (p < .001), suggesting that
drivers were more cautious when cognitive load increases.
Thresholds were comparable between the DP and DC condi-
tions (p = .762), indicating little evidence for a difference in
caution between cell phone and in-car conversations. Non-
decision time for drivers conversing with a passenger in
person was only 6ms faster, on average over posterior esti-
mates, compared to when they were talking over the phone
or were driving alone. There was no strong statistical evi-
dence that any non-decision time parameters were different
from each other at the group-level (all p > .215). In Fig. 1

Table 1 WAIC results, number of effective parameters and deviance of the posterior mean for all models

Model Drift variability No between variability Start point variability

WAIC Effective parameters WAIC Effective parameters WAIC Effective parameters

a ∼ 1 & v ∼ 1 & ter ∼ 1 – – −11276 46 – –

a ∼ F & v ∼ 1 & ter ∼ 1 −11628 88 −11603 93 −11717 102

a ∼ 1 & v ∼ F & ter ∼ 1 −11563 89 −11537 86 −11537 85

a ∼ 1 & v ∼ 1 & ter ∼ F −11565 86 −11534 90 −11573 89

a ∼ F & v ∼ 1 & ter ∼ F −11652 116 −11635 116 −11748 122

a ∼ 1 & v ∼ F & ter ∼ F −11596 128 −11592 122 −11621 119

a ∼ F & v ∼ F & ter ∼ 1 −11624 124 −11615 123 −11715 131

a ∼ F & v ∼ F & ter ∼ F −11625 138 −11623 137 −11729 141

Note. Bold WAIC value indicates the preferred model. The first row displays a null model with no parameters free to vary across conditions

∼F indicates different parameter estimates were allowed for each level of the experimental factor

∼1 that the same value was estimated for all levels

https://osf.io/d7eru
https://osf.io/d7eru
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Table 2 Median values of the group-level mean posterior distributions
from the winning a + Ter model. 95% credible interval is presented in
parenthesis

D DP DC

a 1.243 (0.475, 1.998) 1.505 (0.935, 2.224) 1.478 (0.938, 2.171)

Ter 0.210 (0.193, 0.227) 0.204 (0.180, 0.227) 0.210 (0.187, 0.232)

v 5.052 (4.733, 5.371) 5.052 (4.733, 5.371) 5.052 (4.733, 5.371)

sz 0.389 (0.021, 0.921) 0.389 (0.021, 0.921) 0.389 (0.021, 0.921)

Note. Ter values are in seconds and the diffusion noise is fixed to 1

of the supplementary materials we show that despite their
being no differences in non-decision time at the group level
there are substantial individual effects. Therefore, model
selection supports the inclusion of non-decision time effects
because there are large differences between the individual
drivers.

General discussion

In our experiment, pairs of participants, assigned as either
driver or passenger, took part in a driving simulator and
detection response task (DRT) simultaneously. In the DRT,
participants were required to respond when a small light
appeared in their peripheral vision. The drivers completed
the DRT in three different conditions: by themselves in the
simulator, talking with a passenger in the simulator, and
talking to a passenger (who was outside of the simulator)
on a cell phone. We recorded the response times (RT) in the
DRT from both the driver and passenger.

RTs in the DRT are a validated measure of cognitive
load (International Organization for Standardization, 2015),
where slower RTs represent increased cognitive load. We
found that drivers had slower RTs when they were convers-
ing with a passenger in person or over the phone compared
to when they were by themselves – suggesting that both
types of conversation increased cognitive load. We modeled
the DRT behavioral data with the single-bound diffusion
model to determine if longer RTs, which reflect increased
cognitive load, are due to differences in drift rates, response
thresholds, or non-decision times.

We found that the cognitive load effect on DRT perfor-
mance was due to an increase in the participant’s response
thresholds, rather than an effect of cognitive load on the time
to encode stimuli and to produce responses or on the rate
of evidence accumulation. In contrast to Ratcliff and Van
Dongen (2011), but consistent with Anders et al. (2016), we
did not find it necessary to allow for variability in the rate of
evidence accumulation from trial-to-trial to provide a good
account of our DRT data.

Our findings may at first seem surprising because they
are not in line with the capacity sharing account of DRT
and driving performance (e.g., Strayer et al., 2011, 2013).
However, separate pools of capacity for DRT and driving is
consistent with the finding that having to preform the DRT
does not adversely impact driving (Strayer et al., 2014).
Why then is the DRT a sensitive measure of cognitive load?
We propose this could be due to the general tendency of peo-
ple to be more cautious under increased cognitive load, but
further work is required to better understand the processes
underlying threshold adjustments, and why they occur.

One possibility is that the process is consciously medi-
ated, with participants slowing in the DRT because they
deliberately set higher threshold for the secondary DRT task
when they perceive they are subject to a higher workload in
the primary driving task. In other words, if the driver has a
separate resource pool for the primary and secondary tasks
then the DRT slowing is the result of an strategic increase
in threshold. The strategy could be that the driver priori-
tizes responding to traffic over responding to the DRT signal
when they perceive a higher workload. This possibility is
consistent with the strong correlation found between DRT
decrements and self-report measures of subjective workload
(Strayer et al., 2013), such as the NASA Task Load Index
(Hart and Staveland, 1988).

Alternately, threshold increases may occur to reduce
the chance of response conflicts (i.e., one response pre-
empting another), as suggested by delay theory (Loft &
Remington, 2013) of dual task costs in prospective mem-
ory tasks (Heathcote et al., 2015). Prospective memory tasks
involve a dual task paradigm that requires participants to
respond to both a common “ongoing” task and an occa-
sional prospective memory task. The ongoing activity can
preemept the prospective memory response. Heathcote et
al. found that participants raised their threshold in order to
avoid preempting.

Many cognitive tasks require a decision between two
or more alternatives and record both the choice and the
time to make that choice. In such choice RT data, thresh-
old and rate effects are relatively easy to disambiguate as
they have opposite effects on accuracy and RT (i.e., a higher
threshold increases accuracy and RT, whereas a higher drift
rate increases accuracy but decreases RT). In simple RT,
in contrast, these effects are differentiated only by rela-
tively subtle effects on the distribution of RT. Although tests
based on out-of-sample predictive accuracy clearly favored
a threshold account of cognitive load effects, and the cor-
responding model produced clear and sensible effects on
threshold estimates, it would be prudent in future work to
seek converging evidence about our somewhat surprising
findings.

One potential way forward is to examine the effects of
speed vs. accuracy instructions, which are usually assumed
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to selectively affect response thresholds (but see Rae,
Heathcote, Donkin, Averell, & Brown, 2014). Another pos-
sibility is to compare cognitive load effects on the tradi-
tional (simple RT) DRT and a version requiring a choice
response, which should allow for a stronger comparison of
rate vs. threshold models. A choice version of the DRT
(e.g., respond ‘A’ for a green light, ‘B’ for a red light)
could offer a stronger test of cognitive load effects, although
in practice it may be problematic if its greater complex-
ity results in a detrimental impact on driving performance.
The test could be stronger because, in choice data, drift
rates and response thresholds have unique behavioral signa-
tures in data that can be easily distinguished (Ratcliff &
McKoon, 2008). Changes in the mean drift rate will cause
small changes to the fastest responses, large changes to
the slowest responses, and higher rates will lead to faster
response times and higher accuracy. In contrast, response
thresholds have relatively small effects on the fastest and
slowest responses and higher thresholds will lead to slower
response times and higher accuracy. By modeling these
unique signatures in choice data, it may be possible to bet-
ter distinguish rate and thresholds theories of cognitive load,
and so provide a more robust test for our novel hypothesis
about caution changes in response to cognitive load.
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